Sample records for probe tree assembly

  1. Probe tip heating assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Roger William; Oh, Yunje

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less

  2. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  3. Methods for determining the genetic affinity of microorganisms and viruses

    NASA Technical Reports Server (NTRS)

    Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)

    2012-01-01

    Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.

  4. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  5. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  6. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.

    PubMed

    Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D

    2016-05-18

    A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.

  7. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  8. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  9. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2014-07-08

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  10. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-01-27

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  11. Nanomechanical testing system

    DOEpatents

    Vodnick, David James; Dwivedi, Arpit; Keranen, Lucas Paul; Okerlund, Michael David; Schmitz, Roger William; Warren, Oden Lee; Young, Christopher David

    2015-02-24

    An automated testing system includes systems and methods to facilitate inline production testing of samples at a micro (multiple microns) or less scale with a mechanical testing instrument. In an example, the system includes a probe changing assembly for coupling and decoupling a probe of the instrument. The probe changing assembly includes a probe change unit configured to grasp one of a plurality of probes in a probe magazine and couple one of the probes with an instrument probe receptacle. An actuator is coupled with the probe change unit, and the actuator is configured to move and align the probe change unit with the probe magazine and the instrument probe receptacle. In another example, the automated testing system includes a multiple degree of freedom stage for aligning a sample testing location with the instrument. The stage includes a sample stage and a stage actuator assembly including translational and rotational actuators.

  12. Robot friendly probe and socket assembly

    NASA Technical Reports Server (NTRS)

    Nyberg, Karen L. (Inventor)

    1994-01-01

    A probe and socket assembly for serving as a mechanical interface between structures is presented. The assembly comprises a socket having a housing adapted for connection to a first supporting structure and a probe which is readily connectable to a second structure and is designed to be easily grappled and manipulated by a robotic device for insertion and coupling with the socket. Cooperable automatic locking means are provided on the probe shaft and socket housing for automatically locking the probe in the socket when the probe is inserted a predetermined distance. A second cooperable locking means on the probe shaft and housing are adapted for actuation after the probe has been inserted the predetermined distance. Actuation means mounted on the probe and responsive to the grip of the probe handle by a gripping device, such as a robot for conditioning the probe for insertion and are also responsive to release of the grip of the probe handle to actuate the second locking means to provide a hard lock of the probe in the socket.

  13. Dispersal assembly of rain forest tree communities across the Amazon basin

    PubMed Central

    Lavin, Mathew; Torke, Benjamin M.; Twyford, Alex D.; Kursar, Thomas A.; Coley, Phyllis D.; Drake, Camila; Hollands, Ruth; Pennington, R. Toby

    2017-01-01

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin. PMID:28213498

  14. Dispersal assembly of rain forest tree communities across the Amazon basin.

    PubMed

    Dexter, Kyle G; Lavin, Mathew; Torke, Benjamin M; Twyford, Alex D; Kursar, Thomas A; Coley, Phyllis D; Drake, Camila; Hollands, Ruth; Pennington, R Toby

    2017-03-07

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia , Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.

  15. Soil nutrients influence spatial distributions of tropical tree species.

    PubMed

    John, Robert; Dalling, James W; Harms, Kyle E; Yavitt, Joseph B; Stallard, Robert F; Mirabello, Matthew; Hubbell, Stephen P; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B

    2007-01-16

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<10(4) km(2)) and regional scales. At local scales (<1 km(2)), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

  16. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  17. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray

    PubMed Central

    Nie, Zhiyi; Kang, Guijuan; Duan, Cuifang; Li, Yu; Dai, Longjun; Zeng, Rizhong

    2016-01-01

    Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis. PMID:26985821

  18. Soil nutrients influence spatial distributions of tropical tree species

    PubMed Central

    John, Robert; Dalling, James W.; Harms, Kyle E.; Yavitt, Joseph B.; Stallard, Robert F.; Mirabello, Matthew; Hubbell, Stephen P.; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. PMID:17215353

  19. A single-probe heat pulse method for estimating sap velocity in trees.

    PubMed

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Radical probing of spliceosome assembly.

    PubMed

    Grewal, Charnpal S; Kent, Oliver A; MacMillan, Andrew M

    2017-08-01

    Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  2. 49 CFR 572.134 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... completely assembled dummy (drawing 880105-000) is impacted by a test probe conforming to section 572.137(a...). Within this specified compression corridor, the peak force, measured by the impact probe as defined in... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  3. 49 CFR 572.134 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... completely assembled dummy (drawing 880105-000) is impacted by a test probe conforming to section 572.137(a...). Within this specified compression corridor, the peak force, measured by the impact probe as defined in... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  4. 49 CFR 572.134 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... completely assembled dummy (drawing 880105-000) is impacted by a test probe conforming to section 572.137(a...). Within this specified compression corridor, the peak force, measured by the impact probe as defined in... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  5. 49 CFR 572.174 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... assembled dummy (drawing 420-0000) (incorporated by reference, see § 572.170) is impacted by a test probe... this specified compression corridor, the peak force, measured by the impact probe as defined in section... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  6. 49 CFR 572.134 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... completely assembled dummy (drawing 880105-000) is impacted by a test probe conforming to section 572.137(a...). Within this specified compression corridor, the peak force, measured by the impact probe as defined in... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  7. 49 CFR 572.174 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assembled dummy (drawing 420-0000) (incorporated by reference, see § 572.170) is impacted by a test probe... this specified compression corridor, the peak force, measured by the impact probe as defined in section... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  8. 49 CFR 572.174 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... assembled dummy (drawing 420-0000) (incorporated by reference, see § 572.170) is impacted by a test probe... this specified compression corridor, the peak force, measured by the impact probe as defined in section... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  9. Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures

    PubMed Central

    Zou, Limin; Ni, He; Zhang, Peng; Ding, Xuemei

    2017-01-01

    In this paper, an assembled cantilever fiber touch trigger probe was developed for three-dimensional measurements of clear microstructures. The probe consists of a shaft assembled vertically to an optical fiber cantilever and a probing sphere located at the free end of the shaft. The laser is emitted from the free end of the fiber cantilever and converges on the photosensitive surface of the camera through the lens. The position shift of the light spot centroid was used to detect the performance of the optical fiber cantilever, which changed dramatically when the probing sphere touched the objects being measured. Experimental results indicated that the sensing system has sensitivities of 3.32 pixels/μm, 1.35 pixels/μm, and 7.38 pixels/μm in the x, y, and z directions, respectively, and resolutions of 10 nm, 30 nm, and 5 nm were achieved in the x, y, and z, respectively. An experiment on micro slit measurement was performed to verify the high aspect ratio measurement capability of the assembled cantilever fiber (ACF) probe and to calibrate the effective two-point diameter of the probing sphere. The two-point probe sphere diameter was found to be 174.634 μm with a standard uncertainly of 0.045 μm. PMID:29156602

  10. Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures.

    PubMed

    Zou, Limin; Ni, He; Zhang, Peng; Ding, Xuemei

    2017-11-20

    In this paper, an assembled cantilever fiber touch trigger probe was developed for three-dimensional measurements of clear microstructures. The probe consists of a shaft assembled vertically to an optical fiber cantilever and a probing sphere located at the free end of the shaft. The laser is emitted from the free end of the fiber cantilever and converges on the photosensitive surface of the camera through the lens. The position shift of the light spot centroid was used to detect the performance of the optical fiber cantilever, which changed dramatically when the probing sphere touched the objects being measured. Experimental results indicated that the sensing system has sensitivities of 3.32 pixels/μm, 1.35 pixels/μm, and 7.38 pixels/μm in the x, y, and z directions, respectively, and resolutions of 10 nm, 30 nm, and 5 nm were achieved in the x, y, and z, respectively. An experiment on micro slit measurement was performed to verify the high aspect ratio measurement capability of the assembled cantilever fiber (ACF) probe and to calibrate the effective two-point diameter of the probing sphere. The two-point probe sphere diameter was found to be 174.634 μm with a standard uncertainly of 0.045 μm.

  11. INTRODUCTION TO PHYTOTECHNOLOGIES

    EPA Science Inventory

    A tree is a tree is a tree; or is it? To a child a tree is to climb, to a landscape architect a tree shapes the view, while to an environmental engineer a tree may be a self-assembling, solar- powered pump and treat system. Phytoremediation is the art and science of using plant...

  12. De novo genome assembly of the red silk cotton tree (Bombax ceiba).

    PubMed

    Gao, Yong; Wang, Haibo; Liu, Chao; Chu, Honglong; Dai, Dongqin; Song, Shengnan; Yu, Long; Han, Lihong; Fu, Yi; Tian, Bin; Tang, Lizhou

    2018-05-01

    Bombax ceiba L. (the red silk cotton tree) is a large deciduous tree that is distributed in tropical and sub-tropical Asia as well as northern Australia. It has great economic and ecological importance, with several applications in industry and traditional medicine in many Asian countries. To facilitate further utilization of this plant resource, we present here the draft genome sequence for B. ceiba. We assembled a relatively intact genome of B. ceiba by using PacBio single-molecule sequencing and BioNano optical mapping technologies. The final draft genome is approximately 895 Mb long, with contig and scaffold N50 sizes of 1.0 Mb and 2.06 Mb, respectively. The high-quality draft genome assembly of B. ceiba will be a valuable resource enabling further genetic improvement and more effective use of this tree species.

  13. Note: A unibody NIR transmission probe for in situ liquid detection

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Wang, Yang; Ma, Xiangyun; Zhao, Yang; Chen, Da; Chen, Wenliang; Xu, Kexin; Li, Qifeng

    2018-03-01

    The transmission probe is widely used for in situ spectroscopic detection in various fields. Conventional transmission probes are always assembled from parts, which require accurate assembly and good sealing. In this paper, a universal and reliable near-infrared (NIR) transmission probe is proposed, which is simply made up of a unibody fused silica rod. The proposed NIR transmission probe has been successfully used to measure the alcohol by volume of the Chinese spirit for quality control. This unibody NIR transmission probe has great potential for the detection of corrosive substances, owing to the good chemical resistance.

  14. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  15. STBase: one million species trees for comparative biology.

    PubMed

    McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.

  16. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  17. Measuring oxygen and carbon dioxide in red oak trees

    Treesearch

    Keith F. Jensen

    1967-01-01

    A method is described for collecting gas samples from tree trunks by placing a permanent probe in the tree and withdrawing samples with a portable vacuum pump. Marked quantitative differences were found between the concentration of gases in tree trunks and the concentration of gases in the atmosphere.

  18. Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics.

    PubMed

    Breinholt, Jesse W; Earl, Chandra; Lemmon, Alan R; Lemmon, Emily Moriarty; Xiao, Lei; Kawahara, Akito Y

    2018-01-01

    The advent of next-generation sequencing technology has allowed for thecollection of large portions of the genome for phylogenetic analysis. Hybrid enrichment and transcriptomics are two techniques that leverage next-generation sequencing and have shown much promise. However, methods for processing hybrid enrichment data are still limited. We developed a pipeline for anchored hybrid enrichment (AHE) read assembly, orthology determination, contamination screening, and data processing for sequences flanking the target "probe" region. We apply this approach to study the phylogeny of butterflies and moths (Lepidoptera), a megadiverse group of more than 157,000 described species with poorly understood deep-level phylogenetic relationships. We introduce a new, 855 locus AHE kit for Lepidoptera phylogenetics and compare resulting trees to those from transcriptomes. The enrichment kit was designed from existing genomes, transcriptomes, and expressed sequence tags and was used to capture sequence data from 54 species from 23 lepidopteran families. Phylogenies estimated from AHE data were largely congruent with trees generated from transcriptomes, with strong support for relationships at all but the deepest taxonomic levels. We combine AHE and transcriptomic data to generate a new Lepidoptera phylogeny, representing 76 exemplar species in 42 families. The tree provides robust support for many relationships, including those among the seven butterfly families. The addition of AHE data to an existing transcriptomic dataset lowers node support along the Lepidoptera backbone, but firmly places taxa with AHE data on the phylogeny. Combining taxa sequenced for AHE with existing transcriptomes and genomes resulted in a tree with strong support for (Calliduloidea $+$ Gelechioidea $+$ Thyridoidea) $+$ (Papilionoidea $+$ Pyraloidea $+$ Macroheterocera). To examine the efficacy of AHE at a shallow taxonomic level, phylogenetic analyses were also conducted on a sister group representing a more recent divergence, the Saturniidae and Sphingidae. These analyses utilized sequences from the probe region and data flanking it, nearly doubled the size of the dataset; resulting trees supported new phylogenetics relationships, especially within the Saturniidae and Sphingidae (e.g., Hemarina derived in the latter). We hope that our data processing pipeline, hybrid enrichment gene set, and approach of combining AHE data with transcriptomes will be useful for the broader systematics community. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A probability approach to sawtimber tree-value projections

    Treesearch

    Roger E. McCay; Paul S. DeBald; Paul S. DeBald

    1973-01-01

    The authors present a method for projecting hardwood sawtimber tree values, using tree-development probabilities based on continuous forest inventory (CFI) data and describe some ways to use the resulting value projections to assemble management-planning information.

  20. Spatio-temporal water dynamics in mature Banksia menziesii trees during drought.

    PubMed

    Bader, Martin K-F; Ehrenberger, Wilhelm; Bitter, Rebecca; Stevens, Jason; Miller, Ben P; Chopard, Jerome; Rüger, Simon; Hardy, Giles E S J; Poot, Pieter; Dixon, Kingsley W; Zimmermann, Ulrich; Veneklaas, Erik J

    2014-10-01

    Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function. © 2014 Scandinavian Plant Physiology Society.

  1. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  2. STBase: One Million Species Trees for Comparative Biology

    PubMed Central

    McMahon, Michelle M.; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J.

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees. PMID:25679219

  3. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)

    PubMed Central

    2012-01-01

    Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes. PMID:22607098

  4. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.

    PubMed

    Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D

    2005-06-22

    A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.

  5. Multiple filters affect tree species assembly in mid-latitude forest communities.

    PubMed

    Kubota, Y; Kusumoto, B; Shiono, T; Ulrich, W

    2018-05-01

    Species assembly patterns of local communities are shaped by the balance between multiple abiotic/biotic filters and dispersal that both select individuals from species pools at the regional scale. Knowledge regarding functional assembly can provide insight into the relative importance of the deterministic and stochastic processes that shape species assembly. We evaluated the hierarchical roles of the α niche and β niches by analyzing the influence of environmental filtering relative to functional traits on geographical patterns of tree species assembly in mid-latitude forests. Using forest plot datasets, we examined the α niche traits (leaf and wood traits) and β niche properties (cold/drought tolerance) of tree species, and tested non-randomness (clustering/over-dispersion) of trait assembly based on null models that assumed two types of species pools related to biogeographical regions. For most plots, species assembly patterns fell within the range of random expectation. However, particularly for cold/drought tolerance-related β niche properties, deviation from randomness was frequently found; non-random clustering was predominant in higher latitudes with harsh climates. Our findings demonstrate that both randomness and non-randomness in trait assembly emerged as a result of the α and β niches, although we suggest the potential role of dispersal processes and/or species equalization through trait similarities in generating the prevalence of randomness. Clustering of β niche traits along latitudinal climatic gradients provides clear evidence of species sorting by filtering particular traits. Our results reveal that multiple filters through functional niches and stochastic processes jointly shape geographical patterns of species assembly across mid-latitude forests.

  6. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  7. Thiamethoxam and imidacloprid drench applications on sweet orange nursery trees disrupt the feeding and settling behaviour of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Miranda, Marcelo P; Yamamoto, Pedro T; Garcia, Rafael B; Lopes, João Pa; Lopes, João Rs

    2016-09-01

    Chemical control is the method most used for management of Diaphorina citri, the vector of the phloem-limited bacteria associated with citrus huanglongbing (HLB) disease. The objectives of this study were to determine the influence of soil-drench applications of neonicotinoids (thiamethoxam and imidacloprid) on the probing behaviour of D. citri on citrus nursery trees, using the electrical penetration graph (EPG) technique, and to measure the D. citri settling behaviour after probing on citrus nursery trees that had received these neonicotinoid treatments. The drench applications of neonicotinoids on citrus nursery trees disrupt D. citri probing, mainly for EPG variables related to phloem sap ingestion, with a significant reduction (≈90%) in the duration of this activity compared with untreated plants in all assessment periods (15, 35 and 90 days after application). Moreover, both insecticides have a repellent effect on D. citri, resulting in significant dispersal of psyllids from treated plants. This study clearly demonstrates the interference of soil-applied neonicotinoids on the feeding and settling behaviour of D. citri on citrus nursery trees, mainly during the phloem ingestion phase. These findings reinforce the recommendation of drench application of neonicotinoids before planting nursery trees as a useful strategy for HLB management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  9. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    PubMed Central

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453

  10. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  11. ALP FOPEN Site Description and Ground Truth Summary

    DTIC Science & Technology

    1990-02-01

    equations describing the destribution of above ground biomass for the various tree species; and (6) dielectric measurements of the two major’ tree...does not physically alter the tree layer being sampled by pressing too hard with the dielectric probe. In design of an experiment to collect dielectric

  12. Imaging mycobacterial growth and division with a fluorogenic probe.

    PubMed

    Hodges, Heather L; Brown, Robert A; Crooks, John A; Weibel, Douglas B; Kiessling, Laura L

    2018-05-15

    Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.

  13. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.

    PubMed

    Li, Yuliang; Yu, Chao; Yang, Bo; Liu, Zhirui; Xia, Peiyuan; Wang, Qian

    2018-04-15

    Herein, a new type of multifunctional iron based metal-organic frameworks (PdNPs@Fe-MOFs) has been synthesized by assembly palladium nanoparticles on the surface of Fe-MIL-88NH 2 MOFs microcrystals, and first applied in electrochemical biosensor for ultrasensitive detection of microRNA-122 (miR-122, a biomarker of drug-induced liver injury). The nanohybrids have not only been utilized as ideal nanocarriers for immobilization of signal probes, but also used as redox probes and electrocatalysts. In this biosensor, two hairpin probes were designed as capture probes and signal probes, respectively. The nanohybrids conjugated with streptavidin and biotinylated signal probes were used as the tracer labels, target miR-122 was sandwiched between the tracer labels and thiol-terminated capture probes inserted in MCH monolayer on the gold nanoparticles-functionalized nitrogen-doped graphene sheets (AuNPs@N-G) modified electrode. Based on target-catalyzed hairpin assembly, target miR-122 could trigger the hybridization of capture probes and signal probes to further be released to initiate the next reaction process resulted in numerous tracer indicators anchored onto the sensing interfaces. Thus, the detection signal could be dramatically enhanced towards the electrocatalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 owing to the intrinsic and intriguing peroxidase-like activity of the nanohybrids. With the assist of target-catalyzed hairpin assembly and PdNPs@Fe-MOFs mimetic co-reaction for signal amplification, a wide detection range from 0.01fM to 10pM was achieved with a low detection limit of 0.003fM (S/N =3). Furthermore, the proposed biosensor exhibited excellent specificity and recovery in spiked serum samples, and was successfully used for detecting miR-122 in real biological samples, which provided a rapid and efficient method for detecting drug-induced liver injury at an early stage. Copyright © 2017. Published by Elsevier B.V.

  14. Development, fabrication and testing of a magnetically connected plastic vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Phillips, G. B.; Pace, V. A., Jr.

    1972-01-01

    The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.

  15. Probing the inner space of resorcinarene molecular capsules with nitroxide guests.

    PubMed

    Mileo, Elisabetta; Yi, Song; Bhattacharya, Papri; Kaifer, Angel E

    2009-01-01

    In quarantine: Nitroxide spin probes are encapsulated by hexameric resorcinarene molecular capsules in dichloromethane solutions (see picture). A substantial reduction in the tumbling rates occurs upon encapsulation of two cationic probes and one neutral probe. As the molecular volume of the probe increases, the tumbling rate of the probe reflects the overall tumbling rate of the entire supramolecular assembly.

  16. A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.

    PubMed

    Zhang, Ye; Luo, Shihua; Situ, Bo; Chai, Zhixin; Li, Bo; Liu, Jumei; Zheng, Lei

    2018-04-15

    Rare cancer cells in body fluid could be useful biomarkers for noninvasive diagnosis of cancer. However, detection of these rare cells is currently challenging. In this work, a binding-induced dual catalytic hairpin assembly (DCHA) electrochemical cytosensor was developed for highly selective and sensitive detection of cancer cells. The fuel probe, released by hybridization between the capture probe and catalytic hairpin assembly (CHA) products of target cell-responsive reaction, initiated dual CHA recycling, leading to multiple CHA products. Furthermore, the hybridization between fuel probe and capture probe decreased non-specific CHA products, improving the signal-to-noise ratio and detection sensitivity. Under the optimal conditions, the developed cytosensor was able to detect cells down to 30 cells mL -1 (S/N = 3) with a linear range from 50 to 100,000 cells mL -1 and was capable of distinguishing target cells from normal cells in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  18. On the coupled use of sapflow and eddy covariance measurements: environmental impacts on the evapotranspiration of an heterogeneous - wild olives based - Sardinian ecosystem.

    NASA Astrophysics Data System (ADS)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Oren, Ram

    2015-04-01

    Sapflow and eddy covariance techniques are attractive methods for evapotranspiration (ET) estimates. We demonstrated that in Mediterranean ecosystems, characterized by an heterogeneous spatial distribution of different plant functional types (PFT) such as grass and trees, the combined use of these techniques becomes essential for the actual ET estimates. Indeed, during the dry summers these water-limited heterogeneous ecosystems are typically characterized by a simple dual PFT system with strong-resistant woody vegetation and bare soil, since grass died. An eddy covariance - micrometeorological tower has been installed over an heterogeneous ecosystem at the Orroli site in Sardinia (Italy) from 2003. The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. Where patchy land cover leads and the surface fluxes from different cover are largely different, ET evaluation may be not robust enough and eddy covariance method hypothesis are not anymore preserved. In these conditions the sapflow measurements, performed by thermodissipation probes, provide robust estimates of the transpiration from woody vegetation. Through the coupled use of the sapflow sensor observations, a 2D footprint model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. Based on the Granier technique, 33 thermo-dissipation probes have been built and 6 power regulators have been assembled to provide a constant current of 3V to the sensors. The sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics in terms of tree size, exposition to wind and solar radiation and soil depth. The sap flow sensors outputs are analyzed to estimate innovative allometric relationships between sapwood area, diameter, canopy cover area, which are needed for the correct upscale of the local tree measurements to the site plot larger scale. Results show the response of wild olives stomatal conductance to vapor pressure deficit that follow an exponential decrease. Interestingly the tree exposure impacts transpiration significantly, showing double rates for the trees in the south part of the wild olive clumps. The soil depth also affects ET dynamics due to the influence on water absorption of the root tree system. Finally using an innovative scaling procedure, the sap-flow transpiration at field scale have been compared to the eddy covariance ET, showing the impact of climate dynamics on the ET estimates with the two tecniques.

  19. Ensemble stump classifiers and gene expression signatures in lung cancer.

    PubMed

    Frey, Lewis; Edgerton, Mary; Fisher, Douglas; Levy, Shawn

    2007-01-01

    Microarray data sets for cancer tumor tissue generally have very few samples, each sample having thousands of probes (i.e., continuous variables). The sparsity of samples makes it difficult for machine learning techniques to discover probes relevant to the classification of tumor tissue. By combining data from different platforms (i.e., data sources), data sparsity is reduced, but this typically requires normalizing data from the different platforms, which can be non-trivial. This paper proposes a variant on the idea of ensemble learners to circumvent the need for normalization. To facilitate comprehension we build ensembles of very simple classifiers known as decision stumps--decision trees of one test each. The Ensemble Stump Classifier (ESC) identifies an mRNA signature having three probes and high accuracy for distinguishing between adenocarcinoma and squamous cell carcinoma of the lung across four data sets. In terms of accuracy, ESC outperforms a decision tree classifier on all four data sets, outperforms ensemble decision trees on three data sets, and simple stump classifiers on two data sets.

  20. A comparison of sampling methods for a standing tree acoustic device

    Treesearch

    Jerry M. Mahon, Jr.; Lewis Jordan; Lawrence R. Schimleck; Alexander Clark, III; Richard F. Daniels

    2009-01-01

    One method of evaluating potential product performance is the use of acoustic tools for identifying trees with high stiffness. Acoustic velocities for 100 standing loblolly pine (Pinus taeda) trees, obtained with the transmitting and receiving probes placed on the same face and opposite faces, were compared. Significant differences in velocity between the two...

  1. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  2. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  3. Probe-And-Socket Fasteners For Robotic Assembly

    NASA Technical Reports Server (NTRS)

    Nyberg, Karen

    1995-01-01

    Self-alignment and simplicity of actuation make mechanism amenable to robotic assembly. Includes socket, mounted on structure at worksite, and probe, mounted on piece of equipment to be attached to structure at socket. Probe-and-socket mechanism used in conjunction with fixed target aiding in placement of end effector of robot during grasping, and with handle or handles on structure. Intended to enable robot to set up workstation in hostile environment. Workstation then used by astronaut, aquanaut, or other human, spending minimum time in environment. Human concentrates on performing quality work rather than on setting up equipment, with consequent reduction of risk.

  4. Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.

  5. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-04

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq

    PubMed Central

    2010-01-01

    Background De novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs. Results We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions. Conclusions De novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants. PMID:21122097

  7. Identification and qualification of 500 nuclear, single-copy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon capture.

    PubMed

    Teasdale, Luisa C; Köhler, Frank; Murray, Kevin D; O'Hara, Tim; Moussalli, Adnan

    2016-09-01

    The qualification of orthology is a significant challenge when developing large, multiloci phylogenetic data sets from assembled transcripts. Transcriptome assemblies have various attributes, such as fragmentation, frameshifts and mis-indexing, which pose problems to automated methods of orthology assessment. Here, we identify a set of orthologous single-copy genes from transcriptome assemblies for the land snails and slugs (Eupulmonata) using a thorough approach to orthology determination involving manual alignment curation, gene tree assessment and sequencing from genomic DNA. We qualified the orthology of 500 nuclear, protein-coding genes from the transcriptome assemblies of 21 eupulmonate species to produce the most complete phylogenetic data matrix for a major molluscan lineage to date, both in terms of taxon and character completeness. Exon capture targeting 490 of the 500 genes (those with at least one exon >120 bp) from 22 species of Australian Camaenidae successfully captured sequences of 2825 exons (representing all targeted genes), with only a 3.7% reduction in the data matrix due to the presence of putative paralogs or pseudogenes. The automated pipeline Agalma retrieved the majority of the manually qualified 500 single-copy gene set and identified a further 375 putative single-copy genes, although it failed to account for fragmented transcripts resulting in lower data matrix completeness when considering the original 500 genes. This could potentially explain the minor inconsistencies we observed in the supported topologies for the 21 eupulmonate species between the manually curated and 'Agalma-equivalent' data set (sharing 458 genes). Overall, our study confirms the utility of the 500 gene set to resolve phylogenetic relationships at a range of evolutionary depths and highlights the importance of addressing fragmentation at the homolog alignment stage for probe design. © 2016 John Wiley & Sons Ltd.

  8. 49 CFR 572.74 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by a test probe conforming to § 572.77(a) to 20 ±0.3 fps according to the test procedure in paragraph... longitudinal center line of the test probe so that it coincides with the designated impact point, and align the test probe so that at impact, the probe's longitudinal center line coincides (within 2 degrees) with...

  9. 49 CFR 572.74 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by a test probe conforming to § 572.77(a) to 20 ±0.3 fps according to the test procedure in paragraph... longitudinal center line of the test probe so that it coincides with the designated impact point, and align the test probe so that at impact, the probe's longitudinal center line coincides (within 2 degrees) with...

  10. 49 CFR 572.74 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by a test probe conforming to § 572.77(a) to 20 ±0.3 fps according to the test procedure in paragraph... longitudinal center line of the test probe so that it coincides with the designated impact point, and align the test probe so that at impact, the probe's longitudinal center line coincides (within 2 degrees) with...

  11. 49 CFR 572.74 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by a test probe conforming to § 572.77(a) to 20 ±0.3 fps according to the test procedure in paragraph... longitudinal center line of the test probe so that it coincides with the designated impact point, and align the test probe so that at impact, the probe's longitudinal center line coincides (within 2 degrees) with...

  12. 49 CFR 572.74 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by a test probe conforming to § 572.77(a) to 20 ±0.3 fps according to the test procedure in paragraph... longitudinal center line of the test probe so that it coincides with the designated impact point, and align the test probe so that at impact, the probe's longitudinal center line coincides (within 2 degrees) with...

  13. SNP Identification from RNA Sequencing and Linkage Map Construction of Rubber Tree for Anchoring the Draft Genome

    PubMed Central

    Shearman, Jeremy R.; Sangsrakru, Duangjai; Jomchai, Nukoon; Ruang-areerate, Panthita; Sonthirod, Chutima; Naktang, Chaiwat; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-01-01

    Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly. PMID:25831195

  14. SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome.

    PubMed

    Shearman, Jeremy R; Sangsrakru, Duangjai; Jomchai, Nukoon; Ruang-Areerate, Panthita; Sonthirod, Chutima; Naktang, Chaiwat; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-01-01

    Hevea brasiliensis, or rubber tree, is an important crop species that accounts for the majority of natural latex production. The rubber tree nuclear genome consists of 18 chromosomes and is roughly 2.15 Gb. The current rubber tree reference genome assembly consists of 1,150,326 scaffolds ranging from 200 to 531,465 bp and totalling 1.1 Gb. Only 143 scaffolds, totalling 7.6 Mb, have been placed into linkage groups. We have performed RNA-seq on 6 varieties of rubber tree to identify SNPs and InDels and used this information to perform target sequence enrichment and high throughput sequencing to genotype a set of SNPs in 149 rubber tree offspring from a cross between RRIM 600 and RRII 105 rubber tree varieties. We used this information to generate a linkage map allowing for the anchoring of 24,424 contigs from 3,009 scaffolds, totalling 115 Mb or 10.4% of the published sequence, into 18 linkage groups. Each linkage group contains between 319 and 1367 SNPs, or 60 to 194 non-redundant marker positions, and ranges from 156 to 336 cM in length. This linkage map includes 20,143 of the 69,300 predicted genes from rubber tree and will be useful for mapping studies and improving the reference genome assembly.

  15. bcgTree: automatized phylogenetic tree building from bacterial core genomes.

    PubMed

    Ankenbrand, Markus J; Keller, Alexander

    2016-10-01

    The need for multi-gene analyses in scientific fields such as phylogenetics and DNA barcoding has increased in recent years. In particular, these approaches are increasingly important for differentiating bacterial species, where reliance on the standard 16S rDNA marker can result in poor resolution. Additionally, the assembly of bacterial genomes has become a standard task due to advances in next-generation sequencing technologies. We created a bioinformatic pipeline, bcgTree, which uses assembled bacterial genomes either from databases or own sequencing results from the user to reconstruct their phylogenetic history. The pipeline automatically extracts 107 essential single-copy core genes, found in a majority of bacteria, using hidden Markov models and performs a partitioned maximum-likelihood analysis. Here, we describe the workflow of bcgTree and, as a proof-of-concept, its usefulness in resolving the phylogeny of 293 publically available bacterial strains of the genus Lactobacillus. We also evaluate its performance in both low- and high-level taxonomy test sets. The tool is freely available at github ( https://github.com/iimog/bcgTree ) and our institutional homepage ( http://www.dna-analytics.biozentrum.uni-wuerzburg.de ).

  16. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    PubMed

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in estimated mean f(S) declined rapidly with increasing sample size. At n = 10, the coefficient of variation in mean f(S) was 7% and at n = 15 it was slightly less than 5%. These observations indicate that radial variation in sap velocity is an important, albeit often overlooked, source of uncertainty in the scaling process. Failure to recognize that not all sapwood is functional in water transport will introduce systematic bias into estimates of both tree and stand water use. Future studies should devise sampling strategies for assessing radial variation in sap velocity and such strategies should be used to identify the magnitude of this variation in a range of non-, diffuse- and ring-porous trees.

  17. SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; James Knudsen

    As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less

  18. Experimental investigation of stress wave propagation in standing trees

    Treesearch

    Houjiang Zhang; Xiping Wang; Juan Su

    2011-01-01

    The objective of this study was to investigate how a stress wave travels in a standing tree as it is introduced into the tree trunk through a mechanical impact. A series of stress wave time-of-flight (TOF) data were obtained from three freshly-cut red pine (Pinus resinosa Ait.) logs by means of a two-probe stress wave timer. Two-dimensional (2D) and three-dimensional (...

  19. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  20. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  1. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest

    PubMed Central

    Essene, Adam L.; Shek, Katherine L.; Lewis, J. D.; Peay, Kabir G.; McGuire, Krista L.

    2017-01-01

    The role that mycorrhizal fungal associations play in the assembly of long-lived tree communities is poorly understood, especially in tropical forests, which have the highest tree diversity of any ecosystem. The lowland tropical rain forests of Southeast Asia are characterized by high levels of species richness within the family Dipterocarpaceae, the entirety of which has been shown to form obligate ectomycorrhizal (ECM) fungal associations. Differences in ECM assembly between co-occurring species of dipterocarp have been suggested, but never tested in adult trees, as a mechanism for maintaining the coexistence of closely related tree species in this family. Testing this hypothesis has proven difficult because the assembly of both dipterocarps and their ECM associates co-varies with the same edaphic variables. In this study, we used high-throughput DNA sequencing of soils and Sanger sequencing of root tips to evaluate how ECM fungi were structured within and across a clay–sand soil nutrient ecotone in a mixed-dipterocarp rain forest in Malaysian Borneo. We compared assembly patterns of ECM fungi in bulk soil to ECM root tips collected from three ecologically distinct species of dipterocarp. This design allowed us to test whether ECM fungi are more strongly structured by soil type or host specificity. As with previous studies of ECM fungi on this plot, we observed that clay vs. sand soil type strongly structured both the bulk soil and root tip ECM fungal communities. However, we also observed significantly different ECM communities associated with two of the three dipterocarp species evaluated on this plot. These results suggest that ECM fungal assembly on these species is shaped by a combination of biotic and abiotic factors, and that the soil edaphic niche occupied by different dipterocarp species may be mediated by distinct ECM fungal assemblages. PMID:29163567

  2. A Trap For Capturing Arthropods Crawling up Tree Boles

    Treesearch

    James L. Hanula; Kirsten C.P. New

    1996-01-01

    A simple trap is described that captures arthropods as they crawl up tree boles. Constructed from metal funnels, plastic sandwich containers, and specimen cups, the traps can be assembled by one person at a rate of 5 to 6 per hour and installed in 2 to 3 minutes. Specimen collection required 15 to 20 seconds per trap. In 1993, three traps were placed on each tree. In...

  3. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    PubMed

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    NASA Astrophysics Data System (ADS)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  5. 49 CFR 572.76 - Limbs assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...

  6. 49 CFR 572.76 - Limbs assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...

  7. 49 CFR 572.76 - Limbs assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...

  8. 49 CFR 572.76 - Limbs assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (3) Align the test probe specified in § 572.77(a) with the longitudinal center line of the femur force gauge, so that at impact, the probe's longitudinal center line coincides with the sensor's longitudinal center line within ±2 degrees. (4) Impact the knee with the test probe moving horizontally and...

  9. Anchoring 9,371 Maize Expressed Sequence Tagged Unigenes to the Bacterial Artificial Chromosome Contig Map by Two-Dimensional Overgo Hybridization1

    PubMed Central

    Gardiner, Jack; Schroeder, Steven; Polacco, Mary L.; Sanchez-Villeda, Hector; Fang, Zhiwei; Morgante, Michele; Landewe, Tim; Fengler, Kevin; Useche, Francisco; Hanafey, Michael; Tingey, Scott; Chou, Hugh; Wing, Rod; Soderlund, Carol; Coe, Edward H.

    2004-01-01

    Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 × 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize. PMID:15020742

  10. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    PubMed

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  11. Test systems of the STS-XYTER2 ASIC: from wafer-level to in-system verification

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Zubrzycka, Weronika

    2016-09-01

    The STS/MUCH-XYTER2 ASIC is a full-size prototype chip for the Silicon Tracking System (STS) and Muon Chamber (MUCH) detectors in the new fixed-target experiment Compressed Baryonic Matter (CBM) at FAIR-center, Darmstadt, Germany. The STS assembly includes more than 14000 ASICs. The complicated, time-consuming, multi-step assembly process of the detector building blocks and tight quality assurance requirements impose several intermediate testing to be performed for verifying crucial assembly steps (e.g. custom microcable tab-bonding before wire-bonding to the PCB) and - if necessary - identifying channels or modules for rework. The chip supports the multi-level testing with different probing / contact methods (wafer probe-card, pogo-probes, in-system tests). A huge number of ASICs to be tested restricts the number and kind of tests possible to be performed within a reasonable time. The proposed architectures of test stand equipment and a brief summary of methodologies are presented in this paper.

  12. Next-generation phenomics for the Tree of Life.

    PubMed

    Burleigh, J Gordon; Alphonse, Kenzley; Alverson, Andrew J; Bik, Holly M; Blank, Carrine; Cirranello, Andrea L; Cui, Hong; Daly, Marymegan; Dietterich, Thomas G; Gasparich, Gail; Irvine, Jed; Julius, Matthew; Kaufman, Seth; Law, Edith; Liu, Jing; Moore, Lisa; O'Leary, Maureen A; Passarotti, Maria; Ranade, Sonali; Simmons, Nancy B; Stevenson, Dennis W; Thacker, Robert W; Theriot, Edward C; Todorovic, Sinisa; Velazco, Paúl M; Walls, Ramona L; Wolfe, Joanna M; Yu, Mengjie

    2013-06-26

    The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.

  13. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.

    PubMed

    Barz, F; Livi, A; Lanzilotto, M; Maranesi, M; Bonini, L; Paul, O; Ruther, P

    2017-06-01

    Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm -2 . Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.

  14. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates

    NASA Astrophysics Data System (ADS)

    Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.

    2017-06-01

    Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.

  15. Extraction of phenotypic traits from taxonomic descriptions for the tree of life using natural language processing.

    PubMed

    Endara, Lorena; Cui, Hong; Burleigh, J Gordon

    2018-03-01

    Phenotypic data sets are necessary to elucidate the genealogy of life, but assembling phenotypic data for taxa across the tree of life can be technically challenging and prohibitively time consuming. We describe a semi-automated protocol to facilitate and expedite the assembly of phenotypic character matrices of plants from formal taxonomic descriptions. This pipeline uses new natural language processing (NLP) techniques and a glossary of over 9000 botanical terms. Our protocol includes the Explorer of Taxon Concepts (ETC), an online application that assembles taxon-by-character matrices from taxonomic descriptions, and MatrixConverter, a Java application that enables users to evaluate and discretize the characters extracted by ETC. We demonstrate this protocol using descriptions from Araucariaceae. The NLP pipeline unlocks the phenotypic data found in taxonomic descriptions and makes them usable for evolutionary analyses.

  16. An interactive tool for processing sap flux data from thermal dissipation probes

    Treesearch

    Andrew C. Oishi; Chelcy F. Miniat

    2016-01-01

    Sap flux sensors are an important tool for estimating tree-level transpiration in forested and urban ecosystems around the world. Thermal dissipation (TD) or Granier-type sap flux probes are among the most commonly used due to their reliability, simplicity, and low cost.

  17. 49 CFR 572.186 - Abdomen assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... longitudinal axis of the probe's impact face as shown in Figure U5-A in appendix A to this subpart; (4) The... the three load cell forces must be concurrent in time. (2) Maximum impactor force (impact probe...

  18. 49 CFR 572.72 - Head assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a test probe conforming to § 572.77(a)(1) at 7 feet per second (fps) according to the test procedure... the test probe so that its longitudinal center line is— (i) At the forehead at the point of orthogonal... and midsagittal planes passing through this point. (3) Impact the head with the test probe so that at...

  19. 49 CFR 572.72 - Head assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a test probe conforming to § 572.77(a)(1) at 7 feet per second (fps) according to the test procedure... the test probe so that its longitudinal center line is— (i) At the forehead at the point of orthogonal... and midsagittal planes passing through this point. (3) Impact the head with the test probe so that at...

  20. 49 CFR 572.72 - Head assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a test probe conforming to § 572.77(a)(1) at 7 feet per second (fps) according to the test procedure... the test probe so that its longitudinal center line is— (i) At the forehead at the point of orthogonal... and midsagittal planes passing through this point. (3) Impact the head with the test probe so that at...

  1. 49 CFR 572.72 - Head assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a test probe conforming to § 572.77(a)(1) at 7 feet per second (fps) according to the test procedure... the test probe so that its longitudinal center line is— (i) At the forehead at the point of orthogonal... and midsagittal planes passing through this point. (3) Impact the head with the test probe so that at...

  2. Measuring soil and tree temperatures during prescribed fires with thermocouple probes

    Treesearch

    Stephen S. Sackett; Sally M. Haase

    1992-01-01

    Soil and cambium temperatures must be known to ascertain certain effects of prescribed fires on trees. Thermocouple-based systems were devised for measuring soil and cambium temperatures during prescribed fires. The systems, which incorporate both commercially available and custom components, perform three basic functions: data collection, data retrieval, and data...

  3. Three Dimensional Assembly in Directed Self-assembly of Block Copolymers

    DOE PAGES

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...

    2016-09-02

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  4. Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematical Skills

    ERIC Educational Resources Information Center

    Verdine, Brian N.; Golinkoff, Roberta M.; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia

    2014-01-01

    This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematical skills…

  5. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    PubMed

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ∼200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.

  6. Three dimensional atom probe imaging of GaAsSb quantum rings.

    PubMed

    Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I

    2011-07-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Genome sequence of the olive tree, Olea europaea.

    PubMed

    Cruz, Fernando; Julca, Irene; Gómez-Garrido, Jèssica; Loska, Damian; Marcet-Houben, Marina; Cano, Emilio; Galán, Beatriz; Frias, Leonor; Ribeca, Paolo; Derdak, Sophia; Gut, Marta; Sánchez-Fernández, Manuel; García, Jose Luis; Gut, Ivo G; Vargas, Pablo; Alioto, Tyler S; Gabaldón, Toni

    2016-06-27

    The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n). A total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidium pullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %. The assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.

  8. Soil moisture and wild olive tree transpiration relationship in a water-limited Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Curreli, M.; Montaldo, N.; Oren, R.

    2016-12-01

    Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots transfer water from pasture in conjunction whit deep roots uptake to recharge water in the stem.

  9. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Treesearch

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  10. A SNP resource for douglas-fir: de novo transcriptome assembly and SNP detection and validation

    Treesearch

    Glenn R. Howe; Jianbin Yu; Brian Knaus; Richard Cronn; Scott Kolpak; Peter Dolan; W. Walter Lorenz; Jeffrey F.D. Dean

    2013-01-01

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauco) are native to North America, the coastal variety is...

  11. FVS out of the box - assembly required

    Treesearch

    Don Vandendriesche

    2010-01-01

    The Forest Vegetation Simulator (FVS) is a prominent growth and yield model used for forecasting stand dynamics. However, users need to be aware of model behavior regarding stocking density, tree senescence, and understory recruitment; otherwise over long projections, FVS tends to concentrate substantial growth on few survivor trees. If the intent is to forecast...

  12. 49 CFR 572.154 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test probe conforming to § 572.155(a) at 5.0 ±0.1m/s (16.5 ±0.3 ft/s) according to the test procedure in paragraph (c) of this section, the peak force, measured by the impact probe in accordance with... longitudinal centerline of the probe coincides with the dummy's midsagittal plane, is centered on the torso 196...

  13. 49 CFR 572.154 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test probe conforming to § 572.155(a) at 5.0 ±0.1m/s (16.5 ±0.3 ft/s) according to the test procedure in paragraph (c) of this section, the peak force, measured by the impact probe in accordance with... longitudinal centerline of the probe coincides with the dummy's midsagittal plane, is centered on the torso 196...

  14. 49 CFR 572.154 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test probe conforming to § 572.155(a) at 5.0 ±0.1m/s (16.5 ±0.3 ft/s) according to the test procedure in paragraph (c) of this section, the peak force, measured by the impact probe in accordance with... longitudinal centerline of the probe coincides with the dummy's midsagittal plane, is centered on the torso 196...

  15. 49 CFR 572.154 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test probe conforming to § 572.155(a) at 5.0 ±0.1m/s (16.5 ±0.3 ft/s) according to the test procedure in paragraph (c) of this section, the peak force, measured by the impact probe in accordance with... longitudinal centerline of the probe coincides with the dummy's midsagittal plane, is centered on the torso 196...

  16. Diagnostics of Tree Diseases Caused by Phytophthora austrocedri Species.

    PubMed

    Mulholland, Vincent; Elliot, Matthew; Green, Sarah

    2015-01-01

    We present methods for the detection and quantification of four Phytophthora species which are pathogenic on trees; Phytophthora ramorum, Phytophthora kernoviae, Phytophthora lateralis, and Phytophthora austrocedri. Nucleic acid extraction methods are presented for phloem tissue from trees, soil, and pure cultures on agar plates. Real-time PCR methods are presented and include primer and probe sets for each species, general advice on real-time PCR setup and data analysis. A method for sequence-based identification, useful for pure cultures, is also included.

  17. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle

    Treesearch

    Stan D. Wullschleger; Samuel B. McLaughlin; Matthew P. Ayres

    2004-01-01

    Manual and automated dendrometers, and thermal dissipation probes were used to measure stem increment and sap flow for loblolly pine (Pinus taeda L.) trees attacked by southern pine beetle (Dendroctonus frontalis Zimm.) in east Tennessee, USA. Seasonal-long measurements with manual dendrometers indicated linear increases in stem...

  18. snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.

    PubMed

    Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M

    2012-01-01

    The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.

  19. Measurements of Optical Turbulence Parameters Aboard the Aircraft Carrier USS LEXINGTON.

    DTIC Science & Technology

    1982-09-30

    EFFECTS ON SHIP-TO-SHIP TRACKER PERFORMANCE ...... 10 E. FREQUENCY SPECTRA OF MICROTHERMAL FLUCTUATIONS ............. 13 9. CONCLUSIONS...in Fig. 2. It consisted of a Contel model MT-2 microthermal unit with modified probe system as discussed below, a RMS log amplifier, a HP 59313A 2 oI...probe system provided with the Contel system(4 ) was replaced with the probe assembly built for use in the Harris microthermal probe system(5 ). The

  20. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

    Treesearch

    G.A. Tuskan; S. DiFazio; S. Jansson; J. Bohlmann; I. Grigoriev; U. Hellsten; N. Putnam; S. Ralph; S. Rombauts; A. Salamov; J. Schein; L. Sterck; A. Aerts; R.R. Bhalerao; R.P. Bhalerao; D. Blaudez; W. Boerjan; A. Brun; A. Brunner; V. Busov; M. Campbell; J. Carlson; M. Chalot; J. Chapman; G.-L. Chen; D. Cooper; P.M. Coutinho; J. Couturier; S. Covert; Q. Cronk; R. Cunningham; J. Davis; S. Degroeve; A. Dejardin; C. dePamphilis; J. Detter; B. Dirks; U. Dubchak; S. Duplessis; J. Ehlting; B. Ellis; K. Gendler; D. Goodstein; M. Gribskov; J. Grimwood; A. Groover; L. Gunter; B. Hamberger; B. Heinze; Y. Helariutta; B. Henrissat; D. Holligan; R. Holt; W. Huang; N. Islam-Faridi; S. Jones; M. Jones-Rhoades; R. Jorgensen; C. Joshi; J. Kangasjarvi; J. Karlsson; C. Kelleher; R. Kirkpatrick; M. Kirst; A. Kohler; U. Kalluri; F. Larimer; J. Leebens-Mack; J.-C. Leple; P. Locascio; Y. Lou; S. Lucas; F. Martin; B. Montanini; C. Napoli; D.R. Nelson; C. Nelson; K. Nieminen; O. Nilsson; V. Pereda; G. Peter; R. Philippe; G. Pilate; A. Poliakov; J. Razumovskaya; P. Richardson; C. Rinaldi; K. Ritland; P. Rouze; D. Ryaboy; J. Schumtz; J. Schrader; B. Segerman; H. Shin; A. Siddiqui; F. Sterky; A. Terry; C.-J. Tsai; E. Uberbacher; P. Unneberg; J. Vahala; K. Wall; S. Wessler; G. Yang; T. Yin; C. Douglas; M. Marra; G. Sandberg; Y. Van de Peer; D. Rokhsar

    2006-01-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs...

  1. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests.

    PubMed

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L

    2014-04-15

    Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.

  2. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  3. Study on the kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin using the fluorescence probe thioflavin T.

    PubMed

    Yan, Mingyan; Wang, Xinping

    2018-05-27

    The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Assembly line plants take root

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comis, D.; Wood, M.

    This paper discussed tissue-culture propagation of sugarcane, apple trees, peach trees, citrus, orchids, data palms, and carrots. Tissue-culture propagation is a term used for a variety of techniques used to grow or genetically modify, preserve, or study plant parts in laboratories, from tissue or even a single cell. The author examined the benefits and commercial applications of this propagation process.

  5. Effect of electrostatic interaction on the location of molecular probe in polymer-surfactant supramolecular assembly: a solvent relaxation study.

    PubMed

    Singh, Prabhat K; Kumbhakar, Manoj; Pal, Haridas; Nath, Sukhendu

    2008-07-03

    Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.

  6. Samara Probe For Remote Imaging

    NASA Technical Reports Server (NTRS)

    Burke, James D.

    1989-01-01

    Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.

  7. 49 CFR 572.144 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... dummy (drawing 210-0000) is impacted by a test probe conforming to § 572.146(a) at 6.0 ±0.1 m/s (19.7 ±0... corridor, the peak force, measured by the probe-mounted accelerometer as defined in § 572.146(a) and... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  8. 49 CFR 572.144 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dummy (drawing 210-0000) is impacted by a test probe conforming to § 572.146(a) at 6.0 ±0.1 m/s (19.7 ±0... corridor, the peak force, measured by the probe-mounted accelerometer as defined in § 572.146(a) and... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  9. 49 CFR 572.144 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dummy (drawing 210-0000) is impacted by a test probe conforming to § 572.146(a) at 6.0 ±0.1 m/s (19.7 ±0... corridor, the peak force, measured by the probe-mounted accelerometer as defined in § 572.146(a) and... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  10. 49 CFR 572.144 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dummy (drawing 210-0000) is impacted by a test probe conforming to § 572.146(a) at 6.0 ±0.1 m/s (19.7 ±0... corridor, the peak force, measured by the probe-mounted accelerometer as defined in § 572.146(a) and... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the...

  11. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water use of ring-porous tree species with thermal dissipation probes at multiple spatial scales.

  12. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  13. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  14. DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers.

    PubMed

    Berganza, J; Olabarria, G; García, R; Verdoy, D; Rebollo, A; Arana, S

    2007-04-15

    An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.

  15. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly.

    PubMed

    Kunstler, Georges; Lavergne, Sébastien; Courbaud, Benoît; Thuiller, Wilfried; Vieilledent, Ghislain; Zimmermann, Niklaus E; Kattge, Jens; Coomes, David A

    2012-08-01

    The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view. © 2012 Blackwell Publishing Ltd/CNRS.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  17. A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents.

    PubMed

    Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan

    2018-02-09

    A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Autonomous assembly of ordered metastable DNA nanoarchitecture and in situ visualizing of intracellular microRNAs.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2017-03-01

    Facile assembly of intelligent DNA nanoobjects with the ability to exert in situ visualization of intracellular microRNAs (miRNAs) has long been concerned in the fields of DNA nanotechnology and basic medical study. Here, we present a driving primer (DP)-triggered polymerization-mediated metastable assembly (PMA) strategy to prepare a well-ordered metastable DNA nanoarchitecture composed of only two hairpin probes (HAPs), which has never been explored by assembly methods. Its structural features and functions are characterized by atomic force microscope (AFM) and gel electrophoresis. Even if with a metastable molecular structure, this nanoarchitecture is relatively stable at physiological temperature. The assembly strategy can be expanded to execute microRNA-21 (miRNA-21) in situ imaging inside cancer cells by labelling one of the HAPs with fluorophore and quencher. Compared with the conventional fluorescence probe-based in situ hybridization (FISH) technique, confocal images revealed that the proposed DNA nanoassembly can not only achieve greatly enhanced imaging effect within cancer cells, but also reflect the miRNA-21 expression level sensitively. We believe that the easily constructed DNA nanoarchitecture and in situ profiling strategy are significant progresses in DNA assembly and molecule imaging in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Low-energy gamma ray inspection of brazed aluminum joints

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1967-01-01

    Americium 241 serves as a suitable radioisotope /gamma ray source/ and exposure probe for radiographic inspection of brazed aluminum joints in areas of limited accessibility. The powdered isotope is contained in a sealed capsule mounted at the end of a spring-loaded pushrod in the probe assembly.

  20. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  1. Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees.

    PubMed

    Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas

    2009-05-01

    The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.

  2. The Floating Potential Probe (FPP) taken during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-376-029 (7 December 2000) --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree placed atop the P6 solar array structure, the highest point in their construction project. They then took this photo of the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour.

  3. Disentangling legacy effects from environmental filters of postfire assembly of boreal tree assemblages.

    PubMed

    Brown, Carissa D; Liu, Juxin; Yan, Guohua; Johnstone, Jill F

    2015-11-01

    Disturbance plays a key role in driving ecological responses by creating opportunities for new ecological communities to assemble and by directly influencing the outcomes of assembly. Legacy effects (such as seed banks) and environmental filters can both influence community assembly, but their effects are impossible to separate with observational data. Here, we used seeding experiments in sites covering a broad range of postdisturbance conditions to tease apart the effects of seed availability, environmental factors, and disturbance characteristics on early community assembly after fire. We added seed of four common boreal trees to experimental plots in 55 replicate sites in recently burned areas of black spruce forest in northwestern North America. Seed addition treatments increased the probability of occurrence for all species, indicating a widespread potential for seed limitation to affect patterns of recruitment after fire. Small-seeded. species (aspen and birch) were most sensitive to environmental factors such as soil moisture and organic layer depth, suggesting a role for niche-based environmental filtering in community assembly. Fire characteristics related to severity and frequency were also important drivers of seedling regeneration, indicating the potential for disturbance to mediate environmental filters and legacy effects on seed availability. Because effects of seed availability are typically impossible to disentangle from environmental constraints on recruitment in observational studies, legacy effects contingent on vegetation history may be misinterpreted as being driven by strong environmental filters. Results from the seeding experiments suggest that vegetation legacies affecting seed availability play a pivotal role in shaping patterns of community assembly after fire in these low-diversity boreal forests.

  4. A Simple Bioconjugate Attachment Protocol for Use in Single Molecule Force Spectroscopy Experiments Based on Mixed Self-Assembled Monolayers

    PubMed Central

    Attwood, Simon J.; Simpson, Anna M. C.; Stone, Rachael; Hamaia, SamirW.; Roy, Debdulal; Farndale, RichardW.; Ouberai, Myriam; Welland, Mark E.

    2012-01-01

    Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin. PMID:23202965

  5. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  6. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  7. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  8. Influence of Wind Tunnel Noise on the Location of Boundary-Layer Transition on a Slender Cone at Mach Numbers from 0.2 to 5.5. Volume I. Experimental Methods and Summary of Results.

    DTIC Science & Technology

    1980-03-01

    UNCLASSIFIED UNCLASSIFIED 20. ABSTRACT (Continued) either a traversing pitot pressure probe in contact with the cone surface or the flush-mounted...CONCLUDING REMARKS 46 REFERENCES 46 ILLUSTRATIONS Figure 1. 2. 3. 4. 5. 6. 7. 8. ’.. 9. i ~.. AEDC 10-deg Transition Cone Model 6 Pitot Pressure Probe ...Installation Sketch 9 Details of Pitot Pressure Probe Assembly 10 Typical Pitot Pressure Probe Sensing Tube/Transducer Frequency Response

  9. Electromechanical Apparatus Measures Residual Stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.; Flom, Yury

    1993-01-01

    Nondestructive test exploits relationship between stress and eddy-current-probe resistance. Yields data on residual stress or strain in metal tension/compression specimen (stress or strain remaining in specimen when no stress applied from without). Apparatus is assembly of commercial equipment: tension-or-compression testing machine, eddy-current probe, impedance gain-and-phase analyzer measuring impedance of probe coil, and desktop computer, which controls other equipment and processes data received from impedance gain-and-phase analyzer.

  10. 49 CFR 572.124 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by a test probe conforming to section 572.127(a) at 6.71 ±0.12 m/s (22.0 ±0.4 ft/s) according to the..., the peak force, measured by the probe in accordance with section 572.127, shall not be less than 1150... centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7...

  11. 49 CFR 572.124 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by a test probe conforming to section 572.127(a) at 6.71 ±0.12 m/s (22.0 ±0.4 ft/s) according to the..., the peak force, measured by the probe in accordance with section 572.127, shall not be less than 1150... centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7...

  12. 49 CFR 572.124 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by a test probe conforming to section 572.127(a) at 6.71 ±0.12 m/s (22.0 ±0.4 ft/s) according to the..., the peak force, measured by the probe in accordance with section 572.127, shall not be less than 1150... centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7...

  13. 49 CFR 572.124 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by a test probe conforming to section 572.127(a) at 6.71 ±0.12 m/s (22.0 ±0.4 ft/s) according to the..., the peak force, measured by the probe in accordance with section 572.127, shall not be less than 1150... centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7...

  14. Tree regeneration spatial patterns in ponderosa pine forests following stand-replacing fire: Influence of topography and neighbors

    Treesearch

    Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez

    2017-01-01

    Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...

  15. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    PubMed

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  16. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  17. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample

    PubMed Central

    Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Gimmel, Matthew L.; Kutty, Sujatha Narayanan; Cockerill, Timothy D.; Vun Khen, Chey; Vogler, Alfried P.

    2015-01-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA “superbarcodes” for testing hypotheses regarding global patterns of diversity. PMID:25957318

  18. Synthesis of phylogeny and taxonomy into a comprehensive tree of life

    PubMed Central

    Hinchliff, Cody E.; Smith, Stephen A.; Allman, James F.; Burleigh, J. Gordon; Chaudhary, Ruchi; Coghill, Lyndon M.; Crandall, Keith A.; Deng, Jiabin; Drew, Bryan T.; Gazis, Romina; Gude, Karl; Hibbett, David S.; Katz, Laura A.; Laughinghouse, H. Dail; McTavish, Emily Jane; Midford, Peter E.; Owen, Christopher L.; Ree, Richard H.; Rees, Jonathan A.; Soltis, Douglas E.; Williams, Tiffani; Cranston, Karen A.

    2015-01-01

    Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips—the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics. PMID:26385966

  19. Synthesis of phylogeny and taxonomy into a comprehensive tree of life.

    PubMed

    Hinchliff, Cody E; Smith, Stephen A; Allman, James F; Burleigh, J Gordon; Chaudhary, Ruchi; Coghill, Lyndon M; Crandall, Keith A; Deng, Jiabin; Drew, Bryan T; Gazis, Romina; Gude, Karl; Hibbett, David S; Katz, Laura A; Laughinghouse, H Dail; McTavish, Emily Jane; Midford, Peter E; Owen, Christopher L; Ree, Richard H; Rees, Jonathan A; Soltis, Douglas E; Williams, Tiffani; Cranston, Karen A

    2015-10-13

    Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.

  20. 49 CFR 572.72 - Head assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... intersection of the head midsagittal plane and the transverse plane which is perpendicular to the Z axis of the... and midsagittal planes passing through this point. (3) Impact the head with the test probe so that at... in the dummy's midsagittal plane. (4) Guide the test probe during impact so that there is no...

  1. Detection of discoloration and decay in living trees and utility poles

    Treesearch

    Alex L. Shigo; Alex Shigo

    1974-01-01

    A method is described for detecting discoloration and decay in living trees and creosoted utility poles. The method and devices have come from research involving many people over a seven-year period. A probe was inserted into a 3/32-inch (2.4 mm) diameter hole made by drill bits 8 inches (20.32 cm) and 12 inches (30.48 cm) long mounted in a portable, light-weight,...

  2. Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers.

    PubMed

    Xu, Xumin; Ma, Xiaoyuan; Wang, Haitao; Wang, Zhouping

    2018-06-12

    The authors describe a surface-enhanced Raman scattering (SERS) based aptasensor for Salmonella typhimurium (S. typhimurium). Gold nanoparticles (AuNPs; 35 nm i.d.) were functionalized with the aptamer (ssDNA 1) and used as the capture probe, while smaller (15 nm) AuNPs were modified with a Cy3-labeled complementary sequence (ssDNA 2) and used as the signalling probe. The asymmetric gold nanodimers (AuNDs) were assemblied with the Raman signal probe and the capture probe via hybridization of the complementary ssDNAs. The gap between two nanoparticles is a "hot spot" in which the Raman reporter Cy3 is localized. It experiences a strong enhancement of the electromagnetic field around the particle. After addition of S. typhimurium, it will be bound by the aptamer which therefore is partially dehybridized from its complementary sequence. Hence, Raman intensity drops. Under the optimal experimental conditions, the SERS signal at 1203 cm -1 increases linearly with the logarithm of the number of colonies in the 10 2 to 10 7  cfu·mL -1 concentration range, and the limit of detection is 35 cfu·mL -1 . The method can be performed within 1 h and was successfully applied to the analysis of spiked milk samples and performed very well and with high specificity. Graphical abstract DNA-assembled asymmetric gold nanodimers (AuNDs) were synthesized and appllied in a SERS-based aptasensor for S. typhimurium. Capture probe was preferentially combined with S. typhimurium and the structure of the AuNDs was destroyed. The "hot spot" vanished partly, this resulting in the decreased Raman intensity of Cy3.

  3. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    NASA Astrophysics Data System (ADS)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making temporally resolved measurements of the stable isotopes in xylem water, using a setup that can be easily repeated by other research groups. The method is anticipated to find broad application in ecohydrological analyses, and in tracer studies aimed at quantifying age distributions of soil water extracted by plant roots.

  4. Scale dependency of forest functional diversity assessed using imaging spectroscopy and airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Morsdorf, F.; Schmid, B.; Petchey, O. L.; Hueni, A.; Schimel, D.; Schaepman, M. E.

    2016-12-01

    Forest functional traits offer a mechanistic link between ecological processes and community structure and assembly rules. However, measuring functional traits of forests in a continuous and consistent way is particularly difficult due to the complexity of in-situ measurements and geo-referencing. New imaging spectroscopy measurements overcome these limitations allowing to map physiological traits on broad spatial scales. We mapped leaf chlorophyll, carotenoids and leaf water content over 900 ha of temperate mixed forest (Fig. 1a). The selected traits are functionally important because they are indicating the photosynthetic potential of trees, leaf longevity and protection, as well as tree water and drought stress. Spatially continuous measurements on the scale of individual tree crowns allowed to assess functional diversity patterns on a range of ecological extents. We used indexes of functional richness, divergence and evenness to map different aspects of diversity. Fig. 1b shows an example of physiological richness at an extent of 240 m radius. We compared physiological to morphological diversity patterns, derived based on plant area index, canopy height and foliage height diversity. Our results show that patterns of physiological and morphological diversity generally agree, independently measured by airborne imaging spectroscopy and airborne laser scanning, respectively. The occurrence of disturbance areas and mixtures of broadleaf and needle trees were the main drivers of the observed diversity patterns. Spatial patterns at varying extents and richness-area relationships indicated that environmental filtering is the predominant community assembly process. Our results demonstrate the potential for mapping physiological and morphological diversity in a temperate mixed forest between and within species on scales relevant to study community assembly and structure from space and test the corresponding measurement schemes.

  5. Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid

    NASA Astrophysics Data System (ADS)

    Lee, Kelly

    2011-03-01

    Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.

  6. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 3-6 (part 1 of 3). [design of Venus probe windows

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design is described of the Venus probe windows, which are required to measure solar flux, infrared flux, aureole, and cloud particles. Window heating and structural materials for the probe window assemblies are discussed along with the magnetometer. The command lists for science, power and communication requirements, telemetry sign characteristics, mission profile summary, mass properties of payloads, and failure modes are presented.

  7. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering.

    PubMed

    He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong

    2018-07-02

    Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  9. Diurnal water relations of walnut trees - Implications for remote sensing

    NASA Technical Reports Server (NTRS)

    Weber, James A.; Ustin, Susan L.

    1991-01-01

    Leaflet water content (WC), relative water content (RWC), and water potential, Phi(lf) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 100 and 33 percent of potential evapotranspiration (PET). Diurnal change was greatest in Phi(lf) throughout the experimental period, with minima occurring each day in early to mid-afternoon and maxima between midnight and sunrise. Leaflet WC and RWC were lower in the afternoon than at night, but had greater variability so that the diurnal pattern was not as clear. Comparison between the pattern of Phi(lf) and dielectric constants (DCs) measured from probes inserted 2 cm into a tree hole showed that both declined nearly in parallel in the morning. Phi(lf) recovered more rapidly than DC in the afternoon. This temporal discrepancy could be caused by cavitation of xylem elements in the vicinity of the DC probe. Microwave backscatter for L- and X-bands also measured diurnal variation that had local minima in the afternoon, but the pattern among wavelength and polarization signatures was complex.

  10. Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei

    PubMed Central

    Restrepo Restrepo, Silvia; Aristizábal Gutiérrez, Fabio Ancizar; Montoya Castaño, Dolly

    2015-01-01

    Natural rubber (Hevea brasiliensis) is a tropical tree used commercially for the production of latex, from which 40,000 products are generated. The fungus Microcyclus ulei infects this tree, causing South American leaf blight (SALB) disease. This disease causes developmental delays and significant crop losses, thereby decreasing the production of latex. Currently several groups are working on obtaining clones of rubber tree with durable resistance to SALB through the use of extensive molecular biology techniques. In this study, we used a secondary clone that was resistant to M. ulei isolate GCL012. This clone, FX 3864 was obtained by crossing between clones PB 86 and B 38 (H. brasiliensis x H. brasiliensis). RNA-Seq high-throughput sequencing technology was used to analyze the differential expression of the FX 3864 clone transcriptome at 0 and 48 h post infection (hpi) with the M. ulei isolate GCL012. A total of 158,134,220 reads were assembled using the de novo assembly strategy to generate 90,775 contigs with an N50 of 1672. Using a reference-based assembly, 76,278 contigs were generated with an N50 of 1324. We identified 86 differentially expressed genes associated with the defense response of FX 3864 to GCL012. Seven putative genes members of the AP2/ERF ethylene (ET)-dependent superfamily were found to be down-regulated. An increase in salicylic acid (SA) was associated with the up-regulation of three genes involved in cell wall synthesis and remodeling, as well as in the down-regulation of the putative gene CPR5. The defense response of FX 3864 against the GCL012 isolate was associated with the antagonistic SA, ET and jasmonic acid (JA) pathways. These responses are characteristic of plant resistance to biotrophic pathogens. PMID:26287380

  11. An inverse method to estimate stem surface heat flux in wildland fires

    Treesearch

    Anthony S. Bova; Matthew B. Dickinson

    2009-01-01

    Models of wildland fire-induced stem heating and tissue necrosis require accurate estimates of inward heat flux at the bark surface. Thermocouple probes or heat flux sensors placed at a stem surface do not mimic the thermal response of tree bark to flames.We show that data from thin thermocouple probes inserted just below the bark can be used, by means of a one-...

  12. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    PubMed Central

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  13. Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA

    PubMed Central

    Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng

    2017-01-01

    Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083

  14. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  15. Development of an outdoor MRI system for measuring flow in a living tree

    NASA Astrophysics Data System (ADS)

    Nagata, Akiyoshi; Kose, Katsumi; Terada, Yasuhiko

    2016-04-01

    An outdoor MRI system for noninvasive, long-term measurements of sap flow in a living tree in its natural environment has been developed. An open-access, 0.2 T permanent magnet with a 160 mm gap was combined with a radiofrequency probe, planar gradient coils, electromagnetic shielding, several electrical units, and a waterproofing box. Two-dimensional cross-sectional images were acquired for a ring-porous tree, and the anatomical structures, including xylem and phloem, were identified. The MRI flow measurements demonstrated the diurnal changes in flow velocity in the stem on a per-pixel basis. These results demonstrate that our outdoor MRI system is a powerful tool for studies of water transport in outdoor trees.

  16. Probing the intracellular fate of supramolecular nanocarriers and their cargo with FRET schemes

    NASA Astrophysics Data System (ADS)

    Thapaliya, Ek Raj; Fowley, Colin; Callan, Bridgeen; Tang, Sicheng; Zhang, Yang; Callan, John F.; Raymo, Françisco M.

    2017-02-01

    We designed a strategy to monitor self-assembling supramolecular nanocarriers and their cargo simultaneously in the intracellular space with fluorescence measurements. It is based on Förster resonance energy transfer (FRET) between complementary chromophores covalently integrated in the macromolecular backbone of amphiphilic polymers and/or noncovalently encapsulated in supramolecular assemblies of the amphiphilic components. Indeed, these polymers assemble into a micelles in aqueous phase to bring energy donors and acceptors in close proximity and allow energy transfer. The resulting supramolecular assemblies maintain their integrity after travelling into the intracellular space and do not lose their molecular guests in the process. Furthermore, this mechanism can also be exploited to probe the fate of complementary nanoparticles introduced within cells in consecutive incubation steps. Efficient energy transfer occurs in the intracellular space after the sequential incubation of nanocarriers incorporating donors first and then nanoparticles containing acceptors or vice versa. The two sets of nanostructured assemblies ultimately co-localize in the cell interior to bring donors and acceptors together and enable energy transfer. Thus, this protocol is particularly valuable to monitor the transport properties of supramolecular nanocarriers inside living cells and can eventually contribute to the fundamental understating of the ability of these promising vehicles to deliver contrast agents and/or drugs intracellularly in view of possible diagnostics and/or therapeutic applications.

  17. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    NASA Astrophysics Data System (ADS)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch-to-batch reproducibility of 80%. This body of work serves as an important demonstration that bottom-up engineering can be used for batch fabricatation of high-performance and high-reliability devices using inexpensive equipment and materials.

  18. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    USGS Publications Warehouse

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  19. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-01

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e

  20. Torque-Limiting Manipulation Device

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1999-01-01

    A device for manipulating a workpiece in space includes a fixture, a stanchion assembly, a manipulation mechanism, an actuation mechanism, and a reaction mechanism. The fixture has an end onto which the workpiece affixes. The stanchion assembly has an upper and a lower end. The manipulation mechanism connects the fixture and the upper end of the stanchion assembly. The lower end of the stanchion assembly mounts, via probe and a socket, to a structure. The actuation mechanism operably connects to the manipulation mechanism, and moves the fixture in space. The reaction mechanism provides a point through which force inputs into the actuation mechanism may react.

  1. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests.

    PubMed

    Aldana, Ana M; Carlucci, Marcos B; Fine, Paul V A; Stevenson, Pablo R

    2017-02-01

    The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.

  2. Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories

    PubMed Central

    Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.

    2010-01-01

    Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651

  3. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  4. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing

    Treesearch

    Zhuang Hu; Tian Zhang; Xiao-Xiao Gao; Yang Wang; Qiang Zhang; Hui-Juan Zhou; Gui-Fang Zhao; Ma-Li Wang; Keith E. Woeste; Peng Zhao

    2016-01-01

    Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome...

  5. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    PubMed

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Assembly/Disassembly of DNA-Au Nanoparticles: A Strategy of Intervention

    DOE PAGES

    Lim, I-Im S.; Wang, Lingyan; Chandrachud, Uma; ...

    2008-01-01

    This report describes the viability of a strategy for manipulating the assembly/disassembly processes of DNA-Au nanoparticles by molecular intervention. Using the temperature-induced assembly and disassembly processes of DNAs and gold nanoparticles as a model system, the introduction of a molecular recognition probe is demonstrated to lead to the intervention of the assembly/disassembly processes depending on its specific biorecognition. This process can be detected by monitoring the change in the optical properties of gold nanoparticles and their DNA assemblies. Implications of the preliminary results to exploration of the resulting nanostructures for fine-tuning of the interfacial reactivities in DNA-based bioassays and biomaterialmore » engineering are also discussed.« less

  7. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  8. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  9. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hill, Carrie S.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are useful for performing measurements in electric space thrusters and various plasma accelerator applications where a time-varying magnetic field is present. Magnetic field probes have proven to be a mainstay in diagnosing plasma thrusters where changes occur rapidly with respect to time, providing the means to measure the magnetic fields produced by time-varying currents and even an indirect measure of the plasma current density through the application of Ampère's law. Examples of applications where this measurement technique has been employed include pulsed plasma thrusters and quasi-steady magnetoplasmadynamic thrusters. The Electric Propulsion Technical Committee (EPTC) of the American Institute of Aeronautics and Astronautics (AIAA) was asked to assemble a Committee on Standards (CoS) for Electric Propulsion Testing. The assembled CoS was tasked with developing Standards and Recommended Practices for various diagnostic techniques used in the evaluation of plasma thrusters. These include measurements that can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. This paper presents a summary of the standard, describing the preferred methods for fabrication, calibration, and usage of inductive magnetic field probes for use in diagnosing plasma thrusters. Inductive magnetic field probes (also called B-dot probes throughout this document) are commonly used in electric propulsion (EP) research and testing to measure unsteady magnetic fields produced by time-varying currents. The B-dot probe is relatively simple in construction, and requires minimal cost, making it a low-cost technique that is readily accessible to most researchers. While relatively simple, the design of a B-dot probe is not trivial and there are many opportunities for errors in probe construction, calibration, and usage, and in the post-processing of data that is produced by the probe. There are typically several ways in which each of these steps can be approached, and different applications may require more or less vigorous attention to various issues.

  10. Do hummocks provide a physiological advantage to even the most flood tolerant of tidal freshwater trees?

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Conner, William H.; Bridges, William C.; Shelburne, Victor B.

    2013-01-01

    Hummock and hollow microtopography is pervasive in tidal freshwater swamps. Many tree species grow atop hummocks significantly more than in hollows, leading to the hypothesis that hummocks provide preferred locations for maximizing physiological proficiency of inhabiting trees that experience repeated flooding. We used thermal dissipation probes to measure the ecophysiological proficiency of a very flood-tolerant tree, Taxodium distichum, as manifested through in-situ changes in sapflow (a proxy for transpiration) in 11 trees on hummocks and 11 trees in hollows. Overall, sapflow increased significantly by 3.3 g H2O m−2 s−1 (11 %) in trees on both hummocks and hollows during flooding, contrary to our expectations. We found no significant differences in sapflow rates between T. distichum trees positioned on hummocks versus hollows in relation to discrete flood events. Coincidentally, hummock elevations were equivalent to the flood depths that promoted greatest physiological proficiency in T. distichum, suggesting a physiological role for the maintenance of hummock height in tidal swamps. While we reject our original hypotheses that flooding and positioning in hollows will reduce sapflow in T. distichum, this research reveals a potentially important feedback between hummock height, flood depth, and maximum tree physiological response.

  11. FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe.

    PubMed

    Gertz, E Michael; Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A

    2016-01-01

    Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.

  12. FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe

    PubMed Central

    Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A.

    2016-01-01

    Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees. PMID:27362268

  13. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    PubMed

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  14. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan

    NASA Astrophysics Data System (ADS)

    Guisinger, Nathan

    Both chirality and molecular assembly are essential and key components to life. In this study we explore the molecular assembly of the amino acid tryptophan (both L- and D- chiralities) on Cu(111). Our investigation utilizes low temperature scanning tunneling microscopy to observe resulting assemblies at the molecular scale. We find that depositing a racemic mixture of both L- and D- tryptophan results in the assembly of basic 6 molecule ``Lego'' structures that are enantiopure. These enantiopure ``Legos'' further assemble into 1-dimensional chains one block at a time. These resulting chains are also enantiopure with chiral selectivity occurring at two stages of assembly. Utilizing scanning tunneling spectroscopy we are able to probe the electronic structure of the chiral Legos that give insight into the root of the observed selectivity. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan.

  15. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes.

    PubMed

    Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui

    2014-12-01

    Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Feasibility study of parallel conduction cooling of NbTi magnet and sample probe in a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Catarino, I.; Soni, V.; Barreto, J.; Martins, D.; Kar, S.

    2017-02-01

    The conduction cooling of both a 6 T superconducting magnet along with a sample probe in a parallel configuration is addressed in this work. A Gifford-McMahon (GM) cryocooler is directly cooling the NbTi magnet, which aims to be kept at 4 K, while a gas-gap heat switch (GGHS) manages the cooling power to be diverted to the sample probe, which may be swept from 4 K up to 300 K. A first prototype of a GGHS was customized and validated for this purpose. A sample probe assembly has been designed and assembled with the existing cryogen-free magnet system. The whole test setup and components are described and the preliminary experimental results on the integration are presented and discussed. The magnet was charged up to 3 T with a 4 K sample space and up to 1 T with a sweeping sample space temperature up to 300 K while acting on the GGHS. Despite some identified thermal insulation problems that occurred during this first test, the overall results demonstrated the feasibility of the cryogen-free parallel conduction cooling on study.

  17. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    PubMed

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    PubMed

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  20. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis.

    PubMed

    Kalendar, Ruslan; Lee, David; Schulman, Alan H

    2011-08-01

    The polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  2. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE PAGES

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.; ...

    2017-03-27

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  3. Silencing and Languaging in the Assembling of the Indian Nation-State: British Public Citizens, the Epistolary Form, and Historiography

    ERIC Educational Resources Information Center

    Ramanathan, Vaidehi

    2009-01-01

    Taking the case of postcolonial India, this paper explores ways in which present temporal junctures permit a probing of historical boundaries to speak of voices largely silenced from Indian historiography, namely those of British (Indian) public citizens who were committed to the assembling of "an India." In particular, the paper…

  4. Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.)

    PubMed Central

    Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo

    2018-01-01

    The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910

  5. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  6. Note: Setup for chemical atmospheric control during in situ grazing incidence X-ray scattering of printed thin films

    DOE PAGES

    Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...

    2017-06-01

    In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less

  7. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall

    2017-03-08

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  8. 30 CFR 250.1700 - What do the terms “decommissioning”, “obstructions”, and “facility” mean?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... trees, jumper assemblies, umbilicals, manifolds, termination skids, production and pipeline risers... attached to the seabed on the OCS. Facilities include production and pipeline risers, templates, pilings...

  9. 30 CFR 250.1700 - What do the terms “decommissioning”, “obstructions”, and “facility” mean?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... trees, jumper assemblies, umbilicals, manifolds, termination skids, production and pipeline risers... attached to the seabed on the OCS. Facilities include production and pipeline risers, templates, pilings...

  10. 30 CFR 250.1700 - What do the terms “decommissioning”, “obstructions”, and “facility” mean?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... trees, jumper assemblies, umbilicals, manifolds, termination skids, production and pipeline risers... attached to the seabed on the OCS. Facilities include production and pipeline risers, templates, pilings...

  11. Nezara viridula (Hemiptera: Pentatomidae) feeding patterns in macadamia nut in Hawaii: nut maturity and cultivar effects.

    PubMed

    Follett, Peter A; Wright, Mark G; Golden, Mary

    2009-08-01

    Nezara viridula L. (Hemiptera: Pentatomidae) is a serious pest of macadamia nuts, Macadamia integrifolia, in Hawaii. Using ruthenium red dye to stain stink bug feeding probes, feeding activity was determined for nuts of various maturity levels harvested from the tree and off the ground throughout the growing season in five commercial cultivars. Damage occurred in the tree and on the ground during all nut growth stages. Damage on the ground was often higher than in the tree. Cultivar 246 was more susceptible to attack than cultivars 333 and 800. It was previously thought that cultivar susceptibility was related to husk and shell thickness, but cultivar 246 showed higher damage than other cultivars even during early nut development when the nuts are small and before the shell has formed. This suggests that shell and husk thickness may play a secondary role in susceptibility to feeding by N. viridula. Monitoring N. viridula feeding activity during early nut development may help alert growers to potential problems later in the season, but early-season probing activity in immature nuts was not a good predictor of damage levels in mature nuts later in the season in our study.

  12. Christmas-tree Derived Amplification Immuno-strategy for Sensitive Visual Detection of Vibrio parahaemolyticus Based on Gold Label Silver Stain Technology.

    PubMed

    Song, Xinxin; Wu, Yanjie; Wu, Lin; Hu, Yufang; Li, Wenrou; Guo, Zhiyong; Su, Xiurong; Jiang, Xiaohua

    2017-01-01

    A developed Christmas-tree derived immunosensor based on a gold label silver stain (GLSS) technique was fabricated for a highly sensitive analysis of Vibrio parahaemolyticu (VP). In this strategy, captured VP antibody (cAb) was immobilized on a solid substrate; then, the VPs were sequentially tagged with a signal probe by incubating the assay with a detection VP antibody (dAb) conjugated gold nanoparticles (AuNPs)-labeled graphite-like carbon nitride (g-C 3 N 4 ). Finally, the attached signal probe could harvest a visible signal by the silver meal deposition, and then followed by homebrew Matlab 6.0 as a grey value acquisition. In addition, the overall design of the biosensor was established in abundant AuNPs and g-C 3 N 4 with a two-dimensional structure, affording a bulb-decorated Christmas-tree model. Moreover, with the optimized conditions, the detection limit of the as-proposed biosensor is as low as 10 2 CFU (Colony-Forming Units) mL -1 , exhibiting an increase of two orders of magnitude compared with the traditional immune-gold method. Additionally, the developed visible immunosensor was also successfully applied to the analysis of complicated samples.

  13. Conceptual Design of a Basic Production Facility for the XM587E2/XM724 Electronic Time Fuzes

    DTIC Science & Technology

    1977-11-01

    blue side up, and then staked. The spri.ng pin is pressed in position and probed for the 1. 644-0. 010- inch dimension. See figure 33. 4.6.7.2 Parts...fitting subassembly. The detonator 69 IDLE HOPPER FEED -PROBE STAKE SPRING PIN PROBE PRESENCE STAKE LEADL IPROB LEADID ~ ASSEMBLY14 3 1 BLUE SIDE UP...automatic shutoffs. * Warning lights /alarms/ signs /’Jecals where necessary. * Electrical grounding of machine. [ 98 0 Noise levels below 85 decibals at

  14. Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematics Skills

    PubMed Central

    Verdine, Brian N.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia

    2013-01-01

    This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematics skills was evaluated. Spatial skill independently predicted a significant amount of the variability in concurrent mathematics performance. Finally, the relationship between spatial assembly skill and socioeconomic status, gender, and parent-reported spatial language was examined. While children's performance did not differ by gender, lower-SES children were already lagging behind higher-SES children in block assembly. Furthermore, lower-SES parents reported using significantly fewer spatial words with their children. PMID:24112041

  15. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.

    PubMed

    Chung, Taerin; Koker, Tugba; Pinaud, Fabien

    2016-09-08

    The assembly of plasmonic metal nanoparticles into hot spot surface-enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self-complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split-green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near-field dipolar couplings between AuNPs and provides SERS enhancement factors above 10 8 . Among the different nanoclusters studied, AuNP/GFP chains allow near-infrared SERS detection of the GFP chromophore imidazolinone/exocyclic CC vibrational mode with theoretical enhancement factors of 10 8 -10 9 . For larger AuNP/GFP assemblies, the presence of non-GFP seeded nanogaps between tightly packed nanoparticles reduces near-field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Observations of stem water storage in trees of opposing hydraulic strategies

    DOE PAGES

    Matheny, Ashley M.; Bohrer, Gil; Garrity, Steven R.; ...

    2015-09-29

    Hydraulic capacitance and water storage form a critical buffer against cavitation and loss of conductivity within the xylem system. Withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. Storage quantities differ based on soil water availability, tree size, wood anatomy and density, drought tolerance, and hydraulic strategy (anisohydric or isohydric). However, the majority of studies focus on the measurement of storage in conifers or tropical tree species. We demonstrate a novel methodology using frequency domain reflectometry (FDR) to make continuous, direct measurements of wood water content in two hardwood species inmore » a forest in Michigan. We present results of a two month study comparing the water storage dynamics between a mature red oak and red maple, two species with differing wood densities, hydraulic architecture, and hydraulic strategy. We also include results pertaining to the use of different probe lengths to sample water content only within the active sapwood and over the entire conductive sapwood and the outer portion of heartwood in red oak. Both species studied exhibited diurnal cycles of storage that aligned well with the dynamics of sap flux. Red maple, a diffuse porous, relatively isohydric species showed a strong dependence on stored water during both wet and dry periods. Red oak, a ring porous relatively anisohydric species, was less reliant on storage, and did not demonstrate a dependence on soil water potential. Comparison between long and short FDR probes in the oak revealed that oaks may utilize water stored in the innermost layers of the xylem when soil moisture conditions are limiting. We found the FDR probes to be a reliable, functional means for continuous automated measurement of wood water content in hardwoods at a fast time scale. Application of FDR technology for the measurement of tree water storage will benefit forest ecologists as well as the modeling community as we improve our understanding and simulations of plant hydrodynamic processes on a large scale.« less

  17. High resolution axicon-based endoscopic FD OCT imaging with a large depth range

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.

    2010-02-01

    Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.

  18. Benchmarking Ligand-Based Virtual High-Throughput Screening with the PubChem Database

    PubMed Central

    Butkiewicz, Mariusz; Lowe, Edward W.; Mueller, Ralf; Mendenhall, Jeffrey L.; Teixeira, Pedro L.; Weaver, C. David; Meiler, Jens

    2013-01-01

    With the rapidly increasing availability of High-Throughput Screening (HTS) data in the public domain, such as the PubChem database, methods for ligand-based computer-aided drug discovery (LB-CADD) have the potential to accelerate and reduce the cost of probe development and drug discovery efforts in academia. We assemble nine data sets from realistic HTS campaigns representing major families of drug target proteins for benchmarking LB-CADD methods. Each data set is public domain through PubChem and carefully collated through confirmation screens validating active compounds. These data sets provide the foundation for benchmarking a new cheminformatics framework BCL::ChemInfo, which is freely available for non-commercial use. Quantitative structure activity relationship (QSAR) models are built using Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Decision Trees (DTs), and Kohonen networks (KNs). Problem-specific descriptor optimization protocols are assessed including Sequential Feature Forward Selection (SFFS) and various information content measures. Measures of predictive power and confidence are evaluated through cross-validation, and a consensus prediction scheme is tested that combines orthogonal machine learning algorithms into a single predictor. Enrichments ranging from 15 to 101 for a TPR cutoff of 25% are observed. PMID:23299552

  19. SPM Investigation of Thiolated Gold Nanoparticle Patterns Deposited on Different Self-Assembled Substrates

    NASA Astrophysics Data System (ADS)

    Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.

    We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.

  20. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    PubMed

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.

  1. Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    PubMed Central

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects. PMID:22272330

  2. Metagenomic Signatures of Bacterial Adaptation to Life in the Phyllosphere of a Salt-Secreting Desert Tree.

    PubMed

    Finkel, Omri M; Delmont, Tom O; Post, Anton F; Belkin, Shimshon

    2016-05-01

    The leaves of Tamarix aphylla, a globally distributed, salt-secreting desert tree, are dotted with alkaline droplets of high salinity. To successfully inhabit these organic carbon-rich droplets, bacteria need to be adapted to multiple stress factors, including high salinity, high alkalinity, high UV radiation, and periodic desiccation. To identify genes that are important for survival in this harsh habitat, microbial community DNA was extracted from the leaf surfaces of 10 Tamarix aphylla trees along a 350-km longitudinal gradient. Shotgun metagenomic sequencing, contig assembly, and binning yielded 17 genome bins, six of which were >80% complete. These genomic bins, representing three phyla (Proteobacteria,Bacteroidetes, and Firmicutes), were closely related to halophilic and alkaliphilic taxa isolated from aquatic and soil environments. Comparison of these genomic bins to the genomes of their closest relatives revealed functional traits characteristic of bacterial populations inhabiting the Tamarix phyllosphere, independent of their taxonomic affiliation. These functions, most notably light-sensing genes, are postulated to represent important adaptations toward colonization of this habitat. Plant leaves are an extensive and diverse microbial habitat, forming the main interface between solar energy and the terrestrial biosphere. There are hundreds of thousands of plant species in the world, exhibiting a wide range of morphologies, leaf surface chemistries, and ecological ranges. In order to understand the core adaptations of microorganisms to this habitat, it is important to diversify the type of leaves that are studied. This study provides an analysis of the genomic content of the most abundant bacterial inhabitants of the globally distributed, salt-secreting desert tree Tamarix aphylla Draft genomes of these bacteria were assembled, using the culture-independent technique of assembly and binning of metagenomic data. Analysis of the genomes reveals traits that are important for survival in this habitat, most notably, light-sensing and light utilization genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  4. Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin

    NASA Astrophysics Data System (ADS)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2014-10-01

    Convenient and simultaneous detection of multiple biomarkers such as DNA and proteins with biocompatible materials and good analytical performance still remains a challenge. Herein, we report the respective and simultaneous detection of DNA and bovine α-thrombin (thrombin) entirely based on biocompatible carbon materials through a specially designed fluorescence on-off-on process. Colorful fluorescence, high emission efficiency, good photostability and excellent compatibility enables graphene quantum dots (GQDs) as the best choice for fluorophores in bioprobes, and thus two-colored GQDs as labeling fluorophores were chemically bonded with specific oligonucleotide sequence and aptamer to prepare two probes targeting the DNA and thrombin, respectively. Each probe can be assembled on the graphene oxide (GO) platform spontaneously by π-π stacking and electrostatic attraction; as a result, fast electron transfer in the assembly efficiently quenches the fluorescence of probe. The presence of DNA or thrombin can trigger the self-recognition between capturing a nucleotide sequence and its target DNA or between thrombin and its aptamer due to their specific hybridization and duplex DNA structures or the formation of apatamer-substrate complex, which is taken advantage of in order to achieve a separate quantitative analysis of DNA and thrombin. A dual-functional biosensor for simultaneous detection of DNA and thrombin was also constructed by self-assembly of two probes with distinct colors and GO platform, and was further evaluated with the presence of various concentrations of DNA and thrombin. Both biosensors serving as a general detection model for multiple species exhibit outstanding analytical performance, and are expected to be applied in vivo because of the excellent biocompatibility of their used materials.

  5. SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, David O.

    In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less

  6. Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.

    PubMed

    Narzisi, Giuseppe; Mishra, Bud

    2011-01-15

    Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.

  7. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies

    PubMed Central

    2014-01-01

    Background The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. Results We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. Conclusions In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied. PMID:24647006

  8. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation.

    PubMed

    Chen, Chang-Hsiao; Chuang, Shih-Chang; Su, Huan-Chieh; Hsu, Wei-Lun; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng

    2011-05-07

    We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work. © The Royal Society of Chemistry 2011

  9. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  10. Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.

    PubMed

    Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali

    2018-04-01

    Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.

  11. Size-Class Effect Contributes to Tree Species Assembly through Influencing Dispersal in Tropical Forests

    PubMed Central

    Hu, Yue-Hua; Kitching, Roger L.; Lan, Guo-Yu; Zhang, Jiao-Lin; Sha, Li-Qing; Cao, Min

    2014-01-01

    We have investigated the processes of community assembly using size classes of trees. Specifically our work examined (1) whether point process models incorporating an effect of size-class produce more realistic summary outcomes than do models without this effect; (2) which of three selected models incorporating, respectively environmental effects, dispersal and the joint-effect of both of these, is most useful in explaining species-area relationships (SARs) and point dispersion patterns. For this evaluation we used tree species data from the 50-ha forest dynamics plot in Barro Colorado Island, Panama and the comparable 20 ha plot at Bubeng, Southwest China. Our results demonstrated that incorporating an size-class effect dramatically improved the SAR estimation at both the plots when the dispersal only model was used. The joint effect model produced similar improvement but only for the 50-ha plot in Panama. The point patterns results were not improved by incorporation of size-class effects using any of the three models. Our results indicate that dispersal is likely to be a key process determining both SARs and point patterns. The environment-only model and joint-effects model were effective at the species level and the community level, respectively. We conclude that it is critical to use multiple summary characteristics when modelling spatial patterns at the species and community levels if a comprehensive understanding of the ecological processes that shape species’ distributions is sought; without this results may have inherent biases. By influencing dispersal, the effect of size-class contributes to species assembly and enhances our understanding of species coexistence. PMID:25251538

  12. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    PubMed Central

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  13. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    PubMed Central

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  14. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  15. 1997 Technical Digest Series. Volume 9: Quantum Optoelectronics

    DTIC Science & Technology

    1997-03-01

    Program Co-Chair Shigehisa Arai, Tokyo Institute of Technology, Japan Yasuhiko Arakawa, University of Tokyo, Japan Israel Bar-Joseph, Weizmann...assembly formed quantum dot active layers, (p. 3) 2:30pm (Invited) QWA3 • Optical probing of mesoscopic and nano-structures, Yasuhiko Arakawa, Univ...80, 3466 (1996). 6/QWA3-1 Optical Probing of Mesoscopic and Nano-Structures Yasuhiko Arakawa University of Tokyo, Japan We investigate the

  16. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis.

    PubMed

    Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong

    2014-10-01

    Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .

  17. Combinatorial approaches to gene recognition.

    PubMed

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.

  18. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    PubMed

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, L.F.

    1995-05-30

    A method is disclosed for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining. 5 figs.

  20. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    PubMed

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  1. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, Lothar F.

    1995-05-30

    A method for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining.

  2. Stepwise nanoassembly of a single hairpin probe and its biosensing.

    PubMed

    Xu, Jianguo; Zheng, Tingting; Le, Jingqing; Jia, Lee

    2018-09-01

    Herein, we describe a novel trigger-induced DNA nanoassembly method using only one loop-stem shaped hairpin probe (HP) that consists of three different functional regions as a single building unit. The Region I is designed complementary to the trigger, while the Region II and Region III are projected to complementary with each other. When hybridized with the trigger, a toehold mediated strand displacement (TMSD) occurred on the strand of Region I, leading to the release of Region III for further hybridization with the Region II on another HP molecule and in turn inducing a stepwise growth of HP with the aid of polymerase. Unlike the conventional assembly approaches that rely on the sophisticated sequence design and complex operation, the single-HP nanoassembly is easy and fast. Moreover, because many HPs are opened during the assembly process, we exemplified the nanoassembly strategy by re-designing a new labeled hairpin probe to analyze the Kras oncogene with a high sensitivity and specificity. The present study demonstrated a novel promising DNA nanoassembly strategy for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Functional Dynamics of Hexameric Helicase Probed by Hydrogen Exchange and Simulation

    PubMed Central

    Radou, Gaël; Dreyer, Frauke N.; Tuma, Roman; Paci, Emanuele

    2014-01-01

    The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434

  4. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor.

    PubMed

    Costa, Maurilia P; Andrade, Cesar A S; Montenegro, Rosana A; Melo, Fabio L; Oliveira, Maria D L

    2014-11-01

    In this work, a genosensor for the electrochemical detection of genomic DNA from Mycobacterium tuberculosis was developed. The biosensor is based on self-assembled monolayers of mercaptobenzoic acid (MBA) and magnetite nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization of DNA probe. The aim of this work was the development of a platform based on cysteine-coated magnetic Fe3O4Nps linked via the carboxylate group from MBA to the work electrode surface and subsequently to the DNA probe. The probe-genome interaction was evaluated using a [Fe(CN)6](4-)/[Fe(CN)6](3-) redox pair. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the bioelectrochemical behavior of the sensor. Atomic force microscopy images showed Fe3O4Nps immobilized across the electrode surface. The interaction of the sensor with different genome DNA concentrations resulted in changes in the charge transfer resistance, indicating a possible use for tuberculosis detection at low concentrations (detection limit of 6ngμL(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  6. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  7. Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community.

    PubMed

    Allié, Elodie; Pélissier, Raphaël; Engel, Julien; Petronelli, Pascal; Freycon, Vincent; Deblauwe, Vincent; Soucémarianadin, Laure; Weigel, Jean; Baraloto, Christopher

    2015-01-01

    We examined tree-soil habitat associations in lowland forest communities at Paracou, French Guiana. We analyzed a large dataset assembling six permanent plots totaling 37.5 ha, in which extensive LIDAR-derived topographical data and soil chemical and physical data have been integrated with precise botanical determinations. Map of relative elevation from the nearest stream summarized both soil fertility and hydromorphic characteristics, with seasonally inundated bottomlands having higher soil phosphate content and base saturation, and plateaus having higher soil carbon, nitrogen and aluminum contents. We employed a statistical test of correlations between tree species density and environmental maps, by generating Monte Carlo simulations of random raster images that preserve autocorrelation of the original maps. Nearly three fourths of the 94 taxa with at least one stem per ha showed a significant correlation between tree density and relative elevation, revealing contrasted species-habitat associations in term of abundance, with seasonally inundated bottomlands (24.5% of species) and well-drained plateaus (48.9% of species). We also observed species preferences for environments with or without steep slopes (13.8% and 10.6%, respectively). We observed that closely-related species were frequently associated with different soil habitats in this region (70% of the 14 genera with congeneric species that have a significant association test) suggesting species-habitat associations have arisen multiple times in this tree community. We also tested if species with similar habitat preferences shared functional strategies. We found that seasonally inundated forest specialists tended to have smaller stature (maximum diameter) than species found on plateaus. Our results underline the importance of tree-soil habitat associations in structuring diverse communities at fine spatial scales and suggest that additional studies are needed to disentangle community assembly mechanisms related to dispersal limitation, biotic interactions and environmental filtering from species-habitat associations. Moreover, they provide a framework to generalize across tropical forest sites.

  8. Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community

    PubMed Central

    Allié, Elodie; Pélissier, Raphaël; Engel, Julien; Petronelli, Pascal; Freycon, Vincent; Deblauwe, Vincent; Soucémarianadin, Laure; Weigel, Jean; Baraloto, Christopher

    2015-01-01

    We examined tree-soil habitat associations in lowland forest communities at Paracou, French Guiana. We analyzed a large dataset assembling six permanent plots totaling 37.5 ha, in which extensive LIDAR-derived topographical data and soil chemical and physical data have been integrated with precise botanical determinations. Map of relative elevation from the nearest stream summarized both soil fertility and hydromorphic characteristics, with seasonally inundated bottomlands having higher soil phosphate content and base saturation, and plateaus having higher soil carbon, nitrogen and aluminum contents. We employed a statistical test of correlations between tree species density and environmental maps, by generating Monte Carlo simulations of random raster images that preserve autocorrelation of the original maps. Nearly three fourths of the 94 taxa with at least one stem per ha showed a significant correlation between tree density and relative elevation, revealing contrasted species-habitat associations in term of abundance, with seasonally inundated bottomlands (24.5% of species) and well-drained plateaus (48.9% of species). We also observed species preferences for environments with or without steep slopes (13.8% and 10.6%, respectively). We observed that closely-related species were frequently associated with different soil habitats in this region (70% of the 14 genera with congeneric species that have a significant association test) suggesting species-habitat associations have arisen multiple times in this tree community. We also tested if species with similar habitat preferences shared functional strategies. We found that seasonally inundated forest specialists tended to have smaller stature (maximum diameter) than species found on plateaus. Our results underline the importance of tree-soil habitat associations in structuring diverse communities at fine spatial scales and suggest that additional studies are needed to disentangle community assembly mechanisms related to dispersal limitation, biotic interactions and environmental filtering from species-habitat associations. Moreover, they provide a framework to generalize across tropical forest sites. PMID:26535570

  9. [Preparation of a kind of SERS-active substrates for spot fast analysis].

    PubMed

    Ji, Nan; Li, Zhi-Shi; Zhao, Bing; Zou, Bo

    2013-02-01

    A kind of SERS-active substrates was prepared using chemical self-assembly method, aiming at spot fast analysis using portable Raman spectrometer. PDDA was first absorbed on the inner wall of vials, and then Ag colloids were assembled on the inner wall. UV-Vis spectra and Raman spectra of two kinds of blank vials were investigated and the transparent vials were thought to be better for SERS-vials. UV-Vis spectra were used to monitor the assembly process of Ag colloids. SERS activity of our substrates was characterized using p-ATP as probing molecules.

  10. Coexistence of Trees and Grass: Importance of climate and fire within the tropics

    NASA Astrophysics Data System (ADS)

    Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.

    2017-12-01

    Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.

  11. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  12. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  13. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript.

    PubMed

    Shearman, Jeremy R; Sangsrakru, Duangjai; Ruang-Areerate, Panthita; Sonthirod, Chutima; Uthaipaisanwong, Pichahpuk; Yoocha, Thippawan; Poopear, Supannee; Theerawattanasuk, Kanikar; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-02-10

    The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility.

  14. Lifemap: Exploring the Entire Tree of Life.

    PubMed

    de Vienne, Damien M

    2016-12-01

    The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.

  15. Carbon nanofibers arrays: A novel tool for microdelivery of biomolecules to plants

    DOE PAGES

    Davern, Sandra M.; McKnight, Timothy E.; Kalluri, Udaya C.; ...

    2016-04-27

    Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, amore » common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5–500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants.« less

  16. Carbon nanofibers arrays: A novel tool for microdelivery of biomolecules to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davern, Sandra M.; McKnight, Timothy E.; Kalluri, Udaya C.

    Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, amore » common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5–500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants.« less

  17. Carbon Nanofiber Arrays: A Novel Tool for Microdelivery of Biomolecules to Plants

    PubMed Central

    Davern, Sandra M.; McKnight, Timothy E.; Morrell-Falvey, Jennifer L.; Shpak, Elena D.; Kalluri, Udaya C.; Jelenska, Joanna; Greenberg, Jean T.; Mirzadeh, Saed

    2016-01-01

    Effective methods for delivering bioprobes into the cells of intact plants are essential for investigating diverse biological processes. Increasing research on trees, such as Populus spp., for bioenergy applications is driving the need for techniques that work well with tree species. This report introduces vertically aligned carbon nanofiber (VACNF) arrays as a new tool for microdelivery of labeled molecules to Populus leaf tissue and whole plants. We demonstrated that VACNFs penetrate the leaf surface to deliver sub-microliter quantities of solution containing fluorescent or radiolabeled molecules into Populus leaf cells. Importantly, VACNFs proved to be gentler than abrasion with carborundum, a common way to introduce material into leaves. Unlike carborundum, VACNFs did not disrupt cell or tissue integrity, nor did they induce production of hydrogen peroxide, a typical wound response. We show that femtomole to picomole quantities of labeled molecules (fluorescent dyes, small proteins and dextran), ranging from 0.5–500 kDa, can be introduced by VACNFs, and we demonstrate the use of the approach to track delivered probes from their site of introduction on the leaf to distal plant regions. VACNF arrays thus offer an attractive microdelivery method for the introduction of biomolecules and other probes into trees and potentially other types of plants. PMID:27119338

  18. Recent sheath physics studies on DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.

    2015-08-01

    A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.

  19. New opportunities in h → 4ℓ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Harnik, Roni; Vega-Morales, Roberto

    2015-09-28

    The Higgs decay h → 4ℓ has played an important role in discovering the Higgs and measuring its mass thanks to low background and excellent resolution. Current cuts in this channel have been optimized for Higgs discovery via the dominant tree level ZZ contribution arising from electroweak symmetry breaking. Going forward, one of the primary objectives of this sensitive channel will be to probe other Higgs couplings and search for new physics on top of the tree level ZZ ‘background’. Thanks to interference between these small couplings and the large tree level contribution to ZZ, the h → 4ℓ decaymore » is uniquely capable of probing the magnitude and CP phases of the Higgs couplings to γγ and Zγ as well as, to a lesser extent, ZZ couplings arising from higher dimensional operators. With this in mind we examine how much relaxing current cuts can enhance the sensitivity while also accounting for the dominant non-Higgs continuum \\( q\\overline{q}\\to 4\\ell \\) background. We find the largest enhancement in sensitivity for the hZγ couplings (≳100%) followed by hγγ (≳40%) and less so for the higher dimensional hZZ couplings (a few percent). With these enhancements, we show that couplings of order Standard Model values for hγγ may optimistically be probed by end of Run-II at the LHC while for hZγ perhaps towards the end of a high luminosity LHC. In addition, an appropriately optimized h → 4ℓ analysis can complement direct decays of the Higgs to on-shell γγ and Zγ pairs giving a unique opportunity to directly access the CP properties of these couplings.« less

  20. Electro-mechanical probe positioning system for large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  1. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-assisted Catalyzed Hairpin Assembly and "DD-A" FRET.

    PubMed

    Fang, Hongmei; Xie, Nuli; Ou, Min; Huang, Jin; Li, Wenshan; Wang, Qing; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin

    2018-05-21

    Nucleic acids, as one kind of significant biomarkers, have attracted tremendous attention and exhibited immense value in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and donor donor-acceptor fluorescence resonance energy transfer ("DD-A" FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labelled probe as FRET donor) and H2 (TAMRA-labelled probe as FRET acceptor). Firstly, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMBs complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1-H2 duplexes were formed during CHA process, inducing an obvious FRET signal. In contrast, CHA could not be trigger and the FRET signal was weak while target was absent. With the aid of magnetic separation and "DD-A" FRET, it was demonstrated to effectively eliminate errors from background interference. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application.

  2. Vertical stratification of the foliar fungal community in the world's tallest trees.

    PubMed

    Harrison, Joshua G; Forister, Matthew L; Parchman, Thomas L; Koch, George W

    2016-12-01

    The aboveground tissues of plants host numerous, ecologically important fungi, yet patterns in the spatial distribution of these fungi remain little known. Forest canopies in particular are vast reservoirs of fungal diversity, but intracrown variation in fungal communities has rarely been explored. Knowledge of how fungi are distributed throughout tree crowns will contribute to our understanding of interactions between fungi and their host trees and is a first step toward investigating drivers of community assembly for plant-associated fungi. Here we describe spatial patterns in fungal diversity within crowns of the world's tallest trees, coast redwoods (Sequoia sempervirens). We took a culture-independent approach, using the Illumina MiSeq platform, to characterize the fungal assemblage at multiple heights within the crown across the geographical range of the coast redwood. Within each tree surveyed, we uncovered evidence for vertical stratification in the fungal community; different portions of the tree crown harbored different assemblages of fungi. We also report between-tree variation in the fungal community within redwoods. Our results suggest the potential for vertical stratification of fungal communities in the crowns of other tall tree species and should prompt future study of the factors giving rise to this stratification. © 2016 Botanical Society of America.

  3. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  4. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    PubMed

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  5. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    PubMed

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper andmore » lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.« less

  7. Molecular Microbial Analyses of the Mars Exploration Rovers Assembly Facility

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; LaDuc, Myron T.; Newcombe, David; Kempf, Michael J.; Koke, John. A.; Smoot, James C.; Smoot, Laura M.; Stahl, David A.

    2004-01-01

    During space exploration, the control of terrestrial microbes associated with robotic space vehicles intended to land on extraterrestrial solar system bodies is necessary to prevent forward contamination and maintain scientific integrity during the search for life. Microorganisms associated with the spacecraft assembly environment can be a source of contamination for the spacecraft. In this study, we have monitored the microbial burden of air samples of the Mars Exploration Rovers' assembly facility at the Kennedy Space Center utilizing complementary diagnostic tools. To estimate the microbial burden and identify potential contaminants in the assembly facility, several microbiological techniques were used including culturing, cloning and sequencing of 16S rRNA genes, DNA microarray analysis, and ATP assays to assess viable microorganisms. Culturing severely underestimated types and amounts of contamination since many of the microbes implicated by molecular analyses were not cultivable. In addition to the cultivation of Agrobacterium, Burkholderia and Bacillus species, the cloning approach retrieved 16s rDNA sequences of oligotrophs, symbionts, and y-proteobacteria members. DNA microarray analysis based on rational probe design and dissociation curves complemented existing molecular techniques and produced a highly parallel, high resolution analysis of contaminating microbial populations. For instance, strong hybridization signals to probes targeting the Bacillus species indicated that members of this species were present in the assembly area samples; however, differences in dissociation curves between perfect-match and air sample sequences showed that these samples harbored nucleotide polymorphisms. Vegetative cells of several isolates were resistant when subjected to treatments of UVC (254 nm) and vapor H202 (4 mg/L). This study further validates the significance of non-cultivable microbes in association with spacecraft assembly facilities, as our analyses have identified several non-cultivable microbes likely to contaminate the surfaces of spacecraft hardware.

  8. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set.

    PubMed

    Damas, Joana; O'Connor, Rebecca; Farré, Marta; Lenis, Vasileios Panagiotis E; Martell, Henry J; Mandawala, Anjali; Fowler, Katie; Joseph, Sunitha; Swain, Martin T; Griffin, Darren K; Larkin, Denis M

    2017-05-01

    Most recent initiatives to sequence and assemble new species' genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon ( Columbia livia ) and peregrine falcon ( Falco peregrinus ) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE "deserts." This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome. © 2017 Damas et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set

    PubMed Central

    O'Connor, Rebecca; Lenis, Vasileios Panagiotis E.; Martell, Henry J.; Mandawala, Anjali; Fowler, Katie; Joseph, Sunitha; Swain, Martin T.; Griffin, Darren K.; Larkin, Denis M.

    2017-01-01

    Most recent initiatives to sequence and assemble new species’ genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts.” This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome. PMID:27903645

  10. M5-brane and D-brane scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Heydeman, Matthew; Schwarz, John H.; Wen, Congkao

    2017-12-01

    We present tree-level n-particle on-shell scattering amplitudes of various brane theories with 16 conserved supercharges. These include the world-volume theory of a probe D3-brane or D5-brane in 10D Minkowski spacetime as well as a probe M5-brane in 11D Minkowski spacetime, which describes self interactions of an abelian tensor supermultiplet with 6D (2, 0) supersymmetry. Twistor-string-like formulas are proposed for tree-level scattering amplitudes of all multiplicities for each of these theories. The R symmetry of the D3-brane theory is shown to be SU(4) × U(1), and the U(1) factor implies that its amplitudes are helicity conserving. Each of 6D theories (D5-brane and M5-brane) reduces to the D3-brane theory by dimensional reduction. As special cases of the general M5-brane amplitudes, we present compact formulas for examples involving only the self-dual B field with n = 4, 6, 8.

  11. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    NASA Astrophysics Data System (ADS)

    He, Shikun; Meng, Zhaoliang; Huang, Lisen; Yap, Lee Koon; Zhou, Tiejun; Panagopoulos, Christos

    2016-07-01

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0∘ to 90∘ and φ from 0∘ to 360∘. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. The operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.

  12. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is fed through the hollow probe body. The detector's signal goes to an externally mounted preamplifier. The detector assembly, along with a preamplifier, is calibrated as a function of the surface temperature for various detector temperatures. The output voltage is a function of both the detector and object temperatures.

  13. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets

    PubMed Central

    Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd

    2018-01-01

    Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474

  14. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics.

    PubMed

    Chau, John H; Rahfeldt, Wolfgang A; Olmstead, Richard G

    2018-03-01

    Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.

  15. Earth Day Changes in Attitude.

    ERIC Educational Resources Information Center

    Davis, Betty; And Others

    1992-01-01

    Describes recycling related activities associated with the Earth Day celebration at the University School of East Tennessee State University. Activities involve tree planting, campus clean-up, student posters, assemblies, a schoolwide rally, and displays of recyclable items. A study examining attitude change revealed that hands-on activities…

  16. Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric

    2007-01-01

    The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.

  17. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    NASA Astrophysics Data System (ADS)

    Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.

    2015-12-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere. Finally, assemblies of spheres onto the edge of a razor blade plus assembly of spherical contact probes for micro-meter scale coordinate measurement applications are presented.

  18. Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins.

    PubMed

    Bartetzko, Max P; Schuhmacher, Frank; Hahm, Heung Sik; Seeberger, Peter H; Pfrengle, Fabian

    2015-09-04

    Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology.

  19. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  1. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti.

    PubMed

    Copetti, Dario; Búrquez, Alberto; Bustamante, Enriquena; Charboneau, Joseph L M; Childs, Kevin L; Eguiarte, Luis E; Lee, Seunghee; Liu, Tiffany L; McMahon, Michelle M; Whiteman, Noah K; Wing, Rod A; Wojciechowski, Martin F; Sanderson, Michael J

    2017-11-07

    Few clades of plants have proven as difficult to classify as cacti. One explanation may be an unusually high level of convergent and parallel evolution (homoplasy). To evaluate support for this phylogenetic hypothesis at the molecular level, we sequenced the genomes of four cacti in the especially problematic tribe Pachycereeae, which contains most of the large columnar cacti of Mexico and adjacent areas, including the iconic saguaro cactus ( Carnegiea gigantea ) of the Sonoran Desert. We assembled a high-coverage draft genome for saguaro and lower coverage genomes for three other genera of tribe Pachycereeae ( Pachycereus , Lophocereus , and Stenocereus ) and a more distant outgroup cactus, Pereskia We used these to construct 4,436 orthologous gene alignments. Species tree inference consistently returned the same phylogeny, but gene tree discordance was high: 37% of gene trees having at least 90% bootstrap support conflicted with the species tree. Evidently, discordance is a product of long generation times and moderately large effective population sizes, leading to extensive incomplete lineage sorting (ILS). In the best supported gene trees, 58% of apparent homoplasy at amino sites in the species tree is due to gene tree-species tree discordance rather than parallel substitutions in the gene trees themselves, a phenomenon termed "hemiplasy." The high rate of genomic hemiplasy may contribute to apparent parallelisms in phenotypic traits, which could confound understanding of species relationships and character evolution in cacti. Published under the PNAS license.

  2. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti

    PubMed Central

    Búrquez, Alberto; Bustamante, Enriquena; Charboneau, Joseph L. M.; Childs, Kevin L.; Eguiarte, Luis E.; Lee, Seunghee; Liu, Tiffany L.; McMahon, Michelle M.; Whiteman, Noah K.; Wing, Rod A.; Wojciechowski, Martin F.; Sanderson, Michael J.

    2017-01-01

    Few clades of plants have proven as difficult to classify as cacti. One explanation may be an unusually high level of convergent and parallel evolution (homoplasy). To evaluate support for this phylogenetic hypothesis at the molecular level, we sequenced the genomes of four cacti in the especially problematic tribe Pachycereeae, which contains most of the large columnar cacti of Mexico and adjacent areas, including the iconic saguaro cactus (Carnegiea gigantea) of the Sonoran Desert. We assembled a high-coverage draft genome for saguaro and lower coverage genomes for three other genera of tribe Pachycereeae (Pachycereus, Lophocereus, and Stenocereus) and a more distant outgroup cactus, Pereskia. We used these to construct 4,436 orthologous gene alignments. Species tree inference consistently returned the same phylogeny, but gene tree discordance was high: 37% of gene trees having at least 90% bootstrap support conflicted with the species tree. Evidently, discordance is a product of long generation times and moderately large effective population sizes, leading to extensive incomplete lineage sorting (ILS). In the best supported gene trees, 58% of apparent homoplasy at amino sites in the species tree is due to gene tree-species tree discordance rather than parallel substitutions in the gene trees themselves, a phenomenon termed “hemiplasy.” The high rate of genomic hemiplasy may contribute to apparent parallelisms in phenotypic traits, which could confound understanding of species relationships and character evolution in cacti. PMID:29078296

  3. Oil and gas well diversionary spool assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, L.T.

    1989-02-14

    In combination with an oil and gas well that includes a casing head from which a string of tubing extends downwardly in a bore hole to a fluid producing zone, a diversionary spool assembly is described situated in a fixed position relative to the well head to control fluid flow from the well and also serve as a temporary mounting for a Christmas tree array of valves when maintenance work is to be performed on the well, the array of valves including an anchor flange on a lower end thereof.

  4. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WYRWAS RB; PAGE JS; COOKE GS

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 andmore » in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.« less

  5. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented.

  6. Nature and Age of Neighbours Matter: Interspecific Associations among Tree Species Exist and Vary across Life Stages in Tropical Forests

    PubMed Central

    Ledo, Alicia

    2015-01-01

    Detailed information about interspecific spatial associations among tropical tree species is scarce, and hence the ecological importance of those associations may have been underestimated. However, they can play a role in community assembly and species diversity maintenance. This study investigated the spatial dependence between pairs of species. First, the spatial associations (spatial attraction and spatial repulsion) that arose between species were examined. Second, different sizes of trees were considered in order to evaluate whether the spatial relationships between species are constant or vary during the lifetime of individuals. Third, the consistency of those spatial associations with the species-habitat associations found in previous studies was assessed. Two different tropical ecosystems were investigated: a montane cloud forest and a lowland moist forest. The results showed that spatial associations among species exist, and these vary among life stages and species. The rarity of negative spatial interactions suggested that exclusive competition was not common in the studied forests. On the other hand, positive interactions were common, and the results of this study strongly suggested that habitat associations were not the only cause of spatial attraction among species. If this is true, habitat associations and density dependence are not the only mechanisms that explain species distribution and diversity; other ecological interactions, such as facilitation among species, may also play a role. These spatial associations could be important in the assembly of tropical tree communities and forest succession, and should be taken into account in future studies. PMID:26581110

  7. Urban Tree Species Show the Same Hydraulic Response to Vapor Pressure Deficit across Varying Tree Size and Environmental Conditions

    PubMed Central

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E.

    2012-01-01

    Background The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. Methodology/Principal Findings We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (E c) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G c at VPD = 1 kPa (G cref) and the G c sensitivity to VPD (−dG c/dlnVPD) across studied species as well as under contrasting soil water and R s conditions in the urban area. Conclusions/Significance We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G cref. PMID:23118904

  8. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E

    2012-01-01

    The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (E(c)) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G(c) at VPD = 1 kPa (G(cref)) and the G(c) sensitivity to VPD (-dG(c)/dlnVPD) across studied species as well as under contrasting soil water and R(s) conditions in the urban area. We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G(cref).

  9. Development of a polyprobe to detect six viroids of pome and stone fruit trees.

    PubMed

    Lin, Liming; Li, Ruhui; Mock, Ray; Kinard, Gary

    2011-01-01

    A simple and sensitive dot blot hybridization assay using a digoxigenin-labeled cRNA polyprobe was developed for the simultaneous detection of six viroids that infect pome and stone fruit trees. The polyprobe was constructed by cloning sequentially partial sequences of each viroid into a single vector, with run-off transcription driven by the T7 promoter. All six viroids were detectable within a dilution range of 5(-3) to 5(-4) in total nucleic acid extracts from infected trees. Individual trees were co-inoculated to create mixed infections and all four pome fruit viroids and both stone fruit viroids could be detected in pear and peach trees, respectively, using the polyprobe. The results of the assays using the polyprobe were comparable to those using single probes. The methods were validated by testing geographically diverse isolates of viroids, as well as field samples from several collections in the US. The assay offers a rapid, reliable and cost-effective approach to the simultaneous detection of six fruit trees viroids and has the potential for routine use in quarantine, certification, and plant genebank programs where many samples are tested and distributed worldwide. Published by Elsevier B.V.

  10. Design and Operation of a Fast, Thin-Film Thermocouple Probe on a Turbine Engine

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Wrbanek, John D.; Fralick, Gustave C.; Greer, Lawrence C., III; Hunter, Gary W.; Chen, Liang-Yu

    2014-01-01

    As a demonstration of technology maturation, a thin-film temperature sensor probe was fabricated and installed on a F117 turbofan engine via a borescope access port to monitor the temperature experienced in the bleed air passage of the compressor area during an engine checkout test run. To withstand the harsh conditions experienced in this environment, the sensor probe was built from high temperature materials. The thin-film thermocouple sensing elements were deposited by physical vapor deposition using pure metal elements, thus avoiding the inconsistencies of sputter-depositing particular percentages of materials to form standardized alloys commonly found in thermocouples. The sensor probe and assembly were subjected to a strict protocol of multi-axis vibrational testing as well as elevated temperature pressure testing to be qualified for this application. The thin-film thermocouple probe demonstrated a faster response than a traditional embedded thermocouple during the engine checkout run.

  11. The Huygens probe is prepared for transport from the Skid Strip, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Air Station (CCAS), after being off-loaded from a plane. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface.

  12. Method and system for assembling miniaturized devices

    DOEpatents

    Montesanti, Richard C.; Klingmann, Jeffrey L.; Seugling, Richard M.

    2013-03-12

    An apparatus for assembling a miniaturized device includes a manipulator system including six manipulators operable to position and orient components of the miniaturized device with submicron precision and micron-level accuracy. The manipulator system includes a first plurality of motorized axes, a second plurality of manual axes, and force and torque and sensors. Each of the six manipulators includes at least one translation stage, at least one rotation stage, tooling attached to the at least one translation stage or the at least one rotation stage, and an attachment mechanism disposed at a distal end of the tooling and operable to attach at least a portion of the miniaturized device to the tooling. The apparatus also includes an optical coordinate-measuring machine (OCMM) including a machine-vision system, a laser-based distance-measuring probe, and a touch probe. The apparatus also includes an operator control system coupled to the manipulator system and the OCMM.

  13. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  14. Liquid-Sensing Probe and Methods for Using the Same

    NASA Technical Reports Server (NTRS)

    Haberbusch, Mark S. (Inventor); Ickes, Jacob C. (Inventor); Thurn, Adam (Inventor); Lawless, Branden J. (Inventor)

    2014-01-01

    A sensor assembly includes a main body, a sensor, and a filler. The main body includes an outer surface having a continuously-variable radius of curvature in at least one portion. A sensor in thermal communication with a region of that surface having relatively low radius of curvature is disposed in the assembly recessed from the outer surface. Liquid droplets adhered to the outer surface in this region tend to migrate to a distant location having a higher radius of curvature. The main body has low thermal conductivity. The filler has a relatively higher thermal conductivity and, in embodiments, fills an opening in the outer surface of the main body, providing a thermally-conductive pathway between the sensor and the surrounding environment via the opening. A probe having a plurality of such sensors, and methods of detecting the presence of liquid and phase transitions in a predetermined space are also disclosed.

  15. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary S.

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less

  16. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels

    PubMed Central

    2017-01-01

    Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478

  17. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  18. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  19. Self-assemblies of luminescent rare earth compounds in capsules and multilayers.

    PubMed

    Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth

    2014-05-01

    This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  1. Dynamics of assembly production flow

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  2. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set.

    PubMed

    Kawahara, Akito Y; Breinholt, Jesse W; Espeland, Marianne; Storer, Caroline; Plotkin, David; Dexter, Kelly M; Toussaint, Emmanuel F A; St Laurent, Ryan A; Brehm, Gunnar; Vargas, Sergio; Forero, Dimitri; Pierce, Naomi E; Lohman, David J

    2018-06-11

    The Neotropical moth-like butterflies (Hedylidae) are perhaps the most unusual butterfly family. In addition to being species-poor, this family is predominantly nocturnal and has anti-bat ultrasound hearing organs. Evolutionary relationships among the 36 described species are largely unexplored. A new, target capture, anchored hybrid enrichment probe set ('BUTTERFLY2.0') was developed to infer relationships of hedylids and some of their butterfly relatives. The probe set includes 13 genes that have historically been used in butterfly phylogenetics. Our dataset comprised of up to 10,898 aligned base pairs from 22 hedylid species and 19 outgroups. Eleven of the thirteen loci were successfully captured from all samples, and the remaining loci were captured from ≥94% of samples. The inferred phylogeny was consistent with recent molecular studies by placing Hedylidae sister to Hesperiidae, and the tree had robust support for 80% of nodes. Our results are also consistent with morphological studies, with Macrosoma tipulata as the sister species to all remaining hedylids, followed by M. semiermis sister to the remaining species in the genus. We tested the hypothesis that nocturnality evolved once from diurnality in Hedylidae, and demonstrate that the ancestral condition was likely diurnal, with a shift to nocturnality early in the diversification of this family. The BUTTERFLY2.0 probe set includes standard butterfly phylogenetics markers, captures sequences from decades-old museum specimens, and is a cost-effective technique to infer phylogenetic relationships of the butterfly tree of life. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Noncontacting device to indicate deflection of turbopump internal rotating parts

    NASA Technical Reports Server (NTRS)

    Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.

    1972-01-01

    Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included.

  5. Nanoparticle assembled microcapsules for application as pH and ammonia sensor.

    PubMed

    Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara

    2011-12-05

    The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.

    PubMed

    Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao

    2017-09-19

    The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.

  7. Electrochemical and surface plasmon resonance characterization of β-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids

    NASA Astrophysics Data System (ADS)

    Frasconi, Marco; Mazzei, Franco

    2009-07-01

    This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.

  8. Spatially and temporally resolved exciton dynamics and transport in single nanostructures and assemblies

    NASA Astrophysics Data System (ADS)

    Huang, Libai

    2015-03-01

    The frontier in solar energy conversion now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. To address this new frontier, I will discuss our recent efforts on elucidating multi-scale energy transfer, migration, and dissipation processes with simultaneous femtosecond temporal resolution and nanometer spatial resolution. We have developed ultrafast microscopy that combines ultrafast spectroscopy with optical microscopy to map exciton dynamics and transport with simultaneous ultrafast time resolution and diffraction-limited spatial resolution. We have employed pump-probe transient absorption microscopy to elucidate morphology and structure dependent exciton dynamics and transport in single nanostructures and molecular assemblies. More specifically, (1) We have applied transient absorption microscopy (TAM) to probe environmental and structure dependent exciton relaxation pathways in sing-walled carbon nanotubes (SWNTs) by mapping dynamics in individual pristine SWNTs with known structures. (2) We have systematically measured and modeled the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical microscopy and stochastic exciton modeling, we address exciton transport and relaxation pathways, especially those related to disorder.

  9. Rational Self-Assembly of Nano-Colloids using DNA Interaction

    NASA Astrophysics Data System (ADS)

    Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.

    2010-03-01

    DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.

  10. Tanner poses by the Floating Potential Probe during the third EVA of STS-97

    NASA Image and Video Library

    2000-12-07

    STS097-377-006 (7 December 2000) --- --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree (left) placed atop the P6 solar array structure, the highest point in their construction project. Astronaut Joseph R. Tanner, mission specialist, then posed for this photo with the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour. Astronaut Carlos I. Noriega, mission specialist who shared three STS-97 space walks with Tanner, took the photo with a 35mm camera.

  11. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  12. Atomic force microscopy of RNA: State of the art and recent advancements.

    PubMed

    Schön, Peter

    2018-01-01

    The atomic force microscope (AFM) has become a powerful tool for the visualization, probing and manipulation of RNA at the single molecule level. AFM measurements can be carried out in buffer solution in a physiological medium, which is crucial to study the structure and function of biomolecules, also allowing studying them at work. Imaging the specimen in its native state is a great advantage compared to other high resolution methods such as electron microscopy and X-ray diffraction. There is no need to stain, freeze or crystallize biological samples. Moreover, compared to NMR spectroscopy for instance, for AFM studies the size of the biomolecules is not limiting. Consequently the AFM allows one also to investigate larger RNA molecules. In particular, structural studies of nucleic acids and assemblies thereof, have been carried out by AFM routinely including ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. These are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In particular by AFM unique information can be obtained on these RNA based assemblies. Moreover, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. Important applications include the detection and quantification of RNA in biological samples. A selection of recent highlights and breakthroughs will be provided related to structural and functional studies by AFM. The main intention of this short review to provide the reader with a flavor of what AFM is able to contribute to RNA research and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development and Application of STEM for the Biological Sciences

    PubMed Central

    Sousa, Alioscka A.; Leapman, Richard D.

    2012-01-01

    The design of the scanning transmission electron microscope (STEM), as conceived originally by Crewe and coworkers, enables the highly efficient and flexible collection of different elastic and inelastic signals resulting from the interaction of a focused probe of incident electrons with a specimen. In the present paper we provide a brief review for how the STEM today can be applied towards a range of different problems in the biological sciences, emphasizing four main areas of application. (1) For three decades, the most widely used STEM technique has been the mass determination of proteins and other macromolecular assemblies. Such measurements can be performed at low electron dose by collecting the high-angle dark-field signal using an annular detector. STEM mass mapping has proven valuable for characterizing large protein assemblies such as filamentous proteins with a well-defined mass per length. (2) The annular dark-field signal can also be used to image ultrasmall, functionalized nanoparticles of heavy atoms for labeling specific aminoacid sequences in protein assemblies. (3) By acquiring electron energy loss spectra (EELS) at each pixel in a hyperspectral image, it is possible to map the distributions of specific bound elements like phosphorus, calcium and iron in isolated macromolecular assemblies or in compartments within sectioned cells. Near single atom sensitivity is feasible provided that the specimen can tolerate a very high incident electron dose. (4) Electron tomography is a new application of STEM that enables three-dimensional reconstruction of micrometer-thick sections of cells. In this technique a probe of small convergence angle gives a large depth of field throughout the thickness of the specimen while maintaining a probe diameter of < 2 nm; and the use of an on-axis bright-field detector reduces the effects of beam broadening and thus improves the spatial resolution compared to that attainable by STEM dark-field tomography. PMID:22749213

  14. Red-cockaded woodpecker foraging behavior

    Treesearch

    D. Craig Rudolph; Richard N. Conner; Richard R. Schaefer; Nancy E. Koerth

    2007-01-01

    We studied Red-cockaded Woodpeckers (Picoides borealis) to examine the effect of status and gender on foraging behavior. Foraging behavior of breeding pairs extended beyond separation by foraging height to include zones (bole, trunk in crown, primary limb, secondary limb) of the tree used and foraging methods (scaling, probing, excavating). Helper...

  15. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript

    PubMed Central

    2014-01-01

    Background The rubber tree, Hevea brasiliensis, is an important plant species that is commercially grown to produce latex rubber in many countries. The rubber tree variety BPM 24 exhibits cytoplasmic male sterility, inherited from the variety GT 1. Results We constructed the rubber tree mitochondrial genome of a cytoplasmic male sterile variety, BPM 24, using 454 sequencing, including 8 kb paired-end libraries, plus Illumina paired-end sequencing. We annotated this mitochondrial genome with the aid of Illumina RNA-seq data and performed comparative analysis. We then compared the sequence of BPM 24 to the contigs of the published rubber tree, variety RRIM 600, and identified a rearrangement that is unique to BPM 24 resulting in a novel transcript containing a portion of atp9. Conclusions The novel transcript is consistent with changes that cause cytoplasmic male sterility through a slight reduction to ATP production efficiency. The exhaustive nature of the search rules out alternative causes and supports previous findings of novel transcripts causing cytoplasmic male sterility. PMID:24512148

  17. Neurotransmitter measurement with a fiber optic probe using pulsed ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.

    1997-05-01

    Many techniques have been developed to investigate the chemistry associated with brain activity. These techniques generally fall into two categories: fast techniques with species restricted sensitivity and slow techniques with generally unrestricted species sensitivity. Therefore, a need exists for a fast non-invasive technique sensitive to a wide array of biologically relevant compounds in order to measure chemical brain events in real time. The work presented here describes the progress made toward the development of a novel neurotransmitter probe. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. Probes of several different geometries were constructed and their working curves obtained in aqueous mixtures of methyl orange and potassium nitrate to determine the best probe configuration given particular sample characteristics. Using this system, the ultraviolet resonance Raman spectra of some neurotransmitters were measured with a fiber-optic probe and are reported here for the first time. The probe has also been used to measure neurotransmitter secretions obtained from depolarized rat pheochromocytoma cells.

  18. Electrooxidation of pyrrole-terminated self-assembled lipoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Cabrita, Joana F.; Viana, Ana S.; Eberle, Christoph; Montforts, Franz-Peter; Mourato, Ana; Abrantes, Luisa M.

    2009-08-01

    New pyrrole derivatives, pyrrolyl lipoic acid (Py-LA 3) and dipyrrolyl lipoic acid (Py 2-LA 2) have been used for surface attachment and immobilisation on gold surfaces, by self-assembly. The electrooxidation of the surface-confined pyrroles was analysed by cyclic voltammetry and the modified electrodes morphological and thickness changes addressed by scanning probe microscopy and ellipsometry. The data support the formation of oligomers as a result of the pendant-pyrrolyl units ease oxidation but provide no evidence of an effective subsequent polymerisation.

  19. Targeted Capture Sequencing in Whitebark Pine Reveals Range-Wide Demographic and Adaptive Patterns Despite Challenges of a Large, Repetitive Genome.

    PubMed

    Syring, John V; Tennessen, Jacob A; Jennings, Tara N; Wegrzyn, Jill; Scelfo-Dalbey, Camille; Cronn, Richard

    2016-01-01

    Whitebark pine (Pinus albicaulis) inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats - climate change, white pine blister rust, mountain pine beetle, and fire exclusion - and it is suffering significant mortality range-wide, prompting the tree to be listed as 'globally endangered' by the International Union for Conservation of Nature and 'endangered' by the Canadian government. Conservation collections (in situ and ex situ) are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 27 GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp), and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits), targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect. Quinquefolia) due to their limited genetic divergence.

  20. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    PubMed

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Decoupling structural and environmental determinants of sap velocity

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Dragoni, D.

    2007-12-01

    Characterization of transpiration based on the water use of individual tress has the advantage of preserving vital information on the plant-environment functional links and flux partitioning between species and landscape areas. Whole-tree transpiration has been estimated by means of sap velocity probes, which offer the dual advantages of practicality and repeatability. However, the assumptions underlying the technique require careful verification in order to determine total sap flow from point-based estimates of sap velocity. Our work presents a novel theoretical framework for the study of individual tree sap flow that incorporates both spatial and temporal variability in sap velocities. The instantaneous sap velocity at any point in the radial profile of xylem tissue is defined as the product of two components: (1) a time-invariant sap velocity distribution linked to the species- specific anatomical and structural properties of the conducting xylem, and (2) a time-varying term linked to the dynamics of the atmospheric water demand and available soil moisture. The separation of structural and temporal variation in sap velocity observations provides a direct mechanism for investigating how sap flow is governed by variation in environmental conditions as well as a means for comparing characteristic rates of plant water use among individuals of varying size. Most critically, this approach allows for a consistent and physically meaningful method for extrapolating point observations of sap velocity across the entire depth of conducting xylem. Experimental evidence supports our theoretical framework in the case of a population of sugar maples in a mixed deciduous forest, where observations were taken from a wide range of tree sizes, under varying soil water availability and atmospheric transpiration demand. We have also applied our approach to a small homogeneous sample of dwarf apple trees in a managed orchard, with favorable results. While these results require further confirmation in order to be generalized, they nevertheless offer the basis to improve both the specific sampling strategies used to estimate whole-tree transpiration using sap velocity probes as well as methods employed to upscale water use of individual trees to larger scales for evaluation of landscape water balance.

  2. The need for an assembly pilot project

    USDA-ARS?s Scientific Manuscript database

    Progress has been rapid since the June 2008 start of the cacao genome sequencing project with the completion of the physical map and the accumulation of approximately 10x coverage of the genome with Titanium 454 sequence data of Matina1-6, the highly homozygous Amelonado tree chosen for the project....

  3. A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests

    NASA Astrophysics Data System (ADS)

    Vovides, Alejandra G.; Marín-Castro, Beatriz; Barradas, Guadalupe; Berger, Uta; López-Portillo, Jorge

    2016-12-01

    This work presents the development of a low-cost method to measure the length cable roots of black mangrove (Avicennia germinans) trees to define the boundaries of central part of the anchoring root system (CPRS) without the need to fully expose root systems. The method was tested to locate and measure the length shallow woody root systems. An ultrasonic Doppler fetal monitor (UD) and a stock of steel rods (SR) were used to probe root locations without removing sediments from the surface, measure their length and estimate root-soil plate dimensions. The method was validated by comparing measurements with root lengths taken through direct measurement of excavated cable roots and from root-soil plate radii (exposed root-soil material when a tree tips over) of five up-rooted trees with stem diameters (D130) ranging between 10 and 50 cm. The mean CPRS radius estimated with the use of the Doppler was directly correlated with tree stem diameter and was not significantly different from the root-soil plate mean radius measured from up-rooted trees or from CPRS approximated by digging trenches. Our method proved to be effective and reliable in following cable roots for large amounts of trees of both black and white mangrove trees. In a period of 40 days of work, three people were capable of measuring 648 roots belonging to 81 trees, out of which 37% were found grafted to other tree roots. This simple method can be helpful in following shallow root systems with minimal impact and help map root connection networks of grafted trees.

  4. Sexual bias in probe tool manufacture and use by wild bearded capuchin monkeys.

    PubMed

    Falótico, Tiago; Ottoni, Eduardo B

    2014-10-01

    Here we examine data from a two-year research on the use of sticks as probes by two groups of wild capuchin monkeys (Sapajus libidinosus) in Serra da Capivara National Park (PI), Brazil. The use of sticks as probes is not usually observed among wild tufted capuchin (Sapajus spp.) populations, having been reported as a customary behavior only in SCNP groups. Probe tools are used to access small prey (insects or lizards) in rock cracks or tree trunks, or honey from wasps' nests, and also to poke toads and poisonous snakes. Probe use is, so far, the only known case in which wild capuchins modify objects used as tools: branches are trimmed off, and tips, thinned. Tool preparation episodes involved up to four modification steps. Contrary to the stone tools used to crack hard nuts, probe tools don't present any weight constraint for use by females, but there is nevertheless a strong male bias (97%) in the occurrence of probe tool use. There are also no diet biases that could explain this difference. Although males hunt more often than females, the latter main prey items are lizards, which are also the main targets of probe tool use. One possibility is that females may have fewer social opportunities to learn about probe tools. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    PubMed Central

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R.; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A.; Barry, Kerrie W.; Spatafora, Joseph; Grigoriev, Igor V.; Martin, Francis M.; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms. PMID:29551995

  6. High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species.

    PubMed

    Brousseau, Louise; Tinaut, Alexandra; Duret, Caroline; Lang, Tiange; Garnier-Gere, Pauline; Scotti, Ivan

    2014-03-27

    The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.

  7. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    PubMed

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.

  8. A versatile rotary-stage high frequency probe station for studying magnetic films and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shikun; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371; Meng, Zhaoliang

    We present a rotary-stage microwave probe station suitable for magnetic films and spintronic devices. Two stages, one for field rotation from parallel to perpendicular to the sample plane (out-of-plane) and the other intended for field rotation within the sample plane (in-plane) have been designed. The sample probes and micro-positioners are rotated simultaneously with the stages, which allows the field orientation to cover θ from 0{sup ∘} to 90{sup ∘} and φ from 0{sup ∘} to 360{sup ∘}. θ and φ being the angle between the direction of current flow and field in a out-of-plane and an in-plane rotation, respectively. Themore » operation frequency is up to 40 GHz and the magnetic field up to 1 T. The sample holder vision system and probe assembly are compactly designed for the probes to land on a wafer with diameter up to 3 cm. Using homemade multi-pin probes and commercially available high frequency probes, several applications including 4-probe DC measurements, the determination of domain wall velocity, and spin transfer torque ferromagnetic resonance are demonstrated.« less

  9. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  10. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  11. Phantom testing of a novel endoscopic OCT probe: a prelude to clinical in-vivo laryngeal use

    NASA Astrophysics Data System (ADS)

    Tatla, Taran; Pang, J. Y.; Cernat, R.; Dobre, G.; Tadrous, P. J.; Bradu, A.; Gelikonov, G.; Gelikonov, V.; Podoleanu, A. G.

    2012-12-01

    Optical coherence tomography is a novel imaging technique providing potentially high resolution tri-dimensional images of tissue microstructure up to 2-3mm deep. We present pre-clinical data from a novel miniaturised OCT probe utilised for endoscopic imaging of laryngeal mucosa. A 1300nm SS-OCT probe was passed in tandem with a flexible fibreoptic nasoendoscope into the larynx of a manikin. Ex vivo OCT images were acquired using a desktop 1300nm TD-OCT imaging system. The feasibility, robustness and safety of this set-up was demonstrated as a preliminary step to extending the use of this assembly to a clinical patient cohort with varying laryngeal pathologies.

  12. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-02-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity.

  13. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  14. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  15. A novel design for sap flux data acquisition in large research plots using open source components

    NASA Astrophysics Data System (ADS)

    Hawthorne, D. A.; Oishi, A. C.

    2017-12-01

    Sap flux sensors are a widely-used tool for estimating in-situ, tree-level transpiration rates. These probes are installed in the stems of multiple trees within a study area and are typically left in place throughout the year. Sensors vary in their design and theory of operation, but all require electrical power for a heating element and produce at least one analog signal that must be digitized for storage. There are two topologies traditionally adopted to energize these sensors and gather the data from them. In one, a single data logger and power source are used. Dedicated cables radiate out from the logger to supply power to each of the probes and retrieve analog signals. In the other layout, a standalone data logger is located at each monitored tree. Batteries must then be distributed throughout the plot to service these loggers. We present a hybrid solution based on industrial control systems that employs a central data logger and battery, but co-locates digitizing hardware with the sensors at each tree. Each hardware node is able to communicate and share power over wire links with neighboring nodes. The resulting network provides a fault-tolerant path between the logger and each sensor. The approach is optimized to limit disturbance of the study plot, protect signal integrity and to enhance system reliability. This open-source implementation is built on the Arduino micro-controller system and employs RS485 and Modbus communications protocols. It is supported by laptop based management software coded in Python. The system is designed to be readily fabricated and programmed by non-experts. It works with a variety of sap-flux measurement techniques and it is able to interface to additional environmental sensors.

  16. Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest.

    PubMed

    Fortunel, Claire; Valencia, Renato; Wright, S Joseph; Garwood, Nancy C; Kraft, Nathan J B

    2016-09-01

    As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests. © 2016 John Wiley & Sons Ltd/CNRS.

  17. Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease

    PubMed Central

    Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.

    2016-01-01

    Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767

  18. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles.

    PubMed

    Campbell, Eleanor A; Peterson, Evan; Kolpashchikov, Dmitry M

    2017-07-05

    DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Imaging demonstration of a flexible micro-OCT endobronchial probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cui, Dongyao; Chu, Kengyeh K.; Ford, Timothy N.; Hyun, Daryl Chulho; Leung, Hui Min; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Rowe, Steven M.; Tearney, Guillermo J.

    2017-04-01

    The human respiratory system is protected by a defense mechanism termed mucociliary clearance (MCC). Deficiency in MCC leads to respiratory obstruction and pulmonary infection, which often are the main causes of morbidity and mortality in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying key parameters that govern MCC, including ciliary beat frequency, velocity and volume of airway mucus transport, as well as periciliary liquid layer thickness are therefore of great importance in understanding human respiratory health. However, direct, in vivo visualization of ciliary function and MCC has been challenging, hindering the diagnosis of disease pathogenesis and mechanistic evaluation of novel therapeutics. Our laboratory has previously developed a 1-µm resolution optical coherence tomography method, termed Micro-OCT, which is a unique tool for visualizing the spatiotemporal features of ciliary function and MCC. We have previously described the design of a flexible 2.5 mm Micro-OCT probe that is compatible with standard flexible bronchoscopes. This device utilizes a common-path interferometer and annular sample arm apodization to attain a sharply focused spot over an extended depth of focus. Here, we present the most recent iteration of this probe and demonstrate its imaging performance in a mouse trachea tissue culture model. In addition, we have developed an ergonomic assembly for attaching the probe to a standard bronchoscope. The ergonomic assembly fixes the Micro-OCT probe's within the bronchoscope and contains a means transducing linear motion through the sheath so that the Micro-OCT beam can be scanned along the trachea. We have tested the performance of these devices for Micro-OCT imaging in an anatomically correct model of the human airway. Future studies are planned to use this technology to conduct Micro-OCT in human trachea and bronchi in vivo.

  20. Direct writing on graphene 'paper' by manipulating electrons as 'invisible ink'.

    PubMed

    Zhang, Wei; Zhang, Qiang; Zhao, Meng-Qiang; Kuhn, Luise Theil

    2013-07-12

    The combination of self-assembly (bottom up) and nano-imprint lithography (top down) is an efficient and effective way to record information at the nanoscale by writing. The use of an electron beam for writing is quite a promising strategy; however, the 'paper' on which to save the information is not yet fully realized. Herein, graphene was selected as the thinnest paper for recording information at the nanoscale. In a transmission electron microscope, in situ high precision writing and drawing were achieved on graphene nanosheets by manipulating electrons with a 1 nm probe (probe current ~2 × 10(-9) A m(-2)) in scanning transmission electron microscopy (STEM) mode. Under electron probe irradiation, the carbon atom tends to displace within a crystalline specimen, and dangling bonds are formed from the original sp(2) bonding after local carbon atoms have been kicked off. The absorbed random foreign amorphous carbon assembles along the line of the scanning direction induced by secondary electrons and is immobilized near the edge. With the ultralow secondary electron yield of the graphene, additional foreign atoms determining the accuracy of the pattern have been greatly reduced near the targeting region. Therefore, the electron probe in STEM mode serves as invisible ink for nanoscale writing and drawing. These results not only shed new light on the application of graphene by the interaction of different forms of carbon, but also illuminate the interaction of different carbon forms through electron beams.

  1. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  2. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  3. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.

  4. The ability of adults and children to visually identify peanuts and tree nuts.

    PubMed

    Hostetler, Todd L; Hostetler, Sarah G; Phillips, Gary; Martin, Bryan L

    2012-01-01

    Peanuts and tree nuts are common food allergens and are the leading cause of fatalities from food-induced anaphylaxis. Dietary avoidance is the primary management of these allergies and requires the ability to identify peanuts or tree nuts. To investigate the ability of adults and children to visually identify peanuts and tree nuts. A nut display was assembled that held peanuts and 9 tree nuts in a total of 19 different forms. Persons 6 years or older completed a worksheet to name the items. One-thousand one-hundred five subjects completed the study. The mean number of peanuts and tree nuts identified by all subjects was 8.4 (44.2%) out of a possible 19. The mean for children ages 6 to 18 was 4.6 (24.2%), compared with 11.1 (58.4%) for adults older than 18 (P < .001). The most commonly identified items were peanut in the shell and without the shell. The least identified was hazelnut (filbert) in the shell and without the shell. No difference was seen in the performance of peanut- or tree nut-allergic subjects compared with nonallergic subjects. Fifty percent of subjects with a peanut or tree nut allergy correctly identified all forms of peanuts or tree nuts to which they are allergic. Parents of peanut- or tree nut-allergic children did no better than parents of children without such allergy. Overall, both children and adults are unreliable at visually identifying most nuts. Treatment of nut allergies with dietary avoidance should include education for both adults and children on identification of peanuts and tree nuts. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Attack rates of Sirex noctilio and patterns of pine tree defenses and mortality in northern Patagonia.

    PubMed

    Martinson, S J; Fernádez Ajó, A A; Martínez, A S; Krivak-Tetley, F E; Villacide, J M; Ayres, M P; Corley, J C

    2018-04-18

    Accidental and intentional global movement of species has increased the frequency of novel plant-insect interactions. In Patagonia, the European woodwasp, Sirex noctilio, has invaded commercial plantations of North American pines. We compared the patterns of resin defenses and S. noctilio-caused mortality at two mixed-species forests near San Carlos de Bariloche, Argentina. We observed lower levels of resin flow and higher levels of mortality in Pinus contorta compared with Pinus ponderosa. In general, S. noctilio attacked trees with lower resin compared with neighboring trees. Resin production in P. ponderosa was not related to growth rates, but for P. contorta, slower growing trees produced less resin than faster growing conspecifics. For all infested trees, attack density and number of drills (ovipositor probes) per attack did not vary with resin production. Most attacks resulted in one or two drills. Attack rates and drills/attack were basically uniform across the bole of the tree except for a decrease in both drills/attack and attack density in the upper portion of the crown, and an increase in the attack density for the bottom 10% of the tree. Planted pines in Patagonia grow faster than their counterparts in North America, and produce less resin, consistent with the growth-differentiation balance hypothesis. Limited resin defenses may help to explain the high susceptibility of P. contorta to woodwasps in Patagonia.

  6. Linear Schiff-base fluorescence probe with aggregation-induced emission characteristics for Al3+ detection and its application in live cell imaging.

    PubMed

    Wen, Xiaoye; Fan, Zhefeng

    2016-11-16

    A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al 3+ . The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al 3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al 3+ (1.85 μM) in drinking water. The Job's plot and the results of 1 H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al 3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al 3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al 3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al 3+ detection in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cell-Permeable, MMP-2 Activatable, Nickel Ferrite and His-Tagged Fusion Protein Self-Assembled Fluorescent Nanoprobe for Tumor Magnetic-Targeting and Imaging.

    PubMed

    Sun, Lu; Xie, Shuping; Qi, Jing; Liu, Ergang; Liu, Di; Liu, Quan; Chen, Sunhui; He, Huining; Yang, Victor C

    2017-11-15

    Matrix metalloproteinases (MMPs) activatable imaging probe has been explored for tumor detection. However, activation of the probe is mainly done in the extracellular space without intracellular uptake of the probe for more sensitivity. Although cell-penetrating peptides (CPPs) have been demonstrated to enable intracellular delivery of the imaging probe, they nevertheless encounter off-target delivery of the cargos to normal tissues. Herein, we have developed a dual MMP-2-activatable and tumor cell-permeable magnetic nanoprobe to simultaneously achieve selective and intracellular tumor imaging. This novel imaging probe was constructed by self-assembling a hexahistidine-tagged (His-tagged) fluorescent fusion protein chimera and nickel ferrite nanoparticles via a chelation mechanism. The His-tagged fluorescent protein chimera consisted of a red fluorescent protein mCherry that acted as the fluorophore, the low-molecular-weight protamine peptide as the CPP, and the MMP-2 cleavage sequence fused with the hexahistidine tag, whereas the nickel ferrite nanoparticles functioned as the His-tagged protein binder and also the fluorescent quencher. Both in vitro and in vivo results revealed that this imaging probe would not only remain nonpermeable to normal tissues, thereby offsetting the nonselective cellular uptake, but was also suppressed of fluorescent signals during magnetic tumor-targeting in the circulation, primarily because of the masking of the CPP activity and quenching of the fluorophore by the associated NiFe 2 O 4 nanoparticles. However, these properties were recovered or "turned on" by the action of tumor-associated MMP-2 stimuli, leading to cell penetration of the nanoprobes as well as fluorescence restoration and visualization within the tumor cells. In this regard, the presented tumor-activatable and cell-permeable system deems to be an appealing platform to achieve selective tumor imaging and intracellular protein delivery. Its impact is therefore significant, far-reaching, and wide-spread.

  8. [Application of three heat pulse technique-based methods to determine the stem sap flow].

    PubMed

    Wang, Sheng; Fan, Jun

    2015-08-01

    It is of critical importance to acquire tree transpiration characters through sap flow methodology to understand tree water physiology, forest ecology and ecosystem water exchange. Tri-probe heat pulse sensors, which are widely utilized in soil thermal parameters and soil evaporation measurement, were applied to implement Salix matsudana sap flow density (Vs) measurements via heat-ratio method (HRM), T-Max method (T-Max) and single-probe heat pulse probe (SHPP) method, and comparative analysis was conducted with additional Grainer's thermal diffusion probes (TDP) measured results. The results showed that, it took about five weeks to reach a stable measurement stage after TPHP installation, Vs measured with three methods in the early stage after installation was 135%-220% higher than Vs in the stable measurement stage, and Vs estimated via HRM, T-Max and SHPP methods were significantly linearly correlated with Vs estimated via TDP method, with R2 of 0.93, 0.73 and 0.91, respectively, and R2 for Vs measured by SHPP and HRM reached 0.94. HRM had relatively higher precision in measuring low rates and reverse sap flow. SHPP method seemed to be very promising to measure sap flow for configuration simplicity and high measuring accuracy, whereas it couldn' t distinguish directions of flow. T-Max method had relatively higher error in sap flow measurement, and it couldn' t measure sap flow below 5 cm3 · cm(-2) · h(-1), thus this method could not be used alone, however it could measure thermal diffusivity for calculating sap flow when other methods were imposed. It was recommended to choose a proper method or a combination of several methods to measure stem sap flow, based on specific research purpose.

  9. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.

    2014-06-01

    The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.

  10. Continuity tester screens out faulty socket connections

    NASA Technical Reports Server (NTRS)

    Golding, G.

    1964-01-01

    A device, used before and after assembly, tests the continuity of an electrical circuit through each pin and socket of multiple connector sockets. Electrically insulated except at the contact area, a test probe is dimensioned to make contact only in properly formed sockets.

  11. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  12. Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.

    PubMed

    Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D

    2017-04-19

    A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.

  13. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    PubMed

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  14. Phylogenomic analyses data of the avian phylogenomics project.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Narula, Nitish; Liu, Liang; Burt, Dave; Ellegren, Hans; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas Pius; Zhang, Guojie

    2015-01-01

    Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.

  15. Characterization of a new apple luteovirus identified by high-throughput sequencing.

    PubMed

    Liu, Huawei; Wu, Liping; Nikolaeva, Ekaterina; Peter, Kari; Liu, Zongrang; Mollov, Dimitre; Cao, Mengji; Li, Ruhui

    2018-05-15

    'Rapid Apple Decline' (RAD) is a newly emerging problem of young, dwarf apple trees in the Northeastern USA. The affected trees show trunk necrosis, cracking and canker before collapse in summer. In this study, we discovered and characterized a new luteovirus from apple trees in RAD-affected orchards using high-throughput sequencing (HTS) technology and subsequent Sanger sequencing. Illumina NextSeq sequencing was applied to total RNAs prepared from three diseased apple trees. Sequence reads were de novo assembled, and contigs were annotated by BLASTx. RT-PCR and 5'/3' RACE sequencing were used to obtain the complete genome of a new virus. RT-PCR was used to detect the virus. Three common apple viruses and a new luteovirus were identified from the diseased trees by HTS and RT-PCR. Sequence analyses of the complete genome of the new virus show that it is a new species of the genus Luteovirus in the family Luteoviridae. The virus is graft transmissible and detected by RT-PCR in apple trees in a couple of orchards. A new luteovirus and/or three known viruses were found to be associated with RAD. Molecular characterization of the new luteovirus provides important information for further investigation of its distribution and etiological role.

  16. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.

    PubMed

    Wiedemann, Andreas; Marañón-Jiménez, Sara; Rebmann, Corinna; Herbst, Mathias; Cuntz, Matthias

    2016-12-01

    The insertion of thermal dissipation (TD) sensors on tree stems for sap flux density (SFD) measurements can lead to SFD underestimations due to a wound formation close to the drill hole. However, the wound effect has not been assessed experimentally for this method yet. Here, we propose an empirical approach to investigate the effect of the wound healing on measured sap flux with TD probes. The approach was performed for both, diffuse-porous (Fagus sylvatica (Linnaeus)) and ring-porous (Quercus petraea (Lieblein)) species. Thermal dissipation probes were installed on different dates along the growing season to document the effects of the dynamic wound formation. The trees were cut in autumn and additional sensors were installed in the cut stems, therefore, without potential effects of wound development. A range of water pressures was applied to the stem segments and SFDs were simultaneously measured by TD sensors as well as gravimetrically in the laboratory. The formation of wounds around sensors installed in living tree stems led to underestimation of SFD by 21.4 ± 3 and 47.5 ± 3.8% in beech and oak, respectively. The differences between SFD underestimations of diffuse-porous beech and ring-porous oak were, however, not statistically significant. Sensors with 5-, 11- and 22-week-old wounds also showed no significant differences, which implies that the influence of wound formation on SFD estimates was completed within the first few weeks after perforation. These results were confirmed by time courses of SFD measurements in the field. Field SFD values decreased immediately after sensor installation and reached stable values after ~2 weeks with similar underestimations to the ones observed in the laboratory. We therefore propose a feasible approach to correct directly field observations of SFD for potential underestimations due to the wound effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Skills Conversion Project: Chapter 6, Forest Operations and Wood Products. Final Report.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    A study of the forest operations and wood products industries was conducted in Atlanta and Seattle by the National Society of Professional Engineers. Included among these industries are tree development, crop and land management, logging, material handling transportation, cutting, peeling, assembly, pulp and paper, mobile homes, construction,…

  18. In the Boardroom, Culture Counts

    ERIC Educational Resources Information Center

    Axelrod, Nancy R.

    2005-01-01

    Many higher education leaders are adopting measures that may contribute to better governance, but unless they also look at how the phenomenon of culture shapes the way their board members behave as a group, they will miss the forest for the trees. The best trustees and presidents grasp the paradox of assembling a number of highly competent…

  19. Study the friction behaviour of poly[2-(dimethylamino)ethyl methacrylate] brush with AFM probes in contact mechanics

    NASA Astrophysics Data System (ADS)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2011-10-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). We show that single asperity contact mechanics (Johnson-Kendall-Roberts(JKR) and Derjaguin-Muller-Toporov(DMT)) as well as a linear (Amontons) relation between applied load and frictional load depending on the pH of the FFM probe. Measurements were made using functionalized and unfunctionalized silicon nitride triangular probes. Functionalized probes included gold-coated probes, and ones coated with a self-assembled monolayer of dodecanethiol (DDT). The frictional behaviour between PDMAEMA and all tips immersed in pH from 3 to 11 are corresponded to the DMT or JKR model and are linear in pH=1, 2, and 12. These results show that contact mechanics of polyelectrolytes in water is complex and strongly dependent on the environmental pH.

  20. Nanobits, Nembranes and Micro Four-Point Probes: Customizable Tools for insitu Manipulation and Characterisation of Nanostructures

    NASA Astrophysics Data System (ADS)

    Boggild, Peter; Hjorth Petersen, Dirch; Sardan Sukas, Ozlem; Dam, Henrik Friis; Lei, Anders; Booth, Timothy; Molhave, Kristian; Eicchorn, Volkmar

    2010-03-01

    We present a range of highly adaptable microtools for direct interaction with nanoscale structures; (i) semiautomatic pick-and-place assembly of multiwalled carbon nanotubes onto cantilevers for high-aspect ratio scanning probe microscopy, using electrothermal microgrippers inside a SEM. Topology optimisation was used to calculate the optimal gripper shape defined by the boundary conditions, resulting in 10-100 times better performance. By instead pre-defining detachable tips using electron beam lithography, free-form scanning probe tips (Nanobits) can be mounted in virtually any position on a cantilever; (ii) scanning micro four point probes allow fast, non- destructive mapping of local electrical properties (sheet resistance and Hall mobility) and hysteresis effects of graphene sheets; (iii) sub 100 nm freestanding devices with wires, heaters, actuators, sensors, resonators and probes were defined in a 100 nm thin membrane with focused ion beam milling. By patterning generic membrane templates (Nembranes) the fabrication time of a TEM compatible NEMS device is effectively reduced to less around 20 minutes.

  1. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of amore » newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.« less

  2. Whole genome sequencing data and de novo draft assemblies for 66 teleost species

    PubMed Central

    Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2017-01-01

    Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts. PMID:28094797

  3. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase

    PubMed Central

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei

    2018-01-01

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future. PMID:29659536

  4. A computer-controlled apparatus for Seebeck inhomogeneity testing of sheathed thermocouples

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.

    1993-01-01

    Mineral-insulated metal-sheathed (MIMS) thermocouple assemblies are used throughout industry and research facilities as a method of temperature measurement where requirements for either harsh environmental conditions exist, or where rigidity of the measurement probe is required. Seebeck inhomogeneity is the abnormal variation of the Seebeck coefficient from point to point in a material. It is not disclosed in conventional calibration. A standardized method of measuring thermoelectric inhomogeneity along the thermocouple probe length is not available. Therefore, calibration for sheathed probes normally does not include testing of probe inhomogeneity. The measurement accuracy would be severely impacted if significant inhomogeneity and a temperature gradient were present in the same region of the probe. A computer-controlled system for determining inhomogeneities was designed, fabricated, and tested. This system provides an accurate method for the identification of the location of inhomogeneity along the length of a sheathed thermocouple and for the quantification of the inhomogeneity. This paper will discuss the apparatus and procedure used to perform these tests and will present data showing tests performed on sheathed thermocouple probes.

  5. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.

    PubMed

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin

    2018-04-16

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.

  6. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.

    PubMed

    Zhou, Qian; Lin, Youxiu; Lin, Yuping; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-01-01

    Biomolecular immobilization and construction of the sensing platform are usually crucial for the successful development of a high-efficiency detection system. Herein we report on a novel and label-free signal-amplified aptasensing for sensitive electrochemical detection of small molecules (adenosine triphosphate, ATP, used in this case) by coupling with target-induced hybridization chain reaction (HCR) and the assembly of electroactive silver nanotags. The system mainly consisted of two alternating hairpin probes, a partial-pairing trigger-aptamer duplex DNA and a capture probe immobilized on the electrode. Upon target ATP introduction, the analyte attacked the aptamer and released the trigger DNA, which was captured by capture DNA immobilized on the electrode to form a newly partial-pairing double-stranded DNA. Thereafter, the exposed domain at trigger DNA could be utilized as the initator strand to open the hairpin probes in sequence, and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix. The electrochemical signal derived from the assembled silver nanotags on the nicked double-helix. Under optimal conditions, the electrochemical aptasensor could exhibit a high sensitivity and a low detection limit, and allowed the detection of ATP at a concentration as low as 0.03 pM. Our design showed a high selectivity for target ATP against its analogs because of the high-specificity ATP-aptamer reaction, and its applicable for monitoring ATP in the spiking serum samples. Improtantly, the distinct advantages of the developed aptasensor make it hold a great potential for the development of simple and robust sensing strategies for the detection of other small molecules by controlling the apatmer sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna.

    PubMed

    Duursma, Remko A; Barton, Craig V M; Eamus, Derek; Medlyn, Belinda E; Ellsworth, David S; Forster, Michael A; Tissue, David T; Linder, Sune; McMurtrie, Ross E

    2011-09-01

    Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C(a) (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C(a) treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.

  8. A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae.

    PubMed

    Davis, Brian W; Raudsepp, Terje; Pearks Wilkerson, Alison J; Agarwala, Richa; Schäffer, Alejandro A; Houck, Marlys; Chowdhary, Bhanu P; Murphy, William J

    2009-04-01

    We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases (kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence.

  9. A High-Resolution Cat Radiation Hybrid and Integrated FISH Mapping Resource for Phylogenomic Studies across Felidae

    PubMed Central

    Davis, Brian W.; Raudsepp, Terje; Wilkerson, Alison J. Pearks; Agarwala, Richa; Schäffer, Alejandro A.; Houck, Marlys; Ryder, Oliver A.; Chowdhdary, Bhanu P.; Murphy, William J.

    2008-01-01

    We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2,662 markers, translating to an estimated average intermarker distance of 939 kilobases (Kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 Kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC-clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence. PMID:18951970

  10. Apparatus for releasably connecting first and second objects in predetermined space relationship

    NASA Technical Reports Server (NTRS)

    Chandler, J. A. (Inventor)

    1984-01-01

    A releasable apparatus that connects first and second space objects, such as a spacecraft and a space vehicle, in predetermined spaced relationship is described. The apparatus comprises at least one probe member mounted on the first object, having an elongated shank portion, the distal end of which is provided with a tapered nose portion. At least one drogue assembly is mounted on the second space object for releasably capturing the probe member upon the first and second objects being brought into close proximity with each other.

  11. Combining Structural Probes in the Gas Phase - Ion Mobility- Resolved Action-FRET

    NASA Astrophysics Data System (ADS)

    Daly, Steven; MacAleese, Luke; Dugourd, Philippe; Chirot, Fabien

    2018-01-01

    In the context of native mass spectrometry, the development of gas-phase structural probes sensitive to the different levels of structuration of biomolecular assemblies is necessary to push forward conformational studies. In this paper, we provide the first example of the combination of ion mobility (IM) and Förster resonance energy transfer (FRET) measurements within the same experimental setup. The possibility to obtain mass- and mobility-resolved FRET measurements is demonstrated on a model peptide and applied to monitor the collision-induced unfolding of ubiquitin. [Figure not available: see fulltext.

  12. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.

    PubMed

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H

    2014-06-14

    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  13. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  15. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    NASA Astrophysics Data System (ADS)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  16. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.

    PubMed

    Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien

    2018-02-09

    The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.

  18. Test module development to detect the flase call probe pins on microeprocessor test equipment

    NASA Astrophysics Data System (ADS)

    Tang, L. W.; Ong, N. R.; Mohamad, I. S. B.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Probe pins are useful for electrical testing of microelectronic components, printed circuit board assembly (PCBA), microprocessors and other electronic devices due to it provides the conductivity test based on specific device circuit design. During the repeatable test runs, the load of test modules, contact failures and the current conductivity induces layer wear off all the tip of probe pins contact. Contamination will be build-up on probe pins and increased contact resistivity which results of cost loss and time loss for rectifying programs, rectifying testers and exchanging new probe pins. In this study, a resistivity approach will be developed to provide "Testing of Test Probes". The test module based on "Four-wire Ohm measurement" method with two alternative ways of applying power supply, that are 9V from a single power supply and 5V from Arduino UNO power supply were demonstrated to measure the small resistance value of microprocessor probe pin. A microcontroller with VEE Pro software was used to record the measurement data. The accuracy of both test modules were calibrated under different temperature conditions and result shows that 9V from a single power supply test module has higher measurement accuracy.

  19. Structure and assembly mechanism for heteromeric kainate receptors.

    PubMed

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L

    2011-07-28

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Time-resolved viscoelastic properties of self-assembling iron oxide nanocube superlattices probed by quartz crystal microbalance with dissipation monitoring.

    PubMed

    Kapuscinski, Martin; Agthe, Michael; Bergström, Lennart

    2018-07-15

    Self-assembly of nanoparticles into superlattices can be used to create hierarchically structured materials with tailored functions. We have used the surface sensitive quartz crystal microbalance with dissipation monitoring (QCM-D) technique in combination with video microscopy (VM) to obtain time-resolved information on the mass increase and rheological properties of evaporation-induced self-assembly of nanocubes. We have recorded the frequency and dissipation shifts during growth and densification of superlattices formed by self-assembly of oleic acid capped, truncated iron oxide nanocubes and analyzed the time-resolved QCM-D data using a Kelvin-Voigt viscoelastic model. We show that the nanoparticles first assemble into solvent-containing arrays dominated by a viscous response followed by a solvent-releasing step that results in the formation of rigid and well-ordered superlattices. Our findings demonstrate that QCM-D can be successfully used to follow self-assembly and assist in the design of optimized routes to produce well-ordered superlattices. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Nano-soldering of magnetically aligned three-dimensional nanowire networks.

    PubMed

    Gao, Fan; Gu, Zhiyong

    2010-03-19

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  2. A Programmable DNA Double-Write Material: Synergy of Photolithography and Self-Assembly Nanofabrication.

    PubMed

    Song, Youngjun; Takahashi, Tsukasa; Kim, Sejung; Heaney, Yvonne C; Warner, John; Chen, Shaochen; Heller, Michael J

    2017-01-11

    We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.

  3. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants1[OPEN

    PubMed Central

    Brereton, Nicholas J. B.; Marleau, Julie; Nissim, Werther Guidi; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2016-01-01

    Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system. PMID:27002060

  4. A reference genome of the European beech (Fagus sylvatica L.).

    PubMed

    Mishra, Bagdevi; Gupta, Deepak K; Pfenninger, Markus; Hickler, Thomas; Langer, Ewald; Nam, Bora; Paule, Juraj; Sharma, Rahul; Ulaszewski, Bartosz; Warmbier, Joanna; Burczyk, Jaroslaw; Thines, Marco

    2018-06-01

    The European beech is arguably the most important climax broad-leaved tree species in Central Europe, widely planted for its valuable wood. Here, we report the 542 Mb draft genome sequence of an up to 300-year-old individual (Bhaga) from an undisturbed stand in the Kellerwald-Edersee National Park in central Germany. Using a hybrid assembly approach, Illumina reads with short- and long-insert libraries, coupled with long Pacific Biosciences reads, we obtained an assembled genome size of 542 Mb, in line with flow cytometric genome size estimation. The largest scaffold was of 1.15 Mb, the N50 length was 145 kb, and the L50 count was 983. The assembly contained 0.12% of Ns. A Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis retrieved 94% complete BUSCO genes, well in the range of other high-quality draft genomes of trees. A total of 62,012 protein-coding genes were predicted, assisted by transcriptome sequencing. In addition, we are reporting an efficient method for extracting high-molecular-weight DNA from dormant buds, by which contamination by environmental bacteria and fungi was kept at a minimum. The assembled genome will be a valuable resource and reference for future population genomics studies on the evolution and past climate change adaptation of beech and will be helpful for identifying genes, e.g., involved in drought tolerance, in order to select and breed individuals to adapt forestry to climate change in Europe. A continuously updated genome browser and download page can be accessed from beechgenome.net, which will include future genome versions of the reference individual Bhaga, as new sequencing approaches develop.

  5. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

    PubMed

    Argout, X; Martin, G; Droc, G; Fouet, O; Labadie, K; Rivals, E; Aury, J M; Lanaud, C

    2017-09-15

    Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes. We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes. The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence. Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).

  6. Molecularly "engineered" anode adsorbates for probing OLED interfacial structure-charge injection/luminance relationships: large, structure-dependent effects.

    PubMed

    Huang, Qinglan; Evmenenko, Guennadi; Dutta, Pulak; Marks, Tobin J

    2003-12-03

    Molecule-scale structure effects at organic light-emitting diodes (OLED) anode-organic transport layer interfaces are probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine molecules differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure, charge injection and electroluminescence properties. Dramatic variations in hole injection magnitude and OLED performance can be correlated with the molecular structures and electrochemically derived heterogeneous electron-transfer rates of such triarylamine fragments, placed precisely at the anode-hole transport layer interface. Very bright and efficient ( approximately 70 000 cd/m2 and approximately 2.5% forward external quantum efficiency) OLEDs have thereby been fabricated.

  7. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    NASA Astrophysics Data System (ADS)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative data revealed that students who applied principles of systems thinking performed better than those who did not. Students' understanding of the root system of the Live Oak tree was hindered by understanding of, plant food, the nonwoody roots, and the tree as a system.

  8. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease.

    PubMed

    Graham, Duncan; Stevenson, Ross; Thompson, David G; Barrett, Lee; Dalton, Colette; Faulds, Karen

    2011-01-01

    DNA functionalised nanoparticle probes offer new opportunities in analyte detection. Ultrasensitive, molecularly specific targeting of analytes is possible through the use of metallic nanoparticles and their ability to generate a surface enhanced Raman scattering (SERS) response. This is leading to a new range of diagnostic clinical probes based on SERS detection. Our approaches have shown how such probes can detect specific DNA sequences by using a biomolecular recognition event to 'turn on' a SERS response through a controlled assembly process of the DNA functionalised nanoparticles. Further, we have prepared DNA aptamer functionalised SERS probes and demonstrated how introduction of a protein target can change the aggregation state of the nanoparticles in a dose-dependant manner. These approaches are being used as methods to detect biomolecules that indicate a specific disease being present with a view to improving disease management.

  9. Additive Manufacture (3D Printing) of Plasma Diagnostic Components and Assemblies for Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Quinley, Morgan; Chun, Katherine; Melnik, Paul; Sieck, Paul; Smith, Trevor; Stuber, James; Woodruff, Simon; Romero-Talamas, Carlos; Rivera, William; Card, Alexander

    2016-10-01

    We are investigating the potential impact of additive manufacturing (3D printing) on the cost and complexity of plasma diagnostics. We present a survey of the current state-of-the-art in additive manufacture of metals, as well as the design of diagnostic components that have been optimized for and take advantage of these processes. Included among these is a set of retarding field analyzer probe heads that have been printed in tungsten with internal heat sinks and cooling channels. Finite element analysis of these probe heads shows the potential for a 750K reduction in peak temperature, allowing the probe to take data twice as often without melting. Results of the evaluation of these probe heads for mechanical strength and outgassing, as well as their use on Alcator C-Mod will be presented. Supported by DOE SBIR Grant DE-SC0011858.

  10. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  11. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  12. Magnification concepts: The use of video-probe microscopy to stimulate excitement and hands-on discovery in the science classroom K-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henk, C.; Garner, J.; Wandersee, J.H.

    1994-12-31

    We acquired and loaned several durable, easy-to use, though expensive video-probe microscopes. This hand-held, automatically focusing instrument can be used by a five year old and provides instant, excellent, in-focus images up to 200X on a video screen visible to all students simultaneously. The teacher is thus freed from the technical and logistic considerations involved in conventional classroom microscopy. K-12 teachers preview our videotape on probe utilization. They assemble and demonstrate the unit in the presence of our personnel, then check out the probe for use in their own classrooms. Extremely enthusiastic students examine samples ranging from their own fingerprintsmore » and clothing (on TV!) to pond water, prepared microscope slides, and microscope polarizing light phenomena. Teachers report heightened interest in conventional microscope use once the {open_quotes}microscopy connection{close_quotes} has been made.« less

  13. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

    PubMed

    Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M

    2012-03-14

    Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society

  14. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors

    PubMed Central

    HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.

    2014-01-01

    Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625

  15. KSC-01pp1169

    NASA Image and Video Library

    2001-06-18

    KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers lower a canister over the Microwave Anisotropy Probe (MAP) before transporting to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30.

  16. In situ TEM Raman spectroscopy and laser-based materials modification.

    PubMed

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  19. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa.

    PubMed

    Hu, Yingxue; Beshr, Ghamdan; Garvey, Christopher J; Tabor, Rico F; Titz, Alexander; Wilkinson, Brendan L

    2017-11-01

    The first example of the self-assembly and lectin binding properties of photoswitchable glycodendrimer micelles is reported. Light-addressable micelles were assembled from a library of 12 amphiphilic Janus glycodendrimers composed of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core. Spontaneous association in water gave cylindrical micelles with uniform size distribution as determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). Trans-cis photoisomerization of the azobenzene dendrimer core was used to probe the self-assembly behaviour and lectin binding properties of cylindrical micelles, revealing moderate-to-potent inhibition of lectins LecA and LecB from Pseudomonas aeruginosa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Hydrogen bond-Driven Self-Assembly between Amidinium Cations and Carboxylate Anions: A Combined Molecular Dynamics, NMR Spectroscopy, and Single Crystal X-ray Diffraction Study.

    PubMed

    Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G

    2017-07-04

    A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cooperative Subunit Refolding of a Light-Harvesting Protein through a Self-Chaperone Mechanism.

    PubMed

    Laos, Alistair J; Dean, Jacob C; Toa, Zi S D; Wilk, Krystyna E; Scholes, Gregory D; Curmi, Paul M G; Thordarson, Pall

    2017-07-10

    The fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure. Our results demonstrate a cooperative, self-chaperone refolding mechanism, whereby the β-subunits independently refold, thereby templating the folding of the α-subunits, which then chaperone the assembly of the native complex, quantitatively returning all coherences. Our results indicate that subunit self-chaperoning is a robust mechanism for heteromeric protein folding and assembly that could also be applied in self-assembled synthetic hierarchical systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    PubMed Central

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333

  3. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  4. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA

    PubMed Central

    Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.

    1987-01-01

    An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868

  5. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog.

    PubMed

    Xue, Longjian; Sanz, Belén; Luo, Aoyi; Turner, Kevin T; Wang, Xin; Tan, Di; Zhang, Rui; Du, Hang; Steinhart, Martin; Mijangos, Carmen; Guttmann, Markus; Kappl, Michael; Del Campo, Aránzazu

    2017-10-24

    Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix-fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.

  6. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog

    PubMed Central

    2017-01-01

    Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix–fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments. PMID:28885831

  7. Transmission X-ray scattering as a probe for complex liquid-surface structures

    DOE PAGES

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less

  8. Kevin Yager on the Nanoscience of Studying Scattered X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yager, Kevin

    Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

  9. Kevin Yager on the Nanoscience of Studying Scattered X-Rays

    ScienceCinema

    Yager, Kevin

    2018-01-16

    Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

  10. Fincke holds the active docking assembly inside the SM during Expedition 9

    NASA Image and Video Library

    2004-08-14

    ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).

  11. Increased spruce tree growth in Central Europe since 1960s.

    PubMed

    Cienciala, Emil; Altman, Jan; Doležal, Jiří; Kopáček, Jiří; Štěpánek, Petr; Ståhl, Göran; Tumajer, Jan

    2018-04-01

    Tree growth response to recent environmental changes is of key interest for forest ecology. This study addressed the following questions with respect to Norway spruce (Picea abies, L. Karst.) in Central Europe: Has tree growth accelerated during the last five decades? What are the main environmental drivers of the observed tree radial stem growth and how much variability can be explained by them? Using a nationwide dendrochronological sampling of Norway spruce in the Czech Republic (1246 trees, 266 plots), novel regional tree-ring width chronologies for 40(±10)- and 60(±10)-year old trees were assembled, averaged across three elevation zones (break points at 500 and 700m). Correspondingly averaged drivers, including temperature, precipitation, nitrogen (N) deposition and ambient CO 2 concentration, were used in a general linear model (GLM) to analyze the contribution of these in explaining tree ring width variability for the period from 1961 to 2013. Spruce tree radial stem growth responded strongly to the changing environment in Central Europe during the period, with a mean tree ring width increase of 24 and 32% for the 40- and 60-year old trees, respectively. The indicative General Linear Model analysis identified CO 2 , precipitation during the vegetation season, spring air temperature (March-May) and N-deposition as the significant covariates of growth, with the latter including interactions with elevation zones. The regression models explained 57% and 55% of the variability in the two tree ring width chronologies, respectively. Growth response to N-deposition showed the highest variability along the elevation gradient with growth stimulation/limitation at sites below/above 700m. A strong sensitivity of stem growth to CO 2 was also indicated, suggesting that the effect of rising ambient CO 2 concentration (direct or indirect by increased water use efficiency) should be considered in analyses of long-term growth together with climatic factors and N-deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The genome of Theobroma cacao.

    PubMed

    Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; Legavre, Thierry; Maximova, Siela N; Abrouk, Michael; Murat, Florent; Fouet, Olivier; Poulain, Julie; Ruiz, Manuel; Roguet, Yolande; Rodier-Goud, Maguy; Barbosa-Neto, Jose Fernandes; Sabot, Francois; Kudrna, Dave; Ammiraju, Jetty Siva S; Schuster, Stephan C; Carlson, John E; Sallet, Erika; Schiex, Thomas; Dievart, Anne; Kramer, Melissa; Gelley, Laura; Shi, Zi; Bérard, Aurélie; Viot, Christopher; Boccara, Michel; Risterucci, Ange Marie; Guignon, Valentin; Sabau, Xavier; Axtell, Michael J; Ma, Zhaorong; Zhang, Yufan; Brown, Spencer; Bourge, Mickael; Golser, Wolfgang; Song, Xiang; Clement, Didier; Rivallan, Ronan; Tahi, Mathias; Akaza, Joseph Moroh; Pitollat, Bertrand; Gramacho, Karina; D'Hont, Angélique; Brunel, Dominique; Infante, Diogenes; Kebe, Ismael; Costet, Pierre; Wing, Rod; McCombie, W Richard; Guiderdoni, Emmanuel; Quetier, Francis; Panaud, Olivier; Wincker, Patrick; Bocs, Stephanie; Lanaud, Claire

    2011-02-01

    We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.

  13. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  14. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  15. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.

    PubMed

    Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe

    2017-02-01

    Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology. © 2016 John Wiley & Sons Ltd.

  16. Combining Chemoselective Ligation with Polyhistidine-Driven Self-Assembly for the Modular Display of Biomolecules on Quantum Dots

    PubMed Central

    Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.

    2015-01-01

    One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912

  17. Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media

    PubMed Central

    Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.

    2012-01-01

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822

  18. Light-weight extension tubes for compressed-air garden sprayers

    Treesearch

    Thomas W. McConkey; Charles E. Swett

    1967-01-01

    To hand-spray taller trees safely and efficiently, 8-, 12-, and 16-foot extension tubes for compressed-air garden sprayers were designed and built. These light-weight tubes have been used successfully for spraying white pine leaders for weevil control on the Massabesic Experimental Forest in Maine. Bill of materials and assembly instructions are included.

  19. De novo genome assembly of Geosmithia morbida, the causal agent of thousand cankers disease

    Treesearch

    Taruna A. Schuelke; Anthony Westbrook; Kirk Broders; Keith Woeste; Matthew D. MacManes

    2016-01-01

    Geosmithia morbida is a filamentous ascomycete that causes thousand cankers disease in the eastern black walnut tree. This pathogen is commonly found in the western U.S.; however, recently the disease was also detected in several eastern states where the black walnut lumber industry is concentrated. G. morbida is one of two...

  20. Self-Assembly of Topological Solitons and Functional Nanoparticles in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ackerman, Paul Jeffrey

    As a result of their intrinsic orientational order, soft elasticity, and facile response to external stimuli, liquid crystals (LCs) provide a rich environment for both fundamental science and viable technological applications. In this thesis I explore the emergent properties of confinement-frustrated chiral nematic LCs and nanoparticle-LC composites. Due to a complex free energy landscape, con- fined LCs exhibit a large number of local and global energy minima and can facilitate self-assembly of many types of topological solitons. These localized configurations of molecular orientation field are useful for technological applications, have properties that are enhanced by colloidal inclusions and enable the fundamental studies of nanoparticle interactions. Experimental and numerical ex- ploration of these topologically nontrivial solitons may influence the experimental realization of their analogs in physical systems ranging from elementary particles to cosmology. The delicate interplay of topology, chirality and confinement of LCs can enable spontaneous or optical vortex initiated self-assembly of solitons. In turn, the optical generation and patterning of reconfigurable LC solitons can enable the production of optical vortices in laser beams, demon- strating hierarchical control of defects in matter and light with potential technological applications. The elasticity and facile response of LCs to applied fields facilitates the self-assembly of crystals and chains of solitons, giant electrostriction, as well as electrically driven nonequilibrium dynamics in the form of reversible directional motion of stable defect pairs. Concepts of chirality and topo- logical invariants, such as Hopf index and Skyrmion number, are invoked to examine and classify a variety of spatial solitons, including Skyrmions, Hopfions, and torons, as well as to analyze the role of chirality and the unexpected observation of twist handedness reversal that enables soliton stability. By introducing colloidal particles to the confined chiral LCs, we probe how new composite material properties can emerge spontaneously or be pre-designed and then probed by combining the facile response of the LC host and the unique properties of nanoparticles. This allows us to achieve polar ferromagnetic response in chiral ferromagnetic LC colloids as well as to probe plasmon- exciton interactions through controlling metal and semiconductor quantum dot nanoparticles within topological defects.

  1. Biophysical control of whole tree transpiration under an urban environment in Northern China

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan

    2011-05-01

    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  2. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  3. Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement

    PubMed Central

    MacLeod, Dave; Charlebois, Robert L; Doolittle, Ford; Bapteste, Eric

    2005-01-01

    Background When organismal phylogenies based on sequences of single marker genes are poorly resolved, a logical approach is to add more markers, on the assumption that weak but congruent phylogenetic signal will be reinforced in such multigene trees. Such approaches are valid only when the several markers indeed have identical phylogenies, an issue which many multigene methods (such as the use of concatenated gene sequences or the assembly of supertrees) do not directly address. Indeed, even when the true history is a mixture of vertical descent for some genes and lateral gene transfer (LGT) for others, such methods produce unique topologies. Results We have developed software that aims to extract evidence for vertical and lateral inheritance from a set of gene trees compared against an arbitrary reference tree. This evidence is then displayed as a synthesis showing support over the tree for vertical inheritance, overlaid with explicit lateral gene transfer (LGT) events inferred to have occurred over the history of the tree. Like splits-tree methods, one can thus identify nodes at which conflict occurs. Additionally one can make reasonable inferences about vertical and lateral signal, assigning putative donors and recipients. Conclusion A tool such as ours can serve to explore the reticulated dimensionality of molecular evolution, by dissecting vertical and lateral inheritance at high resolution. By this, we mean that individual nodes can be examined not only for congruence, but also for coherence in light of LGT. We assert that our tools will facilitate the comparison of phylogenetic trees, and the interpretation of conflicting data. PMID:15819979

  4. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.

    PubMed

    Jain, Swati; Schlick, Tamar

    2017-11-24

    Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interactions between plants and primates shape community diversity in a rainforest in Madagascar.

    PubMed

    Herrera, James P

    2016-07-01

    Models of ecological community assembly predict how communities of interacting organisms may be shaped by abiotic and biotic factors. Competition and environmental filtering are the predominant factors hypothesized to explain community assembly. This study tested the effects of habitat, phylogenetic and phenotypic trait predictors on species co-occurrence patterns and abundances, with the endemic primates of Madagascar as an empirical system. The abundance of 11 primate species was estimated along gradients of elevation, food resource abundance and anthropogenic habitat disturbance at local scales in south-east Madagascar. Community composition was compared to null models to test for phylogenetic and functional structure, and the effects of phylogenetic relatedness of co-occurring species, their trait similarity and environmental variables on species' abundances were tested using mixed models and quantile regressions. Resource abundance was the strongest predictor of community structure. Where food tree abundance was high, closely related species with similar traits dominated communities. High-elevation communities with lower food tree abundance consisted of species that were distantly related and had divergent traits. Closely related species had dissimilar abundances where they co-occurred, partially driven by trait dissimilarity, indicating character displacement. By integrating local-scale variation in primate community composition, evolutionary relatedness and functional diversity, this study found strong evidence that community assembly in this system can be explained by competition and character displacement along ecological gradients. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  6. Facilitative-Competitive Interactions in an Old-Growth Forest: The Importance of Large-Diameter Trees as Benefactors and Stimulators for Forest Community Assembly

    PubMed Central

    Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035

  7. Facilitative-competitive interactions in an old-growth forest: the importance of large-diameter trees as benefactors and stimulators for forest community assembly.

    PubMed

    Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert

    2015-01-01

    The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.

  8. Interrogating trees as archives of sulphur deposition

    NASA Astrophysics Data System (ADS)

    Wynn, P. M.; Loader, N. J.; Fairchild, I. J.

    2012-04-01

    A principal driver of climatic variability over the past 1,000 years and essential forcing mechanism for climate, are the changes in atmospheric composition resulting from sulphur aerosols. Natural and anthropogenic aerosols released into the atmosphere disrupt the radiative balance through backscattering and absorption of incoming solar radiation and increase cloud albedo by acting as condensation nuclei. Understanding the impact of sulphur emissions upon climate beyond the last few hundred years however is not straightforward and natural archives of environmental information must be explored. Tree-rings represent one such archive as they are widely distributed and preserve environmental information within a precisely dateable, annually resolved timescale. Until recently the sulphur contained within tree-rings has largely remained beyond the reach of environmental scientists and climate modelers owing to difficulties associated with the extraction of a robust signal and uncertainties regarding post-depositional mobility. Our recent work using synchrotron radiation has established that the majority of non-labile sulphur in two conifer species is preserved within the cellular structure of the woody tissue after uptake and demonstrates an increasing trend in sulphur concentration during the 20th century and during known volcanic events. Due to the clear isotopic distinction between marine (+21), geological (+10 to +30), atmospheric pollution (-3 to +9 ) and volcanic sources of sulphur (0 to +5), isotopic ratios provide a diagnostic tool with which changes in the source of atmospheric sulphur can be detected in a more reliable fashion than concentration alone. Sulphur isotopes should thereby provide a fingerprint of short lived events including volcanic activity when extracted at high resolution and in conjunction with high resolution S concentrations defining the event. Here we present methodologies associated with extracting the sulphur isotopic signal from tree-rings using both elemental analyser isotope ratio mass spectrometry and ion probe technology. Preliminary data indicate success at extracting the sulphur isotopic signal from woody tissues at 2-3 year resolution. In conjunction with analytical developments in ion probe technology, high resolution records of localised sulphur forcing from tree-ring archives, including volcanic activity, no longer seem too far beyond the reach of climate scientists.

  9. KSC-01pp1170

    NASA Image and Video Library

    2001-06-18

    KENNEDY SPACE CENTER, Fla. -- In KSC’s Spacecraft Assembly and Encapsulation Facility -2, workers adjust the canister as it is lowered over the Microwave Anisotropy Probe (MAP). The spacecraft will be transported to Launch Complex 17, Cape Canaveral Air Force Station. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30

  10. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1979

    1979-01-01

    Describes the following: use and construction of a lens-pinhole spatial filter assembly to produce expanded beams; how to modify a unilab V. L. F. oscillator to give variable frequencies between .1 Hz and 10 Hz; to use Crookes radiometer quantitatively; and an externally located, movable probe for plasma physics experiments, using conventional…

  11. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  12. Revealing the first uridyl peptide antibiotic biosynthetic gene cluster and probing pacidamycin biosynthesis.

    PubMed

    Rackham, Emma J; Grüschow, Sabine; Goss, Rebecca J M

    2011-01-01

    There is an urgent need for new antibiotics with resistance continuing to emerge toward existing classes. The pacidamycin antibiotics possess a novel scaffold and exhibit unexploited bioactivity rendering them attractive research targets. We recently reported the first identification of a biosynthetic cluster encoding uridyl peptide antibiotic assembly and the engineering of pacidamycin biosynthesis into a heterologous host. We report here our methods toward identifying the biosynthetic cluster. Our initial experiments employed conventional methods of probing a cosmid library using PCR and Southern blotting, however it became necessary to adopt a state-of-the-art genome scanning  and in silico hybridization approach  to pin point the cluster. Here we describe our "real" and "virtual" probing methods and contrast the benefits and pitfalls of each approach. 

  13. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  14. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  15. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  16. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  17. KSC-97PC1394

    NASA Image and Video Library

    1997-09-10

    Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station

  18. Integrated transrectal probe for translational ultrasound-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.

    2016-03-01

    A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.

  19. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  20. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  1. Assembler: Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data.

    PubMed

    Zhang, Chao; Zheng, Yu; Ma, Xiuli; Han, Jiawei

    2015-08-01

    Recent years have witnessed the wide proliferation of geo-sensory applications wherein a bundle of sensors are deployed at different locations to cooperatively monitor the target condition. Given massive geo-sensory data, we study the problem of mining spatial co-evolving patterns (SCPs), i.e ., groups of sensors that are spatially correlated and co-evolve frequently in their readings. SCP mining is of great importance to various real-world applications, yet it is challenging because (1) the truly interesting evolutions are often flooded by numerous trivial fluctuations in the geo-sensory time series; and (2) the pattern search space is extremely large due to the spatiotemporal combinatorial nature of SCP. In this paper, we propose a two-stage method called Assembler. In the first stage, Assembler filters trivial fluctuations using wavelet transform and detects frequent evolutions for individual sensors via a segment-and-group approach. In the second stage, Assembler generates SCPs by assembling the frequent evolutions of individual sensors. Leveraging the spatial constraint, it conceptually organizes all the SCPs into a novel structure called the SCP search tree, which facilitates the effective pruning of the search space to generate SCPs efficiently. Our experiments on both real and synthetic data sets show that Assembler is effective, efficient, and scalable.

  2. Tropical dendrochemistry: A novel approach to estimate age and growth from ringless trees

    NASA Astrophysics Data System (ADS)

    Poussart, P. M.; Myneni, S. C. B.; Lanzirotti, A.

    2006-09-01

    Although tropical forests play an active role in the global carbon cycle and climate, their growth history remains poorly characterized compared to other ecosystems on the planet. Trees are prime candidates for the extraction of paleoclimate archives as they can be probed sub-annually, are widely distributed and can live for over 1400 years [Chambers et al., 1998]. However, dendrochronological techniques have found limited applications in the tropics because trees often lack visible growth rings (Whitmore, 1990). Alternative methods exist (dendrometry (DaSilva et al., 2002), radio- and stable isotopes (Evans and Schrag, 2004; Poussart et al., 2004; Poussart and Schrag, 2005), but the derived records are either of short-duration, lack seasonal resolution or are prohibitively labor intensive to produce. Here, we show the first X-ray microprobe synchrotron record of calcium (Ca) from a ringless Miliusa velutina tree from Thailand and use it to estimate the tree's age and growth history. The Ca age model agrees within <=2 years of bomb-radiocarbon age estimates and confirms that the cycles are seasonal. The amplitude of the Ca annual cycle is correlated significantly with growth and annual Ca maxima correlate with the amount of dry season rainfall. Synchrotron measurements are fast and producing sufficient numbers of replicated multi-century tropical dendrochemical climate records now seems analytically feasible.

  3. Research on the Sensing Performance of the Tuning Fork-Probe as a Micro Interaction Sensor

    PubMed Central

    Gao, Fengli; Li, Xide

    2015-01-01

    The shear force position system has been widely used in scanning near-field optical microscopy (SNOM) and recently extended into the force sensing area. The dynamic properties of a tuning fork (TF), the core component of this system, directly determine the sensing performance of the shear positioning system. Here, we combine experimental results and finite element method (FEM) analysis to investigate the dynamic behavior of the TF probe assembled structure (TF-probe). Results from experiments under varying atmospheric pressures illustrate that the oscillation amplitude of the TF-probe is linearly related to the quality factor, suggesting that decreasing the pressure will dramatically increase the quality factor. The results from FEM analysis reveal the influences of various parameters on the resonant performance of the TF-probe. We compared numerical results of the frequency spectrum with the experimental data collected by our recently developed laser Doppler vibrometer system. Then, we investigated the parameters affecting spatial resolution of the SNOM and the dynamic response of the TF-probe under longitudinal and transverse interactions. It is found that the interactions in transverse direction is much more sensitive than that in the longitudinal direction. Finally, the TF-probe was used to measure the friction coefficient of a silica–silica interface. PMID:26404310

  4. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.

    PubMed

    Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M

    2018-06-25

    We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.

  5. The response of Galileo aft cover components to laser radiation

    NASA Technical Reports Server (NTRS)

    Metzger, J. W.

    1982-01-01

    The aft region of the Galileo probe will be subjected to severe heat transfer rates dominated by the radiation contributions. To assess the response of several vehicle aft region components to thermal radiation, tests employing a 10 KW CO2 laser were conducted. The experiments evaluated the annulus/aft cover interface, the umbilical feedthrough assembly and the mortar cover seal assembly. Experimental evidence of the response of the phenolic nylon heatshield and quantitative measures of its effect on gap geometries of several vehicle components were acquired. In addition, qualitative measures of the survivability of the irradiated components were obtained.

  6. Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.

    1992-01-01

    The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.

  7. Introducing cymantrene labels into scattering scanning near-field infrared microscopy.

    PubMed

    Kopf, Ilona; N'Dongo, Harmel W Peindy; Ballout, Fouad; Schatzschneider, Ulrich; Bründermann, Erik; Havenith, Martina

    2012-11-07

    In this paper we investigate metal-organic compounds as infrared (IR) active labels by scattering scanning near-field infrared microscopy (IR s-SNOM, often also abbreviated as s-SNIM) with a lateral resolution of 90 × 90 nm(2). Tailor-made IR spectroscopic probes based on cymantrene (CpMn(CO)(3) with Cp = η(5)-C(5)H(5)) conjugated to a cysteine-modified pseudoneurotensin (pNT-Cys-OH) peptide were prepared by automated microwave-assisted solid phase peptide synthesis (SPPS) and characterized by HPLC, ESI-MS and IR. Well-defined patterned self-assembled monolayers on a gold surface were prepared by microcontact printing of 1-octadecanethiol (ODT) followed by additional incubation in ethanolic solution of the cymantrene-peptide derivative. The self-assembled monolayers have been evidenced by infrared reflection absorption spectroscopy (IRRAS) and AFM. CO laser source radiation was tuned (1944, 1900, 1798 and 1658 cm(-1)) for imaging contrast with good matching correlation between spectroscopic and topographic patterns at specific characteristic metal carbonyl and amide bands (1944 cm(-1) (λ = 5.14 μm) and 1658 cm(-1) (λ = 6.03 μm)). Cymantrene probes provide an attractive method to tag a unique spectroscopic feature on any bio(macro)molecule. Introducing such probes into super-resolution IR s-SNOM will enable molecular tracking and distribution studies even in complex biological systems.

  8. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    PubMed

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  9. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  10. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    PubMed

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  11. Trees, History, and Isotopes - the Late Maunder Minimum (1675-1715) in the Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Kazmer, M.; Demeny, A.; Grynaeus, A.; Racz, L.; Varkonyi, A.

    2002-05-01

    First results of a comprehensive study on climate change in the Pannonian Basin during the Late Maunder Minimum (1675-1715) are presented. The Pannonian Basin has continental climate, distinctly warm and dry in summer, cold in winter, unlike the Atlantic-type climate of Western Europe. Surrounded by the arc of the Carpathians, exposed to Atlantic, Mediterranean, and Siberian influences, the regional climate displays steep gradients. More than one tree-ring chronology for oak is being built, independent of the south German series. Rethly's rich database of historical sources has been assembled, and completed with recently published letters. Ring-width series are measured on oak, and skeleton plots are logged. Study of hydrogen isotope composition of tree rings is in progress. Tree-ring width faithfully reflects historical indices on spring (i.e. earlywood growth season) precipitation. Generally, precipitation - as shown both by indices and tree-ring width - was high and temperature low during the growth season in the first half of the LMM. The second half has seen a retardation in oak growth and an increase in spring temperature. The decades of the Late Maunder Minimum was a politically turbulent era: it saw the decline and fall of the Ottoman domination in Hungary, followed by a rebellion against Austrian rule, associated with disruption of national economy.

  12. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  13. Topological properties of a self-assembled electrical network via ab initio calculation

    NASA Astrophysics Data System (ADS)

    Stephenson, C.; Lyon, D.; Hübler, A.

    2017-02-01

    Interacting electrical conductors self-assemble to form tree like networks in the presence of applied voltages or currents. Experiments have shown that the degree distribution of the steady state networks are identical over a wide range of network sizes. In this work we develop a new model of the self-assembly process starting from the underlying physical interaction between conductors. In agreement with experimental results we find that for steady state networks, our model predicts that the fraction of endpoints is a constant of 0.252, and the fraction of branch points is 0.237. We find that our model predicts that these scaling properties also hold for the network during the approach to the steady state as well. In addition, we also reproduce the experimental distribution of nodes with a given Strahler number for all steady state networks studied.

  14. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.

    PubMed

    Daccord, Nicolas; Celton, Jean-Marc; Linsmith, Gareth; Becker, Claude; Choisne, Nathalie; Schijlen, Elio; van de Geest, Henri; Bianco, Luca; Micheletti, Diego; Velasco, Riccardo; Di Pierro, Erica Adele; Gouzy, Jérôme; Rees, D Jasper G; Guérif, Philippe; Muranty, Hélène; Durel, Charles-Eric; Laurens, François; Lespinasse, Yves; Gaillard, Sylvain; Aubourg, Sébastien; Quesneville, Hadi; Weigel, Detlef; van de Weg, Eric; Troggio, Michela; Bucher, Etienne

    2017-07-01

    Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.

  15. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequencemore » assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.« less

  16. Morphological Diversity and Polymorphism of Self-Assembling Collagen Peptides Controlled by Length of Hydrophobic Domains

    PubMed Central

    2015-01-01

    Synthetic collagen mimetic peptides are used to probe the role of hydrophobic forces in mediating protein self-assembly. Higher order association is an integral property of natural collagens, which assemble into fibers and meshes that comprise the extracellular matrix of connective tissues. The unique triple-helix fold fully exposes two-thirds of positions in the protein to solvent, providing ample opportunities for engineering interaction sites. Inclusion of just a few hydrophobic groups in a minimal peptide promotes a rich variety of self-assembly behaviors, resulting in hundred-nanometer to micron size nanodiscs and nanofibers. Morphology depends primarily on the length of hydrophobic domains. Peptide discs contain lipophilic domains capable of sequestering small hydrophobic dyes. Combining multiple peptide types result in composite structures of discs and fibers ranging from stars to plates-on-a-string. These systems provide valuable tools to shed insight into the fundamental principles underlying hydrophobicity-driven higher order protein association that will facilitate the design of self-assembling systems in biomaterials and nanomedical applications. PMID:25390880

  17. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie; Murray, Christopher; Kikkawa, James

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less

  18. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    PubMed

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  19. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  20. Analyzing genetic diversity in conifers...isozyme resolution by starch gel electrophoresis

    Treesearch

    M. Thompson Conkle

    1972-01-01

    Enzymes in forest tree materials can be resolved by starch gel electrophoresis. A gel slab is prepared in a mold assembled from glass and plastic. Wicks containing an aqueous extract of macerated plant material are inserted in the gel and processed. The gel is sliced, stained, examined, and photographed. Isozyme bands produced by differential migration of enzymes...

  1. Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

    PubMed Central

    Cernat, Ramona; Tatla, Taran S.; Pang, Jingyin; Tadrous, Paul J.; Bradu, Adrian; Dobre, George; Gelikonov, Grigory; Gelikonov, Valentin; Podoleanu, Adrian Gh.

    2012-01-01

    A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient. PMID:23243583

  2. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    NASA Astrophysics Data System (ADS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie

    2014-12-01

    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.

  3. Self-aligning and compressed autosophy video databases

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus E.

    1993-04-01

    Autosophy, an emerging new science, explains `self-assembling structures,' such as crystals or living trees, in mathematical terms. This research provides a new mathematical theory of `learning' and a new `information theory' which permits the growing of self-assembling data network in a computer memory similar to the growing of `data crystals' or `data trees' without data processing or programming. Autosophy databases are educated very much like a human child to organize their own internal data storage. Input patterns, such as written questions or images, are converted to points in a mathematical omni dimensional hyperspace. The input patterns are then associated with output patterns, such as written answers or images. Omni dimensional information storage will result in enormous data compression because each pattern fragment is only stored once. Pattern recognition in the text or image files is greatly simplified by the peculiar omni dimensional storage method. Video databases will absorb input images from a TV camera and associate them with textual information. The `black box' operations are totally self-aligning where the input data will determine their own hyperspace storage locations. Self-aligning autosophy databases may lead to a new generation of brain-like devices.

  4. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  5. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE PAGES

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2017-01-01

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  6. Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest.

    PubMed

    Cavaleri, Molly A; Ostertag, Rebecca; Cordell, Susan; Sack, Lawren

    2014-01-01

    While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often 'high water spenders', are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in a heavily invaded mono-dominant lowland wet tropical forest on the Island of Hawaii. We measured transpiration rates of co-occurring native and invasive tree species with and without woody invasive removal treatments. Twenty native Metrosideros polymorpha and 10 trees each of three invasive species, Cecropia obtusifolia, Macaranga mappa and Melastoma septemnervium, were instrumented with heat-dissipation sap-flux probes in four 100 m(2) plots (two invaded, two removal) for 10 months. In the invaded plots, where both natives and invasives were present, Metrosideros had the lowest sap-flow rates per unit sapwood, but the highest sap-flow rates per whole tree, owing to its larger mean diameter than the invasive trees. Stand-level water use within the removal plots was half that of the invaded plots, even though the removal of invasives caused a small but significant increase in compensatory water use by the remaining native trees. By investigating the effects of invasive species on ecohydrology and comparing native vs. invasive physiological traits, we not only gain understanding about the functioning of invasive species, but we also highlight potential water-conservation strategies for heavily invaded mono-dominant tropical forests worldwide. Native-dominated forests free of invasive species can be conservative in overall water use, providing a strong rationale for the control of invasive species and preservation of native-dominated stands.

  7. Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest

    PubMed Central

    Cavaleri, Molly A.; Ostertag, Rebecca; Cordell, Susan; Sack, Lawren

    2014-01-01

    While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often ‘high water spenders’, are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in a heavily invaded mono-dominant lowland wet tropical forest on the Island of Hawaii. We measured transpiration rates of co-occurring native and invasive tree species with and without woody invasive removal treatments. Twenty native Metrosideros polymorpha and 10 trees each of three invasive species, Cecropia obtusifolia, Macaranga mappa and Melastoma septemnervium, were instrumented with heat-dissipation sap-flux probes in four 100 m2 plots (two invaded, two removal) for 10 months. In the invaded plots, where both natives and invasives were present, Metrosideros had the lowest sap-flow rates per unit sapwood, but the highest sap-flow rates per whole tree, owing to its larger mean diameter than the invasive trees. Stand-level water use within the removal plots was half that of the invaded plots, even though the removal of invasives caused a small but significant increase in compensatory water use by the remaining native trees. By investigating the effects of invasive species on ecohydrology and comparing native vs. invasive physiological traits, we not only gain understanding about the functioning of invasive species, but we also highlight potential water-conservation strategies for heavily invaded mono-dominant tropical forests worldwide. Native-dominated forests free of invasive species can be conservative in overall water use, providing a strong rationale for the control of invasive species and preservation of native-dominated stands. PMID:27293637

  8. The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation

    NASA Astrophysics Data System (ADS)

    Solomonov, Inna; Sagi, Irit

    2014-10-01

    Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.

  9. The prevalence of terraced treescapes in analyses of phylogenetic data sets.

    PubMed

    Dobrin, Barbara H; Zwickl, Derrick J; Sanderson, Michael J

    2018-04-04

    The pattern of data availability in a phylogenetic data set may lead to the formation of terraces, collections of equally optimal trees. Terraces can arise in tree space if trees are scored with parsimony or with partitioned, edge-unlinked maximum likelihood. Theory predicts that terraces can be large, but their prevalence in contemporary data sets has never been surveyed. We selected 26 data sets and phylogenetic trees reported in recent literature and investigated the terraces to which the trees would belong, under a common set of inference assumptions. We examined terrace size as a function of the sampling properties of the data sets, including taxon coverage density (the proportion of taxon-by-gene positions with any data present) and a measure of gene sampling "sufficiency". We evaluated each data set in relation to the theoretical minimum gene sampling depth needed to reduce terrace size to a single tree, and explored the impact of the terraces found in replicate trees in bootstrap methods. Terraces were identified in nearly all data sets with taxon coverage densities < 0.90. They were not found, however, in high-coverage-density (i.e., ≥ 0.94) transcriptomic and genomic data sets. The terraces could be very large, and size varied inversely with taxon coverage density and with gene sampling sufficiency. Few data sets achieved a theoretical minimum gene sampling depth needed to reduce terrace size to a single tree. Terraces found during bootstrap resampling reduced overall support. If certain inference assumptions apply, trees estimated from empirical data sets often belong to large terraces of equally optimal trees. Terrace size correlates to data set sampling properties. Data sets seldom include enough genes to reduce terrace size to one tree. When bootstrap replicate trees lie on a terrace, statistical support for phylogenetic hypotheses may be reduced. Although some of the published analyses surveyed were conducted with edge-linked inference models (which do not induce terraces), unlinked models have been used and advocated. The present study describes the potential impact of that inference assumption on phylogenetic inference in the context of the kinds of multigene data sets now widely assembled for large-scale tree construction.

  10. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry.

    PubMed

    Zhang, Xianghan; Wang, Bo; Zhao, Na; Tian, Zuhong; Dai, Yunpeng; Nie, Yongzhan; Tian, Jie; Wang, Zhongliang; Chen, Xiaoyuan

    2017-01-01

    The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro . Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo , due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, "click-chemistry"-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of "small molecule" probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.

  11. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  12. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.

    PubMed

    Howe, Glenn T; Yu, Jianbin; Knaus, Brian; Cronn, Richard; Kolpak, Scott; Dolan, Peter; Lorenz, W Walter; Dean, Jeffrey F D

    2013-02-28

    Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array-more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change.

  13. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation

    PubMed Central

    2013-01-01

    Background Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a 454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference, identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping platform. Results We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and 102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified 278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic. Conclusions Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs, and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and potential responses to climate change. PMID:23445355

  14. Oligonucleotide probes functionalization of nanogap electrodes.

    PubMed

    Zaffino, Rosa Letizia; Mir, Mònica; Samitier, Josep

    2017-11-01

    Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  16. Investigation of the micropolarity of reverse micelles using quinolinium betaine compounds as probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Mitsuo; Kimura, Akimune; Wakida, Tomoji

    1994-03-15

    There is considerable interest in the utilization of reverse micelle and microemulsion systems in a variety of applications such as reactivity control, tertiary oil recovery, solar energy conversion, enzyme mediated synthesis, etc. Fundamental to understanding improved applications of such systems are questions concerning solubilization; thus substantial efforts have been focused on the investigation of the solubilizing state of the assemblies. N-octyl-quinolinium betaine is introduced as an absorption probe for the micropolarity of the interior of reverse micelles. its solubilization by reverse micelles and water/oil microemulsions of Aerosol-OT in isooctane is compared with that of N-methyl-quinolinium betaine at various water contentsmore » of the solution. Analysis of the excitation energies in the visible range of the spectrum indicates that the methyl derivative probes the polarity of the aqueous pool of the micelle, whereas the octyl derivative behaves as a cosurfactant probe that reports on the polarity of the water/oil interfacial region.« less

  17. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    PubMed

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  18. Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu2+ in liver cells.

    PubMed

    Lu, Linlin; Feng, Chongchong; Xu, Jie; Wang, Fengyang; Yu, Haijun; Xu, Zhiai; Zhang, Wen

    2017-06-15

    Copper is closely related to liver damage, therefore, it is essential to develop a simple and sensitive strategy to detect copper ions (Cu 2+ ) in liver cells. A hydrophobic carbon dots (HCDs)-based dual-emission fluorescent probe for Cu 2+ was prepared by encapsulating HCDs in micelles formed by self-assembly of amphiphilic polymer DSPE-PEG and tetrakis (4-carboxyphenyl) porphyrin (TCPP)-modified DSPE-PEG. The obtained probe showed characteristic fluorescence emissions of HCDs and TCPP with large emission shift of 170nm with single-wavelength excitation. In the presence of Cu 2+ , the fluorescence of TCPP was quenched and that of HCDs remained unchanged, displaying ratiometric fluorescence response to Cu 2+ . The developed probe exhibited high sensitivity (detection limit down to 36nM) and selectivity to Cu 2+ over other substances, and the probe was used to image the changes of Cu 2+ level in liver cells successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel pH sensitive water soluble fluorescent nanomicellar sensor for potential biomedical applications.

    PubMed

    Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B

    2013-11-01

    Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    PubMed

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Project Longshot: An unmanned probe to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Beals, Keith A.; Beaulieu, Martin; Dembia, Frank J.; Kerstiens, Joseph; Kramer, Daniel L.; West, Jeffrey R.; Zito, James A.

    1988-01-01

    A preliminary design is presented for an unmanned probe to Alpha Centauri with a planned launch early in the 21st century. The probe would be assembled at the space station and take approx. 100 yrs to reach the nearest star. Several technologies must be developed in order for this mission to be possible. A pulsed fusion microexplosion drive with 1,000,000 secs of specific impulse is the primary enabling technology. A large, long life fission reactor with 300 kW power output is also required. Communications lasers would use a 0.532 micrometer wavelength since there is minimal power output by the stars in that frequency band. A laser with an input power of 250 kW would allow for a data rate of 1000 bits per second at maximum range. There are 3 types of information to be gathered by the probe: properties of the interstellar medium, characteristics of the three star Alpha Centauri system, and astrometry.

  2. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    PubMed

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  3. Novel, Miniature Multi-Hole Probes and High-Accuracy Calibration Algorithms for their use in Compressible Flowfields

    NASA Technical Reports Server (NTRS)

    Rediniotis, Othon K.

    1999-01-01

    Two new calibration algorithms were developed for the calibration of non-nulling multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to generate very accurate predictions of the velocity vector, flow direction, total pressure and static pressure. One of the algorithms PROBENET is based on the theory of neural networks, while the other is of a more conventional nature (polynomial approximation technique) and introduces a novel idea of local least-squares fits. Both algorithms have been developed to complete, user-friendly software packages. New technology was developed for the fabrication of miniature multi-hole probes, with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes, with different probe tip geometries (hemispherical, conical, faceted) and different overall shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter calibrated at NASA Langley for the entire subsonic regime. The developed calibration algorithms were extensively tested with these probes demonstrating excellent prediction capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind tunnel at NASA Langley, providing valuable information on the flowfield over the wing. This report is organized in the following fashion. It consists of a "Technical Achievements" section that summarizes the major achievements, followed by an assembly of journal articles that were produced from this project and ends with two manuals for the two probe calibration algorithms developed.

  4. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  5. Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David

    2009-02-01

    Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.

  6. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome.

    PubMed

    Zhang, Yunzeng; Barthe, Gary; Grosser, Jude W; Wang, Nian

    2016-07-08

    Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.

  7. Expert risk perceptions and the social amplification of risk: A case study in invasive tree pests and diseases.

    PubMed

    Urquhart, Julie; Potter, Clive; Barnett, Julie; Fellenor, John; Mumford, John; Quine, Christopher P

    2017-11-01

    The Social Amplification of Risk Framework (SARF) is often used as a conceptual tool for studying diverse risk perceptions associated with environmental hazards. While widely applied, it has been criticised for implying that it is possible to define a benchmark 'real' risk that is determined by experts and around which public risk perceptions can subsequently become amplified. It has been argued that this objectification of risk is particularly problematic when there are high levels of scientific uncertainty and a lack of expert consensus about the nature of a risk and its impacts. In order to explore this further, this paper examines how 'experts' - defined in this case as scientists, policy makers, outbreak managers and key stakeholders - construct and assemble their understanding of the risks associated with two invasive tree pest and disease outbreaks in the UK, ash dieback and oak processionary moth. Through semi-structured interviews with experts in each of the case study outbreaks, the paper aims to better understand the nature of information sources drawn on to construct perceptions of tree health risks, especially when uncertainty is prevalent. A key conclusion is that risk assessment is a socially-mediated, relational and incremental process with experts drawing on a range of official, anecdotal and experiential sources of information, as well as reference to past events in order to assemble the risk case. Aligned with this, experts make attributions about public concern, especially when the evidence base is incomplete and there is a need to justify policy and management actions and safeguard reputation.

  8. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.

    PubMed

    Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N

    2017-12-13

    Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.

  9. Effect of ovarian steroids on gene expression related to synapse assembly in serotonin neurons of macaques.

    PubMed

    Bethea, Cynthia L; Reddy, Arubala P

    2012-07-01

    Dendritic spines are the elementary structural units of neural plasticity. In a model of hormone replacement therapy (HT), we sought to determine the effect of estradiol (E) and progesterone (P) on gene expression related to synapse assembly in a laser-captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n = 2 animals/treatment), and the results were confirmed for pivotal genes with qRT-PCR on additional laser-captured material (n = 3 animals/treatment). Ovariectomized rhesus macaques were treated with placebo, E, or E + P via Silastic implants for 1 month. The midbrain was obtained, sectioned, and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an arcturus laser dissection microscope (Pixel II). RNA from laser-captured serotonin neurons was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a twofold or greater change in the expression of 63 probe sets in the cell adhesion molecule (CAM) category, and 31 probe sets in the synapse assembly category were similarly altered in E- and E + P-treated animals. qRT-PCR assays showed that E treatment induced a significant increase in ephrin receptor A4 (EPHA4) and in integrin A8 (ITGA8) but not in ephrin receptor B4 (EPHB4) or integrin B8 (ITGB8) expression. E also increased expression of cadherin 11 (CDH11), neuroligin 3 (NLGN3), neurexin 3 (NRXN3), syndecan 2 (SCD2), and neural cell adhesion molecule (NCAM) compared with placebo. Supplemental P treatment suppressed E-induced gene expression. In summary, ovarian steroids target gene expression of adhesion molecules in serotonin neurons that are important for synapse assembly. Copyright © 2012 Wiley Periodicals, Inc.

  10. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins.

    PubMed Central

    Rancour, D M; Menon, A K

    1998-01-01

    Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed. PMID:9677326

  11. Rhipicephalus microplus strain Deutsch, 10 BAC clone sequences

    USDA-ARS?s Scientific Manuscript database

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. We used labeled DNA probes from the coding reg...

  12. Apollo 14 mission food preparation unit leakage

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A bubble of water collected on the delivery probe of the food preparation unit after hot water was dispensed by the Apollo 14 crew. Postflight tests showed that dimensional interference between the cylinder and the piston at hot water temperatures produced the apparent leak by causing erratic and slow stroke time of the valve assembly.

  13. Book Probes Scoring Gaps Tied to Race

    ERIC Educational Resources Information Center

    Viadero, Debra

    2009-01-01

    A recent book assembles a collection of studies on one of the great mysteries of contemporary American education: Why did national progress in narrowing the achievement gap separating African-American and white students stall from the late 1980s until 2004? "Steady Gains and Stalled Progress," published by the Russell Sage Foundation of New York…

  14. Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study

    NASA Astrophysics Data System (ADS)

    Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.

    2015-03-01

    We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.

  15. High temperature thermocouple development program, part A and part B

    NASA Technical Reports Server (NTRS)

    Toenshoff, D. A.; Zysk, E. D.; Fleischner, P. L.

    1972-01-01

    The problem of extending the useful life of thermocouples intended for in-core and out-of-core thermionic applications in a vacuum environment at temperatures up to 2273 K for periods of time up to 10,000 hours was investigated. Many factors that may influence this useful life were examined, and a basic probe design was developed. With a few modifications, twenty-three thermocouple assemblies were fabricated. Generally the finished thermocouple consisted of solid doped W-3% Re and W-25% Re wires and high purity and high density BeO insulators, and was sheathed in a high purity tantalum tube. In a few probes, stranded thermocouple wires were substituted; commercial grade BeO was used; and in two cases, CVD W-22% Re tubing was used. Each of the components was made of the highest purity materials available; was subjected to special cleaning steps, and was assembled in a class 10,000 clean room. Pertinent physical and chemical properties were determined on each of the components. Special processing techniques were used in the fabrication of the high purity (99.95%), high density (over 95% of theoretical) BeO.

  16. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  17. Self-Assembled Fluorescent Nanoprobe Based on Forster Resonance Energy Transfer for Carbon Monoxide in Living Cells and Animals via Ligand Exchange.

    PubMed

    Jia, Ruizhen; Song, Pengfei; Wang, Jingjing; Mai, Hengtang; Li, Sixian; Cheng, Yu; Wu, Song

    2018-05-29

    Carbon monoxide (CO) is recognized as a biologically essential gaseous neurotransmitter that modulates many physiological processes in living subjects. Currently reported fluorescent probes for CO imaging in cells basically utilize palladium related chemistry which requires complicated synthetic work. Herein we provide a new strategy to construct a fluorescent nanoprobe, NanoCO-1, based on the Forster resonance energy transfer (FRET) mechanism by entrapping the existing dirhodium complex as the energy acceptor and the CO recognition part, and a commonly used nitrobenzoxadiazole (NBD) dye as energy donor into a micelle formed by self-assembly. The exchange of ligands in the dirhodium complex by CO in the nanoprobe disrupts the FRET and leads to the turn-on of fluorescence. The merits of NanoCO-1 including good biocompatibility, selectivity, photostability, and low cytotoxity, render this nanoprobe ability to track CO in living cells, zebrafish embryo, and larvae. Our straightforward approach can be extended to establish the CO fluorescent probes based on adsorption of CO on a variety of metal derivatives.

  18. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.

    PubMed

    Rajbhandary, Annada; Nilsson, Bradley L

    2017-03-01

    Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe. © 2016 Wiley Periodicals, Inc.

  19. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest.

    PubMed

    Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B

    2018-03-01

    Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.

  20. Influences of Species Interactions With Aggressive Ants and Habitat Filtering on Nest Colonization and Community Composition of Arboreal Twig-Nesting Ants.

    PubMed

    Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo

    2018-04-05

    Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.

Top