The electrical performance of Ag Zn batteries for the Venus multi-probe mission
NASA Technical Reports Server (NTRS)
Palandati, C.
1975-01-01
An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.
Multi-hole pressure probes to air data system for subsonic small-scale air vehicles
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.
2016-10-01
A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.
Database architecture and query structures for probe data processing.
DOT National Transportation Integrated Search
2012-03-01
This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ch...
Measurement of vehicle potential using a mother-daughter tethered rocket
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Denig, W. F.; Banks, P. M.; Raitt, W. J.; Kawashima, N.; Hirao, K.; Oyama, K. I.; Sasaki, S.
1982-01-01
The equipment, experimental design, and results of mother-daughter tethered probes for measuring the potential of a spacecraft are described. The object was to inject a probe into the ionosphere by rocket and then lower an impedance voltage monitor-equipped section of the probe by means of a highly insulated wire. The mother probe, also carrying voltage monitors, would inject charges into the plasma that would be measured at both ends of the tether. Instrumentation on the daughter probe included voltage current monitors and a Langmuir probe, while the mother payload also carried a charge probe, floating probe, a Langmuir probe, and an impedance probe. The first launch was from Japan in 1980, and operations confirmed that Langmuir probes with area ratios less than 400:1 can produce changes in the vehicle potential if probe voltages of more than 10 V are applied in the collection mode. A ratio of 200:1 was sufficient for the daughter probe with voltages of 5 V. The experiment is concluded to verify the tethered probe method of measuring vehicle potential.
Application of travel time information for traffic management.
DOT National Transportation Integrated Search
2012-03-01
This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching : technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ...
Real-time prediction of queues at signalized intersections to support eco-driving applications.
DOT National Transportation Integrated Search
2014-10-01
The overall objective of this research is to develop models for predicting queue lengths at signalized intersections based on : the data from probe vehicles. The time and space coordinates of the probe vehicles going through signalized intersections ...
DOT National Transportation Integrated Search
2015-10-01
Anonymous probe vehicle data are currently being collected on roadways throughout the United States. These data are being incorporated into local and statewide mobility reports to measure the performance of freeways and arterial systems. Predefined s...
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.
1988-01-01
This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.
NASA Technical Reports Server (NTRS)
Cowan, W.
1974-01-01
Outer planetary probe designs consider mission characteristics, structural configuration, delivery mode, scientific payload, environmental extremes, mass properties, and the launch vehicle and spacecraft interface.
1958 NASA/USAF Space Probes (ABLE-1). Volume 3; Vehicles, Trajectories, and Flight Histories
NASA Technical Reports Server (NTRS)
1959-01-01
The three NASA/USAF lunar probes of August 17, October 13, and November 8, 1958 are described. Details of the program, the vehicles, the payloads, the firings, the tracking, and the results are presented. Principal result was the first experimental verification of a confined radiation zone of the type postulated by Van Allen and others.
The Maneuverable Atmospheric Probe (MAP), a Remotely Piloted Vehicle.
1982-05-01
9 lb. MAP vehicle and major- components .................................... 10 2. Endevco Pitot tube airspeed indicator mounted below front...28 8. Cascaded PIXE impactors, housing cylinder and wing pod front end cup with aerosol inlet plastic tubing ........................... 30 9...turbulence sensors, a Pitot tube , two air temperature sensors, and a yaw gust probe. Located at each wing tip are sensors that contain encapsulated
Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.
Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo
2016-01-01
On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654
New Approach for Thermal Protection System of a Probe During Entry
NASA Technical Reports Server (NTRS)
Yendler, Boris; Poffenbarger, Nathan; Patel, Amisha; Bhave, Ninad; Papadopoulos, Periklis
2005-01-01
One of the biggest challenges for any thermal protection system (TPS) of a probe is to provide a sufficient barrier for heat generated during descent in order to keep the temperature inside of the probe low enough to support operational temperature of equipment. Typically, such a goal is achieved by having the ceramic tiles and blankets like on the Space Shuttle, silicon based ablators, or metallic systems to cover the probe external surface. This paper discusses the development of an innovative technique for TPS of the probe. It is proposed to use a novel TPS which comprises thermal management of the entry vehicle. It includes: a) absorption of the heat during heat pick load by a Phase Change Material (PCM), b) separation of the compartment which contains PCM from the rest of the space vehicle by a gap with a high thermal resistance, c) maintaining temperature of the internal wall of s/c cabin temperature by transfer heat from the internal wall to the "cold" side of the vehicle and to reject heat into the space during the flight and on a ground, d) utilization of an advanced heat pipe, so called Loop Heat Pipe to transfer heat from the cabin internal wall to the cold side of the s/c and to reject the heat into environment outside of the vehicle. A Loop Heat Pipe is capable of transferring heat against gravity
Feasibility of a GNSS-Probe for Creating Digital Maps of High Accuracy and Integrity
NASA Astrophysics Data System (ADS)
Vartziotis, Dimitris; Poulis, Alkis; Minogiannis, Alexandros; Siozos, Panayiotis; Goudas, Iraklis; Samson, Jaron; Tossaint, Michel
The “ROADSCANNER” project addresses the need for increased accuracy and integrity Digital Maps (DM) utilizing the latest developments in GNSS, in order to provide the required datasets for novel applications, such as navigation based Safety Applications, Advanced Driver Assistance Systems (ADAS) and Digital Automotive Simulations. The activity covered in the current paper is the feasibility study, preliminary tests, initial product design and development plan for an EGNOS enabled vehicle probe. The vehicle probe will be used for generating high accuracy, high integrity and ADAS compatible digital maps of roads, employing a multiple passes methodology supported by sophisticated refinement algorithms. Furthermore, the vehicle probe will be equipped with pavement scanning and other data fusion equipment, in order to produce 3D road surface models compatible with standards of road-tire simulation applications. The project was assigned to NIKI Ltd under the 1st Call for Ideas in the frame of the ESA - Greece Task Force.
US-Japan collaborative research on probe data : assessment report.
DOT National Transportation Integrated Search
1998-11-01
This flyer summarizes the identified human factors research needs for integrated in-vehicle systems for Commercial Vehicle Operations (CVO), one of five configurations of in-vehicle safety and driver information systems. A complete review of the rese...
Sealing scientific probes against deep space and the Venusian environment A tough job
NASA Technical Reports Server (NTRS)
Pokras, J.; Reinert, R. P.; Switz, R. J.
1978-01-01
The Pioneer Venus mission evolved from studies conducted during the late 1960s and early 1970s. It was found that a need existed for low cost orbiters and landers to explore the planet. The considered mission was to be accomplished with six separate vehicles arriving at Venus nearly simultaneously in mid-December 1978. The probes are designed to survive entry and descent into the atmosphere. A description is presented of the approaches used to maintain sealing integrity for the large and small probes under the constraints imposed by the harsh Venusian environment. Attention is given to probe vehicle configuration, pressure vessel sealing requirements, material and configuration considerations, permanent seals, separable seals, development problems, and aspects of seal testing.
DOT National Transportation Integrated Search
1997-01-01
ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel ti...
Scout Launch Lift off on Wallops Island
1965-08-10
Scout launch vehicle lift off on Wallops Island in 1965. The Scout launch vehicle was used for unmanned small satellite missions, high altitude probes, and reentry experiments. Scout, the smallest of the basic launch vehicles, is the only United States launch vehicle fueled exclusively with solid propellants. Published in the book " A Century at Langley" by Joseph Chambers pg. 92
NASA Technical Reports Server (NTRS)
Bozajian, J. M.
1973-01-01
The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.
Voss with docking probe in Service module
2001-05-30
ISS002-E-6478 (30 May 2001) --- James S. Voss, Expedition Two flight engineer, handles a spacecraft docking probe in the Service Module. The docking probe assists with the docking of the Soyuz and Progress vehicles to the International Space Station. The image was taken with a digital still camera.
SPLAT: The Sample Probe for Landing And Testing
NASA Astrophysics Data System (ADS)
Gonyea, K.; Dendinger, T.; Fernandez, J.; Jaunzemis, A.
2014-06-01
A sample return mission from the ISS or low Earth orbit is developed. Vehicle can safely return small biological payloads with consideration of heating, aerodynamics and structural integrity of the vehicle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2013 CFR
2013-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2014 CFR
2014-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Code of Federal Regulations, 2012 CFR
2012-10-01
... impact, is impacted by a test probe conforming to § 572.44(a) at 14 fps in accordance with paragraph (b... of the test probe at the lateral side of the chest at the intersection of the centerlines of the... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align...
Vehicle Charging on the 29.036 and 29.037 Rockets of the EQUIS II Campaign.
NASA Astrophysics Data System (ADS)
Barjatya, A.; Swenson, C.; Fish, C.; Hummel, A.; Hysell, D.
2004-12-01
The rocket investigation "Scattering Layer in the Bottomside Equatorial F-region Ionosphere", was part of the NASA EQUIS II campaign. Two salvos of sounding rockets were launched from Roi Namur in Kwajalein on August 7th and 15th of 2004. The project's mission was to investigate the thin scattering layers in the post sunset equatorial F region ionosphere that act as precursors to a fully developed equatorial spread F. Each of the salvos consisted of one instrumented and two chemical release payloads. The instrumented rockets were launched westward into equatorial spread F precursor that was first observed from ground using the Altair radar. The instrumented rockets reached an apogee of ~450 km. The instruments consisted of a Sweeping Langmuir Probe (SLP), a fixed bias DC Probe (DCP), a Plasma Impedance Probe consisting of a Plasma Frequency Probe and a Plasma Sweeping Probe built at Utah State University. The instrument suite also included an Electric Field Probe built by Penn State University. This poster presents observations of vehicle charging and preliminary data from the SLP and DCP.
Implementation of probe data performance measures.
DOT National Transportation Integrated Search
2017-04-03
This report presents results from a 12-month project where three arterial analysis tools based on probe vehicle segment speed data were developed for District 6. A case study of 5 arterials and two incidents was performed.
Cellphone probes as an ATMS tool
DOT National Transportation Integrated Search
2003-06-01
The foundation of traffic operations and management is the ability to monitor traffic conditions. One approach to traffic monitoring is to sample conditions by tracking a limited number of probe vehicles as they traverse a network. An emerging techno...
NASA Technical Reports Server (NTRS)
Neil, A. L.
1973-01-01
The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.
Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher
1994-01-01
Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.
NASA Technical Reports Server (NTRS)
Tobak, Murray; Peterson, Victor L.
1964-01-01
The tumbling motion of aerodynamically stable bodies entering planetary atmospheres is analyzed considering that the tumbling, its arrest, and the subsequent oscillatory motion are governed by the equation for the fifth Painleve' transcendent. Results based on the asymptotic behavior of the transcendent are applied to study (1) the oscillatory behavior of planetary probe vehicles in relation to aerodynamic heating and loads and (2) the dynamic behavior of the Australian tektites on entering the Earth's atmosphere, under the hypothesis that their origin was the Moon.
Fusion Propulson System Requirements for an Interstellar Probe
NASA Technical Reports Server (NTRS)
Spencer, D. F.
1963-01-01
An examination of the engine constraints for a fusion-propelled vehicle indicates that minimum flight times for a probe to a 5 light-year star will be approximately 50 years. The principal restraint on the vehicle is the radiator weight and size necessary to dissipate the heat which enters the chamber walls from the fusion plasma. However, it is interesting, at least theoretically, that the confining magnetic field strength is of reasonable magnitude, 2 to 3 x 10(exp5) gauss, and the confinement time is approximately 0.1 sec.
Segmenting, Grouping and Tracking Vehicles in LIDAR Data
DOT National Transportation Integrated Search
2016-01-01
This report presents the methodology and results from a study to extract empirical microscopic vehicular interactions from an instrumented probe vehicle. The contributions of this work are twofold: first, the general method and approach to seek a cos...
NASA Technical Reports Server (NTRS)
Jones, W. L., Jr.; Cross, A. E.
1972-01-01
Unique plasma diagnostic measurements at high altitudes from two geometrically similar blunt body reentry spacecraft using electrostatic probe rakes are presented. The probes measured the positive ion density profiles (shape and magnitude) during the two flights. The probe measurements were made at eight discrete points (1 cm to 7 cm) from the vehicle surface in the aft flow field of the spacecraft over the altitude range of 85.3 to 53.3 km (280,000 to 175,000 ft) with measured densities of 10 to the 8th power to 10 to the 12th power electrons/cu cm, respectively. Maximum reentry velocity for each spacecraft was approximately 7620 meters/second (25,000 ft/sec). In the first flight experiment, water was periodically injected into a flow field which was contaminated by ablation products from the spacecraft nose region. The nonablative nose of the second spacecraft thereby minimized flow field contamination. Comparisons of the probe measured density profiles with theoretical calculations are presented with discussion as to the probable cause of significant disagreement. Also discussed are the correlation of probe measurements with vehicle angle of attack motions and the good high altitude agreement between electron densities inferred from the probe measurements, VHF antenna measurements, and microwave reflectometer diagnostic measurements.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VEHICLE ASSEMBLY BUILDING
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
DOT National Transportation Integrated Search
2015-06-01
Recent advances in probe vehicle data collection systems have enabled monitoring traffic : conditions at finer temporal and spatial resolution. The primary objective of the current study is : to leverage these probe data sources to understand if ther...
Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu
2018-05-01
In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.
NASA Technical Reports Server (NTRS)
Marmo, F. F.; Pressman, J.
1973-01-01
Data were complied on the physical behavior and characteristics of plasma gas and/or dust in the context of how they relate to the self-contamination of manned orbiting vehicles. A definition is given of a systematic experimental program designed to yield the required empirical data on the plasma, neutral gas, and/or the particulate matter surrounding the orbiting vehicles associated with shuttle missions. Theoretical analyses were completed on the behavior of materials to be released from the orbiting or subsatellite shuttle vehicles. The results were used to define some general experimental design recommendations directly applicable to the space shuttle program requirement. An on-board laser probe technique is suggested for measuring the dynamic behavior, inventory, and physical characteristics of particulates in the vicinity of an orbiting spacecraft. Laser probing of cometary photodissociation is also assessed.
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, B.
1986-01-01
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
Vehicle Charging And Potential (VCAP)
NASA Astrophysics Data System (ADS)
Roberts, W. T.
The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.
Sharipov holds the probe-and-cone docking mechanism in the SM during Expedition 10
2005-03-03
ISS010-E-19105 (3 March 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds the Progress supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).
Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements
NASA Technical Reports Server (NTRS)
Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.;
2008-01-01
Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment measurements to investigations of on-orbit anomalies in ISS systems.
Aeroshell Design Techniques for Aerocapture Entry Vehicles
NASA Technical Reports Server (NTRS)
Dyke, R. Eric; Hrinda, Glenn A.
2004-01-01
A major goal of NASA s In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe s aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yi; Young, Stanley E; Sadabadi, Kaveh
This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded.more » This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.« less
NASA Technical Reports Server (NTRS)
Collette, J. G. R.
1991-01-01
A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.
NASA Technical Reports Server (NTRS)
Collette, J. G. R.
1991-01-01
A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1976-01-01
Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe i
NASA Technical Reports Server (NTRS)
1997-01-01
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station.
Performance Evaluation Gravity Probe B Design
NASA Technical Reports Server (NTRS)
Francis, Ronnie; Wells, Eugene M.
1996-01-01
This final report documents the work done to develop a 6 degree-of-freedom simulation of the Lockheed Martin Gravity Probe B (GPB) Spacecraft. This simulation includes the effects of vehicle flexibility and propellant slosh. The simulation was used to investigate the control performance of the spacecraft when subjected to realistic on orbit disturbances.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria; Wright, Kenneth; Craven, Paul; Koontz, Steven
2010-01-01
The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment.
Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G
2013-07-02
We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.
2004-04-20
KENNEDY SPACE CENTER, FLA. - The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. The Gravity Probe B spacecraft, atop a Boeing Delta II vehicle, launches at 12:57:24 p.m. EDT from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. Gravity Probe B is the relativity gyroscope experiment being developed by NASA and Stanford University to test two extraordinary, unverified predictions of Albert Einstein's general theory of relativity.
Study of a novel ultrasonically triggered drug vehicle with magnetic resonance properties.
Liu, Tse-Ying; Huang, Hsin-Hui; Chen, Yen-Ju; Chen, Yu-Jen
2011-02-01
We developed a novel ultrasonically triggered drug vehicle with magnetic resonance (MR) properties by encapsulating superparamagnetic iron oxide (SPIO) nanoparticles in hydroxyapatite (HA)-coated liposomes. The effects of HA coating on the background leakage, ultrasound response and MR signal were investigated. HA coating of liposomes significantly reduced the background leakage of liposome. It also enhanced their sensitivity to ultrasound regardless of HA thickness or ultrasound frequency, even under sonication conditions of high frequency (1 and 3 MHz) and low power density (0.2-0.4 Wcm(-2)) used for diagnosis. However, it was found that the ultrasonically triggered vehicle could exhibit T(2) contrast in MR images by encapsulating SPIO. However, HA coating reduced the r(2) value of SPIO encapsulated in liposomes, but had no significant effect on the r(2)(∗) value, implying that MR images of HA-coated liposomes encapsulating SPIO could be probed by the T(2)(∗) signal. Most importantly, the r(2)(∗)-r(2) value of HA-coated liposomes encapsulating SPIO decreased after sonication, suggesting that the proposed vehicle could be used not only as a MR-guided drug vehicle capable of ultrasonically triggered release but also as a MR reporter to probe ultrasonic triggering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fincke inside the Progress Vehicle with open SM/Progress transfer hatch during Expedition 9
2004-08-14
ISS009-E-18533 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, appears behind the probe-and-cone mechanism on the hatch of the Progress 15 supply vehicle docked to the aft port on the Zvezda Service Module of the International Space Station (ISS).
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
Acousto-ultrasonic system for the inspection of composite armored vehicles
NASA Astrophysics Data System (ADS)
Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.
2001-04-01
In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.
Status of advanced propulsion for space based orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Cooper, Larry P.; Scheer, Dean D.
1986-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.
Status of advanced propulsion for space based orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Cooper, L. P.; Scheer, D. D.
1986-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.
Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.
2010-01-01
Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.
Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle
NASA Technical Reports Server (NTRS)
Henline, William D.; Tauber, Michael E.
1994-01-01
A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
NASA Technical Reports Server (NTRS)
Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael
2017-01-01
Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
2nd International Planetary Probe Workshop
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla
2005-01-01
Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.
NASA Technical Reports Server (NTRS)
Posner, Jack (Editor)
1961-01-01
This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.
1997-09-10
Pieces of the Huygens probe internal insulating foam await inspection after removal from the probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; diesel...
40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; diesel...
CASSINI. Report on the Phase A study: Saturn Orbiter and Titan probe
NASA Technical Reports Server (NTRS)
1988-01-01
An in-depth, second phase exploration of Saturn is proposed. The scientific objectives involving Titan, Saturn's rings, icy satellites, magnetosphere, Jupiter, asteroids, and cruise science are covered. Other topics presented include: (1) the model payloads; (2) project requirements; (3) mission; (4) launch vehicle; (5) the orbiter system; (6) the Titan probe system; (7) mission operations; (8) management; and (9) development plan.
NASA Technical Reports Server (NTRS)
Webb, L. D.; Washington, H. P.
1972-01-01
Static pressure position error calibrations for a compensated and an uncompensated XB-70 nose boom pitot static probe were obtained in flight. The methods (Pacer, acceleration-deceleration, and total temperature) used to obtain the position errors over a Mach number range from 0.5 to 3.0 and an altitude range from 25,000 feet to 70,000 feet are discussed. The error calibrations are compared with the position error determined from wind tunnel tests, theoretical analysis, and a standard NACA pitot static probe. Factors which influence position errors, such as angle of attack, Reynolds number, probe tip geometry, static orifice location, and probe shape, are discussed. Also included are examples showing how the uncertainties caused by position errors can affect the inlet controls and vertical altitude separation of a supersonic transport.
Engine spectrometer probe and method of use
NASA Technical Reports Server (NTRS)
Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)
2006-01-01
The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.
Outsourced probe data effectiveness on signalized arterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharifi, Elham; Young, Stanley Ernest; Eshragh, Sepideh
This paper presents results of an I-95 Corridor Coalition sponsored project to assess the ability of outsourced vehicle probe data to provide accurate travel time on signalized roadways for the purposes of real-time operations as well as performance measures. The quality of outsourced probe data on freeways has led many departments of transportation to consider such data for arterial performance monitoring. From April 2013 through June of 2014, the University of Maryland Center for Advanced Transportation Technology gathered travel times from several arterial corridors within the mid-Atlantic region using Bluetooth traffic monitoring (BTM) equipment, and compared these travel times withmore » the data reported to the I95 Vehicle Probe Project (VPP) from an outsourced probe data vendor. The analysis consisted of several methodologies: (1) a traditional analysis that used precision and bias speed metrics; (2) a slowdown analysis that quantified the percentage of significant traffic disruptions accurately captured in the VPP data; (3) a sampled distribution method that uses overlay methods to enhance and analyze recurring congestion patterns. (4) Last, the BTM and VPP data from each 24-hour period of data collection were reviewed by the research team to assess the extent to which VPP captured the nature of the traffic flow. Based on the analysis, probe data is recommended only on arterial roadways with signal densities (measured in signals per mile) up to one, and it should be tested and used with caution for signal densities between one and two, and is not recommended when signal density exceeds two.« less
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-01-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
NASA Astrophysics Data System (ADS)
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-13
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
Outer planet atmospheric entry probes - An overview of technology readiness
NASA Technical Reports Server (NTRS)
Vojvodich, N. S.; Reynolds, R. T.; Grant, T. L.; Nachtsheim, P. R.
1975-01-01
Entry probe systems for characterizing, by in situ measurements, the atmospheric properties, chemical composition, and cloud structure of the planets Saturn, Uranus, and Jupiter are examined from the standpoint of unique mission requirements, associated subsystem performance, and degree of commonality of design. Past earth entry vehicles (PAET) and current planetary spacecraft (Pioneer Venus probes and Viking lander) are assessed to identify the extent of potential subsystem inheritance, as well as to establish the significant differences, in both form and function, relative to outer planet requirements. Recent research results are presented and reviewed for the most critical probe technology areas, including: science accommodation, telecommunication, and entry heating and thermal protection. Finally presented is a brief discussion of the use of decision analysis techniques for quantifying various probe heat-shield test alternatives and performance risk.
1997-09-07
The Cassini spacecraft, with its attached Huygens probe, is lowered from Launch Pad 40 at Cape Canaveral Air Station for its return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan
Predicting vehicle fuel consumption patterns using floating vehicle data.
Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong
2017-09-01
The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.
Empirical synchronized flow in oversaturated city traffic.
Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael
2014-09-01
Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.
Entry Vehicle Control System Design for the Mars Smart Lander
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Queen, Eric M.
2002-01-01
The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.
System design of the Pioneer Venus spacecraft. Volume 11: Launch vehicle utilization
NASA Technical Reports Server (NTRS)
Varga, R. J.
1973-01-01
A summary of the spacecraft descriptions; the probe bus, large probe, small probe, and orbiter is presented. The highlights on the designs of the Atlas/Centaur spacecraft as compared to the corresponding Thor/Delta spacecraft designs are contained. A comparison is made of the two Atlas/Centaur spacecraft for reference. The major differences are the replacement of the probes of the forward end of the probe bus with the mechanically despun antenna of the orbiter and the replacement of the bicone antenna on the aft end with the orbit insertion motor. The cross sections of the large and small probes are compared. The major features of each probe are described. The Thor/Delta and Atlas/Centaur designs for the probe bus and orbiter are analyzed. The usable spacecraft mass for the Atlas/Centaur is roughly twice that for the Thor/Delta if the Type I trajectory is assumed. It is somewhat less for the Type II trajectory in the designated launch years. This additional mass capability leads to cost savings in many areas which are described.
Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance.
Wehrenberg-Klee, Eric; Turker, N Selcan; Heidari, Pedram; Larimer, Benjamin; Juric, Dejan; Baselga, José; Scaltriti, Maurizio; Mahmood, Umar
2016-09-01
Inhibitors of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway hold promise for the treatment of breast cancer, but resistance to these treatments can arise via feedback loops that increase surface expression of the receptor tyrosine kinases (RTK) epidermal growth factor receptor 1 (EGFR) and human epidermal growth factor receptor 3 (HER3), leading to persistent growth pathway signaling. We developed PET probes that provide a method of imaging this response in vivo, determining which tumors may use this escape pathway while avoiding the need for repeated biopsies. Anti-EGFR-F(ab')2 and anti-HER3-F(ab')2 were generated from monoclonal antibodies by enzymatic digestion, conjugated to DOTA, and labeled with (64)Cu. A panel of breast cancer cell lines was treated with increasing concentrations of the AKT inhibitor GDC-0068 or the PI3K inhibitor GDC-0941. Pre- and posttreatment expression of EGFR and HER3 was compared using Western blot and correlated to probe accumulation with binding studies. Nude mice xenografts of HCC-70 or MDA-MB-468 were treated with either AKT inhibitor or PI3K inhibitor and imaged with either EGFR or HER3 PET probe. Changes in HER3 and EGFR PET probe accumulation correlate to RTK expression change as assessed by Western blot (R(2) of 0.85-0.98). EGFR PET probe PET/CT imaging of HCC70 tumors shows an SUV of 0.32 ± 0.03 for vehicle-, 0.50 ± 0.01 for GDC-0941-, and 0.62 ± 0.01 for GDC-0068-treated tumors, respectively (P < 0.01 for both comparisons to vehicle). HER3 PET probe PET/CT imaging of MDAMB468 tumors shows an SUV of 0.35 ± 0.02 for vehicle- and 0.73 ± 0.05 for GDC-0068-treated tumors (P < 0.01). Our imaging studies, using PET probes specific to EGFR and HER3, show that changes in RTK expression indicative of resistance to PI3K and AKT inhibitors can be seen within days of therapy initiation and are of sufficient magnitude as to allow reliable clinical interpretation. Noninvasive PET monitoring of these RTK feedback loops should help to rapidly assess resistance to PI3K and AKT inhibitors and guide selection of an appropriate combinatorial therapeutic regimen on an individual patient basis. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
1997-09-07
Workers in the Payload Hazardous Servicing Facility (PHSF) begin to remove a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan
1997-09-07
A crane lowers a protective transportation cover over the Cassini spacecraft, with its attached Huygens probe, at Launch Pad 40 at Cape Canaveral Air Station for the spacecraft’s return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan
1997-09-07
Workers in the Payload Hazardous Servicing Facility (PHSF) finish the removal of a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan
Welded Titanium Case for Space-Probe Rocket Motor
NASA Technical Reports Server (NTRS)
Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.
1959-01-01
The high strength-to-weight ratio of titanium alloys suggests their use for solid-propellant rocket-motor cases for high-performance orbiting or space-probe vehicles. The paper describes the fabrication of a 6-in.-diam., 0.025-in.-wall rocket-motor from the 6A1-4V titanium alloy. The rocket-motor case, used in the fourth stage of a successful JPL-NASA lunar-probe flight, was constructed using a design previously proven satisfactory for Type 410 stainless steel. The nature and scope of the problems peculiar to the use of the titanium alloy, which effected an average weight saving of 34%, are described.
The Huygens probe is prepared for transport from the Skid Strip, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Air Station (CCAS), after being off-loaded from a plane. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface.
Traffic data acquisition and distribution (TDAD)
DOT National Transportation Integrated Search
2002-05-01
The wide variety of remote sensors used in Intelligent Transportation Systems (ITS) applications (loops, : probe vehicles, radar, cameras, etc.) has created a need for general methods by which data can be shared : among agencies and users who own dis...
2011-08-18
NASA twin Gravity Recovery and Interior Laboratory GRAIL spacecraft are lowered onto the second stage of their Delta II launch vehicle. At top is the spacecraft adapter ring which holds the two lunar probes in their side-by-side launch configuration.
Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk
2016-04-15
Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2016-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.
Using Pre-melted Phase Change Material to Keep Payload Warm without Power for Hours in Space
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2012-01-01
During a payload transition from the transport vehicle to its worksite on the International Space Station (ISS), the payload is unpowered for up to 6 hours. Its radiator(s) will continue to radiate heat to space. It is necessary to make up the heat loss to maintain the payload temperature above the cold survival limit. Typically an interplanetary Probe has no power generation system. It relies on its battery to provide limited power for the Communication and Data Handling (C&DH) subsystem during cruise, and heater power is unavailable. It is necessary to maintain the C&DH temperature above the minimum operating limit. This paper presents a novel thermal design concept that utilizes phase change material (PCM) to store thermal energy by melting it before the payload or interplanetary Probe is unpowered. For the ISS, the PCM is melted by heaters just prior to the payload transition from the transport vehicle to its worksite. For an interplanetary Probe, the PCM is melted by heaters just prior to separation from the orbiter. The PCM releases thermal energy to keep the payload warm for several hours after power is cut off.
Vehicle charging and potential on the STS-3 mission
NASA Technical Reports Server (NTRS)
Williamson, R.
1983-01-01
An electron gun with fast pulse capability was used in the vehicle charging and potential experiment carried on the OSS-1 pallet to study dielectric charging, return current mechanisms, and the techniques required to manage the electrical charging of the orbiter. Return currents and charging of the dielectrics were measured during electron beam emission and plasma characteristics in the payload bay were determined in the absence of electron beam emission. The fast pulse electron generator, charge current probes, spherical retarding potential analyzer, and the digital control interface unit which comprise the experiment are described. Results show that the thrusters produce disturbances which are variable in character and magnitude. Strong ram/wake effects were seen in the ion densities in the bay. Vehicle potentials are variable with respect to the plasma and depend upon location on the vehicle relative to the main engine nozzles, the vehicle attitude, and the direction of the geomagnetic field.
Thermal Protection Materials and Systems: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2013-01-01
Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing
System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies
NASA Technical Reports Server (NTRS)
Nolte, L. J.; Stephenson, D. S.
1973-01-01
A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.
Grid resolution and solution convergence for Mars Pathfinder forebody
NASA Technical Reports Server (NTRS)
Nettelhorst, Heather L.; Mitcheltree, Robert A.
1994-01-01
As part of the Discovery Program, NASA Plans to launch a series of probes to Mars. The Mars Pathfinder project is the first of this series with a scheduled Mars arrival in July 1997. The entry vehicle will perform a direct entry into the atmosphere and deliver a lander to the surface. Predicting the entry vehicle's flight performance and designing the forebody heatshield requires knowledge of the expected aerothermodynamic environment. Much of this knowledge can be obtained through computational fluid dynamic (CFD) analysis.
Project Summaries, 1989 - 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Student designs summarized here include two undergraduate space designs and five graduate space designs from fall 1989, plus four undergraduate space designs and four undergraduate aircraft designs from spring 1990. Progress in a number of programs is described. The Geostationary Satellite Servicing Facility, the Lunar Farside Observatory and Science Base, the Texas Educational Satellite, an asteroid rendezvous vehicle, a Titan probe, a subsystems commonality assessment for lunar/Mars landers, a nuclear-thermal rocket propelled Earth-Mars vehicle, and a comprehensive orbital debris management program are among the topics discussed.
In Vivo PET Imaging of Myelin Damage and Repair in the Spinal Cord
2013-12-01
100, 110, 120 min(Pɘ.0001, two-tailed t- test , CI 99%). (B) the average radiance of wild-type mice after injection of DBT (blue) and vehicle ( red ...radiance between the Plp-Akt-DD mice ( red ) and wild-type mice (blue) after deducting the vehicle signals (P=0.0012, two-tailed t- test , CI 99...demyelination and remyelination in the intact brain and spinal cord. We have also begun to test the ability of the imaging probes to assay remyelination in
I-880 field experiment : analysis of incident data.
DOT National Transportation Integrated Search
1997-01-01
The I-880 field experiment has produced one of the largest data bases on incidents and freeway traffic-flow characteristics ever compiled. Field data on incidents were collected through observations of probe-vehicle drivers before and after the imple...
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1985-01-01
The Galileo mission and spacecraft, consisting of a Jupiter-orbiter and an atmospheric entry probe, are discussed. Components will include: magnetometers and plasma-wave antennas on a boom, high-gain antenna, probe vehicle, two different bus electronics packages, and a radioisotope thermoelectric generator. Instruments, investigators and objectives are tabulated for both probe science and orbiter science investigations. Requirements in the design of the attitude and articulation control system are very stringent because of the complex dynamics, flexible body effects, the need for autonomy, and the severe radiation environment in the Jupiter nighborhood. Galileo was intended to be ready for launch via Space Shuttle in May of 1986.
A self-describing data transfer methodology for ITS applications : executive summary
DOT National Transportation Integrated Search
2000-12-01
A wide variety of remote sensors used in Intelligent Transportation Systems (ITS) applications (loops, probe vehicles, radar, cameras) has created a need for general methods by which data can be shared among agencies and users who disparate computer ...
A self-describing data transfer methodology for ITS applications
DOT National Transportation Integrated Search
1999-01-01
The wide variety of remote sensors used in Intelligent Transportation Systems (ITS) : applications (loops, probe vehicles, radar, cameras, etc.) has created a need for general : methods by which data can be shared among agencies and users who own dis...
Final evaluation report for the CAPITAL-ITS operational test and demonstration program
DOT National Transportation Integrated Search
1997-05-01
The CAPITAL project was undertaken to assess the viability of using cellular-based traffic probes as a wide area vehicular traffic surveillance technique. From the test, cellular technology demonstrated the technical potential to provide vehicle spee...
Use of mobile data for weather-responsive traffic management models.
DOT National Transportation Integrated Search
2012-10-01
The evolution of telecommunications and wireless technologies has brought in new sources of traffic data (particularly mobile data generated by vehicle probes), which could offer a breakthrough in the quality and extent of traffic data. This study re...
Ionospheric Measurements Using Environmental Sampling Techniques
NASA Technical Reports Server (NTRS)
Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.
1960-01-01
Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.
NASA Astrophysics Data System (ADS)
Hillenbrand, Christopher F.; Barron, Thomas D.; Nugent, David M.
1995-03-01
A submarine trails one fiber optic cable and an undersea vehicle is controlled by this first cable. A missile/torpedo trails a second cable that is to be coupled to the first cable. The second cable has a segment suspended vertically underwater between a buoyant pod and a sea anchor type buoy. The undersea vehicle, or Autonomous Undersea Vehicle, (AUV) hunts for the pod by conventional homing means. A forked cable pickup device in the nose of the AUV captures the suspended cable segment directing it into a slot so a male socket in the underside of the pod mates with a female socket in the slot.
DOT National Transportation Integrated Search
2006-12-01
This research effort between Caltrans, California PATH and DaimlerChrysler RTNA that demonstrated two : potential VII services, one in traffic data probes and another with safety, using real cars and on Caltrans : roadways. It presages an operational...
DOTD support for UTC project : travel time estimation using bluetooth, [research project capsule].
DOT National Transportation Integrated Search
2013-10-01
Travel time estimates are useful tools for measuring congestion in an urban area. Current : practice involves using probe vehicles or video cameras to measure travel time, but this is a laborintensive and expensive means of obtaining the information....
VII data use analysis and processing (DUAP) : final project report (phase II).
DOT National Transportation Integrated Search
2010-10-01
This report covers several key subjects related to the generation of IntelliDriveSM probe vehicle data and use of this data in : application of interest to state departments of transportation and local public transportation agencies. The evaluations ...
Investigation of the implementation of a probe-vehicle based pavement roughness estimation system.
DOT National Transportation Integrated Search
2011-08-01
As roadway systems age and maintenance budgets shrink, a need emerges for timely and roughness data for pavement maintenance decision-making. The Virginia Department of Transportation (VDOT) maintains the third-largest state network of roadways in Am...
Code of Federal Regulations, 2010 CFR
2010-10-01
... side of the vehicle. The probe's centerline is perpendicular to thorax's midsagittal plane. (3) Align... of the transverse and frontal planes perpendicular to the chest's midsagittal plane passing through... midsagittal plane and tangential plane to the Hinge Mounting Block (Drawing SID-034) are vertical. (5) Impact...
NASA Astrophysics Data System (ADS)
Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell
2004-09-01
AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.
Apparatus for releasably connecting first and second objects in predetermined space relationship
NASA Technical Reports Server (NTRS)
Chandler, J. A. (Inventor)
1984-01-01
A releasable apparatus that connects first and second space objects, such as a spacecraft and a space vehicle, in predetermined spaced relationship is described. The apparatus comprises at least one probe member mounted on the first object, having an elongated shank portion, the distal end of which is provided with a tapered nose portion. At least one drogue assembly is mounted on the second space object for releasably capturing the probe member upon the first and second objects being brought into close proximity with each other.
1997-09-08
Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-10
Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-08
Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-08
Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-08
Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
Implications of contamination and surface area ratios for Langmuir probe diagnostics on CubeSats
NASA Astrophysics Data System (ADS)
Suresh, P.; Swenson, C.
2009-12-01
Theories describing the current collected by a biased probe under various conditions are necessary for such observation to be used to accurately determine plasma properties. Langmuir probes are routinely used on spacecraft to measure plasma parameters such as density, temperature, and vehicle charging. The collected current is a function of the potential between the surrounding plasma and probe surface. There have been both observations of and concepts for unaccounted variations of this potential which limit the application of Langmuir probe theory for determining plasma properties. These variations occur due to spatial variations of the work function across the probe surface due to non-uniformity of the crystalline surface properties and surface contamination of the probe. Currently we do not have theoretical expressions which consider these factors as first principles in their derivation. In the event of these surface potential variations, the analysis of the plasma using the currently available theories of the Langmuir probe yield erroneous results. We present a theory which models the current as a function of the surface potential variations. Another consideration for Langmuir probes on CubeSats is the ratio of the probe area to the return current collection area. If the area ratio is unfavorable this can also lead to erroneous results in the interpretation of observations. A mathematical formulation of the current collected by the probe for contaminated surfaces is presented and compared with data from a Langmuir probe flown on a sounding rocket mission. The implications of using Langmuir probes on CubeSats given the engineering limitations of probe cleanliness and area ratios are reviewed.
NASA Technical Reports Server (NTRS)
Kramer, Leonard
2014-01-01
A plasma diagnostic package is deployed on the International Space Station (ISS). The system - a Floating Potential Measurement Unit (FPMU) - is used by NASA to monitor the electrical floating potential of the vehicle to assure astronaut safety during extravehicular activity. However, data from the unit also reflects the ionosphere state and seems to represent an unutilized scientific resource in the form of an archive of scientific plasma state data. The unit comprises a Floating Potential probe and two Langmuir probes. There is also an unused but active plasma impedance probe. The data, at one second cadence, are collected, typically for a two week period surrounding extravehicular activity events. Data is also collected any time a visiting vehicle docks with ISS and also when any large solar events occur. The telemetry system is unusual because the package is mounted on a television camera stanchion and its data is impressed on a video signal that is transmitted to the ground and streamed by internet to two off center laboratory locations. The data quality has in the past been challenged by weaknesses in the integrated ground station and distribution systems. These issues, since mid-2010, have been largely resolved and the ground stations have been upgraded. Downstream data reduction has been developed using physics based modeling of the electron and ion collecting character in the plasma. Recursive algorithms determine plasma density and temperature from the raw Langmuir probe current voltage sweeps and this is made available in real time for situational awareness. The purpose of this paper is to describe and record the algorithm for data reduction and to show that the Floating probe and Langmuir probes are capable of providing long term plasma state measurement in the ionosphere. Geophysical features such as the Appleton anomaly and high latitude modulation at the edge of the Auroral zones are regularly observed in the nearly circular, 51 deg inclined, 400 km altitude ISS orbit. Evidence of waves in the ion collection current data is seen in geographic zones known to exhibit the spread-F phenomenon. An anomaly in the current collection characteristic of the cylindrical probe appears also too be organized by the geomagnetic field.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1975-01-01
Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter configuration in the Rockwell International 7.75 x 11.00 foot low speed wind tunnel. The primary test objectives were to define the orbiter wheel well pressure loading and its effects on landing gear thermal insulation and to investigate the pressure environment experienced by both the horizontal flight nose probe and air vent door probes. Steady state and dynamic pressure values were recorded in the orbiter nose gear well, left main landing gear well, horizontal flight nose probe, and both left and right air vent door probe. All steady state pressure levels were measured by Statham differential pressure transducers while dynamic pressure levels were recorded by Kulite high frequency response pressure sensors.
Evaluation of traffic-flow monitoring technologies : Cicero-Midway smart corridor case study.
DOT National Transportation Integrated Search
2013-06-01
The original goal of this project was to (1) collect probe-vehicle and sensor data in the region of interest, and : perform cleaning and map matching of the data; and (2) evaluate the accuracy of multiple technologies, either : through direct compari...
NASA Technical Reports Server (NTRS)
Pastor, P. Rick; Bishop, Robert H.; Striepe, Scott A.
2000-01-01
A first order simulation analysis of the navigation accuracy expected from various Navigation Quick-Look data sets is performed. Here quick-look navigation data are observations obtained by hypothetical telemetried data transmitted on the fly during a Mars probe's atmospheric entry. In this simulation study, navigation data consists of 3-axis accelerometer sensor and attitude information data. Three entry vehicle guidance types are studied: I. a Maneuvering entry vehicle (as with Mars 01 guidance where angle of attack and bank angle are controlled); II. Zero angle-of-attack controlled entry vehicle (as with Mars 98); and III. Ballistic, or spin stabilized entry vehicle (as with Mars Pathfinder);. For each type, sensitivity to progressively under sampled navigation data and inclusion of sensor errors are characterized. Attempts to mitigate the reconstructed trajectory errors, including smoothing, interpolation and changing integrator characteristics are also studied.
Experiences in Delta mission planning
NASA Technical Reports Server (NTRS)
Kork, J.
1981-01-01
The Delta launch vehicle has experienced 153 successful launches since 1960 and 40 more are scheduled. Relying on up-to-date technology and proven flight hardware, the Delta vehicle has been used for low to high circular and geosynchronous transfer orbits, high elliptic probes, and lunar and planetary missions. A history of Delta launches and configuration modifications is presented, noting a 92-95% success rate and its cost effective role in reimbursable missions. Elements of mission planning such as feasibility studies (1-3 yrs), spacecraft restraints manuals, reference trajectories, preliminary mission analysis, detailed test objectives, range/safety studies, guided nominal trajectory, and mission specific studies are discussed. Trajectory shaping determines vehicle and spacecraft restraints, optimizes the trajectory, and maximizes the payload capabilities. Improvements in the Delta vehicle have boosted payloads from 100 to 2890 lbs., improving the price per pound ratio, as costs have risen, only by a factor of three. Current launch schedules extend well into 1985.
2003-09-15
VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
Fincke holds the active docking assembly inside the SM during Expedition 9
2004-08-14
ISS009-E-18539 (14 August 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, holds the Progress 15 supply vehicle probe-and-cone docking mechanism in the Zvezda Service Module of the International Space Station (ISS).
Simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphicalmore » user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.« less
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN THE VAB SHOWS OPEN PARACHUTE
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB WITH PARACHUTE HOISTED HIGH
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL
NASA Technical Reports Server (NTRS)
1975-01-01
A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.
Space exploration: The interstellar goal and Titan demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.
DOT National Transportation Integrated Search
2011-07-01
This report covers several key subjects related to the generation of IntelliDriveSM probe vehicle data and use of this data in application of interest to state departments of transportation and local public transportation agencies. The evaluations co...
1997-09-10
Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-10
Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
1997-09-12
Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station
Lander Trajectory Reconstruction computer program
NASA Technical Reports Server (NTRS)
Adams, G. L.; Bradt, A. J.; Ferguson, J. B.; Schnelker, H. J.
1971-01-01
The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process.
Control strategies for planetary rover motion and manipulator control
NASA Technical Reports Server (NTRS)
Trautwein, W.
1973-01-01
An unusual insect-like vehicle designed for planetary surface exploration is made the occasion for a discussion of control concepts in path selection, hazard detection, obstacle negotiation, and soil sampling. A control scheme which actively articulates the pitching motion between a single-loop front module and a dual loop rear module leads to near optimal behavior in soft soil; at the same time the vehicle's front module acts as a reliable tactile forward probe with a detection range much longer than the stopping distance. Some optimal control strategies are discussed, and the photos of a working scale model are displayed.
The response of Galileo aft cover components to laser radiation
NASA Technical Reports Server (NTRS)
Metzger, J. W.
1982-01-01
The aft region of the Galileo probe will be subjected to severe heat transfer rates dominated by the radiation contributions. To assess the response of several vehicle aft region components to thermal radiation, tests employing a 10 KW CO2 laser were conducted. The experiments evaluated the annulus/aft cover interface, the umbilical feedthrough assembly and the mortar cover seal assembly. Experimental evidence of the response of the phenolic nylon heatshield and quantitative measures of its effect on gap geometries of several vehicle components were acquired. In addition, qualitative measures of the survivability of the irradiated components were obtained.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn
2009-06-01
The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.
Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System
NASA Technical Reports Server (NTRS)
Karlgaard, Chris; Schoenenberger, Mark
2017-01-01
This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.
2003-09-15
VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-16
VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-15
VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.
2003-09-16
VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-12
VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-15
VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-12
VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-16
VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
40 CFR 85.2224 - Exhaust analysis system-EPA 81.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are solely in effect. The following exceptions apply: In a state where the Administrator has approved... earlier model year vehicles or engines; in a state where the Administrator has approved a SIP revision... dual sample probe must provide equal flow in each leg. The equal flow criterion is considered to be met...
A novel multisensor traffic state assessment system based on incomplete data.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
1997-10-14
At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft and its attached Huygens probe. This is the second launch attempt for the Saturn-bound mission; a first try Oct. 13 was scrubbed primarily due to concerns about upper level wind conditions. Liftoff Oct. 15 is set to occur during a launch window opening at 4:43 a.m. EDT and extending until 7:03 a.m. Clearly visible in this view are the 66-foot-tall, 17-foot-wide payload fairing atop the vehicle, in which Cassini and the attached Centaur stage are encased, the two-stage liquid propellant core vehicle, and the twin 112-foot long solid rocket motor upgrades (SRMUs) straddling the core vehicle. It is the SRMUs which ignite first to begin the launch sequence
CFD applications in hypersonic flight
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1992-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.
Evolutionary use of nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.
1990-01-01
Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.
Detection and Sizing of Defects in Structural Components of a Nuclear Power Plant by ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhenmao; Miya, Kenzo
2005-04-09
In this paper, progress of ECT technique for inspection of stress corrosion cracks in a structural component of a nuclear power plant is reported. Access and scanning vehicle (robot), advanced probes for SG tube inspection, development and evaluation of new probes for welding joint, and ECT based crack sizing technique are described respectively. Based on these new techniques, it is clarified that ECT can play as a supplement of UT for the welding zone inspection. It is also proved in this work that new ECT sensors are efficient even for a stainless plate as thick as 15mm.
An employee sews thermal insulation material on the front heat shield of the Huygens probe in the PH
NASA Technical Reports Server (NTRS)
1997-01-01
An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility, with the probe's back cover in the background. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Obstacle detectors for automated transit vehicles: A technoeconomic and market analysis
NASA Technical Reports Server (NTRS)
Lockerby, C. E.
1979-01-01
A search was conducted to identify the technical and economic characteristics of both NASA and nonNASA obstacle detectors. The findings, along with market information were compiled and analyzed for consideration by DOT and NASA in decisions about any future automated transit vehicle obstacle detector research, development, or applications project. Currently available obstacle detectors and systems under development are identified by type (sonic, capacitance, infrared/optical, guided radar, and probe contact) and compared with the three NASA devices selected as possible improvements or solutions to the problems in existing obstacle detection systems. Cost analyses and market forecasts individually for the AGT and AMTV markets are included.
Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.
Niskanen, Jukka; Zhang, Issan; Xue, Yanming; Golberg, Dmitri; Maysinger, Dusica; Winnik, Françoise M
2016-01-01
To evaluate the response of cells to boron nitride nanotubes (BNNTs) carrying fluorescent probes or drugs in their inner channel by assessment of the cellular localization of the fluorescent cargo, evaluation of the in vitro release and biological activity of a drug (curcumin) loaded in BNNTs. Cells treated with curcumin-loaded BNNTs and stimulated with lipopolysaccharide were assessed for nitric oxide release and stimulation of IL-6 and TNF-α. The cellular trafficking of two cell-permeant dyes and a non-cell-permeant dye loaded within BNNTs was imaged. BNNTs loaded with up to 13 wt% fluorophores were internalized by cells and controlled release of curcumin triggered cellular pathways associated with the known anti-inflammatory effects of the drug. The overall findings indicate that BNNTs can function as nanocarriers of biologically relevant probes/drugs allowing one to examine/control their local intracellular localization and biochemical effects, leading the way to applications as intracellular nanosensors.
The ironies of vehicle feedback in car design.
Walker, Guy H; Stanton, Neville A; Young, Mark S
2006-02-10
Car drivers show an acute sensitivity towards vehicle feedback, with most normal drivers able to detect 'the difference in vehicle feel of a medium-size saloon car with and without a fairly heavy passenger in the rear seat' (Joy and Hartley 1953-54). The irony is that this level of sensitivity stands in contrast to the significant changes in vehicle 'feel' accompanying modern trends in automotive design, such as drive-by-wire and increased automation. The aim of this paper is to move the debate from the anecdotal to the scientific level. This is achieved by using the Brunel University driving simulator to replicate some of these trends and changes by presenting (or removing) different forms of non-visual vehicle feedback, and measuring resultant driver situational awareness (SA) using a probe-recall method. The findings confirm that vehicle feedback plays a key role in coupling the driver to the dynamics of their environment (Moray 2004), with the role of auditory feedback particularly prominent. As a contrast, drivers in the study also rated their self-perceived levels of SA and a concerning dissociation occurred between the two sets of results. Despite the large changes in vehicle feedback presented in the simulator, and the measured changes in SA, drivers appeared to have little self-awareness of these changes. Most worryingly, drivers demonstrated little awareness of diminished SA. The issues surrounding vehicle feedback are therefore similar to the classic problems and ironies studied in aviation and automation, and highlight the role that ergonomics can also play within the domain of contemporary vehicle design.
Electric Propulsion Options for a Magnetospheric Mapping Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John
1998-01-01
The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.
Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao
2014-12-01
In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Titan aerosol and gas experiment for the Huygens Probe
NASA Technical Reports Server (NTRS)
Carle, G. C.; Kojiro, D. R.; Oberbeck, V.; Ohara, B. J.; Pollack, J. B.; Valentin, J. R.; Bar-Nun, A.; Cohen, M. J.; Ferris, J. P.; Greenberg, J. M.
1991-01-01
The Cassini Mission is a joint undertaking of NASA and the European Space Agency (ESA) to explore the Saturnian System with a Saturn Orbiter and a Titan Probe. The launch vehicle and the Saturn Orbiter are the responsibility of NASA while the Huygens Probe (detachable Titan Probe) is the responsibility of ESA. The spacecraft will be launched in 1996 and the Huygens Probe will arrive at Titan in 2003. The Cassini Mission-Huygens Probe provides a unique opportunity to obtain detailed information about the atmosphere and, possibly, the surface of Titan. Titan possesses a substantial nitrogen atmosphere containing methane and many other organic compounds. Aerosols play an important role in the atmospheric processes on Titan. The Huygens Probe offers an opportunity to determine how organic particles are formed and grow which will clarify their role on Earth. A powerful analytical instrument, capable of addressing the above technology and other science questions, was recently proposed for the Huygens Probe. It is comprised of an aerosol and gas sampler and processor, and a gas chromatograph-ion mobility spectrometer. The instrument will be able to measure complex organics that make up the collected aerosols to the approximate 1 ppm level. Gases will be measured to approximately 10 ppb. Because the Titan atmosphere is expected to be quite complex, a gas chromatograph-ion mobility spectrometer is used to provide unequivocal identification of the components of the analytes. Further details of the science question to be investigated and the proposed instrument are described. The expected results and their implications are also addressed.
Galileo to Jupiter: Probing the Planet and Mapping Its Moons
NASA Technical Reports Server (NTRS)
1979-01-01
The first project to use the space shuttle as an interplanetary launch vehicle, the Galileo mission is designed to obtain information about the origin and evolution of the solar system by studying large-scale phenomena on Jupiter and its satellites. Aimed towards Mars to obtain gravity assist, the orbiting spacecraft will deploy a probe, which penetrating the Jovian atmosphere, will transmit data for approximately an hour. The spacecraft itself will inspect the atmospheres, ionospheres, and surfaces of Ganymede, Io, Europa, and Callisto, as well as determine their magnetic and gravitational properties. The experiments to be conducted and their scientific objectives are described. Known facts about the Jovian system are reviewed.
NASA Technical Reports Server (NTRS)
Oberg, James E.
1990-01-01
Examination of newly disclosed evidence confirms that the Soviets were indeed striving to reach the moon before the U.S. in 1969. It is noted that a Soviet unmanned lunar probe crashed on the moon's surface only hours before the U.S. Apollo landing. Now confirmed openly are moon-exploration schedules that were competitive with Apollo plans, the names and histories of Soviet lunar boosters and landers, identities of the lunar cosmonauts; and even photos of manned lunar craft are available. Additional details on the troubled moon-probe program are presented: technical problems, continuous changes in goals, schedules, and planning, vehicle and personnel disasters, transfer of authority between ministries, and political power struggles in the scientific community.
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.
NASA Technical Reports Server (NTRS)
Fairbank, W. M.; Everitt, C. W. F.; Debra, D. B.
1974-01-01
Performance tests of gyroscope operations and gyroscope readout equipment are discussed. The gyroscope was tested for 400 hours at liquid helium temperatures with spin speeds up to 30 Hz. Readout by observing trapped magnetic flux in the spinning rotor with a sensitive magnetometer was accomplished. Application of the gyroscope to space probes and shuttle vehicles.
Orbit Determination Support for the Microwave Anisotropy Probe (MAP)
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); Truong, Son H.; Cuevas, Osvaldo O.; Slojkowski, Steven
2003-01-01
NASA's Microwave Anisotropy Probe (MAP) was launched from the Cape Canaveral Air Force Station Complex 17 aboard a Delta II 7425-10 expendable launch vehicle on June 30, 2001. The spacecraft received a nominal direct insertion by the Delta expendable launch vehicle into a 185-km circular orbit with a 28.7deg inclination. MAP was then maneuvered into a sequence of phasing loops designed to set up a lunar swingby (gravity-assisted acceleration) of the spacecraft onto a transfer trajectory to a lissajous orbit about the Earth-Sun L2 Lagrange point, about 1.5 million km from Earth. Because of its complex orbital characteristics, the mission provided a unique challenge for orbit determination (OD) support in many orbital regimes. This paper summarizes the premission trajectory covariance error analysis, as well as actual OD results. The use and impact of the various tracking stations, systems, and measurements will be also discussed. Important lessons learned from the MAP OD support team will be presented. There will be a discussion of the challenges presented to OD support including the effects of delta-Vs at apogee as well as perigee, and the impact of the spacecraft attitude mode on the OD accuracy and covariance analysis.
Spared Anterograde Memory for Shock-Probe Fear Conditioning After Inactivation of the Amygdala
Lehmann, Hugo; Treit, Dallas; Parent, Marise B.
2003-01-01
Previous studies have shown that amygdala lesions impair avoidance of an electrified probe. This finding has been interpreted as indicating that amygdala lesions reduce fear. It is unclear, however, whether amygdala-lesioned rats learn that the probe is associated with shock. If the lesions prevent the formation of this association, then pretraining reversible inactivation of the amygdala should impair both acquisition and retention performance. To test this hypothesis, the amygdala was inactivated (tetrodotoxin; TTX; 1 ng/side) before a shock-probe acquisition session, and retention was tested 4 d later. The data indicated that, compared with rats infused with vehicle, rats infused with TTX received more shocks during the acquisition session, but more importantly, were not impaired on the retention test. In Experiment 2, we assessed whether the spared memory on the retention test was caused by overtraining during acquisition. We used the same procedure as in Experiment 1, with the exception that the number of shocks the rats received during the acquisition session was limited to four. Again the data indicated that amygdala inactivation did not impair performance on the retention test. These results indicate that amygdala inactivation does not prevent the formation of an association between the shock and the probe and that shock-probe deficits during acquisition likely reflect the amygdala's involvement in other processes. PMID:12888544
A Survey of Titan Balloon Concepts and Technology Status
NASA Technical Reports Server (NTRS)
Hall, Jeffery L.
2011-01-01
This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.
1993-01-01
A study was performed to determine the feasibility of establishing if a 'shaped' sonic boom signature, experimentally shown in wind tunnel models out to about 10 body lengths, will persist out to representative flight conditions of 200 to 300 body lengths. The study focuses on the use of a relatively large supersonic remotely-piloted and recoverable vehicle. Other simulation methods that may accomplish the objective are also addressed and include the use of nonrecoverable target drones, missiles, full-scale drones, very large wind tunnels, ballistic facilities, whirling-arm techniques, rocket sled tracks, and airplane nose probes. In addition, this report will also present a background on the origin of the feasibility study including a brief review of the equivalent body concept, a listing of the basic sonic boom signature characteristics and requirements, identification of candidate vehicles in terms of desirable features/availability, and vehicle characteristics including geometries, area distributions, and resulting sonic boom signatures. A program is developed that includes wind tunnel sonic boom and force models and tests for both a basic and modified vehicles and full-scale flight tests.
Titan/Centaur D-1TTC-5 Helios B flight data report
NASA Technical Reports Server (NTRS)
Adams, K. A.
1976-01-01
The fourth operational flight of the newest NASA unmanned launch vehicle is reported. The spacecraft was the Helios B, the second of two solar probes designed and built by the Federal Republic of Germany. The primary mission objective, to place the Helios spacecraft on a heliocentric orbit in the ecliptic plane with a perihelion distance of 0.29 AU, was successfully accomplished. After successful injection of the Helios spacecraft, a series of experiments were performed with the Centaur stage to demonstrate its operational capabilities. All objectives of the extended mission phase were successfully met. This report presents the analysis of the launch vehicle flight data for the primary mission phase of the TC-5 flight.
The PIX-2 experiment: An overview
NASA Astrophysics Data System (ADS)
Purvis, C. K.
1985-03-01
The second Plasma Interactions Experiment (PIX-2) was launched in January 1983 as a piggyback on the second stage of the Delta launch vehicle that carried IRAS into orbit. Placed in a 870 km circular polar orbit, it returned 18 hrs of data on the plasma current collection and arcing behavior of solar arrays biased to +/-1000 V in steps. The four 500 sq cm solar array segments were biased singly and in combinations. In addition to the array segments PIX-2 carried a Sun sensor, a Langmuir probe to measure electron currents, and a hot-wire filament electron emitter to control vehicle potential during positive array bias sequences. The PIX-2 experiment is reviewed from program and operational perspectives.
Aeronautics and space report of the President, 1983 activities
NASA Technical Reports Server (NTRS)
1984-01-01
Achievements in communication; space science; space transportation; aeronautics; and Earth resources and environment are summarized. Activities of the various Federal agencies and cooperation with NASA in these areas are described. The Presidential policy announcement on the endorsement of commercial operation of expendable launch vehicles is included. Tables show, the space activities budget; a historical budget summary, U.S. space launch vehicles; U.S. and Soviet manned spaceflights, 1961 to 1983; U.S. launched space probes, 1975 to 1983; U.S. launched scientific and applications satellites, 1978 to 1983; the U.S. spacecraft record; the world record of space launches successful in attaining Earth orbit or beyond; and successful U.S. launchings for 1983.
NASA Astrophysics Data System (ADS)
McFee, John E.; Russell, Kevin L.; Chesney, Robert H.; Faust, Anthony A.; Das, Yogadhish
2006-05-01
The Improved Landmine Detection System (ILDS) is intended to meet Canadian military mine clearance requirements in rear area combat situations and peacekeeping on roads and tracks. The system consists of two teleoperated vehicles and a command vehicle. The teleoperated protection vehicle precedes, clearing antipersonnel mines and magnetic and tilt rod-fuzed antitank mines. It consists of an armoured personnel carrier with a forward looking infrared imager, a finger plow or roller and a magnetic signature duplicator. The teleoperated detection vehicle follows to detect antitank mines. The purpose-built vehicle carries forward looking infrared and visible imagers, a 3 m wide, down-looking sensitive electromagnetic induction detector array and a 3 m wide down-looking ground probing radar, which scan the ground in front of the vehicle. Sensor information is combined using navigation sensors and custom navigation, registration, spatial correspondence and data fusion algorithms. Suspicious targets are then confirmed by a thermal neutron activation detector. The prototype, designed and built by Defence R&D Canada, was completed in October 1997. General Dynamics Canada delivered four production units, based on the prototype concept and technologies, to the Canadian Forces (CF) in 2002. ILDS was deployed in Afghanistan in 2003, making the system the first militarily fielded, teleoperated, multi-sensor vehicle-mounted mine detector and the first with a fielded confirmation sensor. Performance of the prototype in Canadian and independent US trials is summarized and recent results from the production version of the confirmation sensor are discussed. CF operations with ILDS in Afghanistan are described.
An employee sews thermal insulation material on the back cover and heat shield of the Huygens probe
NASA Technical Reports Server (NTRS)
1997-01-01
An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the back cover and heat shield of the Huygens probe during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
An employee works on the top side of the experiment platform for the Huygens probe in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
An employee in the Payload Hazardous Servicing Facility (PHSF) works on the top side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Viking Lander: subsurface water analyzing probe. [Mars subsoil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, G.J.
1969-10-01
A small terradynamic (soil penetrating) vehicle, to be released from the Viking Lander at an altitude of between 5000 and 6000 feet before the terminal descent on the vernier rockets begins, will implant a sensor package 3 to 5 feet beneath the surface to measure water content of Mars subsoil. As it penetrates the soil, the vehicle separates into a probe which carries the primary instrumentation and a tail section which contains the power supply, secondary sensors, and transmitter and antenna assembly. The two sections remain linked by a hard wire umbilical which provides for power and data flow betweenmore » the sections. After impact, a soil moisture subsystem would be activated to gather approximately 100 milligrams of soil at the depth of the penetrating probe. After the mass of the sample is measured, its water content would be determined by heating in a sealed known volume and measuring the dew point of the resulting water vapor with a specular reflection dew point indicator. The penetrating probe and the tail section each contain a pair of aluminum oxide hygrometer elements and one sensistor temperature sensor which, on request by an on-board programmer will measure temperature and absolute water content of the vapor phase in equilibrium with the surrounding soil. Once each 8 hours, the digitized output of the sensors would be transmitted by the RF link to the Lander. This apparatus is expected to measure the water vapor in equilibrium with the soil water in concentrations as low as 0.01 microgram per liter at --60/sup 0/C and absolute soil water in amounts as small as 10 micrograms per gram of soil. A radioisotope power supply would provide an expected life for this instrumentation package in excess of the proposed 90-day mission for the Mars Viking Lander.« less
Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto
2006-03-01
The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.
Argonne simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-04-01
A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically tomore » reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.« less
NASA Technical Reports Server (NTRS)
Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim
1992-01-01
The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Keller, Donald F.; Piatak, David J.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.
PICA Variants with Improved Mechanical Properties
NASA Technical Reports Server (NTRS)
Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose
2011-01-01
Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.
Future exploration of Venus (post-Pioneer Venus 1978)
NASA Technical Reports Server (NTRS)
Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.
1976-01-01
A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.
Artist concept of Galileo spacecraft
NASA Technical Reports Server (NTRS)
1988-01-01
Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.
The Gravity Probe B Experiment
NASA Technical Reports Server (NTRS)
Kolodziejczak, Jeffrey
2008-01-01
This presentation briefly describes the Gravity Probe B (GP-B) Experiment which is designed to measure parts of Einstein's general theory of relativity by monitoring gyroscope orientation relative to a distant guide star. To measure the miniscule angles predicted by Einstein's theory, it was necessary to build near-perfect gyroscopes that were approximately 50 million times more precise than the best navigational gyroscopes. A telescope mounted along the central axis of the dewar and spacecraft provided the experiment's pointing reference to a guide star. The telescope's image divide precisely split the star's beam into x-axis and y-axis components whose brightness could be compared. GP-B's 650-gallon dewar, kept the science instrument inside the probe at a cryogenic temperature for 17.3 months and also provided the thruster propellant for precision attitude and translation control. Built around the dewar, the GP-B spacecraft was a total-integrated system, comprising both the space vehicle and payload, dedicated as a single entity to experimentally testing predictions of Einstein's theory.
RBSPICE in the Classroom: Building a ballistic galvanometer using common household products
NASA Astrophysics Data System (ADS)
Patterson, J. D.; Manweiler, J. W.; Lanzerotti, L. J.; Zwiener, H.
2016-12-01
"RBSPICE in the Classroom: Changing Magnetic Fields and Electrical Currents" is a hands-on exercise for middle school and high school science classrooms. Students build a ballistic galvanometer using inexpensive common items that can be purchased at any craft store, and make qualitative observations of changing magnetic fields and the electrical currents they create. The goal of this work is to provide teachers new materials to use in their classrooms as tools for teaching students about electricity and magnetism. The experiment relates our Earth as a planet to the role the Magnetosphere plays in protecting us from Space Weather. The experiments show the ways in which Van Allen Probes play an important part in exploring those relationships using such instruments as the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE). The exercise is a vehicle for discussing electromagnetic induction, the behavior of the Earth's magnetosphere coupled with storm-time conditions that produce the Earth's ring current, and the mission objectives of the Van Allen Probes RBSPICE instrument.
Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.
Petrenko, Valery A
2017-12-01
Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of 'addressed self-navigating drug-delivery vehicles,' in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of 'promiscuous' phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a 'hub and spoke' delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The 'self-navigating' drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text].
Small planetary missions for the Space Shuttle
NASA Technical Reports Server (NTRS)
Staehle, R. L.
1979-01-01
The paper deals with the concept of a small planetary mission that might be described as one which: (1) focuses on a narrow set of discovery-oriented objectives, (2) utilizes largely existing and proven subsystem capabilities, (3) does not tax future launch vehicle capabilities, and (4) is flexible in terms of mission timing such that it can be easily integrated with launch vehicle schedules. Three small planetary mission concepts are presented: a tour of earth-sun Lagrange regions in search of asteroids which might be gravitationally trapped, a network of spacecraft to search beyond Pluto for a tenth planet; and a probe which could be targeted for infrequent long period 'comets of opportunity' or for a multitude of shorter period comets.
Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations
NASA Astrophysics Data System (ADS)
Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.
2015-03-01
Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.
1997-04-22
An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility, with the probe’s back cover in the background. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
Subsurface Exploration Technologies and Strategies for Europa
NASA Technical Reports Server (NTRS)
French, L. C.; Anderson, F. S.; Carsey, F. D.; Green, J. R.; Lane, A. L.; Zimmerman, W. F.
2001-01-01
The Galileo data from Europa has resulted in the strong suggestion of a large, cold, salty, old subglacial ocean and is of great importance. We have examined technology requirements for subsurface exploration of Europa and determined that scientific access to the hypothesized Europa ocean is a key requirement. By 'scientific access' we intend to direct attention to the fact that several aspects of exploration of a site such as Europa must be addressed at the system level. Specifically needed are a robotic vehicle that can descend through ice, scientific instrumentation that can interrogate the ice near the vehicle (but largely unaffected by its presence), scientific instrumentation for the subglacial ocean, communication for data and control, chemical analysis of the environment of the vehicle in the ice as well as the ocean, and methods for conducting the mission without contamination. We have embarked on a part of this extremely ambitious development sequence by developing the Active Thermal Probe, or Cryobot. Additional information is contained in the original extended abstract.
Hydrazine Materials Compatibility Database
NASA Astrophysics Data System (ADS)
Schmidt, E. W.
2004-10-01
Anhydrous hydrazine and its methyl derivatives MMH and UDMH have been safely used as monopropellants and bipropellant fuels in thousands of satellites and space probes, hundreds of expendable launch vehicles and hundreds of piloted reusable launch vehicle flights. The term hydrazine(s) is used here to describe the three propellant hydrazines and their mixtures. Over the years, a significant amount of experience has accumulated in the selection of compatible materials of construction for these and other rocket propellants. Only a few materials incompatibility issues have arisen in the recent past. New materials of construction have become available during the past decades which have not yet been extensively tested for long-term compatibility with hydrazine(s). These new materials promise lightweight (i. e., lighter weight) propulsion system designs and increased payloads in launch vehicles and satellites. Other new materials offer reduced contamination caused by leached ingredients, e. g. less silica leaching from diaphragms in propellant management devices in propellant tanks. This translates into longer mission life.
On the Use of 3dB Qualification Margin for Structural Parts on Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Yunis, Isam
2007-01-01
The standard random vibration qualification test used for Expendable Launch Vehicle components is Maximum Predicted Environment (MPE) + 6dB for a duration of 4 times the service life of the part. This can be a severe qualification test for these fatigue-sensitive structures. This paper uses flight data from several launch vehicles to establish that reducing the qualification approach to MPE+3dB for the duration of the peak environment (1x life) is valid for fatigue-sensitive structural components. Items that can be classified as fatigue-sensitive are probes, ducts, tubing, bellows, hoses, and any non-functional structure. Non-functional structure may be flight critical or carry fluid, but it cannot include any moving parts or electronics. This reduced qualification approach does not include primary or secondary structure which would be exclusively designed by peak loads, either transient or quasi-static, that are so large and of so few cycles as to make fatigue a moot point.
Instrumentation of sampling aircraft for measurement of launch vehicle effluents
NASA Technical Reports Server (NTRS)
Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.
1977-01-01
An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.
Oblique Wing Research Aircraft on ramp
1976-08-02
This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen.
The Instrumented Frisbee(Registered TradeMark) as a Prototype for Planetary Entry Probes
NASA Technical Reports Server (NTRS)
Lorenz, Ralph D.
2005-01-01
A Frisbee has been equipped with sensors, batteries and micro-controllers for data acquisition to record its translational accelerations and attitude motion. The experiments explore the capabilities and limitations of sensors on a rapidly-rotating platform moving in air, and illustrate several of the complex gyrodynamic aspects of frisbee flight. The experiments constitute an instructive exercise in aerospace vehicle systems integration and in attitude reconstruction.
Lee, J D; Caven, B; Haake, S; Brown, T L
2001-01-01
As computer applications for cars emerge, a speech-based interface offers an appealing alternative to the visually demanding direct manipulation interface. However, speech-based systems may pose cognitive demands that could undermine driving safety. This study used a car-following task to evaluate how a speech-based e-mail system affects drivers' response to the periodic braking of a lead vehicle. The study included 24 drivers between the ages of 18 and 24 years. A baseline condition with no e-mail system was compared with a simple and a complex e-mail system in both simple and complex driving environments. The results show a 30% (310 ms) increase in reaction time when the speech-based system is used. Subjective workload ratings and probe questions also indicate that speech-based interaction introduces a significant cognitive load, which was highest for the complex e-mail system. These data show that a speech-based interface is not a panacea that eliminates the potential distraction of in-vehicle computers. Actual or potential applications of this research include design of in-vehicle information systems and evaluation of their contributions to driver distraction.
NASA Astrophysics Data System (ADS)
McStay, D.; McIlroy, J.; Forte, A.; Lunney, F.; Greenway, T.; Thabeth, K.; Dean, G.
2005-06-01
A new 2000 m depth rated subsea sensor that can effectively, rapidly and remotely detect leaks of fluorescein dye, leak detection chemicals and hydraulic fluids from underwater structures is reported. The system utilizes ultra-bright LED technology to project a structured beam of light, at a wavelength suitable to excite the fluorescence of the target material, into the water column. The resultant fluorescence is collected and digital signal processing used to extract the intensity. The system is capable of detecting ppm concentrations of fluorescein at a range of 2.5 m in water in real time. The ability to stand-off from subsea structures, while rapidly detecting the chemicals makes the system highly suited to subsea leak inspections with remotely operated vehicles or autonomous underwater vehicles, as it allows the vehicles to be flown quickly and safely over the structure to be inspected. This increases both the speed and effectiveness of the inspection. The remote detection capability is also highly effective for probing complex underwater structures. The system has been successfully used in real subsea survey applications and has been found to be effective, user friendly and to dramatically reduce inspection times and hence costs.
Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook
2014-01-01
To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs.
Kashani, Masoud Soheili; Tavirani, Mostafa Rezaei; Talaei, Sayyed Alireza; Salami, Mahmoud
2011-04-01
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders. It is characterized by dementia including deficits in learning and memory. The present study aimed to evaluate the effects of aqueous extract of lavender (Lavandula angustifolia) on spatial performance of AD rats. Male Wistar rats were first divided into control and AD groups. Rat model of AD was established by intracerebroventricular injection of 10 μg Aβ1-42 20 d prior to administration of the lavender extract. Rats in both groups were then introduced to 2 stages of task learning (with an interval of 20 d) in Morris water maze, each followed by one probe test. After the first stage of spatial learning, control and AD animals received different doses (50, 100 and 200 mg/kg) of the lavender extract. In the first stage of experiment, the latency to locate the hidden platform in AD group was significantly higher than that in control group. However, in the second stage of experiment, control and AD rats that received distilled water (vehicle) showed similar performance, indicating that the maze navigation itself could improve the spatial learning of AD animals. Besides, in the second stage of experiment, control and AD rats that received lavender extract administration at different doses (50, 100, and 200 mg/ kg) spent less time locating the platform (except for the AD rats with 50 mg/kg extract treatment), as compared with their counterparts with vehicle treatment, respectively. In addition, lavender extract significantly improved the performance of control and AD rats in the probe test, only at the dose of 200 mg/kg, as compared with their counterparts with vehicle treatment. The lavender extract can effectively reverse spatial learning deficits in AD rats.
Magnet-Based System for Docking of Miniature Spacecraft
NASA Technical Reports Server (NTRS)
Howard, Nathan; Nguyen, Hai D.
2007-01-01
A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.
Langmuir Probe Spacecraft Potential End Item Specification Document
NASA Technical Reports Server (NTRS)
Gilchrist, Brian; Curtis, Leslie (Technical Monitor)
2001-01-01
This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any near-field disturbances around the Delta II, it is possible to use the same probe with a simple reconfiguration of the electronics to measure potential with respect to the ambient plasma. The LP measurement techniques are outlined in the following text and discussed in detail in the Appendix. The scientific goals of the investigation, the physical and electrical characteristics of the instrument, and the on-orbit measurement requirements are also discussed in this document.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
An automated miniature robotic vehicle inspection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobie, Gordon; Summan, Rahul; MacLeod, Charles
2014-02-18
A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3Dmore » model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.« less
STS-34 Galileo processing at KSC's SAEF-2 planetary spacecraft facility
1989-07-21
At the Kennedy Space Center's (KSC's) Spacecraft and Assembly Encapsulation Facility 2 (SAEF-2), the planetary spacecraft checkout facility, clean-suited technicians work on the Galileo spacecraft prior to moving it to the Vehicle Processing Facility (VPF) for mating with the inertial upper stage (IUS). Galileo is scheduled for launch aboard Atlantis, Orbiter Vehicle (OV) 104, on Space Shuttle Mission STS-34 in October 1989. It will be sent to the planet Jupiter, a journey which will taken more than six years to complete. In December 1995 as the two and one half ton spacecraft orbits Jupiter with its ten scientific instruments, a probe will be released to parachute into the Jovian atmosphere. NASA's Jet Propulsion Laboratory (JPL) manages the Galileo project. View provided by KSC.
NASA Technical Reports Server (NTRS)
1975-01-01
A fact sheet on the NASA space science program is presented. Some of the subjects considered include the following: (1) the Orbiting Astronomical Observatory, (2) the Orbiting Solar Observatory, (3) the Small Astronomy Satellite, (4) lunar programs, (5) planetary programs using the Mariner, Pioneer 10, and Viking space probes, and (6) the Scout, Thor-Delta, and Atlas-Centaur launch vehicles. For each program there is a description of the effort, the schedule, management, program officials, and funding aspects in outline form.
1993-12-31
34Nonlinear development in advanced avionics Simulation for an Autonomous Ummanned technology topics. Air Vehicle,* Master’s Thesis , September 1993. OMNTM...taps over the lower blade Passage Flow Model Simulation ,O section surface and end walls, a Master’s Thesis , December 1992. pitot survey probe downstream...Graphical Simulation of Walking Robot Kinematics," Master’s Thesis , March Byrnes, R.B., Kwak, S.H., Nelson, 1993. M.L., McGhee, R.B., and Healey, A.J
NASA Technical Reports Server (NTRS)
1975-01-01
Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.
Arbeille, Philippe; Poisson, Gerard; Vieyres, Pierre; Ayoub, Jean; Porcher, Maryannick; Boulay, Jean Louis
2003-07-01
The objective of the present project was to design and validate a method for teleoperating (from an expert site) an echographic examination in an isolated site. A dedicated robotic arm holding a real ultrasound (US) probe is remotely controlled from the expert site with a fictive probe, and reproduces on the real probe all the movements of the expert hand. The isolated places, defined as areas with reduced medical facilities, could be secondary hospitals 20 to 50 km from the university hospital, or dispensaries in Africa or Amazonia, or a moving structure like a rescue vehicle or the International Space Station (ISS). These sites are linked to the expert one by ISDN (numeric) telephone or satellite lines. At the expert center, the US medical expert moves a fictive probe, connected to a computer (no. 1) that sends the coordinate changes of this probe via an ISDN or satellite line to a second computer (no. 2), located at the isolated site, that applies them to the robotic arm holding the real echographic probe. The system was tested on 20 patients. In all cases, the expert was able to perform the main views (longitudinal, transverse) of the liver, gallbladder, kidneys, aorta, pancreas, bladder, prostate and uterus as during direct examination on the patient. The heart and spleen were not visualized in 2 and 4 of the 20 cases, respectively. The mean duration of the robotized echography (27 +/- 7 min for three to four organs) was approximately 50% longer than direct echography of the patient.
NASA Technical Reports Server (NTRS)
Kitts, Christopher
2001-01-01
The NASA Ames Research Center (Thermal Protection Materials and Systems Branch) is investigating new ceramic materials for the thermal protection of atmospheric entry vehicles. An incremental approach to proving the capabilities of these materials calls for a lifting entry flight test of a sharp leading edge component on the proposed SHARP (Slender Hypervelocity Aerothermodynamic Research Probe) vehicle. This flight test will establish the aerothermal performance constraint under real lifting entry conditions. NASA Ames has been developing the SHARP test flight with SSDL (responsible for the SHARP S I vehicle avionics), Montana State University (responsible for the SHARP S I vehicle airframe), the Wickman Spacecraft and Propulsion Company (responsible for the sounding rocket and launch operations), and with the SCU Intelligent Robotics Program, The SCU team was added well after the rest of the development team had formed. The SCU role was to assist with the development of a real-time video broadcast system which would relay onboard flight video to a communication groundstation. The SCU team would also assist with general vehicle preparation as well as flight operations. At the time of the submission of the original SCU proposal, a test flight in Wyoming was originally targeted for September 2000. This date was moved several times into the Fall of 2000. It was then postponed until the Spring of 2001, and later pushed into late Summer 2001. To date, the flight has still not taken place. These project delays resulted in SCU requesting several no-cost extensions to the project. Based on the most recent conversations with the project technical lead, Paul Kolodjiez, the current plan is for the overall SHARP team to assemble what exists of the vehicle, to document the system, and to 'mothball' the vehicle in anticipation of future flight and funding opportunities.
NASA Technical Reports Server (NTRS)
Meyyappan, M.; Arnold, J. O.
2005-01-01
The field of Nanotechnology is well funded worldwide and innovations applicable to Solar System Exploration are emerging much more rapidly than thought possible just a few years ago. This presentation will survey recent innovations from nanotechnololgy with a focus on novel applications to atmospheric entry science and probe technology, in a fashion similar to that presented by Arnold and Venkatapathy at the previous workshop forum at Lisbon Portugal, October 6-9, 2003. Nanotechnology is a rapidly emerging field that builds systems, devices and materials from the bottom up, atom by atom, and in so doing provides them with novel and remarkable macro-scale performance. This technology has the potential to revolutionize space exploration by reducing mass and simultaneously increasing capability. Thermal, Radiation, Impact Protective Shields: Atmospheric probes and humans on long duration deep space missions involved in Solar System Exploration must safely endure 3 significant hazards: (i) atmospheric entry; (ii) radiation; and (iii) micrometeorite or debris impact. Nanostructured materials could be developed to address all three hazards with a single protective shield, which would involve much less mass than a traditional approach. The concept can be ready in time for incorporation into NASA s Crew Exploration Vehicle, and possible entry probes to fly on the Jupiter Icy Moons
Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites
NASA Astrophysics Data System (ADS)
Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.
2003-12-01
We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.
Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.
Thermal Protection System Development, Testing and Qualification
NASA Astrophysics Data System (ADS)
Venkatapathy, Ethiraj; Arnold, James; Laub, B.; Hartman, G. J.
The science community currently has interest in planetary entry probe missions to improve our understanding of the atmospheres of Saturn and Venus [1,2]. As in the case of the Galileo entry probe, such data are critical to the understanding of not only the individual planets but also to further knowledge regarding the formation of the solar system. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient [1] to provide the desired scientific data. The heating rates for the "shallow" Saturn probes and Venus are in the range of 2 - 5KW/cm2 . It is clear that new, mid-density Thermal Protection System (TPS) materials for such probes can be mission-enabling for mass efficiency [3] and also make the use of smaller vehicles possible from advancements in scientific instrumentation [4]. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet Arcjet Facility that was used to qualify Carbon Phenolic for the Galileo Probe. This paper describes emerging TPS technology and the proposed use of an affordable, small 5 MW arc jet that can be used for TPS development in test gases appropriate for the aforementioned, new planetary probe applications. Emerging TPS technologies of interest include a mid-density, chopped molded carbon phenolic (CMCP) material around 0.8g/cc and a densified variant of phenolic impregnated carbon ablator (PICA) around 0.5g/cc. The small 5 MW arc jet facility, called the Development Arcjet Facility (DAF) and the methodology of testing TPS, both based on previous work, are discussed. Finally, the applications to Earth entry appropriate to speeds greater than lunar return (11km/s) are discussed as will facility-to-facility validation using air as a test gas. The use of other facilities for development, qualification and certification of TPS for Saturn and Venus is also discussed. [1] Atreya, S. K., et. al. Formation of Giant Planets and Their Atmospheres: Entry Probes for Saturn and Beyond; 5 th International Planetary Probe Workshop, June 25-29, Bordeaux, France. [2] Baines, K. H, et. al, Exploring Venus with Balloons: Science Objectives and Mission Architectures. 5 th International Planetary Probe Workshop, June 25-29 Bordeaux, France.
NASA Astrophysics Data System (ADS)
Venkatapathy, E.; Laub, B.; Hartman, G. J.; Arnold, J. O.; Wright, M. J.; Allen, G. A.
2009-07-01
The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn's ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the "shallow" Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13-15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1-6 KW/cm 2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.
Melting probes revisited - Ice penetration experiments under Mars surface pressure conditions
NASA Astrophysics Data System (ADS)
Kömle, Norbert I.; Tiefenbacher, Patrick; Weiss, Peter; Bendiukova, Anastasiia
2018-07-01
Melting probes as vehicles to explore terrestrial ice sheets have been designed and applied successfully since the early 1960's. Later on, in the 1990's, various proposals were made to apply such probes also as a means to explore ice sheets on other bodies of the solar system, e.g. Jupiter's icy satellite Europa or the ice caps of Mars. For this type of subsurface probes the name cryobot has become common. We review both early developments and more recent efforts to develop probes for application in planetary environments, i.e. under low pressures and low temperatures. The current state of art as well as the pros and cons of the different concepts hitherto considered are described. While many tests with various probes have been done in terrestrial environments, experiments under low surface pressure conditions are rare. Therefore, we report here on lab tests with a simple melting probe under the range of pressure and temperature conditions that would be encountered on the surface of Mars and compare them with corresponding tests under a much lower gas pressure, possibly representative for icy satellites. The contribution of evaporation during the melting and its variation with surface pressure is also considered. All surface pressure measurements that have been performed on Mars up to now indicate a surface pressure above the water triple point pressure (612 Pa). This means that water ice always transforms into the liquid phase when warmed up to 0°C, before it evaporates into the ambient atmosphere. The temporary existence of the liquid phase around the heated tip of the cryobot allows good thermal conductance between probe and surrounding ice, which is an important pre-requisite for efficient melt penetration. Our experiments indicate that under all possible Mars surface pressures the liquid phase is present when the probe is heated up. This finding confirms experimentally that a probe as it was proposed by Paige (1992) for in situ exploration of the Mars north polar layers would work in the expected way, although the penetration velocity must be expected be lower than under Earth pressure conditions. A test with the same probe, but under an almost two orders of magnitude lower gas pressure than on Mars, still indicates the temporary existence of the liquid phase in the contact region between the probe and the surrounding ice.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2014-05-01
The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2013-09-01
The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.
NASA Technical Reports Server (NTRS)
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca Sobel; West, Todd H.; Manley, Dawn K.
We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs,more » identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.« less
1982-08-01
19 3.2 Diesel Engine Speed Transducer 20 3.3 Pressure Transducer 20 3.4 Temperature Transducer 22 3.5 Differential Pressure Switch 22 3.6 Differential... Pressure Switch , Multi-Point 22 3.7 Current Measurement Transducer 23 - 3.8 Electrolyte Level Probes 23 3.9 Diagnostic Connector 24 3.10 Harness...12258933 Differential Pressure Switch - Multi-point 12258934 K -. Differential Pressure Switch 12258938 Electrolyte Level Sensor 12258935 Shunt 1000
Detection of dust particles in the coma of Halley's Comet by the Foton detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimov, S.I.; Kariagin, V.P.; Kudriashov, V.A.
The first results of direct measurements of the characteristics of dust particles with mass m of greater than 10 to the -9th g by the Foton detector, carried on the VEGA 1 and VEGA 2 space vehicles, are reported. The nature of the changes in the dust flux along the trajectory of the space probe is reported. The mass distribution of the dust particles is also reported. 7 references.
NASA Technical Reports Server (NTRS)
2003-01-01
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Development of the VS-50 as an Intermediate Step Towards LM-1
NASA Astrophysics Data System (ADS)
Ettl, J.; Kirchhartz, R.; Hrbud, I.; Basken, R.; Raith, G.; Hecht, M.; de Almeide, F. A.; Roda, E. D.
2015-09-01
The VS-50 launch vehicle is the designated intermediate development step of the VLM-1. The VLM-1 launch system is a joint venture between the research center for space DCTAIIAE in Brazil and the German Aerospace Center (DLR) in Germany. Development highlights are application of carbon fiber technologies for the S50 motor case and interstage adaptor, use of fiberglass for the fairing, newly developed thrust vector assembly (TVA) consisting of commercial components, unique navigation system encompassing two IMUs, a GPS receiver, and adaptive control algorithms guiding the vehicle. The VS-50 is a two-stage vehicle using S50 and S44 motors. The development of the VS-50 serves two major purposes: First, VS-SO represents a technological development stage in the VLM-1 development roadmap, and second, it serves as a carrier for scientific payloads. Potential payloads are aerodynamic probes for yielding scientific aero-dynamic and thermo-dynamic data sets at regimes up to 18 Mach. Further, the VS-50 could be used for re-entry research and investigation of re-usable flight objectives.
HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus
NASA Technical Reports Server (NTRS)
Arney, Dale; Jones, Chris
2015-01-01
The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.
Development of a Rotating Rake Array for Boundary-Layer-Ingesting Fan-Stage Measurements
NASA Technical Reports Server (NTRS)
Wolter, John D.; Arend, David J.; Hirt, Stefanie M.; Gazzaniga, John A.
2017-01-01
The recent Boundary-Layer-Ingesting Inlet/Distortion Tolerant Fan wind tunnel experiment at NASA Glenn Research Center's 8- by 6-foot Supersonic Wind Tunnel (SWT) examined the performance of a novel inlet and fan stage that was designed to ingest the vehicle boundary layer in order to take advantage of a predicted overall propulsive efficiency benefit. A key piece of the experiment's instrumentation was a pair of rotating rake arrays located upstream and downstream of the fan stage. This paper examines the development of these rake arrays. Pre-test numerical solutions were sampled to determine placement and spacing for rake pressure and temperature probes. The effects of probe spacing and survey density on the repeatability of survey measurements was examined. These data were then used to estimate measurement uncertainty for the adiabatic efficiency.
Development of a Rotating Rake Array for Boundary-Layer-Ingesting Fan-Stage Measurements
NASA Technical Reports Server (NTRS)
Wolter, John D.; Arend, David J.; Hirt, Stefanie M.; Gazzaniga, John A.
2017-01-01
The recent Boundary-Layer-Ingesting Inlet/Distortion Tolerant Fan wind tunnel experiment at NASA Glenn Research Center's 8-foot by 6-foot supersonic wind tunnel examined the performance of a novel inlet and fan stage that was designed to ingest the vehicle boundary layer in order to take advantage of a predicted overall propulsive efficiency benefit. A key piece of the experiment's instrumentation was a pair of rotating rake arrays located upstream and downstream of the fan stage. This paper examines the development of these rake arrays. Pre-test numerical solutions were sampled to determine placement and spacing for rake pressure and temperature probes. The effects of probe spacing and survey density on the repeatability of survey measurements was examined. These data were then used to estimate measurement uncertainty for the adiabatic efficiency.
Gravity Probe B spacecraft description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky
2015-11-01
The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.
Contingency Planning for the Microwave Anisotropy Probe Mission
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) utilized a phasing loop/lunar encounter strategy to achieve a small amplitude Lissajous orbit about the Sun-Earth/Moon L2 libration point. The use of phasing loops was key in minimizing MAP's overall deltaV needs while also providing ample opportunities for contingency resolution. This paper will discuss the different contingencies and responses studied for MAP. These contingencies included accommodating excessive launch vehicle errors (beyond 3 sigma), splitting perigee maneuvers to achieve ground station coverage through the Deep Space Network (DSN), delaying the start of a perigee maneuver, aborting a perigee maneuver in the middle of execution, missing a perigee maneuver altogether, and missing the lunar encounter (crucial to achieving the final Lissajous orbit). It is determined that using a phasing loop approach permits many opportunities to correct for a majority of these contingencies.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rockets second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
Recent Events in Guidance, Navigation and Control
NASA Technical Reports Server (NTRS)
Polites, Michael E.; Bullman, Jack (Technical Monitor)
2001-01-01
This article summarizes recent events in Guidance, Navigation, and Control (GN&C) in space, weapons and missiles, and aircraft. The section on space includes recent developments with the following NASA spacecraft and space vehicles: Near Earth Asteroid Rendezvous, Deep Space 1, Microwave Anisotropy Probe, Earth Observer-1, Compton Gamma Ray Observatory, the International Space Station, X-38, and X-40A. The section on weapons and missiles includes recent developments with the following missiles: Joint Air-to-Surface Standoff Missile, Storm Shadow/Scalp EG precision standoff missile, Hellfire missile, AIM-120C Advanced medium-range air-to-air missile, Derby missile, Arrow 2, and the Standard Missile SM-3. The section on aircraft includes recent developments with the following aircraft: Joint Strike Fighter, X-31, V-22, Couger/SUDer Puma Mk. 2, Predator B 001, and the Unmanned Combat Air Vehicle.
International Collaboration in Lunar Exploration
NASA Technical Reports Server (NTRS)
Morris, K. Bruce; Horack, John M.; Nall, Mark; Leahy, Bart. D.
2007-01-01
The U.S. Vision for Space Exploration commits the United States to return astronauts to the moon by 2020 using the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle. Like the Apollo program of the 1960s and 1970s, this effort will require preliminary reconnaissance in the form of robotic landers and probes. Unlike Apollo, some of the data NASA will rely upon to select landing sites and conduct science will be based on international missions as well, including SMART-1, SELENE, and Lunar Reconnaissance Orbiter (LRO). Opportunities for international cooperation on the moon also lie in developing lunar exploration technologies. The European Space Agency's SMART-1 orbiter (Figure 1) is making the first comprehensive inventory of key chemical elements in the lunar surface. It is also investigating the impact theory of the moon's formation.'
Martin, Erik W.; Li, Changqing; Lu, Wuyuan; Kao, Joseph P. Y.
2015-01-01
Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular imaging. PMID:25816348
A Common Probe Design for Multiple Planetary Destinations
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.;
2018-01-01
Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented.
Diagnostic Tools for Plasma Wind Tunnels and Reentry Vehicles at the IRS
2000-04-01
activ n e pronte . pwindkanal", Dissertation, Universittit Stuttgart, 1998. A mass spectrometer probe can be used with low [A.9] Auweter-Kurtz, M., Laure...obtained ffrom experiments at a plasma state with a mass flowFig. B2.28: RtooOISobandfrom dintensities in a 3D -view rate of 2 g/s air and an ambient...spectrometer work is based on the estimations either in solid food stuffs or organic chopped-light (AC) principle which is illustrated in materials ( e.g
NASA Technical Reports Server (NTRS)
Gai, S. L.; Cain, T.; Joe, W. S.; Sandeman, R. J.; Miller, C. G.
1988-01-01
Heat transfer rate measurements have been obtained at 0, 5, 15, and 21 deg angles-of-attack for a straight biconic scale model of an aeroassisted orbital vehicle proposed for planetary probe missions. Heat-transfer distributions were measured using palladium thin-film resistance gauges deposited on a glass-ceramic substrate. The windward heat transfer correlations were based on equilibrium flow in the shock layer of the model, although the flow may depart from equilibrium in the flow-field.
SPRITE: A TPS Test Bed for Ground and Flight
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj
2012-01-01
Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.
Parametric Thermal Soak Model for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.
2013-01-01
The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model that was used for the simulations. The results indicate that it takes several hours for the thermal energy to soak into the interior of the vehicle and achieve maximum payload temperatures. In addition, a strong correlation between the heatload and peak payload container temperature is observed that will help establishing the parametric thermal soak model.
Local opiate receptors in the sinoatrial node moderate vagal bradycardia.
Farias, M; Jackson, K; Stanfill, A; Caffrey, J L
2001-02-20
Met-enkephalin-arg-phe (MEAP) interrupts vagal bradycardia when infused into the systemic circulation. This study was designed to locate the opiate receptors functionally responsible for this inhibition. Previous observations suggested that the receptors were most likely located in either intracardiac parasympathetic ganglia or the pre-junctional nerve terminals innervating the sinoatrial node. In this study 10 dogs were instrumented with a microdialysis probe inserted into the sinoatrial node. The functional position of the probe was tested by briefly introducing norepinephrine into the probe producing an increase in heart rate of more than 30 beats/min. Vagal stimulations were conducted at 0.5, 1.2 and 4 Hz during vehicle infusion (saline ascorbate). Cardiovascular responses during vagal stimulation were recorded on-line. MEAP was infused directly into the sinoatrial node via the microdialysis probe. The evaluation of vagal bradycardia was repeated during the nodal application of MEAP, diprenorphine (opiate antagonist), and diprenorphine co-infused with MEAP. MEAP introduced into the sinoatrial node via the microdialysis probe reduced vagal bradycardia by more than half. Simultaneous local nodal blockade of these receptors with the opiate antagonist, diprenorphine, eliminated the effect of MEAP demonstrating the participation by opiate receptors. Systemic infusions of MEAP produced a reduction in vagal bradycardia nearly identical to that observed during nodal administration. When local nodal opiate receptors were blocked with diprenorphine, the systemic effect of MEAP was eliminated. These data lead us to suggest that the opiate receptors responsible for the inhibition of vagal bradycardia are located within the sinoatrial node with few, if any, participating extra-nodal or ganglionic receptors.
Gravity Probe B: Testing Einstein with Gyroscopes
NASA Technical Reports Server (NTRS)
Geveden, Rex D.; May, Todd
2003-01-01
Some 40 years in the making, NASA' s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta II in 2003. GP-B will test two extraordinary predictions from Einstein's General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.
Gravity Probe B: Testing Einstein with Gyroscopes
NASA Technical Reports Server (NTRS)
Geveden, Rex D.; May, Todd
2003-01-01
Some 40 years in the making, NASA s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta I1 in 2003. GP-B will test two extraordinary predictions from Einstein s General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star- tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.
Gravity Probe B data system description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.
2015-11-01
The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.
Application of Monte-Carlo Analyses for the Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Microwave Anisotropy Probe (MAP) is the third launch in the National Aeronautics and Space Administration's (NASA's) a Medium Class Explorers (MIDEX) program. MAP will measure, in greater detail, the cosmic microwave background radiation from an orbit about the Sun-Earth-Moon L2 Lagrangian point. Maneuvers will be required to transition MAP from it's initial highly elliptical orbit to a lunar encounter which will provide the remaining energy to send MAP out to a lissajous orbit about L2. Monte-Carlo analysis methods were used to evaluate the potential maneuver error sources and determine their effect of the fixed MAP propellant budget. This paper will discuss the results of the analyses on three separate phases of the MAP mission - recovering from launch vehicle errors, responding to phasing loop maneuver errors, and evaluating the effect of maneuver execution errors and orbit determination errors on stationkeeping maneuvers at L2.
NASA Astrophysics Data System (ADS)
Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard
2017-03-01
For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.
An Experiment to Study Sporadic Sodium Layers in the Earth's Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Swenson, Charles M.
2002-01-01
The Utah State University / Space Dynamics Lab was funded under a NASA Grant. This investigation has been part of Rockwell Universities Sudden Atom Layer Investigation (SAL). USU/SDL provided an electron density measurement instrument, the plasma frequency probe, which was launched on the vehicle 21.117 from Puerto-Rico in February of 1998. The instrument successfully measured electron density as designed and measurement techniques included in this version of the Plasma Frequency probe provided valuable insight into the electron density structures associated with sudden sodium layers in a collisional plasma. Electron density data was furnished to Rockwell University but no science meetings were held by Rockwell Data from the instrument was presented to the scientific community at the URSI General Session in 1999. A paper is in preparation for publication in Geophysical Research Letters. The following document provides a summary of the experiment and data obtained as a final report on this grant.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
NASA Technical Reports Server (NTRS)
2003-01-01
VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
Space Weather Monitoring for ISS Geomagnetic Storm Studies
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Neergaard
2013-01-01
The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.
ATLAS Probe: Exploring Frontiers in Galaxy Evolution, Cosmology, and Milky Way Science
NASA Astrophysics Data System (ADS)
Wang, Yun; Robberto, Massimo; Dickinson, Mark; Ferguson, Henry C.; Hillenbrand, Lynne; Hirata, Christopher M.; Cimatti, Andrea; Bartlett, James; Barkhouser, Robert; Benjamin, Robert A.; Brinchmann, Jarle; Chary, Ranga-Ram; Conroy, Charlie; Daddi, Emanuele; Donahue, Megan; Dore, Olivier; Eisenhardt, Peter; Fraser, Wesley C.; Helou, George; Kirkpatrick, J. Davy; Malhotra, Sangeeta; Moscardini, Lauro; Ninkov, Zoran; Ressler, Michael; Rhoads, James; Rhodes, Jason; Shapley, Alice; Smee, Stephen; ATLAS Probe Team
2018-01-01
ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission that leverages WFIRST imaging for targeted spectroscopy. ATLAS Probe will obtain spectra of 90% of all galaxies imaged by the WFIRST High Latitude Survey at z > 0.5, with slit spectra of 300 million galaxies to z = 7. ATLAS Probe and WFIRST together will produce a 3D map of the Universe with Mpc resolution over 2200 sq deg, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modification of general relativity, and quantifying the 3D structure and stellar content of the Milky Way.ATLAS Probe science spans four broad categories: (1) Revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly. (2) Open a new window into the Universe by mapping the dark matter filaments using 3D weak lensing with spectroscopic redshifts to unveil the nature of the dark Universe, and obtaining definitive measurements of dark energy and possible modification of general relativity using cosmic large-scale structure. (3) Probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy. (4) Characterize asteroids and comets in the outer Solar System.ATLAS Probe is a 1.5m telescope with a field of view (FoV) of 0.4 sq deg, and uses Digital Micromirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 600, and a wavelength range of 1-4μm. The lack of slit spectroscopy from space over a wide FoV is the obvious gap in current and planned future space missions; ATLAS fills this big gap with an unprecedented spectroscopic capability (with an estimated spectroscopic multiplex factor of 5000-10000). It has an estimated cost under $1B, with a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (DMDs can reach Technology Readiness Level 6 within two years). ATLAS Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Galaxy.
CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter
2005-01-01
The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.
Cassini Orbiter and Huygens Probe aboard the Titan IV
NASA Technical Reports Server (NTRS)
1997-01-01
At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft, marking a major milestone in the launch countdown sequence. Retraction of the structure began about an hour later than scheduled due to minor problems with ground support equipment. The launch vehicle, Cassini spacecraft and attached Centaur stage encased in a payload fairing, altogether stand about 183 feet tall; mounted at the base of the launch vehicle are two upgraded solid rocket motors. Liftoff of Cassini on the journey to Saturn and its moon Titan is slated to occur during a window opening at 4:55 a.m. EDT, Oct. 13, and extending through 7:15 a.m.
The Jet Propulsion Laboratory manages the U.S. contribution to the Cassini mission for NASA's Office of Space Science.Applications of nanodiamonds in drug delivery and catalysis.
Moosa, Basem; Fhayli, Karim; Li, Song; Julfakyan, Khatchatur; Ezzeddine, Alaa; Khashab, Niveen M
2014-01-01
The interest of researchers in utilizing nanomaterials as carriers for a wide spectrum of molecules has exploded in the last two decades. Nanodiamonds are one class of carbon-based nanomaterials that have emerged as promising drug delivery vehicles and imaging probes. Their ease of functionalization also led to the generation of stimuli-responsive nanodiamonds that deliver drugs on demand in a controlled manner. The ample surface area of NDs allowed for a higher loading of not only small molecules but also macromolecules like genes and proteins. Recently, the unique surface of NDs has attracted more attention as catalyst support in a huge range of organic modification and C-C bond formation reactions. Herein, recent advances in the utilization of nanodiamonds as a drug delivery vehicle and catalytical support are highlighted and summarized to illustrate the potential and versatility of this cheap and commercially available nanomaterial.
CFD analysis of hypersonic, chemically reacting flow fields
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1993-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.
NASA Technical Reports Server (NTRS)
Robb, J. D.; Chen, T.
1980-01-01
An analysis of the shielding properties of mixed metal and graphite composite structures has illustrated some important aspects of electromagnetic field penetration into the interior. These include: (1) that graphite access doors on metallic structures will attenuate lightning magnetic fields very little; conversely, metal doors on a graphite structure will also attenuate fields from lightning strike currents very little, i.e., homogeneity of the shield is a critical factor in shielding and (2) that continuous conductors between two points inside a graphite skin such as an air data probe metallic tubing connection to an air data computer can allow large current penetrations into a vehicle interior. The true weight savings resulting from the use of composite materials can only be evaluated after the resulting electromagnetic problems such as current penetrations have been solved, and this generally requires weight addition in the form of cable shields, conductor bonding or external metallization.
Ares I-X First Stage Internal Aft Skirt Re-Entry Heating Data and Modeling
NASA Technical Reports Server (NTRS)
Schmitz, Craig P.; Tashakkor, Scott B.
2011-01-01
The CLVSTATE engineering code is being used to predict Ares-I launch vehicle first stage reentry aerodynamic heating. An engineering analysis is developed which yields reasonable predictions for the timing of the first stage aft skirt thermal curtain failure and the resulting internal gas temperatures. The analysis is based on correlations of the Ares I-X internal aft skirt gas temperatures and has been implemented into CLVSTATE. Validation of the thermal curtain opening models has been accomplished using additional Ares I-X thermocouple, calorimeter and pressure flight data. In addition, a technique which accounts for radiation losses at high altitudes has been developed which improves the gas temperature measurements obtained by the gas temperature probes (GTP). Updates to the CLVSTATE models are shown to improve the accuracy of the internal aft skirt heating predictions which will result in increased confidence in future vehicle designs
Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.
2013-01-01
High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.
López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank
2016-01-01
The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966
Employees lower Cassini's upper experiment module and base onto a work stand in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Redox probing study of the potential dependence of charge transport through Li 2O 2
Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; ...
2015-11-20
In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O 2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li 2O 2, in the Li–O 2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfermore » exchange rate as a function of the potential and the Li 2O 2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li 2O 2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
1997-04-21
Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter just arrived on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
1997-04-21
Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its arrival at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
Computer models of the spacecraft wake
NASA Technical Reports Server (NTRS)
Rubin, A. G.; Heinemann, M.; Tautz, M.; Cooke, D.
1986-01-01
Until recently, computations of space plasma flow over a spacecraft have been unstable for ratios of spacecraft dimension to Debye length typical of the low Earth orbit environment. Calculations are presented of the spacecraft/environment interaction based on two computer codes, MACH and POLAR. MACH, an inside-out particle tracking code, was developed for the purpose of validating the physics of POLAR in regimes where these are no comprehensive theoretical or experimental results. While the spacecraft which can be treated by MACH are restricted to simple geometries, the methodology is more fundamental than POLAR. MACH generates self-consistent solutions within the context of quasisteady Vlasov plasma flow and achieves Debye ratios previously unobtainable. POLAR uses a three-dimensional finite-element representation of the vehicle in a staggered mesh. The plasma sheath is modeled by outside-in particle tracking. Solutions for the plasma flow, wake and vehicle charging are obtained by Vlasov-Poisson iteration; charge stabilization techniques make the results virtually insensitive to the Debye ratio. POLAR reproduces the Laframboise static plasma solutions for sperical probes and fits the Makita-Kuriki probe data for spheres in a flowing plasma in regions where comparisons are valid. POLAR and MACH solutions for the particle and electrostatic potential structure of the wake of a charged disk in a low-altitude flow are shown for Mach numbers 4, 5, and 8. New features of the solutions include ion focussing in the wake and a definitive determination of the sheath edge in the wake which shows that the sheath is not an equipotential.
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu
2017-10-01
An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.
NASA Technical Reports Server (NTRS)
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Global Environmental Micro Sensors Test Operations in the Natural Environment
NASA Technical Reports Server (NTRS)
Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.
2007-01-01
ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and pressure via satellite. The GEMS data will be validated against reference observations provided by current weather instrumentation located at KSC. This paper will report on the results of the GEMSTONE project and discuss the challenges encountered in developing an airborne sensor system.
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
Effect of Counterflow Jet on a Supersonic Reentry Capsule
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary C.
2006-01-01
Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.
ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon
NASA Astrophysics Data System (ADS)
Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro
2015-09-01
This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.
SHARP-B2: Flight Test Objectives, Project Implementation and Initial Results
NASA Technical Reports Server (NTRS)
Salute, Joan; Bull, Jeff; Rasky, Dan; Keese, David; Arnold, Jim (Technical Monitor)
2001-01-01
On September 28, 2000 the SHARP-B2 flight experiment was launched from Vandenberg Air Force Base, California. SHARP-B2 is the 2nd Ballistic flight test in the SHARP (Slender Hypervelocity Aerothermodynamic Research Probes) program which develops and tests new thermal protection materials and sharp body concepts. The flight tested Ultra-High Temperature Ceramics (UHTCs), which may radically change the design and performance of future aerospace vehicles. The new designs may overturn an age-old tenet of aerodynamics: that blunt-body aerospace vehicles, but not those with sharp leading edges, can survive the searing temperatures created as the vehicles tear through the atmosphere. Sharp leading edges offer numerous advantages over the blunt-body design currently in use. They could allow a space shuttle or crew return vehicle to maneuver in space more like an airplane and potentially allow astronauts to return to Earth from anywhere on orbit. They may allow improved astronaut safety by decreasing the risk of aborting into the ocean. They may reduce the electromagnetic interference that causes the communications blackouts that plague reentering blunt-body space vehicles. Reducing the amount of drag could lead to a reduction in propulsion requirements. Planetary probes could make use of sharp-body technology for aerobraking and to maximize their maneuvering capability. SHARP-B2 was a joint effort among NASA Ames, Sandia National Laboratories, the U.S. Air Force and the U.S. Army. It was funded by the Pathfinder Program at NASA's Marshall Space Flight Center. The SHARP-B2 payload was carried aboard a U.S. Air Force Minuteman III missile carrying a modified Mk 12A reentry vehicle (RV), which blasted off from Vandenberg Air Force Base near Lompoc, CA, at 3:01 a.m. PDT on Sept. 28. The RV was equipped with four 5. 1 inch-long strakes, or sharp leading edges. Each strake contained three UHTCs: ZrB2/SiC/C; ZrB2/SiC; and HfB2/SiC. Once it reached an altitude of about 400 nautical miles, the RV was released, returning through Earth's atmosphere at speeds exceeding Mach 22. One pair of strakes was designed to retract just before reaching temperatures high enough to cause the material to begin ablating. The other pair was designed to retract shortly after ablation began, at an expected temperature of nearly 5,100 degrees Fahrenheit. Sensors in the strakes measured how closely performance matched pre-flight calculations, and data was successfully collected throughout the 23-minute flight. A parachute was deployed (but not fully inflated) and the RV splashed down in a lagoon at the Kwajalein missile range in the Pacific Ocean. Within 3 hours radar track analysis showed ocean entry to be precisely at the latitude/longitude coordinates estimated during pre-flight simulation. An hour later a ship was deployed by the Army to recover the reentry vehicle, which was recovered in 165 feet of water, just 500 feet from its planned splash-down point. This is the first RV recovery in over a decade.
Convergence of Vehicle and Infrastructure Data for Traffic and Demand Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Stanley E.
The increasing availability of highly granular, vehicle trajectory data combined with ever increasing stores of roadway sensor data has provided unparalleled observability into the operation of our urban roadway networks. These data sources are quickly moving from research and prototype environments into full-scale commercial deployment and data offerings. The observability gained allows for increased control opportunities to enhance transportation mobility, safety and energy efficiency. The National Renewable Energy Laboratory (NREL) is involved in three initiatives to leverage these data for positive outcomes: 1) In 2015 NREL, in cooperation with industry and university partners, was awarded an ARPA-E research grant tomore » research a control architecture to incentivize individual travelers toward more sustainable travel behavior. Based on real-time data on the traveler's destination and state of the system, the traveler is presented with route and/or mode choices and offered incentives to accept sustainable alternatives over less-sustainable ones. The project tests the extent to which small incentives can influence, or tip the balance toward more sustainable travel behavior. 2) Although commercial sources of travel time and speed have emerged in recent years based on vehicle probe data, volume estimates continue to rely primarily on historical count data factored for the time of day, day of week, and season of year. Real-time volume flows would enable better tools, simulation in the loop, and ultimately more effective control outcomes. NREL in cooperation with the University of Maryland and industry traffic data providers (INRIX, HERE and TomTom), are attempting to accelerate the timeframe to a viable real-time vehicle volume data feed based on probe data. 3) Signal control on urban arterials for years has had to rely on models rather than measured data to assess performance. High-resolution controller data and low-cost re-identification data now allows for direct measurement of the quality of progression along a corridor. Though still requiring an investment in equipment and communications, these data sources are transforming traffic signal management to a data driven, performance management basis. Ever increasing availability of granular GPS trace data from automobiles may allow for assessment of traffic signal performance, allowing for signal optimization while minimizing the investment in additional sensors and communication infrastructure.« less
Radiative and convective heating during Venus entry.
NASA Technical Reports Server (NTRS)
Page, W. A.; Woodward, H. T.
1972-01-01
Determination of the stagnation region heating of probes entering the Venusian atmosphere. Both convective and radiative heat-transfer rates are predicted, and account is taken of the important effects of radiative transport in the vehicle shock layer. A nongray radiative transport model is utilized which parallels a four-band treatment previously developed for air (Page et al., 1969), but includes two additional bands to account for the important CO(4+) molecular band system. Some comparisons are made between results for Venus entry and results for earth entry obtained using a viscous earth entry program.
AFE ion mass spectrometer design study
NASA Technical Reports Server (NTRS)
Wright, Willie
1989-01-01
This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.
Comparison of the Temperature Conditions in the Transport of Perishable Foodstuff
NASA Astrophysics Data System (ADS)
Rovňaníková, Dominika
2017-05-01
In this article, the temperatures in transport of different types of perishable foodstuffs will be compared. The comparison will be made based on the evaluation of measurement data from the remote probe and compared with the temperature measured by a thermograph installed in the vehicle. The results will be compared with a tolerance listed in the individual regulations, laws and Agreement ATP (Agreement on the International Carriage of Perishable Foodstuffs and on the Special Equipment to be Used for such Carriage), which are further described in the first part of the article.
1970-01-01
Managed by Marshall Space Flight Center, the Space Tug concept was intended to be a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug would have been capable of numerous space applications. This 1970 illustration depicts the primary modules of the Space Tug system along with some of the supplementary kits: lunar landing legs, extendable support arms, astrionics, and the satellite probe. The Space Tug program was cancelled and did not become a reality.
2000-04-12
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Ye, Penglin; Ding, Xiang; Ye, Qing; Robinson, Ellis S; Donahue, Neil M
2016-03-10
Semivolatile organic compounds (SVOCs) play an essential role in secondary organic aerosol (SOA) formation, chemical aging, and mixing of organic aerosol (OA) from different sources. Polyethylene glycol (PEG400) particles are liquid, polar, and nearly nonvolatile; they provide a new vehicle to study the interaction between SVOCs with OA. With a unique fragment ion C4H9O2(+) (m/z 89), PEG400 can be easily separated from α-pinene SOA in aerosol mass spectra. By injecting separately prepared PEG probe particles into a chamber containing SOA coated on ammonium sulfate seeds, we show that a substantial pool of SVOCs exists in equilibrium with the original SOA particles. Quantitative findings are based on bulk mass spectra, size-dependent composition, and the evolution of individual particle mass spectra, which we use to separate the two particle populations. We observed a larger fraction of SVOC vapors with increased amounts of reacted α-pinene. For the same amount of reacted α-pinene, the SOA formed from α-pinene oxidized by OH radicals had a higher fraction of SOA vapors than SOA formed by α-pinene ozonolysis. Compared to the PEG400 probe particles, we observed a lower mass fraction of SVOCs in poly(ethylene glycol) dimethyl ether (MePEG500) probe particles under otherwise identical conditions; this may be due to the lower polarity of the MePEG500 or caused by esterification reactions between the PEG400 and organic acids in the SOA.
Blade tip timing (BTT) uncertainties
NASA Astrophysics Data System (ADS)
Russhard, Pete
2016-06-01
Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.
Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Venus
NASA Technical Reports Server (NTRS)
Dugan, James F., Jr.; Simsic, Carl R.
1960-01-01
For one-way transfers between Earth and Venus, charts are obtained that show velocity, time, and angle parameters as functions of the eccentricity and semilatus rectum of the Sun-focused vehicle conic. From these curves, others are obtained that are useful in planning one-way and round-trip missions to Venus. The analysis is characterized by circular coplanar planetary orbits, successive two-body approximations, impulsive velocity changes, and circular parking orbits at 1.1 planet radii. For round trips the mission time considered ranges from 65 to 788 days, while wait time spent in the parking orbit at Venus ranges from 0 to 467 days. Individual velocity increments, one-way travel times, and departure dates are presented for round trips requiring the minimum total velocity increment. For both single-pass and orbiting Venusian probes, the time span available for launch becomes appreciable with only a small increase in velocity-increment capability above the minimum requirement. Velocity-increment increases are much more effective in reducing travel time for single-pass probes than they are for orbiting probes. Round trips composed of a direct route along an ellipse tangent to Earth's orbit and an aphelion route result in the minimum total velocity increment for wait times less than 100 days and mission times ranging from 145 to 612 days. Minimum-total-velocity-increment trips may be taken along perihelion-perihelion routes for wait times ranging from 300 to 467 days. These wait times occur during missions lasting from 640 to 759 days.
A Design Comparison of Atmospheric Flight Vehicles for the Exploration of Titan
NASA Technical Reports Server (NTRS)
Gasbarre, Joseph F.; Wright, Henry S.; Lewis, Mark J.
2005-01-01
Titan, the largest moon of Saturn, is one of the most scientifically interesting locations in the Solar System. With a very cold atmosphere that is five times as dense as Earth s, and one and a half times the surface pressure, it also provides one of the most aeronautically fascinating environments known to humankind. While this may seem the ideal place to attempt atmospheric flight, many challenges await any vehicle attempting to navigate through it. In addition to these physical challenges, any scientific exploration mission to Titan will most likely have several operational constraints. One difficult constraint is the desire for a global survey of the planet and thus, a long duration flight within the atmosphere. Since many of the scientific measurements that would be unique to a vehicle flying through the atmosphere (as opposed to an orbiting spacecraft) desire near-surface positioning of their associated instruments, the vehicle must also be able to fly within the first scale height of the atmosphere. Another difficult constraint is that interaction with the surface, whether by landing or dropped probe, is also highly desirable from a scientific perspective. Two common atmospheric flight platforms that might be used for this mission are the airplane and airship. Under the assumption of a mission architecture that would involve an orbiting relay spacecraft delivered via aerocapture and an atmospheric flight vehicle delivered via direct entry, designs were developed for both platforms that are unique to Titan. Consequently, after a viable design was achieved for each platform, their advantages and disadvantages were compared. This comparison included such factors as deployment risk, surface interaction capability, mass, and design heritage. When considering all factors, the preferred candidate platform for a global survey of Titan is an airship.
1997-04-21
Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which just landed at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
1997-04-21
Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
1997-04-21
Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
1997-04-21
Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004
Cassini orbiter arrives at SLF
NASA Technical Reports Server (NTRS)
1997-01-01
Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which just landed at KSC's Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Cassini orbiter arrives at SLF
NASA Technical Reports Server (NTRS)
1997-01-01
Workers prepare to tow away the large container with the Cassini orbiter from KSC's Shuttle Landing Facility. The orbiter just arrived on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Viger, Mathieu L; Sheng, Wangzhong; McFearin, Cathryn L; Berezin, Mikhail Y; Almutairi, Adah
2013-11-10
Though accurately evaluating the kinetics of release is critical for validating newly designed therapeutic carriers for in vivo applications, few methods yet exist for release measurement in real time and without the need for any sample preparation. Many of the current approaches (e.g. chromatographic methods, absorption spectroscopy, or NMR spectroscopy) rely on isolation of the released material from the loaded vehicles, which require additional sample purification and can lead to loss of accuracy when probing fast kinetics of release. In this study we describe the use of time-resolved fluorescence for in situ monitoring of small molecule release kinetics from biodegradable polymeric drug delivery systems. This method relies on the observation that fluorescent reporters being released from polymeric drug delivery systems possess distinct excited-state lifetime components, reflecting their different environments in the particle suspensions, i.e., confined in the polymer matrices or free in the aqueous environment. These distinct lifetimes enable real-time quantitative mapping of the relative concentrations of dye in each population to obtain precise and accurate temporal information on the release profile of particular carrier/payload combinations. We found that fluorescence lifetime better distinguishes subtle differences in release profiles (e.g. differences associated with dye loading) than conventional steady-state fluorescence measurements, which represent the averaged dye behavior over the entire scan. Given the method's applicability to both hydrophobic and hydrophilic cargo, it could be employed to model the release of any drug-carrier combination. Copyright © 2013 Elsevier B.V. All rights reserved.
Performance Evaluation of the Gravity Probe B Design
NASA Technical Reports Server (NTRS)
Francis, Ronnie; Wells, Eugene M.
1996-01-01
This report documents the simulation of the Lockheed Martin designed Gravity Probe B (GPB) spacecraft developed tool by bd Systems Inc using the TREETOPS simulation. This study quantifies the effects of flexibility and liquid helium slosh on GPB spacecraft control performance. The TREETOPS simulation tool permits the simulation of flexible structures given that a flexible body model of the structure is available. For purposes of this study, a flexible model of the GPB spacecraft was obtained from Lockheed Martin. To model the liquid helium slosh effects, computational fluid dynamics (CFD) results' were obtained, and used to develop a dynamic model of the slosh effects. The flexible body and slosh effects were incorporated separately into the TREETOPS simulation, which places the vehicle in a 650 km circular polar orbit and subjects the spacecraft to realistic environmental disturbances and sensor error quantities. In all of the analysis conducted in this study the spacecraft is pointed at an inertially fixed guide star (GS) and is rotating at a constant rate about this line of sight.
NASA Technical Reports Server (NTRS)
Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.
1973-01-01
A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.
Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.
2007-01-01
Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.
From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages.
Anany, H; Chou, Y; Cucic, S; Derda, R; Evoy, S; Griffiths, M W
2017-02-28
The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness. When no natural binding with the target exists, phages can be used as vehicles to identify new protein-ligand interactions necessary for diagnostics. This review comprehensively summarizes many uses of phages as detection tools and points the way toward how phage-based technologies may be improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Xantheas, Sotiris S.
Water's function as a universal solvent and its role in mediating several biological functions that are responsible for sustaining life has created tremendous interest in the understanding of its structure at the molecular level.1 Due to the size of the simulation cells and the sampling time needed to compute many macroscopic properties, most of the initial simulations are performed using a classical force field whereas several processes that involve chemistry are subsequently probed with electronic structure based methods. A significant effort has therefore been devoted towards the development of classical force fields for water.2 Clusters of water molecules are usefulmore » in probing the intermolecular interactions at the microscopic level as well as providing information about the subtle energy differences that are associated with different bonding arrangements within a hydrogen bonded network. They moreover render a quantitative picture of the nature and magnitude of the various components of the intermolecular interactions such as exchange, dispersion, induction etc. They can finally serve as a vehicle for the study of the convergence of properties with increasing size.« less
Neurokinin B administration induces hot flushes in women.
Jayasena, Channa N; Comninos, Alexander N; Stefanopoulou, Evgenia; Buckley, Adam; Narayanaswamy, Shakunthala; Izzi-Engbeaya, Chioma; Abbara, Ali; Ratnasabapathy, Risheka; Mogford, Julianne; Ng, Noel; Sarang, Zubair; Ghatei, Mohammad A; Bloom, Stephen R; Hunter, Myra S; Dhillo, Waljit S
2015-02-16
Neurokinin B (NKB) is a hypothalamic neuropeptide binding preferentially to the neurokinin 3 receptor. Expression of the gene encoding NKB is elevated in postmenopausal women. Furthermore, rodent studies suggest that NKB signalling may mediate menopausal hot flushes. However, the effects of NKB administration on hot flushes have not been investigated in humans. To address this, we performed a randomised, double-blinded, placebo-controlled, 2-way cross-over study. Ten healthy women were admitted to a temperature and humidity-controlled research unit. Participants received 30 minute intravenous infusions of NKB and vehicle in random order. Symptoms, heart rate, blood pressure, sweating and skin temperature were compared between NKB and vehicle in a double-blinded manner. Eight of ten participants experienced flushing during NKB infusion with none experiencing flushing during vehicle infusion (P = 0.0007). Significant elevations in heart rate (P = 0.0106 vs. pre-symptoms), and skin temperature measured using skin probe (P = 0.0258 vs. pre-symptoms) and thermal imaging (P = 0.0491 vs. pre-symptoms) characteristic of menopausal flushing were observed during hot flush episodes. Our findings provide evidence that NKB administration can cause hot flushes in women. Further studies are required to determine if pharmacological blockade of NKB signalling could inhibit hot flushes during the menopause and during treatment for sex-steroid dependent cancers.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
Status of advanced orbital transfer propulsion
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1985-01-01
A new Orbital Transfer Vehicle (OTV) propulsion system that will be used in conjunction with the Space Shuttle, Space Station and Orbit Maneuvering Vehicle is discussed. The OTV will transfer men, large space structures and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. Critical engine design considerations based upon the need for low cost payload delivery, space basing, reusability, aeroassist maneuvering, low g transfers of large space structures and man rating are described. The importance of each of these to propulsion design is addressed. Specific propulsion requirements discussed are: (1) high performance H2/O2 engine; (2) multiple engine configurations totalling no more than 15,000 lbf thrust 15 to 20 hr life; (3) space maintainable modular design; (4) health monitoring capability; and (5) safety and mission success with backup auxiliary propulsion.
NASA Technical Reports Server (NTRS)
Wells, W. C.
1978-01-01
Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.
Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bailey, Sean; Canter, Caleb
2017-11-01
We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).
Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean
2016-11-01
We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-01-01
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-07-07
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.
Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)
NASA Technical Reports Server (NTRS)
1990-01-01
The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
2000-06-19
Attached to the wing of a Cessna Citation aircraft are cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is also equipped with field mills, used to measure electric fields. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
Attached to the wing of a Cessna Citation aircraft are cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is also equipped with field mills, used to measure electric fields. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
Attached to the wing of a Cessna Citation aircraft are cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is also equipped with field mills, used to measure electric fields. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
Attached to the wing of a Cessna Citation aircraft are cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is also equipped with field mills, used to measure electric fields. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
System Would Acquire Core and Powder Samples of Rocks
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Randolph, James; Bao, Xiaoqi; Sherrit, Stewart; Ritz, Chuck; Cook, Greg
2006-01-01
A system for automated sampling of rocks, ice, and similar hard materials at and immediately below the surface of the ground is undergoing development. The system, denoted a sample preparation, acquisition, handling, and delivery (SPAHD) device, would be mounted on a robotic exploratory vehicle that would traverse the terrain of interest on the Earth or on a remote planet. The SPAHD device would probe the ground to obtain data for optimization of sampling, prepare the surface, acquire samples in the form(s) of cores and/or powdered cuttings, and deliver the samples to a selected location for analysis and/or storage.
Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells
NASA Astrophysics Data System (ADS)
Knittel, Jeremy
This work examines the use of high-lift, low drag vehicles which perform orbital transfers within a planet's atmosphere to reduce propulsive requirements. For the foreseeable future, spacecraft mission design will include the objective of limiting the mass of fuel required. One means of accomplishing this is using aerodynamics as a supplemental force, with what is termed an aero-assist maneuver. Further, the use of a lifting body enables a mission designer to explore candidate trajectory types wholly unavailable to non-lifting analogs. Examples include missions to outer planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture, and steady atmospheric periapsis probing missions. Engineering level models are created in order to simulate both atmospheric and extra-atmospheric space flight. Each mission is parameterized using discrete variables which control multiple areas of design. This work combines the areas of hypersonic aerodynamics, re-entry aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization. In particular, emphasis is given to the parametric design of vehicles known as "waveriders" which are inversely designed from known shock flowfields. An entirely novel means of generating a class of waveriders known as "starbodies" is presented. A complete analysis is performed of asymmetric starbody forms and compared to a better understood parameterization, "osculating cone" waveriders. This analysis includes characterization of stability behavior, a critical discipline within hypersonic flight. It is shown that asymmetric starbodies have significant stability improvement with only a 10% reduction in the lift-to-drag ratio. By combining the optimization of both the shape of the vehicle and the trajectory it flies, much is learned about the benefit that can be expected from lifting aero-assist missions. While previous studies have conceptually proven the viability, this work provides thorough quantification of the optimized outcome. In examining an aero-capture of Mars, it was found that with a lifting body, the increased maneuverability can allow completion of multiple mission objectives along with the aero-capture, such as atmospheric profiling or up to 80 degrees of orbital plane change. Completing a combined orbital plane change and aero-capture might save as much as 4.5 km/s of velocity increment while increasing the feasible entry corridor by an order of magnitude. Analyzing a higher energy mission type, a database of maximum aero-gravity assist performance is developed at Mars, Earth and Venus. Finally, a methodology is presented for designing end-to-end interplanetary missions using aero-gravity assists. As a means of demonstrating the method, promising trajectories are propagated which reduce the time of flight of an interstellar probe mission by up to 50%.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2014-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.
Sampling the Cloudtop Region on Venus
NASA Astrophysics Data System (ADS)
Limaye, Sanjay; Ashish, Kumar; Alam, Mofeez; Landis, Geoffrey; Widemann, Thomas; Kremic, Tibor
2014-05-01
The details of the cloud structure on Venus continue to be elusive. One of the main questions is the nature and identity of the ultraviolet absorber(s). Remote sensing observations from Venus Express have provided much more information about the ubiquitous cloud cover on Venus from both reflected and emitted radiation from Venus Monitoring Camera (VMC) and Visible InfraRed Imaging Spectrometer (VIRTIS) observations. Previously, only the Pioneer Venus Large Probe has measured the size distribution of the cloud particles, and other probes have measured the bulk optical properties of the cloud cover. However, the direct sampling of the clouds has been possible only below about 62 km, whereas the recent Venus Express observations indicate that the cloud tops extend from about 75 km in equatorial region to about 67 km in polar regions. To sample the cloud top region of Venus, other platforms are required. An unmanned aerial vehicle (UAV) has been proposed previously (Landis et al., 2002). Another that is being looked into, is a semi-buoyant aerial vehicle that can be powered using solar cells and equipped with instruments to not only sample the cloud particles, but also to make key atmospheric measurements - e.g. atmospheric composition including isotopic abundances of noble and other gases, winds and turbulence, deposition of solar and infrared radiation, electrical activity. The conceptual design of such a vehicle can carry a much more massive payload than any other platform, and can be controlled to sample different altitudes and day and night hemispheres. Thus, detailed observations of the surface using a miniature Synthetic Aperture Radar are possible. Data relay to Earth will need an orbiter, preferably in a low inclination orbit, depending on the latitude region selected for emphasis. Since the vehicle has a large surface area, thermal loads on entry are low, enabling deployment without the use of an aeroshell. Flight characteristics of such a vehicle have been studied (Alam et al., 2014; Kumar et al., 2014) Acknowledgements Mr. Ashish Kumar and Mr. Mofeez Alam were supported by the Indo US Forum for Science and Technology (IUSSTF) as S.N. Bose Scholars at the University of Wisconsin, Madison as Summer interns. We are grateful for the guidance support provided by Dr. Kristen Griffin and Dr. Daniel Sokol, Northrop Grumman Aerospace Corporation. References Alam, M., K. Ashish, and S.S. Limaye. Aerodynamic Analysis of BlimPlane- a Conceptual Hybrid UAV for Venus Exploration. Accepted for publication, 2014 IEEE Aerospace Conference, Big Sky, Montana, 1-8 March 2014. Ashish, K., M. Alam, and S.S. Limaye, Flight Analysis of a Venus Atmospheric Mobile Platform. Accepted for publication, 2014 IEEE Aerospace Conference, Big Sky, Montana, 1-8 March 2014. Landis, G.A., A. Colozza, C.M. LaMarre, Atmospheric flight on Venus. NASA/TM—2002-211467, AIAA-2001-0819, June 2002
Lessons From the Pioneer Venus Program
NASA Technical Reports Server (NTRS)
Dorfman, Steven D.
2005-01-01
We began the Pioneer Venus contract in late 1974 with a planned launch of the Orbiter in May 1978 and the Multiprobe in August 1978. Because we had four years, we thought there was plenty of time. As it turned out, we barely made the launch dates. The Orbiter was relatively straightforward, compared to the Multiprobe Bus and Probes that had to survive descent through the harsh Venusian atmosphere. To help overcome our many Multiprobe problems we formed a strong global team. The GE reentry team in Philadelphia, experienced in designing vehicles to enter the earth s atmosphere, was assigned the responsibility for the Probe entry system, including protective heat shielding and parachute design to extract the scienceladen Large Probe pressure vessel and control its descent through the Venusian clouds. Since the Probes had to remain stable as they descended through the Venus atmosphere, we used the aerodynamic expertise at the Hughes Missile Division, NASA s Ames Research Center and the Langley Research Center. Since the pressure at the surface of Venus was equivalent to an ocean depth of 3300 feet, we went to the Navy s David Taylor Research Center for their deepsea expertise. To test the pressure vessel at the high pressure and temperatures anticipated at Venus we went to the only facility capable of simulating the Venus surface environment, the Southwest Research Institute in San Antonio, Texas. We had dozens of subcontractors all over the world. As we developed our design, we began an extensive program to validate the ability of our Probe hardware to withstand the Venus environment. During this testing, we encountered numerous problems, mostly associated with adapting earth-based hardware to operate in the anticipated Venus environment. For example, the Large Probe pressure vessel imploded with a very loud bang the first time we tested its ability to withstand the high pressure and temperature on the Venusian surface. We had to go back and redesign, increasing the pressure vessel wall thickness. In addition, during the first tests of the parachute system, our parachute system ripped apart and had to be redesigned. Finally, at the aptly named test range in Truth or Consequences, New Mexico, we successfully demonstrated the parachute design by drop
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
Cassini orbiter is moved to PHSF after arriving at SLF
NASA Technical Reports Server (NTRS)
1997-01-01
Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC's Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
Estimates of CO2 traffic emissions from mobile concentration measurements
NASA Astrophysics Data System (ADS)
Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.
2015-03-01
We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.
Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.
NASA Astrophysics Data System (ADS)
Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn
2015-11-01
Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.
Correlation of ISS Electric Potential Variations with Mission Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard
2014-01-01
Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.
In-Situ Probing of Titan's Surface and Near-Surface Organic Environment From a Montgolfiere
NASA Astrophysics Data System (ADS)
Spilker, Thomas R.; Reh, K. R.; Elliott, J. O.; Lunine, J. I.; Lorenz, R.
2006-09-01
Since Dec 2005 a study team that includes the authors has investigated mission concepts for detailed studies of Titan's surface, shallow (1-3 km) subsurface, and lower atmosphere. Recent Cassini-Huygens results support the study's focus on pre-biotic organic chemistry at Titan, including environmental influences on chemical processes and evolution. The team's planetary scientists established a coherent set of science goals and objectives, worked with the engineering and instrument teams to define a candidate payload complement, and participated in developing a realistic operations scenario including the vehicles that carry the orbital and in situ payloads. Titan's atmosphere is well suited for aerial vehicles, from stationary to hypersonic. Its large scale height makes it the easiest destination in the solar system for aerocapture into orbit, and relatively benign for direct entry. Aerocapture allows inserting significantly more mass into Titan orbit than other options. Titan's lower atmosphere features low gravity, high densities, and gentle winds conducive to energy-efficient subsonic vehicles from balloons to airplanes. A Montgolfiere, a well-tested type of hot-air balloon that uses an apex vent to control altitude, was judged the best candidate vehicle for this study's in situ payload and objectives. At Titan such a vehicle can loft more than 150 kg to altitudes in excess of 15 km using waste heat from a single power source such as those slated for the Mars Science Laboratory. Vertical controllability is such that accurate descent to altitudes of 100 m or less allows deployment and retrieval of surface-sampling devices. Models of Titan's winds indicate that controlling altitude also allows a degree of lateral control that in a half-year or year mission can visit a significant range of latitudes, over multiple circuits of Titan. This paper discusses the science objectives and operational capabilities and considerations for such a mission concept.
Effects of the combination of P3-based GKT and reality monitoring on deceptive classification
Jang, Ki-Won; Kim, Deok-Yong; Cho, Sungkun; Lee, Jang-Han
2013-01-01
The study aimed to investigate whether a combination of the P3-based Guilty Knowledge Test (GKT) and reality monitoring (RM) distinguished between individuals who are guilty, witnesses, or informed, and using both tests provided more accurate information than did the use of either measure alone. Participants consisted of 45 males that were randomly and evenly assigned to three groups (i.e., guilty, witness, and informed). The guilty group conducted a mock crime where they intentionally crashed their vehicle into another vehicle in a virtual environment (VE). As those in the witness group drove their own vehicles, they observed the guilty groups' vehicle crash into another vehicle. The informed group read an account and saw screenshots of the accident. All participants were instructed to insist that they were innocent. Subsequently, they performed the P3-based GKT and wrote an account of the accident for the RM analysis. A higher P3 amplitude corresponded to how well the participants recognized the presented stimulus, and a higher RM score corresponded to how well the participants reported vivid sensory information and how much less they reported uncertain information. Findings for the P3-based GKT indicated that the informed group showed lower P3 amplitude when presented with the probe stimulus than did the guilty and witness groups. Regarding the RM analysis, the informed group obtained higher RM scores on visual, temporal, and spatial details and lower scores on cognitive operations than the guilty and witness groups. Finally, discriminant analysis revealed that the combination of the P3-based GKT and RM more accurately distinguished between the three groups than the use of either measure alone. The findings suggest that RM may build upon a weakness of the P3-based GKT's. More specifically, it may build upon its susceptibility to the leakage of information about the crime, therefore helping protect innocent individuals who have information about a crime from being perceived as guilty. PMID:23386821
Tu, Jing-yi; Zhu, Ying; Shang, Shu-ling; Zhang, Xi; Tang, Hui; Wang, Rui-min
2016-02-18
To design Keap1-tat peptide and explore its neuroprotective role on hipocampal CA1 neuron, as well as the effect on spacial learning and memory function following global cerebral ischemia. Adult male Sprague Dawley (SD) rats were subjected to global cerebral ischemia (GCI) by four-vessel occlusion for 15 min and randomly divided into five groups: sham, sham+Keap1-tat, ischemia/reperfusion (I/R), Keap1-tat peptide- and vehicle-administrated groups. For Keap1-tat or vehicle groups, the rats were treated with Keap1-tat (30, 50, 100 μg in 5 μL 0.9% saline) or the same volume vehicle by intracerebroventricular injection (icv) 30 min prior to ischemia. Cresyl violet staining was used to observe the surviving neurons and 4-hydroxy-2-noneal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunostaining were used to detect the change of markers response to oxidative stress in hippocampal CA1 region. The spatial learning and memory function of the rats was evaluated using Morris water maze. Compared with sham group, the number of surviving neurons in ischemia-reperfusion and vehicle groups significantly decreased in the hippocampal CA1 region (P<0.05), while administration of Keap1-tat significantly decreased the damage following GCI (P<0.05), and the dose of 50 μg existed the most effective neuroprotective role. Furthermore, immunostaining intensity of 4-HNE and 8-OHdG, markers of oxidative stress damage attenuated by Keap1-tat peptide as compared with vehicle group in CA1 region. Of significant interest, the time of finding underwater platform in Keap1-tat group animals was significantly short, and after removing the platform, the probe time of Keap1-tat group animals in the original quadrant where the platform was significantly increased compared with that of vehicle and I/R group animals (P<0.05). Keap1-tat peptide can effectively attenuate neuronal damage in hippocampal CA1 region and improve learning and memory function, which might bedue to the attenuation of oxidative stress caused by GCI.
An experimental system for symmetric capacitive rf discharge studies
NASA Astrophysics Data System (ADS)
Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
1990-09-01
An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.
The Physical Study of Atmospheric Luminous Anomalies and the SETV Hypothesis
NASA Astrophysics Data System (ADS)
Teodorani, M.
2002-04-01
On the basis of statistical calculations on galactic migration which bring the necessity of insertion of a new parameter inside the Drake formula, the work-hypothesis named SETV predicts that exogenous vehicles and/or probes may have reached the Solar System too, including Earth. The technology which is now available is able to allow sensing operations both in the extreme borders of the solar system and on our own planet. The possible presence of probes of possible extraterrestrial origin on our planet may be ascertained by using a network of sensing stations which are placed in critical areas. One of them is the norwegian area of Hessdalen, where the two scientific explorative missions of `Project EMBLA' have carried out measurements which demonstrate the existence of all the anomalies of the luminous phenomenon which is present there. At present nothing proves scientifically that our planet is being visited by alien intelligences, nevertheless the remarkable peculiarity which was learnt in some areas of recurrence demonstrate that the verified phenomenology, of extreme importance for fundamental physics, presents characteristics which deserve a further investigation with highly sophisticated instrumentation.
Reactive underwater object inspection based on artificial electric sense.
Lebastard, Vincent; Boyer, Frédéric; Lanneau, Sylvain
2016-07-26
Weakly electric fish can perform complex cognitive tasks based on extracting information from blurry electric images projected from their immediate environment onto their electro-sensitive skin. In particular they can be trained to recognize the intrinsic properties of objects such as their shape, size and electric nature. They do this by means of novel perceptual strategies that exploit the relations between the physics of a self-generated electric field, their body morphology and the ability to perform specific movement termed probing motor acts (PMAs). In this article we artificially reproduce and combine these PMAs to build an autonomous control strategy that allows an artificial electric sensor to find electrically contrasted objects, and to orbit around them based on a minimum set of measurements and simple reactive feedback control laws of the probe's motion. The approach does not require any simulation models and could be implemented on an autonomous underwater vehicle (AUV) equipped with artificial electric sense. The AUV has only to satisfy certain simple geometric properties, such as bi-laterally (left/right) symmetrical electrodes and possess a reasonably high aspect (length/width) ratio.
Cassini / Huygens at Saturn and Titan
NASA Technical Reports Server (NTRS)
Mitchell, Robert T.
2005-01-01
The Cassin/Huygens Project is a joint undertaking between NASA, the European Space Agency, and the Italian Space Agency to conduct an in-depth exploration of the Saturnian system. The spacecraft consists of an orbiter vehicle and an atmospheric probe which has completed its mission in the atmosphere and on the surface of Titan, the largest moon of Saturn. The spacecraft was launched on October 15, 1997, has completed its nearly seven years of interplanetary flight, and by the time of the 56th IAC, it will have completed 17 of its planned 75 orbits during its four-year prime orbital mission. This paper gives an overview of the mission, and describes in detail the accomplishments and events over the past year, including the spectacularly successful descent of the .European Space Agency's Huygens probe to the surface of Titan. Initial scientific results from both the Huygens mission as well as from the first one-and-a-quarter years of orbiting Saturn are summarized. The plans for the remainder of the orbiter's tour of the Saturn system and the many flybys of Titan and the smaller icy satellites are described.
Matrix phased array (MPA) imaging technology for resistance spot welds
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Gleeson, Sean T.
2014-02-01
A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.
POEMMA (Probe Of Extreme Multi-Messenger Astrophysics) Science and Design
NASA Astrophysics Data System (ADS)
Olinto, Angela V.; Perkins, Jeremy S.; POEMMA Collaboration
2018-01-01
In this poster we describe the preliminary design of POEMMA (Probe Of Extreme Multi-Messenger Astrophysics). The two satellites flying in formation consists of an innovative Schmidt telescope design optimized for low energy threshold and large geometry factor for observations. The 4 meter mirror was designed to fit in a dual manifest launch vehicle. A novel corrector lens and fast optics are design to optimized the full field of view to 45 degrees. The large focal surface will be populated by two systems: a multi-anode PMT (MAPMT) array for fluorescence detection and a Silicon PM (SiPM) array for Cherenkov detection around the limb of the Earth. At an altitude of 525 km, the LEO orbit will have a 28.5o inclination the mission can be launched from KSC and have a mission life of 3 years with a 5 year goal. The mission will improve by orders of magnitude the observations of ultra-high energy cosmic rays above tens of EeV and search for neutrinos above tens of PeVs.
Large deflections and vibrations of a tip pulled beam with variable transversal section
NASA Astrophysics Data System (ADS)
Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.
2016-10-01
The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.
Matrix phased array (MPA) imaging technology for resistance spot welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Jeong K.; Gleeson, Sean T.
2014-02-18
A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth ofmore » scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.« less
Aerothermodynamics research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Deiwert, George S.
1987-01-01
Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.
1977-01-01
A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.
2000-06-19
A specially equipped Cessna Citation aircraft flies over KSC during a calibration test of field mills used to measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information on this study can be found in Release No. 56-00
2000-06-19
A specially equipped Cessna Citation aircraft flies over KSC during a calibration test of field mills used to measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information on this study can be found in Release No. 56-00
Aeronautics and space report of the President, 1982 activities
NASA Technical Reports Server (NTRS)
1983-01-01
Achievements of the space program are summerized in the area of communication, Earth resources, environment, space sciences, transportation, aeronautics, and space energy. Space program activities of the various deprtments and agencies of the Federal Government are discussed in relation to the agencies' goals and policies. Records of U.S. and world spacecraft launchings, successful U.S. launches for 1982, U.S. launched applications and scientific satellites and space probes since 1975, U.S. and Soviet manned spaceflights since 1961, data on U.S. space launch vehicles, and budget summaries are provided. The national space policy and the aeronautical research and technology policy statements are included.
1997-07-22
Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., work on the lifting fixture that picks up the Cassini spacecraft in KSC’s Payload Hazardous Servicing Facility. The orbiter alone weighs about 4,750 pounds (2,150 kilograms). At launch, the combined orbiter, Huygens probe, launch vehicle adapter, and propellants will weigh about 12,346 pounds (5,600 kilograms). Scheduled for launch in October, the Cassini mission, a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. JPL is managing the Cassini project for NASA
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Reentry Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2014-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPEs first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPEs configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.
NASA Astrophysics Data System (ADS)
Yu, Shuiyuan; Xu, Chunshan
2014-12-01
Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
A high-angle-of-attack flush airdata sensing system was installed and flight tested on the F-18 High Alpha Research Vehicle at NASA-Dryden. This system uses a matrix of pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack, angles of sideslip, dynamic pressure, and static pressure as well as other airdata parameters. Results presented use an arrangement of 11 symmetrically distributed ports on the aircraft nose. Experience with this sensing system data indicates that the primary concern for real-time implementation is the detection and management of overall system and individual pressure sensor failures. The multiple port sensing system is more tolerant to small disturbances in the measured pressure data than conventional probe-based intrusive airdata systems. However, under adverse circumstances, large undetected failures in individual pressure ports can result in algorithm divergence and catastrophic failure of the entire system. How system and individual port failures may be detected using chi sq. analysis is shown. Once identified, the effects of failures are eliminated using weighted least squares.
NASA's advanced space transportation system launch vehicles
NASA Technical Reports Server (NTRS)
Branscome, Darrell R.
1991-01-01
Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.
Statistical characterization of the optical interaction at a supercavitating interface
NASA Astrophysics Data System (ADS)
Walters, Gage; Kane, Tim; Jefferies, Rhett; Antonelli, Lynn
2016-05-01
The optical characteristics of an air/water interface have been widely studied for natural interface formations. However, the creation and management of artificial cavities creates a complicated interaction of gas and liquid that makes optical sensing and communication through the interface challenging. A ventilated cavity can reduce friction in underwater vehicles, but the resulting bubble drastically impedes optical and acoustic communication propagation. The complicated interaction at the air/water boundary yields surface waves and turbulence that make modeling and compensating of the optical properties difficult. Our experimental approach uses a narrow laser beam to probe the surface of the interface and measure the beam deflection and lensing effects. Using a vehicle model with a cavitator in a water tunnel, a laser beam is propagated outward from the model through the boundary and projected onto a target grid. The beam projection is captured using a high-speed camera, allowing us to measure and analyze beam shape and deflection. This approach has enabled us to quantify the temporal and spatial periodic variations in the beam propagation through the cavity boundary and fluid.
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
European Mobile Satellite Services (EMSS): A regional system for Europe
NASA Technical Reports Server (NTRS)
Loisy, C.; Edin, P.; Benedicto, F. J.
1995-01-01
The European Space Agency is presently procuring two L-band payloads in order to promote a regional system for the provision of European Mobile Satellite Services (EMSS). These are the EMS payload on the Italsat I-F2 satellite and the LLM payload on the ARTEMIS satellite. Telecommunication system studies have been concentrating on mobile applications where full European geographical coverage is required. Potential applications include high priority Private Mobile Radio networks requiring national or European coverage, such as civil security, fire brigades, police and health services, as well as a dedicated system for provision of Air Traffic Services to the civil aviation community. A typical application is an intelligent road traffic management system combining a geographically selective traffic data collection service based on probe vehicles with a geographically selective traffic information broadcast service. Network architectures and bearer services have been developed both for data only and voice/data services. Vehicle mounted mobile transceivers using CDMA access techniques have been developed. The EMSS operational phase will start with the EMS payload in orbit in 1996 and continue with the LLM payload in 1997.
Controlling a robot with intention derived from motion.
Crick, Christopher; Scassellati, Brian
2010-01-01
We present a novel, sophisticated intention-based control system for a mobile robot built from an extremely inexpensive webcam and radio-controlled toy vehicle. The system visually observes humans participating in various playground games and infers their goals and intentions through analyzing their spatiotemporal activity in relation to itself and each other, and then builds a coherent narrative out of the succession of these intentional states. Starting from zero information about the room, the rules of the games, or even which vehicle it controls, it learns rich relationships between players, their goals and intentions, probing uncertain situations with its own behavior. The robot is able to watch people playing various playground games, learn the roles and rules that apply to specific games, and participate in the play. The narratives it constructs capture essential information about the observed social roles and types of activity. After watching play for a short while, the system is able to participate appropriately in the games. We demonstrate how the system acts appropriately in scenarios such as chasing, follow-the-leader, and variants of tag. Copyright © 2009 Cognitive Science Society, Inc.
NASA'S Space Launch System: Progress Toward the Proving Ground
NASA Technical Reports Server (NTRS)
Jackman, Angie; Johnson, Les
2017-01-01
With significant and substantial progress being accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight – using an upgraded version of the vehicle – and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and together with the Orion spacecraft will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 metric tons. For that flight, the new configuration introduces two major new elements to the vehicle – an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a “payload bay” for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Beyond the second flight, additional upgrades will be made to the vehicle. The Block 1B vehicle will also be able to launch 8.4-meter-diameter payload fairings, larger than any previously flown, and the Spacecraft Payload Integration and Evolution (SPIE) Element will oversee development and production of those fairings. Ultimately, SLS will be evolved to a Block 2 configuration, which will replace the solid rocket boosters on the Block 1 and 1B vehicles with more powerful boosters, and will be capable of delivering at least 130 metric tons to LEO. The Block 2 vehicle will be capable of launching even larger 10-meter diameter fairings, which will enable human mission of Mars. With these fairings, the Block 1B and 2 configurations of SLS will also be enabling for a wide variety of other payloads. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. This paper will provide a description of the SLS vehicle, and an overview of the vehicle’s capabilities and utilization potential.
NASA Astrophysics Data System (ADS)
Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.
1990-12-01
An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.
Zulfakar, Mohd Hanif; Chan, Lee Mei; Rehman, Khurram; Wai, Lam Kok; Heard, Charles M
2018-04-01
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
Space Experiments with Particle Accelerators (SEPAC)
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.
1982-01-01
Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.
Planetary explorer liquid propulsion study
NASA Technical Reports Server (NTRS)
Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.
1971-01-01
An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.
OTVE turbopump condition monitoring, task E.5
NASA Technical Reports Server (NTRS)
Coleman, Paul T.; Collins, J. J.
1989-01-01
Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.
1985-07-01
Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Tim Dunn, NASA launch director at Kennedy; and Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
2000-06-19
In a hangar at Cape Canaveral Air Force Station, a Cessna Citation aircraft has been fitted on the wings with devices that measure electric fields (black circles shown behind the open door) and with cloud physics probes (under the body and wings) that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
In a hangar at Cape Canaveral Air Force Station, a Cessna Citation aircraft has been fitted on the wings with devices that measure electric fields (black circles shown behind the open door) and with cloud physics probes (under the body and wings) that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay
2007-01-01
A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Koshti, Ajay
2006-01-01
A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
Design of an unmanned Martian polar exploration system
NASA Technical Reports Server (NTRS)
Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony
1994-01-01
The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.
Monteiro-Riviere, Nancy A; Baynes, Ronald E; Riviere, Jim E
2003-02-01
Gulf War personnel were given pyridostigmine bromide (PB) as a prophylactic treatment against organophosphate nerve agent exposure, and were exposed to the insecticide permethrin and the insect repellent N,N-diethyl-m-toluamide (DEET). The purpose of this study was to assess the effects of PB to modulate release of inflammatory biomarkers after topical chemical exposure to chemical mixtures containing permethrin and DEET applied in ethanol or water vehicles. Treatments were topically applied to isolated perfused porcine skin flaps (IPPSFs). Concentrations of interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)) were assayed in perfusate to probe for potential inflammatory effects after complex mixture application. IPPSFs (n=4/treatment) were topically dosed with mixtures of permethrin, DEET, and permethrin/DEET, in ethanol. Each treatment was repeated with perfusate spiked with 50 ng/ml of PB. Perfusate was also spiked with 30 ng/ml diisopropylfluorophosphate to simulate low level organophosphate nerve agent exposure. Timed IPPSF venous effluent samples (0.5,1,2,4, and 8 h) were assayed by ELISA for IL-8 and TNF-alpha and by EIA for PGE(2). Overall, PB infusion caused a decrease or IL-8 and PGE(2) release. Effects on TNF-alpha were vehicle dependent. To probe the potential mechanism of this PB effect, human epidermal keratinocyte HEK cell cultures were exposed to permethrin DEET permethrin/DEET, with and without PB in DMSO. IL-8 was assayed at 1, 2, 4, 8, 12 and 24 h. PB suppressed IL-8 in permethrin and ethanol treatment from 4 to 24 h confirming the IPPSF results. In conclusion, these studies suggest that systemic exposure to PB suppressed IL-8 release at multiple time points in two skin model systems. This interaction merits further study.
NASA Technical Reports Server (NTRS)
Hartman, William; Koontz, Steven L.
2010-01-01
Electrical charging of the International Space Station (ISS) is a matter of serious concern resulting from the possibility of vehicle arcing and electrical shock hazard to crew during extravehicular activity (EVA). A Plasma Contactor Unit (PCU) was developed and integrated into ISS in order to control the ISS floating potential, thereby, minimize vehicle charging and associated hazards. One of the principle factors affecting ISS electrical charging is the ionosphere plasma state (i.e., electron temperature and density). To support ISS electrical charging studies a Floating Potential Monitoring Unit (FPMU) is also integrated into ISS in order to measure the ionosphere properties using Langmuir probes (LP). The FPMU was located on the Starboard side of ISS. The PCU is located near the center of ISS with its plasma exhaust pointed to port. From its integration on ISS in 2006 through November of 2009, the FPMU data exhibited nominal characteristics during PCU operation. On November 21, 2009 the FPMU was relocated from the Starboard location to a new Port location. After relocation significant enhanced noise was observed in both the LP current-voltage sweeps and the derived electron temperature data. The enhanced noise only occurred when the PCU was in discharge and at unique and repeatable locations of the ISS orbit. The cause of this enhanced noise was investigated. It was found that there is coupling occurring between the PCU plasma and the FPMU LP. In this paper we shall 1) present the on-orbit data and the presence of enhanced noise, 2) demonstrate that the coupling of the PCU plasma and the FPMU measurements is geomagnetically organized, 3) show that coupling of the PCU plasma and the FPMU is primarily due to and driven by particle-wave interaction and 4) show that the ionosphere conditions are adequate for Alfven waves to be generated by the PCU plasma.
ATV GNC flight performance and lessons learned
NASA Astrophysics Data System (ADS)
Mongrard, O.; Cavrois, B.; Ankersen, F.; Dubois-Matra, O.; Zink, M.; Vergnol, A.; Piquemal, E.; Pionnier, G.; Southivong, U.
2018-06-01
ESA's fifth and final Automated Transfer Vehicle (ATV), Georges Lemaître, performed its fully automated rendezvous and docking with the International Space Station (ISS) on August 12, 2014. The ATV's navigation sensors have shown their worth docking the 20-ton vehicles with aft port of the Space Station, manoeuvring into position and docking with an excellent accuracy. For the second consecutive time after ATV-4, the accuracy at docking was such that the ATV probe head was directly captured inside the Zvezda docking mechanism without contact with the receiving cone. From 30 km and down to a distance of 250 m, ATV uses GPS (Global Positioning System) information from its own receiver and the Station's that is transmitted over a radiofrequency link. As it moves closer, ATV switches to laser navigation, using the reflection of laser pulses on reflectors mounted on the Space Station. This paper presents the achievements and performance of ATV GNC (Guidance, Navigation, and Control) across the 5 missions for both types of navigation. It will also discuss the observations made during the various flights regarding unforeseen conditions such as space environment or target pattern contamination having a potential impact on performance and how they were resolved.
Materials Testing on the DC-X and DC-XA
NASA Technical Reports Server (NTRS)
Smith, Dane; Carroll, Carol; Marschall, Jochen; Pallix, Joan
1997-01-01
Flight testing of thermal protection materials has been carried out over a two year period on the base heat shield of the Delta Clipper (DC-X and DC-XA), as well on a body flap. The purpose was to use the vehicle as a test bed for materials and more efficient repair or maintenance processes which would be potentially useful for application on new entry vehicles (i.e., X-33, RLV, planetary probes), as well as on the existing space shuttle orbiters. Panels containing Thermal Protection Systems (TPS) and/or structural materials were constructed either at NASA Ames Research Center or at McDonnell Douglas Aerospace (MDA) and attached between two of the four thrusters in the base heat shield of the DC-X or DC-XA. Three different panels were flown on DC-X flights 6, 7, and 8. A total of 7 panels were flown on DC-XA flights 1, 2, and 3. The panels constructed at Ames contained a variety of ceramic TPS including flexible blankets, tiles with high emissivity coatings, lightweight ceramic ablators and other ceramic composites. The MDS test panels consisted primarily of a variety of metallic composites. This report focuses on the ceramic TPS test results.
Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters
NASA Astrophysics Data System (ADS)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj
2018-04-01
Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.
Aerocapture Technology Development for Planetary Science - Update
NASA Technical Reports Server (NTRS)
Munk, Michelle M.
2006-01-01
Within NASA's Science Mission Directorate is a technological program dedicated to improving the cost, mass, and trip time of future scientific missions throughout the Solar System. The In-Space Propulsion Technology (ISPT) Program, established in 2001, is charged with advancing propulsion systems used in space from Technology Readiness Level (TRL) 3 to TRL6, and with planning activities leading to flight readiness. The program's content has changed considerably since inception, as the program has refocused its priorities. One of the technologies that has remained in the ISPT portfolio through these changes is Aerocapture. Aerocapture is the use of a planetary body's atmosphere to slow a vehicle from hyperbolic velocity to a low-energy orbit suitable for science. Prospective use of this technology has repeatedly shown huge mass savings for missions of interest in planetary exploration, at Titan, Neptune, Venus, and Mars. With launch vehicle costs rising, these savings could be the key to mission viability. This paper provides an update on the current state of the Aerocapture technology development effort, summarizes some recent key findings, and highlights hardware developments that are ready for application to Aerocapture vehicles and entry probes alike. Description of Investments: The Aerocapture technology area within the ISPT program has utilized the expertise around NASA to perform Phase A-level studies of future missions, to identify technology gaps that need to be filled to achieve flight readiness. A 2002 study of the Titan Explorer mission concept showed that the combination of Aerocapture and a Solar Electric Propulsion system could deliver a lander and orbiter to Titan in half the time and on a smaller, less expensive launch vehicle, compared to a mission using chemical propulsion for the interplanetary injection and orbit insertion. The study also identified no component technology breakthroughs necessary to implement Aerocapture on such a mission. Similar studies of Aerocapture applications at Neptune, Venus, and Mars were studied in 2003 through 2005. All showed significant performance improvements for the missions studied. Findings from these studies were used to guide the technology development tasks originally solicited in a 2002 NASA ROSS Research Announcement. The tasks are now in their final year and have provided numerous improvements in modeling and hardware, for use in proposals or new mission starts. Major Accomplishments: Since validation of the Aerocapture maneuver requires a space flight, ground developments have focused on modeling and environment prediction, materials, and sensors. Lockheed Martin has designed and built a 2-meter Carbon-Carbon aeroshell "hot structure." The article utilizes co-cured stiffening ribs and advanced insulation to achieve large scale, and up to a 40% reduction in areal density over the Genesis probe construction. This concept would be an efficient solution for probes that experience heat rates near 800-1000 W/cm(exp 2), such as at Venus and Earth. Applied Research Associates has extensively tested a family of efficient ablative TPS materials that provide solutions for a range of heating conditions. These materials are being applied to high-temperature structures built by ATK Space Systems, led by Langley Research Center. One-meter aeroshells will be thermally tested to validate construction and demonstrate higher bondline temperatures, which can lead to mass savings of up to 30% over traditional heatshields. Ames Research Center has developed aeroshell instrumentation that could measure environmental conditions and material performance during atmospheric entry. Instruments to measure TPS recession, heat flux, and catalycity could be combined with traditional sensors to provide a "plug-and-play" system for minimal mass and power, that would acquire flight data for model improvement and risk reduction on future missions. Improved atmospheric and aerothermodynamic models ha also been a major focus of the program. Next Steps: Aerocapture is one of five technologies in competition for a flight validation opportunity through the New Millennium Program. If selected, a fully autonomous vehicle will perform an Aerocapture at Earth in 2010, and flight data will be used to validate the guidance system and the TPS material for science mission infusion.
Arbeille, Ph; Ruiz, J; Ayoub, J; Vieyres, P; Porcher, M; Boulay, J; Moreau, V; Poisson, G
2004-07-01
The objective was to design and validate a method for tele-operating (from an expert site) an echographic examination in an isolated site. The isolated places, defined as areas with reduced medical facilities, could be secondary hospitals 20 to 50 km from the university hospital, or dispensaries in Africa or Amazonia, or a moving structure like a rescue vehicle or the International Space Station (ISS). At the expert center, the ultrasound medical expert moves a fictive probe, connected to a computer (n degrees 1) which sends, the coordinate changes of this probe via an ISDN or satellite line to a second computer (n degrees 2), located at the isolated site, which applies them to the robotic arm holding the real echographic probe. The system was tested at Tours Hospital on 105 patients. A complete investigation (visualization) of all the organs requested for different clinical cases was obtained in 76% of the cases with the robot, and 87% at the reference echography: In 11% of the cases, at least one of the organ visualized at reference echo could not be investigated by the robot, thus the diagnostic was not done. The number of repositioning was higher for the robot (6.5 +/- 2) than for the reference echo (5.1 +/- 2 = or > 24% more with robot). The duration of the examination was higher with the robot (16 +/- 10 min) than for the reference echography (11 +/- 4 min = or > +43% with the robot compare to reference echography. The system was also tested successfully using satellite links in a limited number of cases (approx 30).
NASA Technical Reports Server (NTRS)
1988-01-01
Macrodyne, Inc.'s laser velocimeter (LV) is a system used in wind tunnel testing of aircraft, missiles and spacecraft employing electro optical techniques to probe the flow field as the tunnel blows air over a model of flight vehicle and to determine velocity of air and its direction at many points around the model. However, current state-of-the-art minicomputers cannot handle the massive flow of real time data from several sources simultaneously. Langley developed instrument Laser Velocimeter Autocovariance Buffer Interface (LVABI). LVABI is interconnecting instrument between LV and computer. It acquires data from as many as six LV channels at high real time data rates, stores it in memory and sends it to computer on command. LVABI has application in variety of research, industrial and defense functions requiring precise flow measurement.
Transport System for Delivery Tourists At Altitude 140 km
NASA Technical Reports Server (NTRS)
Bolonkin, Alexander
2002-01-01
The author offers a new method and installation for flight in space. This method uses the centrifugal force of a rotating circular cable that provides a means for the launch of a payload into outer space, to keep the fixed space stations at high altitudes (up to 200 km). The method may also be useful for landing to space bodies, for launching of the space ships (crafts), and for moving and accelerating other artificial apparatuses. The offered installation may be used as a propulsion system for space ships and/or probes. This system uses the material of any space body (i.e. stones) for acceleration and change of the space vehicle trajectory. The suggested system may be also used as a high capacity energy accumulator.
2000-06-19
KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, a specially equipped Cessna Citation aircraft flies over the runway to calibrate the Cesna's field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at center). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.
2000-06-19
KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, a specially equipped Cessna Citation aircraft flies over the runway to calibrate the Cesna's field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at center). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.
NASA #837 Tribute The Jet with a Thousand Faces
NASA Technical Reports Server (NTRS)
Rhoades, Carrie M.
2009-01-01
This slide presentation reviews the TF-1 (later designated as an F-15B) aircraft, which was delivered as an F-15 trainer. The aircraft was used as a test aircraft for various programs. The aircraft was later renamed to NASA 837 in 2001. Prior to its retirement it was used to test various features and concepts. Some of these tests were: (1) Canopy Off Testing, (2) STOL and Maneuvering Technology Demonstrator (S/MTD), (3) 2D Nozzles (4) Autonomous landing guidance, (5) Advanced Control Technology for Integrated Vehicles (ACTIVE), (6) Intelligent Flight Control System (IFCS), (7) Structural Loads Model Validation (SLMV), (8) Enhanced Communication and Navigation System (ECANS), (9) QuietSpike Probing, and (10) Lift and Nozzle Effects on Tail Shocks (LaNCETS)
2000-06-19
In a hangar at Cape Canaveral Air Force Station, a weather researcher checks a field mill measuring device on the Cessna Citation. The aircraft is being used for NASA’s airborne field mill study. The plane also carries cloud physics probes (under the body and wings) that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
In a hangar at Cape Canaveral Air Force Station, a weather researcher checks a field mill measuring device on the Cessna Citation. The aircraft is being used for NASA’s airborne field mill study. The plane also carries cloud physics probes (under the body and wings) that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
STS-34 Atlantis, Orbiter Vehicle (OV) 104, lifts off from KSC LC Pad 39B
1989-10-18
STS034-S-025 (18 Oct 1989) --- The STS-34 Space Shuttle Atlantis lifts off from Launch Pad 39-B at 2:53:39:983 p.m. (EDT), marking the beginning of a five-day mission in space. Atlantis carries a crew of five and the spacecraft Galileo, along with a number of other scientific experiments. The Jupiter-bound probe will be deployed from Atlantis some six hours after launch. The journey to the giant planet is expected to take over six years. Crewmembers for the mission are astronauts Donald E. Williams, Michael J. McCulley, Shannon W. Lucid, Franklin R. Chang-Diaz and Ellen S. Baker. The scene was recorded with a 70mm camera.
The Future of Cysteine Cathepsins in Disease Management.
Kramer, Lovro; Turk, Dušan; Turk, Boris
2017-10-01
Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Architectural Implementation of NASA Space Telecommunications Radio System Specification
NASA Technical Reports Server (NTRS)
Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.
2012-01-01
This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians lower NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft toward the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians lower NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft toward the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians check the placement of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft on the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft is being prepared for a move to an payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft will be installed on this payload attach fitting that will eventually be mated to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians prepare the payload attach fitting that will receive NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians check the attachment of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft on the payload attach fitting. The fitting will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians prepare NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft for its move to the payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
Capacitance probe for detection of anomalies in non-metallic plastic pipe
Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.
2010-11-23
The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.
Optical communications for transport aircraft
NASA Technical Reports Server (NTRS)
Stengel, Robert
1994-01-01
Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.
Cipolla, Marilyn J; Linfante, Italo; Abuchowski, Abe; Jubin, Ronald; Chan, Siu-Lung
2018-05-01
Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.
Welded Titanium Case for Space-Probe Rocket Motor
NASA Technical Reports Server (NTRS)
Brothers, A. J.; Boundy, R. A.; Martens, H. E.; Jaffe, L. D.
1959-01-01
Early in 1958, the Jet Propulsion Laboratory of the California Institute of Technology was requested to participate in a lunar-probe mission code-named Juno II which would place a 15-lb Instrumented payload (Pioneer IV) in the vicinity of the moon. The vehicle was to use the same high-speed upper-stage assembly as flown on the successful Jupiter-C configuration; however, the first-stage booster was to be a Jupiter rather than a Redstone. An analysis of the intended flight and payload configuration Indicated that the feasibility of accomplishing the mission was questionable and that additional performance would have to be obtained if the mission was to be feasible. Since the most efficient way of Increasing the performance of a staged vehicle is to increase the performance of the last stage, a study of possible ways of doing this was made.. Because of the time schedule placed on this effort It was decided to reduce the weight of the fourth-stage rocket-motor case by substituting the annealed 6Al--4V titanium alloy for the Type 410 stainless steel. Although this introduced an unfamiliar material, It reduced the changes in design and fabrication techniques. This particular titanium alloy was chosen on the basis of previous tests which proved the suitability of the alloy as a pressure-vessel material when used at an annealed yield strength of about 120, 000 psi. The titanium-case fourth stage of Juno U is shown with the payload and on the missile in Fig. 1; the stainless-steel motor cases used in the Jupiter-C vehicle are shown in Fig. 2. The fourth-stage motor case has a diameter of 6 in., a length of approximately 38 in. center dot and a nominal cylindrical wall thickness of 0.025 in. As shown in Fig. 1, the case serves as the structural support of the payload and is aligned to the upper stage assembly through an alignment ring. The nozzle is threaded into the end of the motor case, and is of the ceramic-coated steel design. Figure 3 shows a comparison of the components used to make the stainless steel and the 6A1--4V titanium alloy cases. The forward dome and aft fitting for the stainless steel assembly were fabricated from a combination of forged, spun and machined parts.. In order to facilitate the fabrication of the titanium alloy motor ) these components were machined from a large-diameter billet.
Flowfield Analysis of a Small Entry Probe (SPRITE) Tested in an Arc Jet
NASA Technical Reports Server (NTRS)
Prabhu, Dinesh K.
2012-01-01
A novel concept of small size (diameter less than 15 inches) entry probes named SPRITE (Small Probe Re-entry Investigation for TPS Engineering) has been developed at NASA Ames Research Center (ARC). These flight probes have on-board data acquisition systems that have also been developed in parallel at NASA ARC by Greg Swanson1. Flight probes of this size facilitate testing over a wide range of conditions in arc jets available at NASA ARC, thereby fulfilling a 'test what you fly' paradigm. As indicated by the acronym, these probes, with suitably tailored trajectories, are primarily meant to be robotic flight test beds for TPS materials, although the design is flexible enough to accommodate additional objectives of flight-testing other vehicle subsystems. A first step towards establishing the feasibility of the SPRITE concept is to arc-jet test fully instrumented models at flight scale. In a follow-on to the Large-Scale Article Tests (LSAT2) performed in the 60 MW Interaction Heating Facility (IHF) in late 2008/early 2009, a full-scale model of Deep Space-2 (DS23) made of red oak was tested in the 20 MW Aerodynamic Heating Facility (AHF). There were no issues with mass capture by the diffuser for blunt bodies of roughly 15 inches diameter tested in the 18-inch nozzle of the AHF. Building on this initial success, two identical test articles - SPRITE-T1-1 and SPRITE-T1-2 (T1 indicating the choice of back shell geometry) - were fabricated, and one of them, SPRITE-T1-1, was tested in the AHF recently. Both these test articles, 14 inches in diameter, have a 45deg sphere-cone (like DS2) made of PICA bonded on to a 1/8th inch thick aluminum shell using RTV. The aft portion of the test article is a conical frustum (15deg cone angle) with LI-2200 bonded on to the aluminum shell. Each model is fully instrumented with: (a) thermocouples imbedded in plugs in the heat shield, (b) thermocouples bonded to the aluminum substructure; the thermocouples are distributed over the entire shell, and (c) a few strain gages. Data from some of the thermocouples and gages are acquired by the on-board data acquisition system (DAS), while data from the others are routed to the facility-provided DAS, thereby enabling a cross check on the in situ measurement capability. as inputs to v2.6.1 of the in-house materials thermal response code, FIAT
Probing the intracellular fate of supramolecular nanocarriers and their cargo with FRET schemes
NASA Astrophysics Data System (ADS)
Thapaliya, Ek Raj; Fowley, Colin; Callan, Bridgeen; Tang, Sicheng; Zhang, Yang; Callan, John F.; Raymo, Françisco M.
2017-02-01
We designed a strategy to monitor self-assembling supramolecular nanocarriers and their cargo simultaneously in the intracellular space with fluorescence measurements. It is based on Förster resonance energy transfer (FRET) between complementary chromophores covalently integrated in the macromolecular backbone of amphiphilic polymers and/or noncovalently encapsulated in supramolecular assemblies of the amphiphilic components. Indeed, these polymers assemble into a micelles in aqueous phase to bring energy donors and acceptors in close proximity and allow energy transfer. The resulting supramolecular assemblies maintain their integrity after travelling into the intracellular space and do not lose their molecular guests in the process. Furthermore, this mechanism can also be exploited to probe the fate of complementary nanoparticles introduced within cells in consecutive incubation steps. Efficient energy transfer occurs in the intracellular space after the sequential incubation of nanocarriers incorporating donors first and then nanoparticles containing acceptors or vice versa. The two sets of nanostructured assemblies ultimately co-localize in the cell interior to bring donors and acceptors together and enable energy transfer. Thus, this protocol is particularly valuable to monitor the transport properties of supramolecular nanocarriers inside living cells and can eventually contribute to the fundamental understating of the ability of these promising vehicles to deliver contrast agents and/or drugs intracellularly in view of possible diagnostics and/or therapeutic applications.
Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method
Chen, Chao-I; Koseluk, Robert; Buchanan, Chase; Duerner, Andrew; Jeppesen, Brian; Laux, Hunter
2015-01-01
An essential capability for an unmanned aerial vehicle (UAV) to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR). This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC) algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously. PMID:25970254
Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility
NASA Technical Reports Server (NTRS)
Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.
2017-01-01
The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.
Zhang, Hongyu; Zhang, Kai; Li, Zhe; Zhao, Jihui; Zhang, Yongtai; Feng, Nianping
2017-01-01
In this study, the skin permeation of liposomes containing psoralen was investigated by in vivo skin microdialysis. Psoralen-loaded nano-sized liposomes were prepared with a mean size of 117.5 nm and a polydispersity index of 0.21, indicating the uniform dispersion of phosphatidylcholine vesicles in the liposomal solution. Based on in vivo microdialysis experiments, the drug concentration in local deep skin of rat increased rapidly and reached a peak concentration (C max ) of 319.35±23.72 µg/mL at 180 min, and decreased slowly thereafter. The local area under the concentration-time curve (AUC) 0-t was 3.81-fold higher than the compared aqueous suspension. The in vivo systemic pharmacokinetics were in agreement with the microdialysis results, in view of the C max and AUC 0-t from liposomal group were both significantly higher (p<0.05) than the compared group. Liposome-associated transdermal psoralen delivery was significantly more effective than delivery via an aqueous suspension. The enhanced skin permeability may be associated with improved skin hydration, lipid exchange and fusion with the stratum corneum (SC), and changes in SC structure, promoting drug permeation into deep skin. After 10 h of treatment with the perfusate, the microstructure of the microdialysis probe exhibited no obvious differences with control probes. The skin surface and the tissue around the probe showed no swelling or inflammation. These findings indicated that liposomes effectively enhanced the skin deposition of psoralen and showed good biocompatibility with skin tissues; additionally, ethanol at a low concentration in ringer's solution is an alternative perfusate for in vivo skin microdialysis studies.
Alsufyani, Hadeel A; Docherty, James R
2017-08-15
We have investigated gender differences in the effects of cathinone and the interaction with caffeine on temperature and movement activity in Wistar rats. Telemetry probes were implanted in rats under isoflurane anaesthesia, and 7 days later, temperature and activity were recorded in conscious unrestrained animals. Caffeine (10mg/lkg) or vehicle, and 30min later, cathinone (5mg/kg) or vehicle, were injected subcutaneously. Cathinone produced significant and marked increases in activity, and the response to cathinone was significantly greater in female animals. The combination of caffeine and cathinone causes a short lived potentiation followed by a prolonged inhibition of the activity response to cathinone. Cathinone alone had minor effects on temperature. However, the combination of caffeine and cathinone produced a significant acute rise in temperature only in male rats in the 90min after cathinone injection. Hence, cathinone caused greater increases in activity in female than in male rats. Secondly, caffeine produced an initial potentiation followed by a prolonged inhibition of the activity response to cathinone. Thirdly, cathinone in combination with caffeine significantly raised temperature acutely in male but not female rats. These differences highlight the need to carry out gender studies of the actions of stimulants. Copyright © 2017 Elsevier B.V. All rights reserved.
The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids
Contri, Renata V; Frank, Luiza A; Kaiser, Moacir; Pohlmann, Adriana R; Guterres, Silvia S
2014-01-01
Capsaicin, a topical analgesic used in the treatment of chronic pain, has irritant properties that frequently interrupt its use. In this work, the effect of nanoencapsulation of the main capsaicinoids (capsaicin and dihydrocapsaicin) on skin irritation was tested in humans. Skin tolerance of a novel vehicle composed of chitosan hydrogel containing nonloaded nanocapsules (CH-NC) was also evaluated. The chitosan hydrogel containing nanoencapsulated capsaicinoids (CH-NC-CP) did not cause skin irritation, as measured by an erythema probe and on a visual scale, while a formulation containing free capsaicinoids (chitosan gel with hydroalcoholic solution [CH-ET-CP]) and a commercially available capsaicinoids formulation caused skin irritation. Thirty-one percent of volunteers reported slight irritation one hour after application of CH-NC-CP, while moderate (46% [CH-ET-CP] and 23% [commercial product]) and severe (8% [CH-ET-CP] and 69% [commercial product]) irritation were described for the formulations containing free capsaicinoids. When CH-NC was applied to the skin, erythema was not observed and only 8% of volunteers felt slight irritation, which demonstrates the utility of the novel vehicle. A complementary in vitro skin permeation study showed that permeation of capsaicinoids through an epidermal human membrane was reduced but not prevented by nanoencapsulation. PMID:24611011
2006-01-17
KENNEDY SPACE CENTER, FLA. - The Atlas V rocket with the New Horizons spacecraft on top sits waiting on the launch pad at Complex 41 at Cape Canaveral Air Force Station in Florida. The view is from the top of the Vehicle Assembly Building at NASA Kennedy Space Center. Surrounding the launch vehicle are four lightning masts. The launch on this date was scrubbed due to high surface winds in the area and has been rescheduled for 1:16 p.m. EST Jan. 18. The compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The launch at this time allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft. Photo credit: NASA/Kim Shiflett
Nanostructured Thermal Protection Systems for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Arnold, J. O.; Chen, Y. K.; Squire, T.; Srivastava, D.; Allen, G., Jr.; Stackpoole, M.; Goldstein, H. E.; Venkatapathy, E.; Loomis, M. P.
2005-01-01
Strong research and development programs in nanotechnology and Thermal Protection Systems (TPS) exist at NASA Ames. Conceptual studies have been undertaken to determine if new, nanostructured materials (composites of existing TPS materials and nanostructured composite fibers) could improve the performance of TPS. To this end, we have studied various candidate heatshields, some composed of existing TPS materials (with known material properties), to provide a baseline for comparison with others that are admixtures of such materials and a nanostructured material. In the latter case, some assumptions were made about the thermal conductivity and strength of the admixture, relative to the baseline TPS material. For the purposes of this study, we have made the conservative assumption that only a small fraction of the remarkable properties of carbon nanotubes (for example) will be realized in the material properties of the admixtures employing them. The heatshields studied included those for Sharp leading edges (appropriate to out-of-orbit entry and aero-maneuvering), probes, an out-of-orbit Apollo Command Module (as a surrogate for NASA's new Crew Exploration Vehicle [CEV]), a Mars Sample Return Vehicle and a large heat shield for Mars aerocapture missions. We report on these conceptual studies, which show that in some cases (not all), significant improvements in the TPS can be achieved through the use of nanostructured materials.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
A Boundary Scan Test Vehicle for Direct Chip Attach Testing
NASA Technical Reports Server (NTRS)
Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji
2000-01-01
To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.
2015-08-01
Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
NASA Astrophysics Data System (ADS)
Crosbie, A. L.
Aspects of aerothermodynamics are considered, taking into account aerodynamic heating for gaps in laminar and transitional boundary layers, the correlation of convection heat transfer for open cavities in supersonic flow, the heat transfer and pressure on a flat plate downstream of heated square jet in a Mach 0.4 to 0.8 crossflow, the effect of surface roughness character on turbulent reentry heating, three-dimensional protuberance interference heating in high-speed flow, and hypersonic flow over small span flaps in a thick turbulent boundary layer. Questions of thermal protection are investigated, giving attention to thermochemical ablation of tantalum carbide loaded carbon-carbons, the catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, particle acceleration using a helium arc heater, a temperature and ablation optical sensor, a wind-tunnel study of ascent heating of multiple reentry vehicle configurations, and reentry vehicle soft-recovery techniques. Subjects examined in connection with a discussion of planetary entry are related to a thermal protection system for the Galileo mission atmospheric entry probe, the viscosity of multicomponent partially ionized gas mixtures associated with Jovian entry, coupled laminar and turbulent flow solutions for Jovian entry, and a preliminary aerothermal analysis for Saturn entry.
1997-08-22
The Cassini spacecraft is on view for the media in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center, Florida. The two-story-tall spacecraft, scheduled for launch on an Air Force Titan IV/Centaur launch vehicle on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. Cassini carries a scientific probe called Huygens, provided by the European Space Agency. Huygens will be released from the main Cassini spacecraft and parachute through the atmosphere of Saturn's most intriguing moon, Titan, which is thought to chemically resemble a very cold version of Earth's environment before life began. The Cassini mission is managed for NASA by the Jet Propulsion Laboratory, a division of the California Institute of Technology
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.
Integrated operations/payloads/fleet analysis. Volume 2: Payloads
NASA Technical Reports Server (NTRS)
1971-01-01
The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.
2000-06-19
At KSC’s Shuttle Landing Facility, a specially equipped Cessna Citation aircraft flies over the runway to calibrate the Cessna’s field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at right). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about this study can be found in Release No. 56-00
2000-06-19
At KSC’s Shuttle Landing Facility, a specially equipped Cessna Citation aircraft approaches the runway to calibrate the Cessna’s field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at right). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information on this study can be found in Release No. 56-00
2000-06-19
At KSC’s Shuttle Landing Facility, a specially equipped Cessna Citation aircraft approaches the runway to calibrate the Cessna’s field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at right). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information on this study can be found in Release No. 56-00
2000-06-19
At KSC’s Shuttle Landing Facility, a specially equipped Cessna Citation aircraft flies over the runway to calibrate the Cessna’s field mills with field mills on the ground (on the tripod at left) and on the car parked nearby (at right). Field mills measure electric fields. The aircraft is also equipped with cloud physics probes that measure the size, shape and number of ice and water particles in clouds. The plane is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about this study can be found in Release No. 56-00
Analytic theory of orbit contraction and ballistic entry into planetary atmospheres
NASA Technical Reports Server (NTRS)
Longuski, J. M.; Vinh, N. X.
1980-01-01
A space object traveling through an atmosphere is governed by two forces: aerodynamic and gravitational. On this premise, equations of motion are derived to provide a set of universal entry equations applicable to all regimes of atmospheric flight from orbital motion under the dissipate force of drag through the dynamic phase of reentry, and finally to the point of contact with the planetary surface. Rigorous mathematical techniques such as averaging, Poincare's method of small parameters, and Lagrange's expansion, applied to obtain a highly accurate, purely analytic theory for orbit contraction and ballistic entry into planetary atmospheres. The theory has a wide range of applications to modern problems including orbit decay of artificial satellites, atmospheric capture of planetary probes, atmospheric grazing, and ballistic reentry of manned and unmanned space vehicles.
2000-06-19
Lightning field study devices are visible on a Cessna Citation aircraft during flight over Central Florida. The center of the black circle contains one of six field mills, used to measure electric fields, located on the body of the plane. Below the circle is one of several cloud physics probes attached to the plane that measure the size, shape and number of ice and water particles in clouds. The Cessna is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
2000-06-19
Lightning field study devices are visible on a Cessna Citation aircraft during flight over Central Florida. The center of the black circle contains one of six field mills, used to measure electric fields, located on the body of the plane. Below the circle is one of several cloud physics probes attached to the plane that measure the size, shape and number of ice and water particles in clouds. The Cessna is being flown into anvil clouds in the KSC area as part of a study to review and possibly modify lightning launch commit criteria. The weather study could lead to improved lightning avoidance rules and fewer launch scrubs for the Space Shuttle and other launch vehicles on the Eastern and Western ranges.; More information about the study can be found in Release No. 56-00
NASA Astrophysics Data System (ADS)
Lepage, Andrew J.
1993-10-01
Twenty eight years ago the unmanned Soviet space probe, Zond 2, was sailing through interplanetary space towards the planet Mars several weeks behind its much smaller American counterpart, Mariner 4. Though launched just two days apart in November of 1964, Mariner 4 - the sole survivor of American's first attempt to reach Mars by spacecraft - followed a much faster trajectory which would bring it past Mars on July 14, 1965. The American craft was destined to become the first space vehicle to flyby the Red Planet and return close-up data. Zond 2 was scheduled to reach Mars on August 6, 1965, on a relatively slow approach trajectory. Much to the disappointment of the Soviets, Zond 2 ceased communications en route to the Red Planet on May 5, 1965, just three months before completing its mission.
Commissioning the GTA accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sander, O.R.; Atkins, W.H.; Bolme, G.O.
1992-09-01
The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -}more » beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.« less
Commissioning the GTA accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sander, O.R.; Atkins, W.H.; Bolme, G.O.
1992-01-01
The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -}more » beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.« less
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, technicians begin lifting and moving NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft for its move to a payload attach fitting that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-14
CAPE CANAVERAL, Fla. -- At the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft is being prepared for a move to an payload attach fitting, in the foreground, that will eventually be used to mate GLAST to the Delta II launch vehicle. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
Earth Shadows and the SEV Angle of MAP's Lissajous Orbit At L2
NASA Technical Reports Server (NTRS)
Edery, Ariel
2002-01-01
The Microwave Anisotropy Probe (MAP) launched successfully on June 30, 2001 and is presently in a Lissajous orbit about the Sun-Earth libration point L2. To avoid Earth shadows at L2, the Sun-Earth-Vehicle (SEV) angle of MAP has to be greater than 0.5 deg for an extended mission of four years. An equation is derived for the SEV angle in terms of the phase angle, frequencies and amplitudes of the Lissajous. The SEV angle is shown to oscillate with a period of 90.4 days within an amplitude envelope of period 13.9 years. A range of phase angles that avoids shadows is identified. MAP'S present phase angle is within this range and will avoid shadows for approximately 5.8 years.
On-road emissions of CO, CO2 and NOX from four wheeler and emission estimates for Delhi.
Jaiprakash; Habib, Gazala; Kumar, Anil; Sharma, Akash; Haider, Minza
2017-03-01
This study presents the emission factor of gaseous pollutants (CO, CO 2 , and NO X ) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red (NDIR) CO 2 analyzer, temperature, and relative humidity (RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NO X emissions were observed from new diesel cars (post 2010) compared to old cars (post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture, however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NO X emissions. Based on the measured emission factors (g/kg), and fuel consumption (kg), the average and 95% confidence interval (CI) bound estimates of CO, CO 2 , and NO X from four wheeler (4W) in Delhi for the year 2012 were 15.7 (1.4-37.1) , 6234 (386-12,252) , and 30.4 (0.0-103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas (CNG) to total CO, CO 2 and NO X emissions were 7:84:9, 50:48:2 and 58:41:1 respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Morris,Bruce; Sullivan, Greg; Burkey, Martin
2010-01-01
It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn Miller
2009-01-01
In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented, which may be enabling to future space missions never before attempted like a crewed mission to Mars.
Santollo, Jessica; Volcko, K Linnea; Daniels, Derek
2018-02-01
Previous in vivo and in vitro studies demonstrate that the angiotensin type 1 receptor rapidly desensitizes after exposure to angiotensin II (AngII). Behaviorally, this likely underlies the reduced drinking observed after acute repeated central injections of AngII. To date, this phenomenon has been studied exclusively in male subjects. Because there are sex differences in the dipsogenic potency of AngII, we hypothesized that sex differences also exist in desensitization caused by AngII. As expected, when male rats were pretreated with AngII, they drank less water after a test injection of AngII than did rats pretreated with vehicle. Intact cycling female rats, however, drank similar amounts of water after AngII regardless of the pretreatment. To probe the mechanism underlying this sex difference, we tested the role of gonadal hormones in adult and developing rats. Gonadectomy in adults did not produce a male-like propensity for desensitization of water intake in female rats, nor did it produce a female-like response in male rats. To test if neonatal brain masculinization generated a male-like responsiveness, female pups were treated at birth with vehicle, testosterone propionate (TP), or dihydrotestosterone (DHT). When tested as adults, TP-treated female rats showed a male-like desensitization after repeated AngII that was not found in vehicle- or DHT-treated rats. Together, these data reveal a striking sex difference in the behavioral response to elevated AngII that is mediated by organizational effects of gonadal hormones and provide an example of one of the many ways that sex influences the renin-angiotensin-aldosterone system. Copyright © 2018 Endocrine Society.
Cost-Effective NEO Characterization Using Solar Electric Propulsion (SEP)
NASA Astrophysics Data System (ADS)
Dissly, R. W.; Reinert, R.; Mitchell, S.
2003-05-01
We present a cost-effective multiple NEO rendezvous mission design optimized around the capabilities of Ball's 200-kg NEOX Solar Electric Propelled microsatellite. The NEOX spacecraft is 3-axis stabilized with better-than 1 milliradian pointing accuracy to serve as an excellent imaging platform; its DSN compatible telecommunications subsystem can support a 6.4-kbps downlink rate at 3 AU earth range. The spacecraft mass is <200kg at launch to allow launch as a cost-effective secondary payload. It uses proven SEP technology to provide 12km/s of Delta-V, which enables multiple rendezvous' in a single mission. Cost-effectiveness is optimized by launch as a secondary payload (e.g., Ariane-5 ASAP) or as a multiple manifest on a single dedicated launch vehicle (e.g., 4 on a Delta-II 2925). Following separation from the LV, we describe a candidate mission profile that minimizes cost by using the spacecraft's 12km/s of SEP Delta-V to allow orbiting up to 4 separate NEO's. Orbiting as opposed to flying by augments the mission's science return by providing the NEO mass and by allowing multiple phase angle imaging. The NEOX Spacecraft has the capability to support a 20kg payload drawing 100W average during SEP cruise, with >1kW available during the NEO orbital phase when the SEP thrusters are not powered. We will present a candidate payload suite that includes a visible/NIR imager, a laser altimeter, and a set of small, self-righting surface probes that can be used to assess the geophysical state of the object surface and near-surface environments. The surface probe payload notionally includes a set of cameras for imaging the body surface at mm-scale resolution, an accelerometer package to measure surface mechanical properties upon probe impact, a Langmuir probe to measure the electrostatic gradient immediately above the object surface, and an explosive charge that can be remotely detonated at the end of the surface mission to excavate an artificial crater that can be remotely observed from the orbiting spacecraft.
Mohammed, D; Crowther, J M; Matts, P J; Hadgraft, J; Lane, M E
2013-01-30
Niacinamide-containing moisturisers are known be efficacious in alleviating dry skin conditions and improving stratum corneum (SC) barrier function. However, the mechanisms of action of niacinamide at the molecular level in the SC are still not well understood. Previously, we have reported the development of novel methods to probe SC barrier properties in vivo. The aim of the present study was to characterise changes in Trans Epidermal Water Loss (TEWL), corneocyte surface area and maturity, selected protease activities and SC thickness after repeated application of a simple vehicle containing niacinamide. A commercial formulation was also included as a reference. The left and right mid-volar forearms of 20 healthy volunteers were used as study sites, to which topical formulations were applied twice daily for 28 days. After successive tape-stripping, corneocyte maturity and surface area were assessed. In addition, activity of the desquamatory kallikrein (KLK) protease enzymes KLK5 and KLK7, and tryptase and plasmin (implicated in inflammatory process) were measured using a fluorogenic probe assay. The amount of protein removed and TEWL were also recorded. SC thickness before and after treatment was determined using Confocal Raman Spectroscopy (CRS). Overall (i) corneocyte maturity and surface area decreased with increasing number of tape strips, (ii) activity of both the desquamatory and inflammatory enzymes was highest in the outer layers of the SC and decreased with depth (iii) TEWL increased as more SC layers were removed. Furthermore, areas treated with formulations containing niacinamide were significantly different to pre-treatment baseline and untreated/vehicle-control treated sites, with larger and more mature corneocytes, decreased inflammatory activity, decreased TEWL and increased SC thickness. These data (a) confirm the utility of measures and metrics developed previously for the non-invasive assay of SC barrier function, (b) present an holistic picture of a SC compartment managing barrier function through dynamic optimisation of pathlength and quality of building materials used, and (c) shed new light on niacinamide as a topical formulation adjunct with unique SC barrier-augmentation properties. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hughes, Kyle M.
Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each launch year are cataloged for orbiter missions to Uranus and Neptune. Solutions with sufficient delivered payload for a multi-planet mission (e.g. sending a probe to Saturn on the way to delivering an orbiter at Uranus) become available when the Space Launch System (SLS) launch vehicle is employed. A set of possible approach trajectories are modeled at the target planet to assess what (if any) adjustments are needed for ring avoidance, and to determine the probe entry conditions. Mars free-return trajectories are found with an emphasis on short flight times for application to near-term human flyby missions (similar to that of Inspiration Mars). Venus free-returns are also investigated and proposed as an alternative to a human Mars flyby mission. Attractive Earth-Mars free-return opportunities are identified that use an intermediate Venus flyby. One such opportunity, in 2021, has been adopted by the Inspiration Mars Foundation as a backup to the currently considered 2018 Mars free-return opportunity. Methods to establish spacecraft into Earth-Mars cycler trajectories are also investigated to reduce the propellant cost required to inject a 95-metric ton spacecraft into a cycler orbit. The establishment trajectories considered use either a V-infinity leveraging maneuver or low thrust. The V-infinity leveraging establishment trajectories are validated using patched conics via the STOUR program. Establishment trajectories that use low-thrust were investigated with particular focus on validating the patched-conic based solutions at instances where Earth encounter times are not negligible.
Coupled diffusion and mechanics in battery electrodes
NASA Astrophysics Data System (ADS)
Eshghinejad, Ahmadreza
We are living in a world with continuous production and consumption of energy. The energy production in the past decades has started to move away from petrochemical sources toward sustainable sources such as solar, wind and geothermal. Also, the energy consumption is further adapting to the sustainable sources. For instance, in recent years electric vehicles are growing fast that can consume sustainable electric energy stored in their batteries. In this direction, in order to further move toward sustainable energy, materials are becoming increasingly important for storing electric energy. Although, currently the technologies such as Li-ion batteries and solid-oxide fuel cells are commercially available for energy applications, improvements are crucial for the next generation of many other technologies producing or consuming sustainable energies. A critical aspect of the electrochemical activities involved in energy storage technologies such as Li-ion batteries and solid-oxide fuel cells is the diffusion of ions into the electrode materials. This process ultimately governs various functional properties of the batteries such as capacity and charging/discharging rates. The first goal of this dissertation is to develop mathematical tools to analyze the ionic diffusion and investigate its coupling with mechanics in electrodes. For this purpose, a thermodynamics-based modeling framework is developed and numerically solved using two numerical methods to analyze ionic diffusion in heterogeneous and structured electrodes. The next goal of this dissertation is to develop and analyze characterization techniques to probe the electrochemical processes at the nano-scale. To this end, the mathematical models are first employed to model a previously developed Atomic Force Microscopy based technique to probe local electrochemical activities called Electrochemical Strain Microscopy (ESM). This method probes the activities by inducing AC electric field to perturb ionic activities and measuring the surface vibrations. Different aspects of this technique are analyzed and the limitations are discussed. Such limitations moves the dissertation toward development of a new technique for probing the electrochemical activities, to overcome the previous limitations, called Scanning Thermo-ionic Microscopy (STIM). In this method, the local activities are probed by inducing AC temperature oscillations to perturb ionic activities and measuring the surface vibrations. The principle mathematical analysis of the coupled governing equations and the method of probing electrochemical activities are discussed in detail. Also, the method is implemented into the AFM hardware/software and the STIM response is confirmed using experiments on LiFePO4 and Sm-doped Ceria as well-known battery and fuel cell electrodes. The STIM method provides a clean method for analyzing energy storage materials and designing novel nano-structured materials for improved performance. Finally, conclusion of the presented work is discussed in the last chapter and the future works to continue the development of the modeling and experiments are listed.
NASA's Space Launch System: A Transformative Capability for Deep Space Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2017-01-01
Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.
Tumor-targeting peptides from combinatorial libraries*
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.
2018-01-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583
A survey of laser lightning rod techniques
NASA Technical Reports Server (NTRS)
Barnes, Arnold A., Jr.; Berthel, Robert O.
1991-01-01
The work done to create a laser lightning rod (LLR) is discussed. Some ongoing research which has the potential for achieving an operational laser lightning rod for use in the protection of missile launch sites, launch vehicles, and other property is discussed. Because of the ease with which a laser beam can be steered into any cloud overhead, an LLR could be used to ascertain if there exists enough charge in the clouds to discharge to the ground as triggered lightning. This leads to the possibility of using LLRs to test clouds prior to launching missiles through the clouds or prior to flying aircraft through the clouds. LLRs could also be used to probe and discharge clouds before or during any hazardous ground operations. Thus, an operational LLR may be able to both detect such sub-critical electrical fields and effectively neutralize them.
Main-belt asteroid exploration - Mission options for the 1990s
NASA Technical Reports Server (NTRS)
Yen, C.-W. L.
1982-01-01
Mission configurations, propulsion systems, and target bodies for possible NASA asteroid exploration projects are examined. Noting that an announced delay in the development of a solar electric propulsion system has led to a consideration of chemical rocket systems, asteroid missions are grouped in terms of five potential areas for investigation, each successively further from the sun. The Shuttle-launched IUS is suggested as the prime candidate for boosting probes into trajectories for asteroid rendezvous with a number of the 3000 known asteroids. Planetary swingbys are mentioned as the only suitable method for satisfying the large energy requirements of the asteroid missions. Performance analyses are presented of the IUS 2-stage/Star-48 and Centaur vehicles, and sample missions to Fortuna, Anahita, and Urania in 1990 and further missions to the middle, outer, and Trojans asteroids are outlined.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Stable, Thermally Conductive Fillers for Bolted Joints; Connecting to Thermocouples with Fewer Lead Wires; Zipper Connectors for Flexible Electronic Circuits; Safety Interlock for Angularly Misdirected Power Tool; Modular, Parallel Pulse-Shaping Filter Architectures; High-Fidelity Piezoelectric Audio Device; Photovoltaic Power Station with Ultracapacitors for Storage; Time Analyzer for Time Synchronization and Monitor of the Deep Space Network; Program for Computing Albedo; Integrated Software for Analyzing Designs of Launch Vehicles; Abstract-Reasoning Software for Coordinating Multiple Agents; Software Searches for Better Spacecraft-Navigation Models; Software for Partly Automated Recognition of Targets; Antistatic Polycarbonate/Copper Oxide Composite; Better VPS Fabrication of Crucibles and Furnace Cartridges; Burn-Resistant, Strong Metal-Matrix Composites; Self-Deployable Spring-Strip Booms; Explosion Welding for Hermetic Containerization; Improved Process for Fabricating Carbon Nanotube Probes; Automated Serial Sectioning for 3D Reconstruction; and Parallel Subconvolution Filtering Architectures.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Green, M. J.; Sommer, S. C.
1972-01-01
An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.
Oblique Wing Research Aircraft on ramp
NASA Technical Reports Server (NTRS)
1976-01-01
This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.
Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, E.; Wong, S.; Zhou, H.
2010-02-05
A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors ofmore » HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.« less
AUV based study on physical and ecological processes at fronts
NASA Astrophysics Data System (ADS)
Tippenhauer, Sandra; Wulff, Thorben; Von Appen, Wilken-Jon
2017-04-01
Small-scale processes and their effects get more and more attention when it comes to understanding processes and changes in the (Arctic) ocean. Here we present a study on physical processes and ecological responses at submesoscale frontal systems in the Fram Strait investigated using an autonomous underwater vehicle (AUV). The AUV is equipped with physical and biogeochemical sensors such as an acoustic Doppler current profiler, a turbulence probe, a conductivity-temperature-depth probe, and sensors for Oxygen, Nitrate, Chlorophyll a, and photosynthetically active radiation (PAR). The study is designed such that the AUV covers tracks of several kilometers length in cross-frontal direction with the front roughly located in the middle of the track. On its way, the AUV records high-resolution vertical or zigzag profiles of the physical and biogeochemical properties in the upper 50 m which includes the euphotic zone. In both, physical and biogeochemical terms, the measurements revealed a complex structure of the water column. At the fronts the distribution of phytoplankton and nutrients was highly inhomogeneous, possibly due to wind-driven frontogenesis or the growth of mixed layer eddies. To set the observations into a larger context we also examine ship-based and satellite data. We investigate how the observed patterns of the potential vorticity and the biogeochemical properties may be formed and which processes could lead to a smoothing of the observed gradients.
NASA Astrophysics Data System (ADS)
Bae, Pan Kee; Jung, Juyeon; Chung, Bong Hyun
2014-03-01
The near-infrared (NIR) fluorescence probe has better tissue penetration and lower autofluorescence. Indocyanine green (ICG) is an NIR organic dye for extensive biological application, and it has been clinically approved for human medical imaging and diagnosis. However, application of this dye is limited by its numerous disadvantageous properties in aqueous solution, including its concentration-dependent aggregation, poor aqueous stability in vitro, and low quantum yield. Its use in molecular imaging probes is limited because it loses fluorescence after binding to nonspecific plasma proteins, leading to rapid elimination from the body with a half-life of 2 - 4 min. In this study, the multifunctional perfluorocarbon (PFC)/ICG nanoemulsions were investigated with the aim of overcoming these limitations. The PFC/ICG nanoemulsions as a new type of delivery vehicle for contrast agents have both NIR optical imaging and 19 F-MR imaging moieties. These nanoemulsions exhibited less aggregation, increased fluorescence intensity, long-term stability, and physicochemical stability against external light and temperature compared to free aqueous ICG. Also, the PFC/ICG bimodal nanoemulsions allow excellent detection of lymph nodes in vivo through NIR optical imaging and 19 F-MR imaging. This result showed the suitability of the proposed nanoemulsions for non-invasive lymph node mapping as they enable long-time detection of lymph nodes.
2010-07-29
CAPE CANAVERAL, Fla. -- This is a printable version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC
2010-07-29
CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Atlantis, or OV-104, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo
2010-07-29
CAPE CANAVERAL, Fla. -- This is a version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC
Paul, Bijan K; Ray, Debarati; Ganguly, Aniruddha; Guchhait, Nikhil
2013-12-01
The present contribution demonstrates the photophysics of a prospective cancer cell photosensitizer Harmane (HM) belonging to the family of β-carboline in mixed microheterogeneous environments of β-cyclodextrin (β-CD) and surfactants having varying surface charges using steady-state and time-resolved fluorescence spectroscopic techniques. The remarkable modulations in prototropic activities of the micelle-bound drug in the presence of β-CD evinces for disruption of the micellar structural integrity by β-CD. The results are meticulously discussed in relevance to the effect of a potential drug delivery vehicle (CD) on the membrane-mimetic micellar system. Further, application of an extrinsic fluorescence probe for monitoring such interactions is fraught by the possibilities of no less than three equilibria that can operate simultaneously viz., (i) surfactant-cyclodextrin, (ii) surfactant-fluorophore and (iii) cyclodextrin-fluorophore. This aspect highlights the enormous importance of the issue of suitability of the fluorescence probe to study such complicated systems and interaction phenomena. Also the varying interaction scenario of β-CD with the nature of the surfactant highlights the importance of precise knowledge of the strength and locus of drug binding in delineating such complex interactions. The results of the present investigation advocate for the potential applicability of the drug (HM) itself as a fluorescence reporter in study of such complex microheterogeneous interactions. Copyright © 2013 Elsevier Inc. All rights reserved.
2007-06-16
KENNEDY SPACE CENTER, FLA. -- Within sight of the KSC Vehicle Assembly Building (at left on the horizon), the 209-foot-tall mobile service tower on Pad 39-A of Space Launch Complex 36 on Cape Canaveral Air Force Station waits for its demise. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser
Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli
2018-04-17
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P
2016-04-01
The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.
Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM
NASA Technical Reports Server (NTRS)
Jullien, Pierre
2008-01-01
During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.
NASA Technical Reports Server (NTRS)
Beck, R. A. S.; Gasch, M. J.; Milos, F. S.; Stackpoole, M. M.; Smith, B. P.; Switzer, M. R.; Venkatapathy, E.; Wilder, M. C.; Boghhozian, T.; Chavez-Garcia, J. F.
2015-01-01
In 2011, NASAs Aeronautics Research Mission Directorate (ARMD) funded an effort to develop an ablative thermal protection system (TPS) material that would have improved properties when compared to Phenolic Impregnated Carbon Ablator (PICA) and AVCOAT. Their goal was a conformal material, processed with a flexible reinforcement that would result in similar or better thermal characteristics and higher strain-to-failure characteristics that would allow for easier integration on flight aeroshells than then-current rigid ablative TPS materials. In 2012, NASAs Space Technology Mission Directorate (STMD) began funding the maturation of the best formulation of the game changing conformal ablator, C-PICA. Progress has been reported at IPPW over the past three years, describing C-PICA with a density and recession rates similar to PICA, but with a higher strain-to-failure which allows for direct bonding and no gap fillers, and even more important, with thermal characteristics resulting in half the temperature rise of PICA. Overall, C-PICA should be able to replace PICA with a thinner, lighter weight, less complicated design. These characteristics should be particularly attractive for use as backshell TPS on high energy planetary entry vehicles. At the end of this year, the material should be ready for missions to consider including in their design, in fact, NASAs Science Mission Directorate (SMD) is considering incentivizing the use of C-PICA in the next Discovery Proposal call. This year both scale up of the material to large (1-m) sized pieces and the design and build of small probe heatshields for flight tests will be completed. NASA, with an industry partner, will build a 1-m long manufacturing demonstration unit (MDU) with a shape based on a mid LD lifting body. In addition, in an effort to fly as you test and test as you fly, NASA, with a second industry partner, will build a small probe to test in the Interactive Heating Facility (IHF) arc jet and, using nearly the same design, build the aeroshell and TPS, with instrumentation, for a small probe flight test article, due to fly in 2017. At the end of the year, the C-PICA will be at TRL 5+, and with the flight data in 2017, it will be at TRL 9 for missions needs with C-PICA at a small scale (12 diameter). The scale-up and small probe efforts will be de-scribed in this presentation.
Chan, Woei-Leong; Hsiao, Fei-Bin
2011-01-01
This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly. PMID:22163819
Chan, Woei-Leong; Hsiao, Fei-Bin
2011-01-01
This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.
NASA Astrophysics Data System (ADS)
Li, Jun; Qin, Qiming; Xie, Chao; Zhao, Yue
2012-10-01
The update frequency of digital road maps influences the quality of road-dependent services. However, digital road maps surveyed by probe vehicles or extracted from remotely sensed images still have a long updating circle and their cost remain high. With GPS technology and wireless communication technology maturing and their cost decreasing, floating car technology has been used in traffic monitoring and management, and the dynamic positioning data from floating cars become a new data source for updating road maps. In this paper, we aim to update digital road maps using the floating car data from China's National Commercial Vehicle Monitoring Platform, and present an incremental road network extraction method suitable for the platform's GPS data whose sampling frequency is low and which cover a large area. Based on both spatial and semantic relationships between a trajectory point and its associated road segment, the method classifies each trajectory point, and then merges every trajectory point into the candidate road network through the adding or modifying process according to its type. The road network is gradually updated until all trajectories have been processed. Finally, this method is applied in the updating process of major roads in North China and the experimental results reveal that it can accurately derive geometric information of roads under various scenes. This paper provides a highly-efficient, low-cost approach to update digital road maps.
Additive Layer Manufacturing for Launcher's Applications
NASA Astrophysics Data System (ADS)
Vilanova, J.; Romera, P.; Lasagni, F.; Zorrilla, A.; Perinan, A.
2014-06-01
In the next years the European space industry has the challenge of maintaining its competitiveness in launch vehicles (LV) production, due to the growth of competition worldwide. It has to assure its position developing new applied technologies. In this field the effort is focussed on the production of short series of customized products, like payloads, flight components or launcher parts. ALM (Additive Layer Manufacturing) could be a powerful tool that offers new competitiveness factors for this industry, comprising a set of emerging technologies that are becoming a competitor to forming, casting and machining as well as being utilised directly as a complementary alternative.Originally used for prototypes and models, now ALM becomes a very useful technology capable to fabricate functional parts for the space industrial sector. Its demands on rapid technologies are different to "earth" industries, and they aren't so easily satisfied because space is a field with different requirements depending on its application: launchers, reusable vehicles, satellites, probes, low gravity researches, manned spacecraft, or even moon and planetary exploration.This paper reports on the ALM potential applications, under ESA requirements, exploring the challenges and possibilities for its use in the launchers market, trying to answer two basic questions: the first one, whether ALM is a mature technology to be ready for its use as flight hardware; and the second one, if it can be used to reduce the product cycle, and consequently, the development, production and operational costs.
A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano
2005-05-01
Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.
Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E
2015-10-01
Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. © FASEB.
The Space Launch System and Missions to the Outer Solar System
NASA Astrophysics Data System (ADS)
Klaus, Kurt K.; Post, Kevin
2015-11-01
Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.
Interstellar Probe: First Step to the Stars
NASA Astrophysics Data System (ADS)
McNutt, R. L., Jr.
2017-12-01
The idea of an "Interstellar Probe," a robotic spacecraft traveling into the nearby interstellar medium for the purpose of scientific investigation, dates to the mid-1960s. The Voyager Interstellar Mission (VIM), an "accidental" 40-year-old by-product of the Grand Tour of the solar system, has provided initial answers to the problem of the global heliospheric configuration and the details of its interface with interstellar space. But the twin Voyager spacecraft have, at most, only another decade of lifetime, and only Voyager 1 has emerged from the heliosheath interaction region. To understand the nature of the interaction, a near-term mission to the "near-by" interstellar medium with modern and focused instrumentation remains a compelling priority. Imaging of energetic neutral atoms (ENAs) by the Ion Neutral CAmera (INCA) on Cassini and from the Interstellar Boundary Explorer (IBEX) in Earth orbit have provided significant new insights into the global interaction region but point to discrepancies with our current understanding. Exploring "as far as possible" into "pristine" interstellar space can resolve these. Hence, reaching large heliocentric distances rapidly is a driver for an Interstellar Probe. Such a mission is timely; understanding the interstellar context of exoplanet systems - and perhaps the context for the emergence of life both here and there - hinges upon what we can discover within our own stellar neighborhood. With current spacecraft technology and high-capability launch vehicles, such as the Space Launch System (SLS), a small, but extremely capable spacecraft, could be dispatched to the near-by interstellar medium with at least twice the speed of the Voyagers. Challenges remain with payload mass and power constraints for optimized science measurements. Mission longevity, as experienced by, but not designed into, the Voyagers, communications capability, and radioisotope power system performance and lifetime are solvable engineering challenges. Such a robotic craft can be built, and could be built and launched soon - to enable our first deliberate step to the stars.
High-voltage plasma interactions calculations using NASCAP/LEO
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.
1990-01-01
This paper reviews four previous simulations (two laboratory and two space-flight) of interactions of a high-voltage spacecraft with a plasma under low-earth orbit conditions, performed using a three-dimensional computer code NASCAP/LEO. Results show that NASCAP/LEO can perform meaningful simulations of high-voltage plasma interactions taking into account three-dimensional effects of geometry, spacecraft motion, and magnetic field. Two new calculations are presented: (1) for current collection by 1-mm pinholes in wires (showing that a pinhole in a wire can collect far more current than a similar pinhole in a flat plate); and (2) current collection by Charge-2 mother vehicle launched in December 1985. It is shown that the Charge-2 calculations predicted successfully ion collection at negative bias, the floating potential of a probe outside or inside the sheath under negative bias conditions, and magnetically limited electron collection under electron beam operation at high altitude.
Subscale Test Program for the Orion Conical Ribbon Drogue Parachute
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Stuart, Phil; Machin, Ricardo; Bourland, Gary; Schwing, Allen; Longmire, Ellen; Henning, Elsa; Sinclair, Rob
2011-01-01
A subscale wind tunnel test program for Orion's conical ribbon drogue parachute is under development. The desired goals of the program are to quantify aerodynamic performance of the parachute in the wake of the entry vehicle, including understanding of the coupling of the parachute and command module dynamics, and an improved understanding of the load distribution within the textile elements of the parachute. The test program is ten percent of full scale conducted in a 3x2.1 m (10x7 ft) closed loop subsonic wind tunnel. The subscale test program is uniquely suited to probing the aerodynamic and structural environment in both a quantitative and qualitative manner. Non-intrusive diagnostics, including Particle Image Velocimetry for wake velocity surveys, high speed pressure transducers for canopy pressure distribution, and a high speed photogrammetric reconstruction, will be used to quantify the parachute's performance.
Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C
2011-08-01
We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
2012-08-26
CAPE CANAVERAL, Fla. – An unfavorable weather forecast as a result of Tropical Storm Isaac approaching Florida kept NASA's twin Radiation Belt Storm Probes, or RBSP, on Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Managers decided to roll the Atlas V rocket off the launch pad and back to the Vertical Integration Facility to ensure the launch vehicle and RBSP spacecraft are secured and protected from inclement weather. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. The launch is rescheduled for 4:05 a.m. EDT on Aug. 30, pending approval from the range. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky
2012-08-26
CAPE CANAVERAL, Fla. – An unfavorable weather forecast as a result of Tropical Storm Isaac approaching Florida kept NASA's twin Radiation Belt Storm Probes, or RBSP, on Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Managers decided to roll the Atlas V rocket off the launch pad and back to the Vertical Integration Facility to ensure the launch vehicle and RBSP spacecraft are secured and protected from inclement weather. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. The launch is rescheduled for 4:05 a.m. EDT on Aug. 30, pending approval from the range. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky
Ion resonances and ELF wave production by an electron beam injected into the ionosphere - ECHO 6
NASA Astrophysics Data System (ADS)
Winckler, J. R.; Steffen, J. E.; Malcolm, P. R.; Erickson, K. N.; Abe, Y.; Swanson, R. L.
1984-09-01
Two effects observed with electron antennas ejected from a sounding rocket launched into the ionosphere in March 1983 carrying electron beam guns are discussed. The sensor packages were ejected and travelled parallel to the vehicle trajectory. Electric potentials were measured between the single probes and a plasma diagnostic package while the gun injected electrons into the ionosphere in perpendicular and parallel 1 kHz directions. Signal pulses over the dc-1250 kHz range were detected. A kHz gun frequency caused a signal that decreased by two orders of magnitude between 45-90 m from the beam field line. However, the signal was detectable at 1 mV/m at 120 m, supporting earlier data that indicated that pulsed electron beams can cause ELF waves in space. Beam injection parallel to the magnetic field produced an 840 Hz resonance that could be quenched by activation of a transverse beam.
A potential target for organophosphate insecticides leading to spermatotoxicity.
Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro
2013-10-16
Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.
Tumor-targeting peptides from combinatorial libraries.
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S
2017-02-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. Copyright © 2017. Published by Elsevier B.V.
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: George Diller of NASA Communications; Christine Bonniksen, CYGNSS program executive in the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington, D.C.; Tim Dunn, NASA launch director at Kennedy; Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia; and John Scherrer, CYGNSS project manager for the Southwest Research Institute in San Antonio, Texas. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Cationic Shell-crosslinked Knedel-like (cSCK) Nanoparticles for Highly Efficient PNA Delivery
Fang, Huafeng; Zhang, Ke; Shen, Gang; Wooley, Karen L.; Taylor, John-Stephen A.
2009-01-01
Peptide nucleic acids have a number of features that make them an ideal platform for the development of in vitro biological probes and tools. Unfortunately, their inability to pass through membranes has limited their in vivo application as diagnostic and therapeutic agents. Herein, we describe the development of cationic shell-crosslinked knedel-like (cSCK) nanoparticles as highly efficient vehicles for the delivery of PNAs into cells, either through electrostatic complexation with a PNA•ODN hybrid, or through a bioreductively cleavable disulfide linkage to a PNA. These delivery systems are better than the standard lipofectamine/ODN-mediated method and much better than the Arg9-mediated method for PNA delivery in HeLa cells, showing lower toxicity and higher bioactivity. The cSCKs were also found to facilitate both endocytosis and endosomal release of the PNAs, while themselves remaining trapped in the endosomes. PMID:19231840
Wang, Xiao-Lei; Zeng, Yu; Zheng, Yan-Zhen; Chen, Jian-Feng; Tao, Xia; Wang, Ling-Xuan; Teng, Yan
2011-09-26
Rose bengal-grafted chitosan (RB-CHI), synthesized through dehydration between amino and carboxyl functional groups under mild conditions, was coated onto the outer layer of preformed biodegradable microcapsules consisting of sodium alginate and chitosan. The fabricated photosensitive microcapsules were characterized by optical microscopy, scanning electron microscopy, and confocal laser scanning microscopy. The assembled materials maintained intact spherical morphology and thus showed good ability to form thin films. Electron spin resonance spectroscopy allowed direct observation of the generation of singlet oxygen ((1)O(2)) from photosensitive microcapsules under light excitation at about 545 nm. Furthermore, with increasing light radiation, the content of (1)O(2) increased, as detected by a chemical probe. In vitro cellular toxicity assays showed that RB-CHI-coated photosensitive microcapsules exhibit good biocompatibility in darkness and high cytotoxicity after irradiation, and could provide new photoresponsive drug-delivery vehicles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermospheric temperature measurement technique.
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Fowler, P.
1972-01-01
A method for measurement of temperature in the earth's lower thermosphere from a high-velocity probes is described. An undisturbed atmospheric sample is admitted to the instrument by means of a free molecular flow inlet system of skimmers which avoids surface collisions of the molecules prior to detection. Measurement of the time-of-flight distribution of an initially well-localized group of nitrogen metastable molecular states produced in an open, crossed electron-molecular beam source, yields information on the atmospheric temperature. It is shown that for high vehicle velocities, the time-of-flight distribution of the metastable flux is a sensitive indicator of atmospheric temperature. The temperature measurement precision should be greater than 94% at the 99% confidence level over the range of altitudes from 120-170 km. These precision and altitude range estimates are based on the statistical consideration of the counting rates achieved with a multichannel analyzer using realistic values for system parameters.
Future heavy duty trucking engine requirements
NASA Technical Reports Server (NTRS)
Strawhorn, L. W.; Suski, V. A.
1985-01-01
Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At the Cape Canaveral Air Force Station Skid Strip, workers inside a Russian Antonov AH-124-100 cargo airplane roll out the booster segment for a Lockheed Martin Atlas V. The Atlas V, designated AV-007, is the launch vehicle for the Mars Reconnaissance Orbiter (MRO). The MRO is designed for a series of global mapping, regional survey and targeted observations from a near-polar, low-altitude Mars orbit. These observations will be unprecedented in terms of the spatial resolution and coverage achieved by the orbiters instruments as they observe the atmosphere and surface of Mars while probing its shallow subsurface as part of a follow the water strategy. The orbiter is undergoing environmental tests in facilities at Lockheed Martin Space Systems in Denver, Colo., and is on schedule for a launch window that begins Aug. 10. Launch will be from Launch Pad 41 at Cape Canaveral Air Force Station in Florida.
Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar
2013-01-01
Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255
Move! - a deep Ocean Underwater Robot for Bio-Geochemical Research
NASA Astrophysics Data System (ADS)
Waldmann, C.; Epping, E.; Move! Team
2003-04-01
Within the framework of the binationally funded project MOVE! the partners from the Netherlands and Germany are pursuing the development of a versatile, autonomous vehicle for benthic research. The system acts as a modular platform for different scientific sensors and by moving on the sea floor will allow for taking measurements at defined locations. By combining acoustical navigation methods with other new position tracking devices an accurate positioning can be achieved. Both the vehicle subsystems and the scientific sensors will be powered by a dedicated energy source. The scientific application lies in the area of multidisciplinary studies (physics, chemistry, sedimentology and biology) with an emphasis on element cycling in marine sediments and benthic boundary layer from coastal areas to deep sea. Application of the vehicle should enable timed monitoring and experimentation to study temporal dynamics in forcing and effects, and allow for multiple sites to be studied in a single area to cover spatial variability. Typical experiments would require (1) enclosing an area of sediment and overlying water to monitor the chemical exchange between sediment and water to study the actual base line activities (2) manipulation of the sediment-overlying water by adding dissolved substances or particulate substances (food+ inert tracers) and the subsequent monitoring of overlying water chemistry (oxygen, DIC, pH, nitrate, ammonium, silicate) in order to assess biological responses to chemical disturbances. Sediments should be recovered after the experiment. (3)The monitoring of pore water chemistry by use of microelectrodes and HR-DET probes baseline and after addition in preceding chamber experiment (requires careful repositioning with high accuracy or a combined chamber-profiling unit) (4) Injection of labeled organic and inorganic substrates in the sediment and recovery of sediment cores in order to measure specific activities and to disentangle trophic relationships within sediments. The presentation will explain details of the design concept and how the envisaged scientific goals will be reached.
Lightweight Multifunctional Planetary Probe for Extreme Environment Exploration and Locomotion
NASA Technical Reports Server (NTRS)
Bayandor, Javid (Principal Investigator); Schroeder, Kevin; Samareh, Jamshid
2017-01-01
The demand to explore new worlds requires the development of advanced technologies that enable landed science on uncertain terrains or in hard to reach locations. As a result, contemporary Entry, Descent, Landing, (EDL) and additional locomotion (EDLL) profiles are becoming increasingly more complex, with the introduction of lifting/guided entries, hazard avoidance on descent, and a plethora of landing techniques including airbags and the skycrane maneuver. The inclusion of each of these subsystems into a mission profile is associated with a substantial mass penalty. This report explores the new all-in-one entry vehicle concept, TANDEM, a new combined EDLL concept, and compares it to the current state of the art EDL systems. The explored system is lightweight and collapsible and provides the capacity for lifting/guided entry, guided descent, hazard avoidance, omnidirectional impact protection and surface locomotion without the aid of any additional subsystems. This Phase I study explored: 1. The capabilities and feasibility of the TANDEM concept as an EDLL vehicle. 2. Extensive impact analysis to ensure mission success in unfavorable landing conditions, and safe landing in Tessera regions. 3. Development of a detailed design for a conceptual mission to Venus. As a result of our work it was shown that: 1. TANDEM provides additional benefits over the Adaptive, Deployable Entry Placement Technology (ADEPT) including guided descent and surface locomotion, while reducing the mass by 38% compared to the ADEPT-VITaL mission. 2. Demonstrated that the design of tensegrity structures, and TANDEM specifically, grows linearly with an increase in velocity, which was previously unknown. 3. Investigation of surface impact revealed a promising results that suggest a properly configured TANDEM vehicle can safely land and preform science in the Tessera regions, which was previously labeled by the Decadal Survey as, largely inaccessible despite its high scientific interest. This work has already resulted in a NASA TM and will be submitted to the Journal of Spacecraft and Rockets.
Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar
2013-01-01
Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.
Detecting and Quantifying Mind Wandering during Simulated Driving.
Baldwin, Carryl L; Roberts, Daniel M; Barragan, Daniela; Lee, John D; Lerner, Neil; Higgins, James S
2017-01-01
Mind wandering is a pervasive threat to transportation safety, potentially accounting for a substantial number of crashes and fatalities. In the current study, mind wandering was induced through completion of the same task for 5 days, consisting of a 20-min monotonous freeway-driving scenario, a cognitive depletion task, and a repetition of the 20-min driving scenario driven in the reverse direction. Participants were periodically probed with auditory tones to self-report whether they were mind wandering or focused on the driving task. Self-reported mind wandering frequency was high, and did not statistically change over days of participation. For measures of driving performance, participant labeled periods of mind wandering were associated with reduced speed and reduced lane variability, in comparison to periods of on task performance. For measures of electrophysiology, periods of mind wandering were associated with increased power in the alpha band of the electroencephalogram (EEG), as well as a reduction in the magnitude of the P3a component of the event related potential (ERP) in response to the auditory probe. Results support that mind wandering has an impact on driving performance and the associated change in driver's attentional state is detectable in underlying brain physiology. Further, results suggest that detecting the internal cognitive state of humans is possible in a continuous task such as automobile driving. Identifying periods of likely mind wandering could serve as a useful research tool for assessment of driver attention, and could potentially lead to future in-vehicle safety countermeasures.
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.
2014-01-01
To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.
NASA Technical Reports Server (NTRS)
1990-01-01
Now that Voyager II has completed its grand tour of the solar system, all the planets in the solar system, with the exception of Pluto, have been studied. Even now, missions to return to Mercury, Venus, Mars Jupiter, and Saturn are currently flying or are planned. However, a mission to explore Pluto is not, at the present time, being considered seriously. The design problem presented to the students was very general, i.e., design an unmanned mission to Pluto with a launch window constraint of the years 2000 to 2010. All other characteristics of the mission, such as mission type (flyby, orbiter, lander, penetrator), scientific objectives and payload, and the propulsion system were to be determined by the design teams. The design studies exposed several general problems to be solved. Due to the extreme distance to Pluto (and a corresponding travel time in the range of 10 to 25 years), the spacecraft had to be lighter and more robust than current spacecraft designs. In addition, advanced propulsion concepts had to be considered. These included the new generation of launch vehicles and upper stages and nuclear electric propulsion. The probe design offered an abundance of synthesis and analysis problems. These included sizing trade studies, selection of subsystem components, analysis of spacecraft dynamics, stability and control, structural design and material selection, trajectory design, and selection of scientific equipment. Since the characteristics of the mission, excluding the launch window, were to be determined by the design teams, the solutions varied widely.
Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C
2017-07-01
The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.
Detecting and Quantifying Mind Wandering during Simulated Driving
Baldwin, Carryl L.; Roberts, Daniel M.; Barragan, Daniela; Lee, John D.; Lerner, Neil; Higgins, James S.
2017-01-01
Mind wandering is a pervasive threat to transportation safety, potentially accounting for a substantial number of crashes and fatalities. In the current study, mind wandering was induced through completion of the same task for 5 days, consisting of a 20-min monotonous freeway-driving scenario, a cognitive depletion task, and a repetition of the 20-min driving scenario driven in the reverse direction. Participants were periodically probed with auditory tones to self-report whether they were mind wandering or focused on the driving task. Self-reported mind wandering frequency was high, and did not statistically change over days of participation. For measures of driving performance, participant labeled periods of mind wandering were associated with reduced speed and reduced lane variability, in comparison to periods of on task performance. For measures of electrophysiology, periods of mind wandering were associated with increased power in the alpha band of the electroencephalogram (EEG), as well as a reduction in the magnitude of the P3a component of the event related potential (ERP) in response to the auditory probe. Results support that mind wandering has an impact on driving performance and the associated change in driver’s attentional state is detectable in underlying brain physiology. Further, results suggest that detecting the internal cognitive state of humans is possible in a continuous task such as automobile driving. Identifying periods of likely mind wandering could serve as a useful research tool for assessment of driver attention, and could potentially lead to future in-vehicle safety countermeasures. PMID:28848414
Braun, C; Lang, C; Hocher, B; Gretz, N; van der Woude, F J; Rohmeiss, P
1997-01-01
The renal endothelin (ET) system has been claimed to play an important role in the regulation of renal blood flow (RBF) and sodium excretion in primary hypertension. The aim of the present study was to investigate the contribution of the endogenous ET system in the autoregulation of total RBF, cortical blood flow (CBF), pressure-dependent plasma renin activity (PRA) and pressure natriuresis in spontaneously hypertensive rats (SHR) by means of the combined (A/B) ET-receptor antagonist, bosentan. In anesthetized rats, RBF was measured by transit-time flow probes and CBF by laser flow probes. During the experiments, the rats received an intrarenal infusion of either bosentan (1 mg/kg/h) or vehicle. Renal perfusion pressure (RPP) was lowered in pressure steps of 5 mm Hg with a servo-controlled electropneumatic device via an inflatable suprarenal cuff. Bosentan had no effect on resting RPP, CBF, PRA and renal sodium excretion, whereas RBF was lowered by 30% (p < 0.05). Furthermore after bosentan the rats revealed a complete loss of RBF autoregulation. In contrast no changes in autoregulation of CBF, pressure-dependent PRA and pressure natriuresis were observed. Our findings demonstrate a significant impairment in total RBF autoregulatory ability during renal ET-receptor blockade which is not confined to the cortical vessels. These data suggest that the renal ET system plays an important role in the dynamic regulation of renal blood flow in SHR.