Science.gov

Sample records for probing cosmic accelerators

  1. Probing Cosmic Acceleration with Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Guzzo, Luigi

    Redshift surveys of galaxies beyond the local Universe (z ≫ 0.1) are opening up new possibilities to understanding the observed acceleration of cosmic expansion, one of the greatest mysteries of modern science. Baryonic Acoustic Oscillations in the galaxy power spectrum (or correlation function), provide us with a standard rod to measure the expansion history H(z). At the same time, redshift-space distortions in the clustering pattern due to galaxy peculiar motions are a measure of the growth rate of structure f(z). The combination of these two quantities, allows us to distinguish whether cosmic acceleration is due to the existence of a "dark energy" in the cosmic budget, or rather requires a modification of General Relativity. These two radically alternative scenarios are degenerate when considering H(z) alone, as yielded, e.g. by the Hubble diagram of Type Ia supernovae. In this short review paper I will mostly concentrate on the latter measurement, whose potential importance in this context has been recently highlighted. Current results are consistent with the simplest GR-based cosmological constant scenario, but error bars are still large. Detailed forecasts show that next-generation deep surveys optimizing the combination of large volumes and good galaxy sampling will be able to use redshift distortions as a key tool to understand the physical origin of cosmic acceleration. Among these, I introduce the newly started VIMOS Public Extragalactic Redshift Survey (VIPERS) at the ESO VLT, which is building at bar {z} ˜ 0.8 a sample comparable to the local 2dFGRS. Expectations from even larger surveys planned from space-borne observatories such as EUCLID will also be mentioned.

  2. Probing cosmic acceleration by using the SNLS3 SNIa dataset

    SciTech Connect

    Li, Xiao-Dong; Wang, Shuang; Zhang, Wen-Shuai; Li, Song; Huang, Qing-Guo; Li, Miao E-mail: sli@itp.ac.cn E-mail: wszhang@mail.ustc.edu.cn E-mail: mli@itp.ac.cn

    2011-07-01

    We probe the cosmic acceleration by using the recently released SNLS3 sample of 472 type Ia supernovae. Combining this type Ia supernovae dataset with the cosmic microwave background anisotropy data from the Wilkinson Microwave Anisotropy Probe 7-yr observations, the baryon acoustic oscillation results from the Sloan Digital Sky Survey data release 7, and the Hubble constant measurement from the Wide Field Camera 3 on the Hubble Space Telescope, we measure the dark energy equation of state w and the deceleration parameter q as functions of redshift by using the Chevallier-Polarski-Linder parametrization. Our result is consistent with a cosmological constant at 1σ confidence level, without evidence for the recent slowing down of the cosmic acceleration. Furthermore, we consider three binned parametrizations (w is piecewise constant in redshift z) based on different binning methods. The similar results are obtained, i.e., the ΛCDM model is still nicely compatible with current observations.

  3. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    SciTech Connect

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  4. MOLECULAR CLOUDS AS A PROBE OF COSMIC-RAY ACCELERATION IN A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Tanaka, Shuta J.; Takahara, Fumio

    2009-12-20

    We study cosmic-ray acceleration in a supernova remnant (SNR) and the escape from it. We model nonthermal particle and photon spectra for the hidden SNR in the open cluster Westerlund 2, and the old-age mixed-morphology SNR W 28. We assume that the SNR shock propagates in a low-density cavity, which is created and heated through the activities of the progenitor stars and/or previous supernova explosions. We indicate that the diffusion coefficient for cosmic rays around the SNRs is less than approx1% of that away from them. We compare our predictions with the gamma-ray spectra of molecular clouds illuminated by the cosmic rays (Fermi and H.E.S.S.). We found that the spectral indices of the particles are approx2.3. This may be because the particles were accelerated at the end of the Sedov phase, and because energy-dependent escape and propagation of particles did not much affect the spectrum.

  5. Probing the Isotropy of Cosmic Acceleration Traced By Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Javanmardi, B.; Porciani, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2015-09-01

    We present a method to test the isotropy of the magnitude-redshift relation of Type Ia Supernovae (SNe Ia) and single out the most discrepant direction (in terms of the signal-to-noise ratio) with respect to the all-sky data. Our technique accounts for possible directional variations of the corrections for SNe Ia and yields all-sky maps of the best-fit cosmological parameters with arbitrary angular resolution. To show its potential, we apply our method to the high-redshift SNe Ia from the recent Union2.1 compilation, building maps with three different angular resolutions. We use a Monte Carlo method to estimate the statistical significance with which we could reject the null hypothesis that the magnitude-redshift relation is isotropic based on the properties of the observed most discrepant directions. We find that, based on pure signal-to-noise arguments, the null hypothesis cannot be rejected at any meaningful confidence level. However, if we also consider that the strongest deviations in the Union2.1 sample closely align with the dipole temperature anisotropy of the cosmic microwave background, we find that the null hypothesis should be rejected at the 95%-99% confidence level, slightly depending on the angular resolution of the study. If this result is not due to a statistical fluke, it might either indicate that the SN data have not been cleaned from all possible systematics or even point toward new physics. We finally discuss future perspectives in the field for achieving larger and more uniform data sets that will vastly improve the quality of the results and optimally exploit our method.

  6. PROBING THE ISOTROPY OF COSMIC ACCELERATION TRACED BY TYPE Ia SUPERNOVAE

    SciTech Connect

    Javanmardi, B.; Porciani, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2015-09-01

    We present a method to test the isotropy of the magnitude–redshift relation of Type Ia Supernovae (SNe Ia) and single out the most discrepant direction (in terms of the signal-to-noise ratio) with respect to the all-sky data. Our technique accounts for possible directional variations of the corrections for SNe Ia and yields all-sky maps of the best-fit cosmological parameters with arbitrary angular resolution. To show its potential, we apply our method to the high-redshift SNe Ia from the recent Union2.1 compilation, building maps with three different angular resolutions. We use a Monte Carlo method to estimate the statistical significance with which we could reject the null hypothesis that the magnitude–redshift relation is isotropic based on the properties of the observed most discrepant directions. We find that, based on pure signal-to-noise arguments, the null hypothesis cannot be rejected at any meaningful confidence level. However, if we also consider that the strongest deviations in the Union2.1 sample closely align with the dipole temperature anisotropy of the cosmic microwave background, we find that the null hypothesis should be rejected at the 95%–99% confidence level, slightly depending on the angular resolution of the study. If this result is not due to a statistical fluke, it might either indicate that the SN data have not been cleaned from all possible systematics or even point toward new physics. We finally discuss future perspectives in the field for achieving larger and more uniform data sets that will vastly improve the quality of the results and optimally exploit our method.

  7. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  8. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  9. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  10. Is cosmic acceleration slowing down?

    SciTech Connect

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)

  11. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  12. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  13. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE PAGES

    Huterer, Dragan; Kirkby, David; Bean, Rachel; ...

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  14. Growth of cosmic structure: Probing dark energy beyond expansion

    SciTech Connect

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anže; van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo

    2015-03-01

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.

  15. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  16. Particle Acceleration in Cosmic Plasmas

    SciTech Connect

    Zank, G.P.; Gaisser, T.K. )

    1992-01-01

    This proceedings includes papers presented at the Bartol ResearchInstitute, on topics concerning particle acceleration in stellar, space andgalactic environments. Two of the papers from this proceedings have beenabstracted for the database. (AIP)

  17. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  18. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  19. Cosmic acceleration and Brans-Dicke theory

    SciTech Connect

    Sharif, M. Waheed, S.

    2012-10-15

    We study the accelerated expansion of the universe by exploring the Brans-Dicke parameter in different eras. For this, we take the FRW universe model with a viscous fluid (without potential) and the Bianchi type-I universe model with a barotropic fluid (with and without a potential). We evaluate the deceleration parameter and the Brans-Dicke parameter to explore cosmic acceleration. It is concluded that accelerated expansion of the universe can also be achieved for higher values of the Brans-Dicke parameter in some cases.

  20. Dimming supernovae without cosmic acceleration.

    PubMed

    Csáki, Csaba; Kaloper, Nemanja; Terning, John

    2002-04-22

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m approximately 10(-16) eV, M approximately 4 x 10(11) GeV. This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations.

  1. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  2. Cosmic ray spectrum from diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2011-11-01

    It is now well established that cosmic rays (CRs) are accelerated at collisionless shocks through diffusive shock acceleration. However, some key physical processes, such as thermal leakage injection, self-excitation and dissipation of waves, and resonant scatterings of particles by those waves are nonlinear and not fully understood yet. Hence it is not possible to make precise quantitative predictions for the particle spectrum accelerated at shocks from first principles. If the fraction of particles injected into the CR population is smaller than 10-4, the CR acceleration efficiency is low and so the test-particle solutions are justified. At moderately strong shocks ( M 0≳5) with higher injection fractions, the shock structure is significantly modified by nonlinear feedback of CRs. According to time-dependent kinetic simulations of CR modified shocks, the precursor and subshock transition approach a time-asymptotic state, and then evolve in an approximately self-similar fashion, depending only on the similarity variable, x/( u s t). During this self-similar stage, the CR spectrum at the subshock maintains a characteristic form as it evolves: the sum of two power-laws with the slopes determined by the subshock and total compression ratios, along with an exponential cutoff at the highest accelerated momentum.

  3. Probing cosmic superstrings with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sousa, L.; Avelino, P. P.

    2016-09-01

    We compute the stochastic gravitational wave background generated by cosmic superstrings using a semianalytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGrav data to derive a conservative constraint of G μF<3.2 ×10-9 on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on G μF. We show that the inclusion of heavier string types is required for a more accurate characterization of the region of the (gs,G μF) parameter space that may be probed using direct gravitational wave detectors. In particular, we consider the observational constraints that result from NANOGrav data and show that heavier strings generate a secondary exclusion region of parameter space.

  4. New Kinematical Constraints on Cosmic Acceleration

    SciTech Connect

    Rapetti, David; Allen, Steve W.; Amin, Mustafa A.; Blandford, Roger; /-KIPAC, Menlo Park

    2007-05-25

    We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.

  5. Solar Cosmic Ray Acceleration and Propagation

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  6. Growth of cosmic structure: Probing dark energy beyond expansion

    NASA Astrophysics Data System (ADS)

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anže; van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo

    2015-03-01

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe. One way to explain the acceleration of the Universe is invoke dark energy parameterized by an equation of state w. Distance measurements provide one set of constraints on w, but dark energy also affects how rapidly structure grows; the greater the acceleration, the more suppressed the growth of structure. Upcoming surveys are therefore designed to probe w with direct observations of the distance scale and the growth of structure, each complementing the other on systematic errors and constraints on dark energy. A consistent set of results will greatly increase the reliability of the final answer. Another possibility is that there is no dark energy, but that General Relativity does not describe the laws of physics accurately on large scales. While the properties of gravity have been measured with exquisite precision at stellar system scales and densities, within our solar system and by binary pulsar systems, its properties in different environments are poorly constrained. To fully understand if General Relativity is the complete theory of gravity we must test gravity across a spectrum of scales and densities. Rapid developments in gravitational wave astronomy and numerical relativity are directed at testing gravity in the high

  7. Cosmic ray sources, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1986-01-01

    A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.

  8. Stellar black holes and the origin of cosmic acceleration

    SciTech Connect

    Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.

    2009-08-15

    The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

  9. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  10. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos.

    PubMed

    Murase, Kohta; Guetta, Dafne; Ahlers, Markus

    2016-02-19

    The latest IceCube data suggest that the all-flavor cosmic neutrino flux may be as large as 10^{-7}  GeV cm^{-2} s^{-1} sr^{-1} around 30 TeV. We show that, if sources of the TeV-PeV neutrinos are transparent to γ rays with respect to two-photon annihilation, strong tensions with the isotropic diffuse γ-ray background measured by Fermi are unavoidable, independently of the production mechanism. We further show that, if the IceCube neutrinos have a photohadronic (pγ) origin, the sources are expected to be opaque to 1-100 GeV γ rays. With these general multimessenger arguments, we find that the latest data suggest a population of cosmic-ray accelerators hidden in GeV-TeV γ rays as a neutrino origin. Searches for x-ray and MeV γ-ray counterparts are encouraged, and TeV-PeV neutrinos themselves will serve as special probes of dense source environments.

  11. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

  12. Exact solutions for sporadic acceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Cowsik, R.

    1985-01-01

    The steady state spectra of cosmic rays which are subject to a sporadic acceleration process, wherein the gain in energy in each encounter is a finite fraction of the particle energy are discussed. They are derived from a mathematical model which includes the possibility of energy dependent leakage of cosmic rays from the galaxy. Comparison with observations allows limits to be placed on the frequency and efficiency of such encounters.

  13. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  14. Cosmic microwave background probes models of inflation

    NASA Technical Reports Server (NTRS)

    Davis, Richard L.; Hodges, Hardy M.; Smoot, George F.; Steinhardt, Paul J.; Turner, Michael S.

    1992-01-01

    Inflation creates both scalar (density) and tensor (gravity wave) metric perturbations. We find that the tensor-mode contribution to the cosmic microwave background anisotropy on large-angular scales can only exceed that of the scalar mode in models where the spectrum of perturbations deviates significantly from scale invariance. If the tensor mode dominates at large-angular scales, then the value of DeltaT/T predicted on 1 deg is less than if the scalar mode dominates, and, for cold-dark-matter models, bias factors greater than 1 can be made consistent with Cosmic Background Explorer (COBE) DMR results.

  15. Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2008-12-24

    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.

  16. Constraint on electromagnetic acceleration of highest energy cosmic rays.

    PubMed

    Medvedev, Mikhail V

    2003-04-01

    The energetics of electromagnetic acceleration of ultrahigh-energy cosmic rays (UHECRs) is constrained both by confinement of a particle within an acceleration site and by radiative energy losses of the particle in the confining magnetic fields. We demonstrate that the detection of approximately 3 x 10(20) eV events is inconsistent with the hypothesis that compact cosmic accelerators with high magnetic fields can be the sources of UHECRs. This rules out the most popular candidates, namely spinning neutron stars, active galactic nuclei (AGNs). Galaxy clusters and, perhaps, AGN radio lobes and gamma-ray burst blast waves remain the only possible (although not very strong) candidates for UHECR acceleration sites. Our analysis places no limit on linear accelerators. With the data from the future Auger experiment one should be able to answer whether a conventional theory works or some new physics is required to explain the origin of UHECRs.

  17. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  18. On cosmic acceleration without dark energy

    SciTech Connect

    Kolb, E.W.; Matarrese, S.; Riotto, A.; /INFN, Padua

    2005-06-01

    We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.

  19. ANOMALOUS COSMIC RAYS AS PROBES OF MAGNETIC CLOUDS

    SciTech Connect

    Reames, D. V.; Kahler, S. W.; Tylka, A. J.

    2009-08-01

    We report, for the first time, the observation near the Earth of anomalous cosmic ray (ACR) particles throughout the interiors of interplanetary magnetic clouds (MCs) at the same intensity as outside the MCs. ACRs, accelerated in the outer heliosphere, have unique elemental abundances making their identity unambiguous as they probe these clouds from the outside. Thus, MCs, carried out from the Sun by coronal mass ejections (CMEs), are seen to contain no structures that are magnetically closed to the penetration of ions with energies above a few MeV amu{sup -1}. As the MCs expand outward, they must fill their increasing volume with ACRs dynamically, to the same degree as neighboring 'open' field lines. These observations cast doubt on conventional ideas about the closed field topologies of MCs and the cross-field transport of energetic particles. The ACR observations conflict with some reports of significant exclusion from MCs of solar energetic particles (SEPs) of comparable energy and rigidity. A process that allows cross-field transport of ACRs may also allow similar transport of SEPs late in events, causing the large spatial extent and uniformity of SEPs in 'invariant spectral regions' extending far behind CME-driven shock waves.

  20. Machian Origin of the Entropic Gravity and Cosmic Acceleration

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab; Kanatchikov, Igor

    2012-03-01

    We discuss the emergence of relativistic effects in the Machian universe with a global preferred frame and use thermodynamic considerations to clarify the origin of gravity as an entropic force and the origin of dark energy/cosmic acceleration as related to the Hawking-Unruh temperature at the universe's horizon.

  1. Movable RF probe eliminates need for calibration in plasma accelerators

    NASA Technical Reports Server (NTRS)

    Miller, D. B.

    1967-01-01

    Movable RF antenna probe in plasma accelerators continuously maps the RF field both within and beyond the accelerator. It eliminates the need for installing probes in the accelerator walls. The moving RF probe can be used to map the RF electrical field under various accelerator conditions.

  2. Cosmic Accelerators: Engines of the Extreme Universe

    SciTech Connect

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  3. Interacting quintessence, the coincidence problem, and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Huey, Greg; Wandelt, Benjamin D.

    2006-07-01

    Faced by recent evidence for a flat universe dominated by dark energy, cosmologists grapple with deep cosmic enigmas such as the cosmological constant problem, extreme fine-tuning and the cosmic coincidence problem. The extent to which we observe the dimming of distant supernovae suggests that the cosmic acceleration is as least as severe as in cosmological constant models. Extrapolating this to our cosmic future implies terrifying visions of either a cold and empty universe or an explosive demise in a “Big Rip.” We construct a class of dynamical scalar field models of dark energy and dark matter. Within this class we can explain why supernovae imply a cosmic equation of state w≲-1, address fine-tuning issues, protect the universe from premature acceleration and predict a constant fraction of dark energy to dark matter in the future (thus solving the coincidence problem), satisfy the dominant energy condition, and ensure that gravitationally bound objects remain so forever (avoid a Big Rip). This is achieved with a string theory inspired Lagrangian containing standard kinetic terms, exponential potentials and couplings, and parameters of order unity.

  4. Testing Cosmic-Ray Acceleration in Young, Embedded Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Nukri, Komin; Marcowith, Alexandre; Lamanna, Giovanni; Maurin, Gilles; Krayzel, Fabien

    2016-07-01

    Most of the massive stars appear grouped in clusters located in giant molecular clouds. Their strong wind activity generates large structures known as stellar wind bubbles and induces collective effects which could accelerate particles up to high energy and produce gamma-rays. The best objects to observe these effects are young massive star clusters in which no supernova explosion has occurred yet. We model these star clusters as a spherical leaky box (the molecular cloud) surrounding a central cosmic ray source (the stellar cluster). We developed a phenomenological model to estimate the cosmic and gamma-ray production for a set of 8 selected clusters. We compare the predicted gamma-ray emission with data obtained with the Fermi-LAT telescope. No significant emission has been detected from any of the selected cluster. Comparing the upper limit on the gamma-ray flux with the prediction from our phenomenological model indicates that not more than 10% of the stellar wind luminosity of the stellar clusters is converted into cosmic rays. If all O-type stars do not contribute more than 10% of their stellar wind luminosity to cosmic-ray acceleration they do not contribute to more than on percent of the total cosmic-ray luminosity.

  5. Constraining the efficiency of cosmic ray acceleration by cluster shocks

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Wittor, D.; Gheller, C.; Eckert, D.; Stubbe, M.

    2016-06-01

    We study the acceleration of cosmic rays by collisionless structure formation shocks with ENZO grid simulations. Data from the Fermi satellite enable the use of galaxy clusters as a testbed for particle acceleration models. Based on advanced cosmological simulations that include different prescriptions for gas and cosmic rays physics, we use the predicted γ-ray emission to constrain the shock acceleration efficiency. We infer that the efficiency must be on average ≤10-3 for cosmic shocks, particularly for the M ˜ 2-5 merger shocks that are mostly responsible for the thermalization of the intracluster medium (ICM). These results emerge, both, from non-radiative and radiative runs including feedback from active galactic nuclei, as well as from zoomed resimulations of a cluster resembling MACSJ1752.0+0440. The limit on the acceleration efficiency we report is lower than what has been assumed in the literature so far. Combined with the information from radio emission in clusters, it appears that a revision of the present understanding of shock acceleration in the ICM is unavoidable.

  6. Holographic dark energy and late cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Pavón, Diego

    2007-06-01

    It has been persuasively argued that the number of effective degrees of freedom of a macroscopic system is proportional to its area rather than to its volume. This entails interesting consequences for cosmology. Here we present a model based on this 'holographic principle' that accounts for the present stage of accelerated expansion of the Universe and significantly alleviates the coincidence problem also for non-spatially flat cosmologies. Likewise, we comment on a recently proposed late transition to a fresh decelerated phase.

  7. Cosmic acceleration from matter-curvature coupling

    NASA Astrophysics Data System (ADS)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad

    2016-10-01

    We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.

  8. Cosmic acceleration and the helicity-0 graviton

    SciTech Connect

    Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory; Pirtskhalava, David

    2011-05-15

    We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.

  9. Cosmic bullets as particle accelerators and radio sources

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Kang, Hyesung; Tregillis, I. L.

    1994-01-01

    We have simulated in two dimensions the dynamical evolution of dense gas clouds(`cosmic bullets') moving supersonically through a uniform low-density medium. The diffusive shock acceleration of relativistic protons (cosmic rays) and their dynamical feedback on the background flow are included by the two-fluid model for this process. The acceleration of relativistic electrons is approximated by a test-particle model, and a passive magnetic field is followed by a simple advection scheme. Strong bow shocks, with Mach numbers similar to that of a bullet's motion, are the most important particle accelerators in the flow, while tail shocks and shocks inside the bullets do not play generally significant roles in this regard. For our simulation parameters, approximately greater than 10% of the initial bullet kinetic energy is converted to a combination of internal energy of gas and cosmic-ray protons by the time the bullets begin to be disrupted. Characteristically, the cosmic rays gain several percent of the available kinetic energy. Bullet destruction on timescales only a little larger than the ram pressure bullet crushing time begins in response to Kelvin-Helmholtz and especially to Rayleigh-Taylor instabilities along the forward bullet surface. For dense bullets this happens before the bullet is stopped by ram pressure. According to our simple model for synchrotron emission from relativistic electrons accelerated and transported within the flows, that emission increases rapidly as the bullet begins to fragment, when it is strongly dominated by field enhancement in sheared flows. Synchrotron emission from the acceleration region within the bow shock is, by contrast, much weaker.

  10. Probing inflation with the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Braganca, Vinicius Miranda

    The existence of a quasi-deSitter expansion in the early universe, known as inflation, generates the seeds of large-scale structures and is one of the foundations of the standard cosmological model. The main observational predictions from inflation include the existence of a nearly scale-invariant primordial power spectrum that is imprinted on the cosmic microwave background (CMB), which has been corroborated with remarkable precision in recent years. In single-field slow-roll inflation, a field called the inflaton dominates the energy density of the universe and slowly rolls in an almost perfectly flat potential. In addition, the motion of the inflaton field is friction dominated, with its velocity being completely specified by its position in the field space. This basic scenario is known as the slow-roll approximation and its validity is controlled by the magnitude of the so-called slow-roll parameters. Generalizations of single-field slow-roll inflation provide a wealth of observational signatures in the CMB temperature power spectrum, CMB polarization spectrum, primordial non-Guassianity and in lensing reconstruction. This thesis provides a series of consistency checks between these observables that can distinguish slow-roll violations from alternative explanations.

  11. Probing Inflation via Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Cosmic Microwave Background (CMB) has been a rich source of information about the early Universe. Detailed measurements of its spectrum and spatial distribution have helped solidify the Standard Model of Cosmology. However, many questions still remain. Standard Cosmology does not explain why the early Universe is geometrically flat, expanding, homogenous across the horizon, and riddled with a small anisotropy that provides the seed for structure formation. Inflation has been proposed as a mechanism that naturally solves these problems. In addition to solving these problems, inflation is expected to produce a spectrum of gravitational waves that will create a particular polarization pattern on the CMB. Detection of this polarized signal is a key test of inflation and will give a direct measurement of the energy scale at which inflation takes place. This polarized signature of inflation is expected to be -9 orders of magnitude below the 2.7 K monopole level of the CMB. This measurement will require good control of systematic errors, an array of many detectors having the requisite sensitivity, and a reliable method for removing polarized foregrounds, and nearly complete sky coverage. Ultimately, this measurement is likely to require a space mission. To this effect, technology and mission concept development are currently underway.

  12. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  13. Connecting inflation with late cosmic acceleration by particle production

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-04-01

    A continuous process of creation of particles is investigated as a possible connection between the inflationary stage with late cosmic acceleration. In this model, the inflationary era occurs due to a continuous and fast process of creation of relativistic particles, and the recent accelerating phase is driven by the nonrelativistic matter creation from the gravitational field acting on the quantum vacuum, which finally results in an effective equation of state (EoS) less than - 1. Thus, explaining recent results in favor of a phantom dynamics without the need of any modifications in the gravity theory has been proposed. Finally, we confront the model with recent observational data of type Ia Supernova, history of the Hubble parameter, baryon acoustic oscillations (BAOs) and the cosmic microwave background (CMB).

  14. Marginal evidence for cosmic acceleration from Type Ia supernovae

    PubMed Central

    Nielsen, J. T.; Guffanti, A.; Sarkar, S.

    2016-01-01

    The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion. PMID:27767125

  15. Is Cosmic Acceleration Telling Us Something About Gravity?

    SciTech Connect

    Trodden, Mark

    2006-03-02

    Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach. I will conclude by discussing how we might hope to distinguish between modifications of General Relativity and dark energy as competing hypotheses to explain cosmic acceleration.

  16. SPECTRUM OF GALACTIC COSMIC RAYS ACCELERATED IN SUPERNOVA REMNANTS

    SciTech Connect

    Ptuskin, Vladimir; Zirakashvili, Vladimir; Seo, Eun-Suk

    2010-07-20

    The spectra of high-energy protons and nuclei accelerated by supernova remnant (SNR) shocks are calculated, taking into account magnetic field amplification and Alfvenic drift both upstream and downstream of the shock for different types of SNRs during their evolution. The maximum energy of accelerated particles may reach 5 x 10{sup 18} eV for Fe ions in Type IIb SNRs. The calculated energy spectrum of cosmic rays after propagation through the Galaxy is in good agreement with the spectrum measured at the Earth.

  17. Marginal evidence for cosmic acceleration from Type Ia supernovae.

    PubMed

    Nielsen, J T; Guffanti, A; Sarkar, S

    2016-10-21

    The 'standard' model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present - as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these 'standardisable candles' indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  18. Is Cosmic Acceleration Telling Us Something About Gravity?

    ScienceCinema

    Trodden, Mark [Syracuse University, Syracuse, New York, United States

    2016-07-12

    Among the possible explanations for the observed acceleration of the universe, perhaps the boldest is the idea that new gravitational physics might be the culprit. In this colloquium I will discuss some of the challenges of constructing a sensible phenomenological extension of General Relativity, give examples of some candidate models of modified gravity and survey existing observational constraints on this approach. I will conclude by discussing how we might hope to distinguish between modifications of General Relativity and dark energy as competing hypotheses to explain cosmic acceleration.

  19. The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Tian, Zhen; Wang, Zhen; Li, Hai-Jin; Chen, Tian-Lu

    2017-02-01

    The multiteraelectronvolt γ-rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ-ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ-ray emissions from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ-rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ-ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.

  20. Extremely fast acceleration of cosmic rays in a supernova remnant.

    PubMed

    Uchiyama, Yasunobu; Aharonian, Felix A; Tanaka, Takaaki; Takahashi, Tadayuki; Maeda, Yoshitomo

    2007-10-04

    Galactic cosmic rays (CRs) are widely believed to be accelerated by shock waves associated with the expansion of supernova ejecta into the interstellar medium. A key issue in this long-standing conjecture is a theoretical prediction that the interstellar magnetic field can be substantially amplified at the shock of a young supernova remnant (SNR) through magnetohydrodynamic waves generated by cosmic rays. Here we report a discovery of the brightening and decay of X-ray hot spots in the shell of the SNR RX J1713.7-3946 on a one-year timescale. This rapid variability shows that the X-rays are produced by ultrarelativistic electrons through a synchrotron process and that electron acceleration does indeed take place in a strongly magnetized environment, indicating amplification of the magnetic field by a factor of more than 100. The X-ray variability also implies that we have witnessed the ongoing shock-acceleration of electrons in real time. Independently, broadband X-ray spectrometric measurements of RX J1713.7-3946 indicate that electron acceleration proceeds in the most effective ('Bohm-diffusion') regime. Taken together, these two results provide a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10(15) eV) and beyond in young supernova remnants.

  1. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan

    2016-04-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence - an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, Cassini/INCA maps the global heliosphere at energies (~5-55 KeV) above those measured by IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and INCA will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. The "A" in IMAP refers to acceleration of energetic particles. With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the species and spectral coverage as well as unprecedented temporal resolution to associate emerging suprathermal tails with interplanetary structures and discover underlying physical acceleration processes. These key measurements will provide what has been a critical missing piece of suprathermal seed particles in our understanding of particle acceleration to high

  2. Cosmic acceleration of Earth and the Moon by dark matter

    NASA Technical Reports Server (NTRS)

    Nordtvedt, Kenneth L.

    1994-01-01

    In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.

  3. Implications of PC and KPC Jet Asymmetry to the Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Gizani, Nectaria A. B.

    We probe the role that the directional asymmetry, between relativistic outflows and kilo-parsec scale jets, play in the acceleration of cosmic rays. For this reason we use two powerful, nearby Active Galactic Nuclei (AGNs). These radio galaxies are atypical compared to the usual AGN as they contain ring-like features instead of hotspots. Our VLBI radio data have revealed a substantial misalignment between their small and large scale jets. Taking into account the overall information we have obtained about the AGNs themselves (VLA and VLBI radio data at 18 cm) and their clusters (X-ray observations) our study supports the present ideas of powerful radiogalaxies (radio quiet and radio loud) being sources of cosmic rays as well as their ability to accelarate the latter to ultra high energies.

  4. ACCELERATION OF GALACTIC COSMIC RAYS IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Fisk, L. A.; Gloeckler, G.

    2012-01-10

    Challenges have arisen to diffusive shock acceleration as the primary means to accelerate galactic cosmic rays (GCRs) in the interstellar medium. Diffusive shock acceleration is also under challenge in the heliosphere, where at least the simple application of diffusive shock acceleration cannot account for observations. In the heliosphere, a new acceleration mechanism has been invented-a pump mechanism, driven by ambient turbulence, in which particles are pumped up in energy out of a low-energy core particle population through a series of adiabatic compressions and expansions-that can account for observations not only at shocks but in quiet conditions in the solar wind and throughout the heliosheath. In this paper, the pump mechanism is applied to the acceleration of GCRs in the interstellar medium. With relatively straightforward assumptions about the magnetic field in the interstellar medium, and how GCRs propagate in this field, the pump mechanism yields (1) the overall shape of the GCR spectrum, a power law in particle kinetic energy, with a break at the so-called knee in the GCR spectrum to a slightly steeper power-law spectrum. (2) The rigidity dependence of the H/He ratio observed from the PAMELA satellite instrument.

  5. New probes of Cosmic Microwave Background large-scale anomalies

    NASA Astrophysics Data System (ADS)

    Aiola, Simone

    Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the

  6. TOWARD A DIRECT MEASUREMENT OF THE COSMIC ACCELERATION

    SciTech Connect

    Darling, Jeremy

    2012-12-20

    We present precise H I 21 cm absorption line redshifts observed in multiple epochs to directly constrain the secular redshift drift z-dot or the cosmic acceleration, {Delta}v/{Delta}t{sub circle}. A comparison of literature analog spectra to contemporary digital spectra shows significant acceleration likely attributable to systematic instrumental errors. However, we obtain robust constraints using primarily Green Bank Telescope digital data. Ten objects spanning z = 0.09-0.69 observed over 13.5 years show z-dot = (-2.3 {+-} 0.8) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = -5.5 {+-} 2.2 m s{sup -1} yr{sup -1}. The best constraint from a single object, 3C 286 at (z) = 0.692153275(85), is z-dot = (1.6 {+-} 4.7) Multiplication-Sign 10{sup -8} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 2.8 {+-} 8.4 m s{sup -1} yr{sup -1}. These measurements are three orders of magnitude larger than the theoretically expected acceleration at z = 0.5, z-dot = 2 Multiplication-Sign 10{sup -11} yr{sup -1} or {Delta}v/{Delta}t{sub circle} = 0.3 cm s{sup -1} yr{sup -1}, but they demonstrate the lack of peculiar acceleration in absorption line systems and the long-term frequency stability of modern radio telescopes. A comparison of UV metal absorption lines to the 21 cm line improves constraints on the cosmic variation of physical constants: {Delta}({alpha}{sup 2} g{sub p} {mu})/{alpha}{sup 2} g{sub p} {mu} = (- 1.2 {+-} 1.4) Multiplication-Sign 10{sup -6} in the redshift range z = 0.24-2.04. The linear evolution over the last 10.4 Gyr is (- 0.2 {+-} 2.7) Multiplication-Sign 10{sup -16} yr{sup -1}, consistent with no variation. The cosmic acceleration could be directly measured in {approx}125 years using current telescopes or in {approx}5 years using a Square Kilometer Array, but systematic effects will arise at the 1 cm s{sup -1} yr{sup -1} level.

  7. Acceleration of cosmic rays in supernova-remnants

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.

  8. Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Opher, M.; Kasper, J.; Mewaldt, R.; Moebius, E.; Spence, H. E.; Zurbuchen, T. H.

    2016-11-01

    particle, and cosmic ray distributions to diagnose the changing space environment and understand the fundamental origins of particle acceleration. This paper, the first citable reference for IMAP, is similar to an unpublished whitepaper that was presented to the National Academies of Sciences, Engineering and Medicine Committee for Solar and Space Physics. We provide the IMAP objectives and instrument straw man traced from the Solar and Space Physics Decadal Survey. It is fitting that our paper is published in the volume of papers that celebrates the 80th birthday of Ed Stone.

  9. Cosmic shear as a probe of galaxy formation physics

    NASA Astrophysics Data System (ADS)

    Foreman, Simon; Becker, Matthew R.; Wechsler, Risa H.

    2016-12-01

    We evaluate the potential for current and future cosmic shear measurements from large galaxy surveys to constrain the impact of baryonic physics on the matter power spectrum. We do so using a model-independent parametrization that describes deviations of the matter power spectrum from the dark-matter-only case as a set of principal components that are localized in wavenumber and redshift. We perform forecasts for a variety of current and future data sets, and find that at least ˜90 per cent of the constraining power of these data sets is contained in no more than nine principal components. The constraining power of different surveys can be quantified using a figure of merit defined relative to currently available surveys. With this metric, we find that the final Dark Energy Survey data set (DES Y5) and the Hyper Suprime-Cam Survey will be roughly an order of magnitude more powerful than existing data in constraining baryonic effects. Upcoming Stage IV surveys (Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope) will improve upon this by a further factor of a few. We show that this conclusion is robust to marginalization over several key systematics. The ultimate power of cosmic shear to constrain galaxy formation is dependent on understanding systematics in the shear measurements at small (sub-arcminute) scales. If these systematics can be sufficiently controlled, cosmic shear measurements from DES Y5 and other future surveys have the potential to provide a very clean probe of galaxy formation and to strongly constrain a wide range of predictions from modern hydrodynamical simulations.

  10. A Comprehensive Investigation on the Slowing Down of Cosmic Acceleration

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, Yazhou; Li, Miao; Li, Nan

    2016-04-01

    Shafieloo et al. first proposed the possibility that the current cosmic acceleration (CA) is slowing down. However, this is rather counterintuitive because a slowing down CA cannot be accommodated in most mainstream cosmological models. In this work, by exploring the evolutionary trajectories of the dark energy equation of state w(z) and deceleration parameter q(z), we present a comprehensive investigation on the slowing down of CA from both the theoretical and the observational sides. For the theoretical side, we study the impact of different w(z) using six parametrization models, and then we discuss the effects of spatial curvature. For the observational side, we investigate the effects of different type Ia supernovae (SNe Ia), baryon acoustic oscillation (BAO), and cosmic microwave background (CMB) data. We find that (1) the evolution of CA is insensitive to the specific form of w(z); in contrast, a non-flat universe favors a slowing down CA more than a flat universe. (2) SNLS3 SNe Ia data sets favor a slowing down CA at a 1σ confidence level, while JLA SNe Ia samples prefer an eternal CA; in contrast, the effects of different BAO data are negligible. (3) Compared with CMB distance prior data, full CMB data favor a slowing down CA more. (4) Due to the low significance, the slowing down of CA is still a theoretical possibility that cannot be confirmed by the current observations.

  11. The ultraheavy cosmic rays - Propagation and selective acceleration

    NASA Technical Reports Server (NTRS)

    Margolis, S. H.; Blake, J. B.

    1983-01-01

    Results of calculations of ultraheavy cosmic ray propagation are examined in the light of recent observations and theoretical advances with the objective of distinguishing the effects of propagation from nucleosynthesis and preferential acceleration. The results presented here have been calculated by the method described in Margolis (1983), with elements from iron (Z = 26) to uranium (Z = 92) combined in a single calculation. The source abundances of Anders and Ebihara (1982) have been used as a reference composition. It is shown, in particular, that the relative abundances of Sr and Ba are substantially increased by using the modified ionization potential dependence (MIPD) compared with solar abundances and the first ionization potential dependence (FIPD) model. In contrast, Pb shows similar enhancements in both FIPD and MIPD models.

  12. Cosmic slowing down of acceleration for several dark energy parametrizations

    SciTech Connect

    Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica E-mail: victor.cardenas@uv.cl

    2014-10-01

    We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.

  13. Ringlike inelastic events in cosmic rays and accelerators

    NASA Technical Reports Server (NTRS)

    Dremin, I. M.; Orlov, A. M.; Tretyakova, M. I.

    1985-01-01

    In cosmic rays and in accelerators there were observed single inelastic processes with densely produced (azimuthally isotropic) groups of particles exhibiting spikes in the pseudorapidity plot of an individual event (i.e. ringlike events). Theoretically the existence of such processes was predicted as a consequence of Cerenkov gluon radiation or, more generally, of deconfinement radiation. Nowadays some tens of such events have been accumulated at 400 GeV and at 150 TeV. Analyzing ringlike events in proton-nucleon interactions at 400 GeV/c it is shown that they exhibit striking irregularity in the positions of pseudorapidity spikes' centers which tend to lie mostly at 55,90 and 125 deg in cms. It implies rather small deconfinement lengths of the order of some fermi.

  14. The Baryonic Structure Probe: An Origins Probe to Characterize the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Sembach, K. R.; Cen, R.; Dave, R.; Cook, T.; Donahue, M.; Ebbets, D. C.; Green, J. C.; Jenkins, E. B.; Oegerle, W. R.; Ostriker, J. P.; Prochaska, J. X.; Savage, B. D.; Shull, J. M.; Stahl, H. P.; Tripp, T. M.; Oppenheimer, B. D.; Furlanetto, S. R.; Fang, T.

    2005-12-01

    This concept study defines the scientific requirements and instrumental performance needed for a space mission to detect and characterize the cosmic web of matter, the processes that produce and govern its structure, and its influence on the formation and evolution of galaxies. Our new numerical simulations explicitly track the observational signatures of the web gas as a function of time (redshift) up to the present day. The simulations include prescriptions for feedback interactions between galaxies and the intergalactic medium, and demonstrate that the ultraviolet O VI lines and the H I Lyman alpha line are premier diagnostics of low-density cosmic web regions. We define the field of view, angular resolution, and sensitivity needed to detect the web filaments in emission and absorption, and the spectral resolution needed to separate the gas signatures from foreground signals. These results define the driving science requirements for the Baryonic Structure Probe and any other future missions seeking to characterize the cosmic web. The science requirements can be met with a dedicated observatory in an L2 orbit capable of simultaneously observing both the faint emissions and weak absorption lines from the cosmic web. Our mission concept baselines a low risk 5-year core science mission with a 10-year design lifetime. Technological investments that would improve performance include the development of high quantum efficiency ultraviolet detectors, large format diffraction gratings, and improved optical coatings.

  15. Testing Gravity and Cosmic Acceleration with Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.

    2012-01-01

    The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.

  16. Interstellar Mapping and Acceleration Probe (IMAP) - Its Time Has Come!

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Kasper, J. C.; Mewaldt, R. A.; Moebius, E.; Opher, M.; Spence, H. E.; Zurbuchen, T.

    2014-12-01

    Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence -- an astrophysical case-history of the successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad interactions, we develop key physical knowledge of the interstellar interactions that influence exoplanetary habitability as well as the distant history and destiny of our solar system and world. IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer heliosphere. The enigmatic IBEX ribbon is an unanticipated discovery demonstrating that much of what we know or think we understand about the outer heliosphere needs to be revised. The next quantum leap enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space environment is rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX will discover the substructure of the IBEX ribbon and will reveal in unprecedented resolution global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward in the vicinity of the IBEX ribbon and its plasma measurements will create singular opportunities for discovery in the context of IMAP's global measurements. IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing comprehensive cosmic ray, energetic particle, pickup ion, suprathermal ion, neutral atom, solar wind, solar wind heavy ion, and magnetic field observations to diagnose the changing space environment and understand the fundamental origins of particle acceleration. Thus, IMAP is a mission whose time has come. IMAP is the highest ranked next Solar Terrestrial Probe in the Decadal

  17. Global S4 Index Maximum Probed by FORMOSAT-3 /COSMIC

    NASA Astrophysics Data System (ADS)

    Liu, Jann-Yenq; Chen, Shih-Ping; Yeh, Wen-Hao; Liu, Chao-Han

    2014-05-01

    This paper reports 3D structure and dynamics of the ionospheric scintillation in terms of the maximum value of the S4 index (S4max) probed by radio occultation FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2013. The S4 index is calculated from fluctuations of the signal-to-noise ratio (SNR) intensity in the L1 channel of GPS radio occultation signals recorded by F3/C GOX (Gps Occultation eXperiment). On average, nearly 6000 to 7000 S4 index profiles are derived by F3/C per day covering an altitude range from the Earth's surface to 800 km. The diurnal, seasonal, solar activity, and geographical variations of 3D S4max are examined. An integral process is introduced converting the satellite-based S4max to ground-based one which will be further used to estimate the worst case of GPS scintillation on the ground during both low and high solar activities.

  18. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  19. Is it possible to obtain cosmic accelerated expansion through energy transfer between different energy densities?

    NASA Astrophysics Data System (ADS)

    Erdem, Recai

    2017-03-01

    The equation of state of an energy density may be significantly modified by coupling it to another energy density. In the light of this observation we check the possibility of producing cosmic accelerated expansion in this way. In particular we consider the case where matter is converted to radiation (or vice versa by particle physics processes). We find that cosmic accelerated expansion can be obtained in this way only if an intermediate state with negative equation of state forms during the conversion.

  20. Estimating field scale root zone soil moisture using the cosmic-ray neutron probe

    NASA Astrophysics Data System (ADS)

    Peterson, A. M.; Helgason, W. D.; Ireson, A. M.

    2015-12-01

    Many practical hydrological, meteorological and agricultural management problems require estimates of soil moisture with an areal footprint equivalent to "field scale", integrated over the entire root zone. The cosmic-ray neutron probe is a promising instrument to provide field scale areal coverage, but these observations are shallow and require depth scaling in order to be considered representative of the entire root zone. A study to identify appropriate depth-scaling techniques was conducted at a grazing pasture site in central Saskatchewan, Canada over a two year period. Area-averaged soil moisture was assessed using a cosmic-ray neutron probe. Root zone soil moisture was measured at 21 locations within the 5002 m2 area, using a down-hole neutron probe. The cosmic-ray neutron probe was found to provide accurate estimates of field scale surface soil moisture, but accounted for less than 40 % of the seasonal change in root zone storage due to its shallow measurement depth. The root zone estimation methods evaluated were: (1) the coupling of the cosmic-ray neutron probe with a time stable neutron probe monitoring location, (2) coupling the cosmic-ray neutron probe with a representative landscape unit monitoring approach, and (3) convolution of the cosmic-ray neutron probe measurements with the exponential filter. The time stability method provided the best estimate of root zone soil moisture (RMSE = 0.004 cm3 cm-3), followed by the exponential filter (RMSE = 0.012 cm3 cm-3). The landscape unit approach, which required no calibration, had a negative bias but estimated the cumulative change in storage reasonably. The feasibility of applying these methods to field sites without existing instrumentation is discussed. It is concluded that the exponential filter method has the most potential for estimating root zone soil moisture from cosmic-ray neutron probe data.

  1. Estimating field-scale root zone soil moisture using the cosmic-ray neutron probe

    NASA Astrophysics Data System (ADS)

    Peterson, Amber M.; Helgason, Warren D.; Ireson, Andrew M.

    2016-04-01

    Many practical hydrological, meteorological, and agricultural management problems require estimates of soil moisture with an areal footprint equivalent to field scale, integrated over the entire root zone. The cosmic-ray neutron probe is a promising instrument to provide field-scale areal coverage, but these observations are shallow and require depth-scaling in order to be considered representative of the entire root zone. A study to identify appropriate depth-scaling techniques was conducted at a grazing pasture site in central Saskatchewan, Canada over a 2-year period. Area-averaged soil moisture was assessed using a cosmic-ray neutron probe. Root zone soil moisture was measured at 21 locations within the 500 m × 500 m study area, using a down-hole neutron probe. The cosmic-ray neutron probe was found to provide accurate estimates of field-scale surface soil moisture, but measurements represented less than 40 % of the seasonal change in root zone storage due to its shallow measurement depth. The root zone estimation methods evaluated were: (a) the coupling of the cosmic-ray neutron probe with a time-stable neutron probe monitoring location, (b) coupling the cosmic-ray neutron probe with a representative landscape unit monitoring approach, and (c) convolution of the cosmic-ray neutron probe measurements with the exponential filter. The time stability method provided the best estimate of root zone soil moisture (RMSE = 0.005 cm3 cm-3), followed by the exponential filter (RMSE = 0.014 cm3 cm-3). The landscape unit approach, which required no calibration, had a negative bias but estimated the cumulative change in storage reasonably. The feasibility of applying these methods to field sites without existing instrumentation is discussed. Based upon its observed performance and its minimal data requirements, it is concluded that the exponential filter method has the most potential for estimating root zone soil moisture from cosmic-ray neutron probe data.

  2. Late time cosmic acceleration from natural infrared cutoff

    NASA Astrophysics Data System (ADS)

    Gorji, Mohammad Ali

    2016-09-01

    In this paper, inspired by the ultraviolet deformation of the Friedmann-Lemaître-Robertson-Walker geometry in loop quantum cosmology, we formulate an infrared-modified cosmological model. We obtain the associated deformed Friedmann and Raychaudhuri equations and we show that the late time cosmic acceleration can be addressed by the infrared corrections. As a particular example, we applied the setup to the case of matter dominated universe. This model has the same number of parameters as ΛCDM, but a dynamical dark energy generates in the matter dominated era at the late time. According to our model, as the universe expands, the energy density of the cold dark matter dilutes and when the Hubble parameter approaches to its minimum, the infrared effects dominate such that the effective equation of state parameter smoothly changes from weff = 0 to weff = - 2. Interestingly and nontrivially, the unstable de Sitter phase with weff = - 1 is corresponding to Ωm =Ωd = 0.5 and the universe crosses the phantom divide from the quintessence phase with weff > - 1 and Ωm >Ωd to the phantom phase with weff < - 1 and Ωm <Ωd which shows that the model is observationally viable. The results show that the universe finally ends up in a big rip singularity for a finite time proportional to the inverse of the minimum of the Hubble parameter. Moreover, we consider the dynamical stability of the model and we show that the universe starts from the matter dominated era at the past attractor with weff = 0 and ends up in a future attractor at the big rip with weff = - 2.

  3. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  4. SUPERNOVA REMNANT KES 17: AN EFFICIENT COSMIC RAY ACCELERATOR INSIDE A MOLECULAR CLOUD

    SciTech Connect

    Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara E-mail: cara.rakowski@gmail.com

    2013-11-10

    The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

  5. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    NASA Astrophysics Data System (ADS)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  6. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  7. Probing model-independent cosmic opacity and its spatial properties

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    2016-11-01

    Cosmic opacity and its spatial distribution have been constrained with a model independent method. The average opacity of the universe is not zero, but can be zero in the 1σ error range. The best-fit value of the spatial distribution of cosmic opacity is not a constant as the redshift varies, though a homogeneous and transparent universe is favored in the 2σ error range.

  8. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.PACS95.85.Ry98.70.Rz98.54.Cm98.54.EpReferencesFor a review, see:F.HalzenD.HooperRep. Prog. Phys.6520021025A.AchterbergIceCube CollaborationPhys. Rev. Lett.972006221101A.AchterbergIceCube CollaborationAstropart. Phys.262006282arXiv:astro-ph/0611063arXiv:astro-ph/0702265V.NiessANTARES CollaborationAIP Conf. Proc.8672006217I.KravchenkoPhys. Rev. D732006082002S.W.BarwickANITA CollaborationPhys. Rev. Lett.962006171101V.Van ElewyckPierre Auger CollaborationAIP Conf. Proc.8092006187For a survey of possible sources and event rates in km3 detectors see e.g.,W.BednarekG.F.BurgioT.MontaruliNew Astron. Rev.4920051M.D.KistlerJ.F.BeacomPhys. Rev. D742006063007A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, arXiv:astro-ph/0607286.A.LevinsonE.WaxmanPhys. Rev. Lett.872001171101C.DistefanoD.GuettaE.WaxmanA.LevinsonAstrophys. J.5752002378F.A.AharonianL.A.AnchordoquiD.KhangulyanT.MontaruliJ. Phys. Conf. Ser.392006408J.Alvarez-MunizF.HalzenAstrophys. J.5762002L33F.VissaniAstropart. Phys.262006310F.W

  9. Stochastic Acceleration of Galactic Cosmic Rays by Compressible Plasma Fluctuations in Supernova Shells

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    2015-10-01

    A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.

  10. Measuring the cosmic-ray acceleration efficiency of a supernova remnant.

    PubMed

    Helder, E A; Vink, J; Bassa, C G; Bamba, A; Bleeker, J A M; Funk, S; Ghavamian, P; van der Heyden, K J; Verbunt, F; Yamazaki, R

    2009-08-07

    Cosmic rays are the most energetic particles arriving at Earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the x-ray emission is dominated by synchrotron radiation from ultrarelativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in x-rays. The measured postshock proton temperature, in combination with the shock velocity, does not agree with standard shock heating, implying that >50% of the postshock pressure is produced by cosmic rays.

  11. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts.

    PubMed

    2012-04-18

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  12. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  13. The cosmic microwave background - A probe of particle physics

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1990-01-01

    The current status of spectral distortions and angular anisotropies in the cosmic microwave background is reviewed, with emphasis on the role played by weakly interacting particle dark matter. Theoretical predictions and recent observational results are described, and prospects for future progress are summarized.

  14. A numerical study of diffusive shock acceleration of cosmic rays in supernova shocks

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Jokipii, J. R.

    1985-01-01

    The evolution of the energy spectrum of cosmic rays accelerated by the first order Fermi mechanism, by a supernova remnant shock wave, including adiabatic deceleration effects behind the front, is carried out by means of a time-dependent numerical code. The calculations apply to the adiabatic stage (or Sedov stage) of the supernova explosion, and the energetic particle spectrum is calculated in the test particle limit (i.e., the back reaction of the cosmic rays on the flow is not included). The particles are injected mono-energetically at the shock. The radial distribution, The radial distribution, and the spectrum of the accelerated and decelerated particles is shown.

  15. Visual phenomena induced by cosmic rays and accelerated particles

    NASA Technical Reports Server (NTRS)

    Tobias, C. A.; Budinger, T. F.; Leith, J. T.; Mamoon, A.; Chapman, P. K.

    1972-01-01

    Experiments, conducted at cyclotrons together with observations by Apollo astronauts, suggest with little doubt that cosmic nuclei interacting with the visual apparatus cause the phenomenon of light flashes seen on translunar and transearth coast over the past four Apollo missions. Other experiments with high and low energy neutrons and a helium ion beam suggest that slow protons and helium ions with a stopping power greater than 10 to the 8th power eV/gram sq cm can cause the phenomenon in the dark adapted eye. It was demonstrated that charged particles induced by neutrons and helium ions can stimulate the visual apparatus. Some approaches to understanding the long term mission effects of galactic cosmic nuclei interacting with man and his nervous system are outlined.

  16. A MODEL OF ACCELERATION OF ANOMALOUS COSMIC RAYS BY RECONNECTION IN THE HELIOSHEATH

    SciTech Connect

    Lazarian, A.; Opher, M. E-mail: mopher@gmu.ed

    2009-09-20

    We discuss a model of cosmic ray acceleration that accounts for the observations of anomalous cosmic rays (ACRs) by Voyager 1 and 2. The model appeals to fast magnetic reconnection rather than shocks as the driver of acceleration. The ultimate source of energy is associated with magnetic field reversals that occur in the heliosheath. It is expected that the magnetic field reversals will occur throughout the heliosheath, but especially near the heliopause where the flows slow down and diverge with respect to the interstellar wind and also in the boundary sector in the heliospheric current sheet. While the first-order Fermi acceleration theory within reconnection layers is in its infancy, the predictions do not contradict the available data on ACR spectra measured by the spacecraft. We argue that the Voyager data are one of the first pieces of evidence favoring the acceleration within regions of fast magnetic reconnection, which we believe to be a widely spread astrophysical process.

  17. Cosmic Rays and Neutrinos as Complementary Probes of Ultra-High Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Connolly, Amy; Griffith, Nathan; Horiuchi, Shunsaku

    2017-01-01

    Neutrino in ultra-high energy regime will be unique messengers to the astrophysics sources of the highest energy cosmic rays. They are the only particles that can be observed above the GZK threshold at cosmic distances, of order a Gpc, and this means that only neutrinos will be sensitive to any redshift-dependence of the source properties at the highest energies. Using CRPropa 2.0, we have investigated which properties of the source spectra are best probed by cosmic rays and in what energy range, which properties can only be measured with neutrinos, and the implications of redshift-dependent properties on both fits to cosmic ray day and predictions of neutrino flux spectra. NSF CAREER award 1255557.

  18. Anisotropies in the gravitational wave background as a probe of the cosmic string network

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Sachiko; Takahashi, Keitaro; Yonemaru, Naoyuki; Kumamoto, Hiroki

    2017-02-01

    Pulsar timing arrays are powerful tools to test the existence of cosmic strings by searching for the gravitational wave (GW) background. The amplitude of the background connects to information on cosmic strings such as the tension and string network properties. In addition, one may be able to extract more information on the properties of cosmic strings by measuring anisotropies in the GW background. In this paper, we provide estimates of the level of anisotropy expected in the GW background generated by cusps on cosmic strings. We find that the anisotropy level strongly depends on the initial loop size α , and thus we may be able to put constraints on α by measuring the anisotropy of the GW background. We also find that certain regions of the parameter space can be probed by shifting the observation frequency of GWs.

  19. Particle acceleration in cosmic plasmas – paradigm change?

    SciTech Connect

    Lytikov, Maxim; Guo, Fan

    2015-07-21

    The presentation begins by considering the requirements on the acceleration mechanism. It is found that at least some particles in high-energy sources are accelerated by magnetic reconnection (and not by shocks). The two paradigms can be distinguished by the hardness of the spectra. Shocks typically produce spectra with p > 2 (relativistic shocks have p ~ 2.2); non-linear shocks & drift acceleration may give p < 2, e.g. p=1.5; B-field dissipation can give p = 1. Then collapse of stressed magnetic X-point in force-free plasma and collapse of a system of magnetic islands are taken up, including Island merger: forced reconnection. Spectra as functions of sigma are shown, and gamma ~ 109 is addressed. It is concluded that reconnection in magnetically-dominated plasma can proceed explosively, is an efficient means of particle acceleration, and is an important (perhaps dominant for some phenomena) mechanism of particle acceleration in high energy sources.

  20. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  1. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2016-07-12

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  2. Integration of cosmic-ray neutron probes into production agriculture: Lessons from the Platte River cosmic-ray neutron probe monitoring network

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Finkenbiner, C. E.; Franz, T. E.; Nguy-Robertson, A. L.; Munoz-Arriola, F.; Suyker, A.; Arkebauer, T. J.

    2015-12-01

    Projected increases in global population will put enormous pressure on fresh water resources in the coming decades. Approximately 70 percent of human water use is allocated to agriculture with 40 percent of global food production originating from irrigated lands. Growing demand for food will only worsen the strain placed on many irrigated agricultural systems resulting in an unsustainable reliance on groundwater. This work presents an overview of the Platte River Cosmic-ray Neutron Probe Monitoring Network, which consists of 10 fixed probes and 3 mobile probes located across the Platte River Basin. The network was installed in 2014 and is part of the larger US COSMOS (70+ probes) and global COSMOS networks (200+ probes). Here we will present an overview of the network, comparison of fixed neutron probe results across the basin, spatial mapping results of the mobile sensors at various sites and spatial scales, and lessons learned by working with various producers and water stakeholder groups. With the continued development of this technique, its incorporation for soil moisture management in large producer operations has the potential to increase irrigation water use efficiency in the Platte River Basin and beyond.

  3. Cosmic microwave background anisotropy from nonlinear structures in accelerating universes

    SciTech Connect

    Sakai, Nobuyuki; Inoue, Kaiki Taro

    2008-09-15

    We study the cosmic microwave background (CMB) anisotropy due to spherically symmetric nonlinear structures in flat universes with dust and a cosmological constant. By modeling a time-evolving spherical compensated void/lump by Lemaitre-Tolman-Bondi spacetimes, we numerically solve the null geodesic equations with the Einstein equations. We find that a nonlinear void redshifts the CMB photons that pass through it regardless of the distance to it. In contrast, a nonlinear lump blueshifts (or redshifts) the CMB photons if it is located near (or sufficiently far from) us. The present analysis comprehensively covers previous works based on a thin-shell approximation and a linear/second-order perturbation method and the effects of shell thickness and full nonlinearity. Our results indicate that, if quasilinear and large (> or approx.100 Mpc) voids/lumps would exist, they could be observed as cold or hot spots with temperature variance > or approx. 10{sup -5} K in the CMB sky.

  4. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    SciTech Connect

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  5. Cosmic-ray acceleration during the impact of shocks on dense clouds

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Kang, Hyesung

    1993-01-01

    In order to elucidate the properties of diffusive shock acceleration in nonuniform environments, an extensive set of simulations of the dynamical interactions between plane nonradiative shocks and dense gas clouds was carried out initially in static equilibrium with their environments. These time-dependent calculations are based on the two-fluid model for diffusive cosmic ray transport, and include the dynamically active energetic proton component of the cosmic rays as well as passive electron and magnetic field components. Except when the incident shock is itself already dominated by cosmic ray pressure, it is found that the presence of the cloud adds little to the net acceleration efficiency of the original shock and can, in fact, reduce slightly the net amount of energy transferred to cosmic rays after a given time. It is found that, in 2D cloud simulations, the always-weak bow shock and the shock inside the cloud are less important to acceleration during the interaction than the tail shock.

  6. Probing Cosmic Infrared Sources: A Computer Modeling Approach

    DTIC Science & Technology

    1992-06-01

    Bits and Bytes.", NASA Goddard Space Right Center, Green Belt , Maryland (May 1990). 11. "Probing Infrared Sources by Computer Modeling.", review talk...is this expected from elementary theory, but many observations can be well described with this assumption ( Kuiper 1967; Kwok 1980; Sopka et al. 1985...Neugebauer, H. J. Habing, P. E. Clegg, & T. J. Chester (Washington: GPO) Kuiper , T. B. H. et al. 1976, Api, 204, 408 Kwan, J., Scoville, N. 1976, Api, 209, 102

  7. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  8. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  9. Black holes are neither particle accelerators nor dark matter probes.

    PubMed

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  10. X-Ray Probes of Cosmic Star-Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  11. Probing acceleration and turbulence at relativistic shocks in blazar jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.

    2017-02-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broad-band continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-Large Area Telescope spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.

  12. A transient MHD model applicable for the source of solar cosmic ray acceleration

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.

    1981-01-01

    A two-dimensional, time-dependent magnetohydrodynamic model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. In this presentation, the effects of initial magnetic topology and strength on the formation of MHD shocks have been studied. The plasma beta (thermal pressure/magnetic pressure) is considered as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfven Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. It is suggested that this model (computed self-consistently) provides the shock waves and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.

  13. Clusters of Galaxies as a Probe of the Cosmic Density

    NASA Astrophysics Data System (ADS)

    Richstone, Douglas

    1994-05-01

    We focus on the influence of cosmological model on the process of formation of clusters of galaxies. Richstone, Loeb and Turner (1992 ApJ 393, 477) have shown that under the assumptions of hierarchical formation and a Gaussian random field of perturbations, the rate at which matter is currently being added to the most massive virialized structures is a strong function of Omega_0 , and suggested that the observed frequency of substructure in clusters might be a probe of Omega . Evrard, Mohr, Fabricant and Geller (1993 ApJ Letters 419, L9) have shown that it is possible to compare SPH simulations of clusters to X-ray images of clusters using a test measuring the skewness of the image, to explore this effect. We report on calculations done in collaboration with Crone and Evrard, which explore the cosmological dependence of the cluster density profile and various tests of substructure in N-body simulations.

  14. Acceleration of cosmic rays at supernova remnant shocks: constraints from gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Lemoine-Goumard, Marianne

    2016-06-01

    Supernova remnants (SNRs) are thought to be the primary sources of the bulk of Galactic cosmicray (CR) protons observed at Earth, up to the knee energy at ˜3 PeV. Our understanding of CR acceleration in SNRs mainly relies on the Diffusive Shock Acceleration theory which is commonly invoked to explain several observational (though, indirect) lines of evidence for efficient particle acceleration at the SNR forward shocks up to very high energies. In particular, recent observations of young SNRs in the high-energy (HE; 0.1 < E < 100 GeV) gamma-ray domains have raised several questions and triggered numerous theoretical investigations. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In my presentation, I will review the most relevant results of gamma ray astronomy on supernova remnants (shell-type and middle-age interacting with molecular clouds) and the constraints derived concerning their efficiency to accelerate cosmic-rays.

  15. Cosmic gamma-ray propagation as a probe for intergalactic media and interactions

    NASA Astrophysics Data System (ADS)

    Huan, Hao

    2012-05-01

    Very-high-energy (VHE) gamma rays beyond 100 GeV, coming from galactic and extragalactic sources, reflect the most energetic non-thermal processes in the universe. The emission of these photons indicates the acceleration of charged particles to very high energies or the existence of exotic particles that annihilate or decay to photons. Observations of VHE gamma rays probing this highest energy window of electromagnetic waves thus can reveal the underlying acceleration processes or new astrophysical particles. The fluxes tend to be power-law spectra and this poses a difficulty for direct observation due to the low flux at the high-energy end and to the limited effective area of space-borne instruments. Ground-based VHE gamma-ray observatories therefore take advantage of the earth atmosphere as a calorimeter and observe the gamma rays indirectly via the electromagnetic cascade shower particles they produce. The shower particles are detected either directly or via the Cherenkov radiation they emit while propagating through the air. The current-generation telescopes adopting this ground-based methodology have confirmed several source categories and are starting to answer various physical and astronomical questions, e.g., the origin of cosmic rays, the nature of dark matter, the black hole accretion processes, etc. Together with multi-wavelength observations covering the full electromagnetic spectrum and astrophysical observatories of other particles (cosmic rays, neutrinos, etc.) VHE gamma-ray astronomy contributes as an indispensable part of the recently emerging field of multi-messenger particle astrophysics. When emitted by extragalactic sources, the VHE gamma rays undergo various interactions in the intergalactic medium as they propagate toward the earth. There is a guaranteed interaction, where the VHE gamma-ray photons are absorbed by the extragalactic background light (EBL), an isotropic background of optical-to-infrared photons coming from starlight or dust re

  16. Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies

    SciTech Connect

    Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.

    2006-06-15

    The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolution of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.

  17. Overview of the SuperNova/Acceleration probe (SNAP)

    SciTech Connect

    galdering@lbl.gov

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) is a space-based experiment to measure the expansion history of the Universe and study both its dark energy and the dark matter. The experiment is motivated by the startling discovery that the expansion of the Universe is accelerating. A 0.7 square-degree imager comprised of 36 large format fully-depleted n-type CCD's sharing a focal plane with 36 HgCdTe detectors forms the heart of SNAP, allowing discovery and lightcurve measurements simultaneously for many supernovae. The imager and a high-efficiency low-resolution integral field spectrograph are coupled to a 2-m three mirror anastigmat wide-field telescope, which will be placed in a high-earth orbit. The SNAP mission can obtain high-signal-to-noise calibrated light-curves and spectra for over 2000 Type Ia supernovae at redshifts between z = 0.1 and 1.7. The resulting data set can not only determine the amount of dark energy with high precision, but test the nature of the dark energy by examining its equation of state. In particular, dark energy due to a cosmological constant can be differentiated from alternatives such as ''quintessence'', by measuring the dark energy's equation of state to an accuracy of {+-} 0.05, and by studying its time dependence.

  18. Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks

    NASA Astrophysics Data System (ADS)

    Bustard, Chad; Zweibel, Ellen G.; Cotter, Cory

    2017-01-01

    There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 1015 eV and the so-called “ankle” around 1018 eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 1015 and 1018 eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 1017 eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.

  19. Cosmic far-ultraviolet background radiation - Probe of a dense hot intergalactic medium

    NASA Technical Reports Server (NTRS)

    Sherman, R. D.; Silk, J.

    1979-01-01

    Line and continuum radiation fluxes have been computed for a wide range of enriched intergalactic medium (IGM) models. Observations of the diffuse extragalactic light at optical and far-ultraviolet wavelengths are found to provide a potentially important probe of a dense hot intergalactic medium. If the diffuse X-ray background is produced by this gas, the models constrain the cosmological density parameter (Omega) to be less than 0.4. The associated Compton distortions of the cosmic blackbody background radiation and the optical depths to distant quasars at X-ray wavelengths are also evaluated.

  20. Probing the gravitational wave signature from cosmic phase transitions at different scales

    SciTech Connect

    Krauss, Lawrence M.; Dent, James; Jones-Smith, Katherine; Mathur, Harsh

    2010-08-15

    We present a new signature by which one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at frequencies probed by future direct detection experiments to the magnitude of a possible polarization signal in the cosmic microwave background radiation. In the process we clarify several issues related to the proper calculation of such modes, focusing on the effect of post-horizon-crossing evolution.

  1. Some characteristics of microwave type 4 radio bursts and the acceleration of solar cosmic rays

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The relationships between some characteristics of microwave type 4 radio bursts and solar cosmic ray protons of MeV energy are discussed. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the earth. The rise times of type 4 microwave emissions are, however, independent of the proton peak fluxes. Using these results, discussion is given on the acceleration process and duration for both protons and electrons.

  2. A generalization of gauge symmetry, fourth-order gauge field equations and accelerated cosmic expansion

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    2014-02-01

    A generalization of the usual gauge symmetry leads to fourth-order gauge field equations, which imply a new constant force independent of distances. The force associated with the new U1 gauge symmetry is repulsive among baryons. Such a constant force based on baryon charge conservation gives a field-theoretic understanding of the accelerated cosmic expansion in the observable portion of the universe dominated by baryon galaxies. In consistent with all conservation laws and known forces, a simple rotating "dumbbell model" of the universe is briefly discussed.

  3. Acceleration and propagation of high Z cosmic rays in a pulsar environment

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Ryan, M. J.

    1971-01-01

    The survival of high Z nuclei in the X-ray photon field of a pulsar is investigated. For heavy nuclei with energies greater than or equal to 100 GeV/nucleon, 100 keV X-ray photons have sufficient energy to cause photodisintegration with cross sections of approximately 10 to the minus 25th power sq cm. Using the observed properties of the Crab pulsar, extrapolation back to epochs when the pulsar was more active indicates that the photon field is sufficiently dense to prevent the acceleration of heavy nuclei within the velocity of light cylinder. On this model, the upper limit on the energy of the escaping nuclei varies with time. The models for cosmic ray acceleration in supernova explosions or by pulsars will be related to experimental observations.

  4. Relativistic cosmic ray spectra in the full non-linear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Eichler, D.; Ellison, D. C.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite ave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72%, 2) 44%, and (3) 26% (this includes the energy loss at the upper energy cuttoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  5. Relativistic cosmic-ray spectra in the fully nonlinear theory of shock acceleration

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Eichler, D.

    1985-01-01

    The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite wave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72 percent, (2) 44 percent, and (3) 26 percent (this includes the energy loss at the upper energy cutoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.

  6. Charge States of Solar Cosmic Rays and Constraints on Acceleration Times and Transport within the Corona

    NASA Astrophysics Data System (ADS)

    Ruffolo, David

    1997-04-01

    We examine effects on the charge states of solar cosmic ray ions due to shock heating or stripping at suprathermal ion velocities. Recent measurements of the mean charges of various elements after the gradual solar flares of 1992 Oct 30 and 1992 Nov 2 allow one to place limits on the product of the electron density times the acceleration or coronal residence time experienced by the escaping ions. In particular, any residence in coronal loops must be for <0.03 s, which rules out models of coronal transport (e.g., the bird cage model) in which escaping ions travel to distant solar longitudes within coronal loops. The results do not contradict models of distributed shock acceleration of energetic ions from coronal plasma at various solar longitudes, followed by prompt injection into the interplanetary medium.

  7. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    PubMed

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  8. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  9. The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.; Vonrosenvinge, T. T.

    1992-01-01

    The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them.

  10. First Results from a Principal Component Analysis of Tycho's SNR: Evidence for Cosmic Ray Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Warren, J. S.; Hughes, J. P.; Badenes, C.

    2005-12-01

    We present results from a Principal Component Analysis (PCA) of Tycho's supernova remnant (SNR). PCA is a statistical technique we implemented to characterize X-ray spectra extracted from distinct spatial regions across the entire image of the remnant. We used the PCA to determine the location of the contact discontinuity (CD) in Tycho, which marks the boundary between shocked ejecta and shocked interstellar material, and found an azimuthal-angle-averaged radius of 241". For the average radius of the outer blast wave (BW) we found 251". Taking account of projection effects, the ratio of BW:CD is 1:0.93, which is inconsistent with adiabatic hydrodynamic models of SNR evolution. The BW:CD ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. Such a scenario is further supported by evidence from the morphology and spectral nature of the BW emission for the acceleration of cosmic ray electrons. We also present PCA results regarding the ranges in Si and Fe composition in Tycho, and a newly uncovered spectral variation in the form of a low energy excess that has not been previously noted.

  11. Iron K shell line, a probe of low energy cosmic rays in SNRs

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji; Sato, Tamotsu

    2016-06-01

    Since the discovery of non thermal power-law X-rays at the rim of SN1006 by Koyama et al. (1995), this feature has been established to be evidence of high energy cosmic rays (HECRs). The HECRs are created by a diffuse shock acceleration process. Accordingly low energy cosmic rays (LECRS) must be presented as the injector of this acceleration process. We found for the first time that the K-shell line from neutral iron at 6.4 keV is good tracer of LECRs in SNRs. This paper present the observational facts for LECRs from intermediate aged SNRs, 3C391, Kes79, Kes 78 and W44 in the Scutum Arm region (see figure, Sato et al. 2014, 2015). Two SNRs, 3C391 and W44, exhibit recombining plasma (RP), an unusual structure in the frame work of the standard SNR evolution scenario. Together with the RP, we discuss the origin of LECRs in the SNRs.

  12. EVIDENCE FOR PARTICLE ACCELERATION TO THE KNEE OF THE COSMIC RAY SPECTRUM IN TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Eriksen, Kristoffer A.; Hughes, John P.; Badenes, Carles; Fesen, Robert; Ghavamian, Parviz; Moffett, David; Plucinksy, Paul P.; Slane, Patrick; Rakowski, Cara E.; Reynoso, Estela M.

    2011-02-20

    Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the 'knee' of the CR spectrum at 10{sup 15} eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since CR nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration significantly modifies the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10{sup 14}-10{sup 15} eV protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA.

  13. Simulation of Cosmic Ray Acceleration, Propagation and Interaction in SNR Environment

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kamae, T.; Ellison, D. C.

    2007-07-01

    Recent studies of young supernova remnants (SNRs) with Chandra, XMM, Suzaku and HESS have revealed complex morphologies and spectral features of the emission sites. The critical question of the relative importance of the two competing gamma-ray emission mechanisms in SNRs; inverse-Compton scattering by high-energy electrons and pion production by energetic protons, may be resolved by GLAST-LAT. To keep pace with the improved observations, we are developing a 3D model of particle acceleration, diffusion, and interaction in a SNR where broad-band emission from radio to multi-TeV energies, produced by shock accelerated electrons and ions, can be simulated for a given topology of shock fronts, magnetic field, and ISM densities. The 3D model takes as input, the particle spectra predicted by a hydrodynamic simulation of SNR evolution where nonlinear diffusive shock acceleration is coupled to the remnant dynamics (e.g., Ellison, Decourchelle & Ballet; Ellison & Cassam-Chenai Ellison, Berezhko & Baring). We will present preliminary models of the Galactic Ridge SNR RX J1713-3946 for selected choices of SNR parameters, magnetic field topology, and ISM density distributions. When constrained by broad-band observations, our models should predict the extent of coupling between spectral shape and morphology and provide direct information on the acceleration efficiency of cosmic-ray electrons and ions in SNRs.

  14. ENTROPY AT THE OUTSKIRTS OF GALAXY CLUSTERS AS IMPLICATIONS FOR COSMOLOGICAL COSMIC-RAY ACCELERATION

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo

    2013-04-10

    Recently, gas entropy at the outskirts of galaxy clusters has attracted much attention. We propose that the entropy profiles could be used to study cosmic-ray (CR) acceleration around the clusters. If the CRs are effectively accelerated at the formation of clusters, the kinetic energy of infalling gas is consumed by the acceleration and the gas entropy should decrease. As a result, the entropy profiles become flat at the outskirts. If the acceleration is not efficient, the entropy should continue to increase outward. By comparing model predictions with X-ray observations with Suzaku, which show flat entropy profiles, we find that the CRs have carried {approx}< 7% of the kinetic energy of the gas away from the clusters. Moreover, the CR pressure at the outskirts can be {approx}< 40% of the total pressure. On the other hand, if the entropy profiles are not flat at the outskirts, as indicated by combined Plank and ROSAT observations, the carried energy and the CR pressure should be much smaller than the above estimations.

  15. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  16. Acceleration and transport of anomalous cosmic rays: Investigating the spectral evolution at Voyager 1 beyond the termination shock

    NASA Astrophysics Data System (ADS)

    Senanayake, Udara K.

    Interstellar neutral atoms entering the heliosphere could become ionized by photo-ionization or charge exchange with solar-wind ions. These newly created ions are picked up by the solar wind and carried to the termination shock (TS) where they are believed to be accelerated by the diffusive shock acceleration process to high energies (˜1-100 MeV n-1). The accelerated ions are known as anomalous cosmic rays (ACRs). When NASA's space probe, Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. The model developed here is based on the suggestion that ACRs are still accelerated at the shock, but away from the Voyager crossing points. First, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary of 0.5 MeV n-1, is reached. Next, we propose that the solar cycle had an important effect on the evolving of the spectra in the heliosheath. To investigate this, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. In addition, we developed a charge consistent stochastic model to simulate multiply charged oxygen ACRs. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by combining intermediate-energy particles arriving from the heliotail

  17. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  18. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    SciTech Connect

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme E-mail: kotera@iap.fr

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ∼ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ∼ 1 msec and a pulsar magnetic field B{sub *} ∼ 10{sup 13} G, implying a fiducial wind luminosity L{sub p} ∼ 10{sup 45} erg/s and a spin-down time t{sub sd} ∼ 3× 10{sup 7} s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z≥ 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  19. Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?

    SciTech Connect

    Senanayake, U. K.; Florinski, V. E-mail: vaf0001@uah.edu

    2013-12-01

    Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup –1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.

  20. Gamma-ray emission from Cassiopeia-A produced by accelerated cosmic rays

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Puehlhofer, G.; Voelk, H. J.

    2001-08-01

    The kinetic nonlinear model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the relevant properties of the Cas A remnant. We use the model of a locally smooth circumstellar medium developed by Borkowski et al. (1996) which consists of a tenuous inner bubble, a dense shell of swept-up slow red supergiant wind material, and a subsequent red supergiant wind region, in order to reproduce the SNR's observed size, expansion rate and thermal X-ray emission. The values of other physical parameters which influence the CR acceleration are taken to fit the observed synchrotron emission of Cas A in the radio and X-ray range. The calculated integral γ-ray flux from Cas A is dominated by π0 -decay γ-rays produced by relativistic protons. It extends up to almost 100 TeV and at TeV-energies considerably exceeds the value 5.8 × 10-13 cm-2 s-1 detected by the HEGRA collaboration (Aharonian et al., 2001). Possible explanations of this discrepancy are proposed which correspond either to leakage of the highest energy CRs from the remnant already at the current stage, to a lower gas density, or to an unusually high electron to proton ratio for the accelerated CRs.

  1. “ESPRESSO” ACCELERATION OF ULTRA-HIGH-ENERGY COSMIC RAYS

    SciTech Connect

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 10{sup 18} eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲10{sup 17} eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ{sup 2} in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 10{sup 20} eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 10{sup 18} eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  2. Shock waves and cosmic ray acceleration in the outskirts of galaxy clusters

    SciTech Connect

    Hong, Sungwook E.; Ryu, Dongsu; Kang, Hyesung; Cen, Renyue E-mail: ryu@canopus.cnu.ac.kr E-mail: cen@astro.princeton.edu

    2014-04-20

    The outskirts of galaxy clusters are continuously disturbed by mergers and gas infall along filaments, which in turn induce turbulent flow motions and shock waves. We examine the properties of shocks that form within r {sub 200} in sample galaxy clusters from structure formation simulations. While most of these shocks are weak and inefficient accelerators of cosmic rays (CRs), there are a number of strong, energetic shocks which can produce large amounts of CR protons via diffusive shock acceleration. We show that the energetic shocks reside mostly in the outskirts and a substantial fraction of them are induced by infall of the warm-hot intergalactic medium from filaments. As a result, the radial profile of the CR pressure in the intracluster medium is expected to be broad, dropping off more slowly than that of the gas pressure, and might be even temporarily inverted, peaking in the outskirts. The volume-integrated momentum spectrum of CR protons inside r {sub 200} has the power-law slope of 4.25-4.5, indicating that the average Mach number of the shocks of main CR production is in the range of {sub CR} ≈ 3-4. We suggest that some radio relics with relatively flat radio spectrum could be explained by primary electrons accelerated by energetic infall shocks with M{sub s} ≳ 3 induced in the cluster outskirts.

  3. Identifying nearby accelerators of ultrahigh energy cosmic rays using ultrahigh energy (and very high energy) photons.

    PubMed

    Taylor, A M; Hinton, J A; Blasi, P; Ave, M

    2009-07-31

    Ultrahigh energy photons (UHE, E>10(19) eV) are inevitably produced during the propagation of approximately 10(20) eV protons in extragalactic space. Their short interaction lengths (<20 Mpc) at these energies, combined with the impressive sensitivity of the Pierre Auger Observatory detector to these particles, makes them an ideal probe of nearby ultrahigh energy cosmic ray (UHECR) sources. We here discuss the particular case of photons from a single nearby (within 30 Mpc) source in light of the possibility that such an object might be responsible for several of the UHECR events published by the Auger collaboration. We demonstrate that the photon signal accompanying a cluster of a few >6 x 10(19) eV UHECRs from such a source should be detectable by Auger in the near future. The detection of these photons would also be a signature of a light composition of the UHECRs from the nearby source.

  4. Probing Individual Sources during Reionization and Cosmic Dawn using Square Kilometre Array HI 21-cm Observations

    NASA Astrophysics Data System (ADS)

    Datta, Kanan K.; Ghara, Raghunath; Majumdar, Suman; Choudhury, T. Roy; Bharadwaj, Somnath; Roy, Himadri; Datta, Abhirup

    2016-12-01

    Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius Rb ≳ 10 Mpc with ˜100 h of observations at redshift z˜8 provided that the mean outside neutral hydrogen fraction x_{ {HI}} ≳ 0.5. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. ( Nature 474, 7353 (2011)). We find that a 5 σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ˜2×107 Myr and ˜0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ˜ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ˜ 9 σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.

  5. Test by JANZOS of the Standard Model of Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Abe, F.

    1999-08-01

    A search for ultra-high energy gamma-rays emitted by the young, nearby supernova remnant that was discovered recently by the COMPTEL and ROSAT satellites was made using the JANZOS database for the period 1987-1993. A 95% confidence upper limit on the flux above 100 TeV of 3 2 10013 cm02 sec01 was obtained. This is an order of magnitude below the expected flux based on the standard model of cosmic ray acceleration in supernova shocks. An optical survey of the region that has been commenced is also reported. This uses UK and ESO Schmidt plates, and CCD images by a NZ/Japan microlensing group.

  6. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  7. Large-scale Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Giacinti, Gwenael; Kirk, John G.

    2017-02-01

    We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape of the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.

  8. Probing the effective number of neutrino species with the cosmic microwave background

    SciTech Connect

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-10-15

    We discuss how much we can probe the effective number of neutrino species N{sub {nu}} with the cosmic microwave background alone. Using the data of the WMAP, ACBAR, CBI, and BOOMERANG experiments, we obtain a constraint on the effective number of neutrino species as 0.96

  9. A test of the nature of cosmic acceleration using galaxy redshift distortions

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Pierleoni, M.; Meneux, B.; Branchini, E.; Le Fèvre, O.; Marinoni, C.; Garilli, B.; Blaizot, J.; De Lucia, G.; Pollo, A.; McCracken, H. J.; Bottini, D.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.; de la Torre, S.; Dolag, K.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; Marano, B.; Mazure, A.; Memeo, P.; Merighi, R.; Moscardini, L.; Paltani, S.; Pellò, R.; Perez-Montero, E.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.

    2008-01-01

    Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this `dark energy' corresponds to a `cosmological constant', perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter β = 0.70+/-0.26, which corresponds to a growth rate of structure at that time of f = 0.91+/-0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.

  10. A test of the nature of cosmic acceleration using galaxy redshift distortions.

    PubMed

    Guzzo, L; Pierleoni, M; Meneux, B; Branchini, E; Le Fèvre, O; Marinoni, C; Garilli, B; Blaizot, J; De Lucia, G; Pollo, A; McCracken, H J; Bottini, D; Le Brun, V; Maccagni, D; Picat, J P; Scaramella, R; Scodeggio, M; Tresse, L; Vettolani, G; Zanichelli, A; Adami, C; Arnouts, S; Bardelli, S; Bolzonella, M; Bongiorno, A; Cappi, A; Charlot, S; Ciliegi, P; Contini, T; Cucciati, O; de la Torre, S; Dolag, K; Foucaud, S; Franzetti, P; Gavignaud, I; Ilbert, O; Iovino, A; Lamareille, F; Marano, B; Mazure, A; Memeo, P; Merighi, R; Moscardini, L; Paltani, S; Pellò, R; Perez-Montero, E; Pozzetti, L; Radovich, M; Vergani, D; Zamorani, G; Zucca, E

    2008-01-31

    Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this 'dark energy' corresponds to a 'cosmological constant', perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter beta = 0.70 +/- 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 +/- 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.

  11. Modeling the Gamma-Ray Emission in the GALACTIC CENTER with a Fading Cosmic-ray Accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-12-01

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays from the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.

  12. Gamma-ray emission from Cassiopeia A produced by accelerated cosmic rays

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Pühlhofer, G.; Völk, H. J.

    2003-03-01

    The nonlinear kinetic model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the relevant properties of Cassiopeia A (Cas A). In order to reproduce the SNR's observed size, expansion rate and thermal X-ray emission we employ a piecewise homogeneous model for the progenitor's circumstellar medium developed by Borkowski et al. (\\cite{Borkowski_ApJ_1996_466}). It consists of a tenuous inner wind bubble, a dense shell of swept-up red supergiant wind material, and a subsequent red supergiant wind region. A quite large SNR interior magnetic field Bd~ 1 mG is required to give a good fit for the radio and X-ray synchrotron emission. The steep radio spectrum is consistent with efficient proton acceleration which produces a significant shock modification and leads to a steep electron spectrum at energies epsilon e<1 GeV. The calculated integral gamma -ray flux from Cas A, Fgamma ~ epsilon gamma -1, is dominated by pi 0-decay gamma -rays due to relativistic protons. It extends up to roughly 30 TeV if CR diffusion is as strong as the Bohm limit. At TeV energies it satisfactorily agrees with the value 5.8x 10-13 cm-2 s-1 detected by the HEGRA collaboration.

  13. From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB

    SciTech Connect

    Giostri, R.; Santos, M. Vargas dos; Waga, I.; Reis, R.R.R.; Calvão, M.O.; Lago, B. L. E-mail: vargas@if.ufrj.br E-mail: ribamar@if.ufrj.br E-mail: brunolz@if.ufrj.br

    2012-03-01

    We use type Ia supernovae (SN Ia) data in combination with recent baryonic acoustic oscillations (BAO) and cosmic microwave background (CMB) observations to constrain a kink-like parametrization of the deceleration parameter (q). This q-parametrization can be written in terms of the initial (q{sub i}) and present (q{sub 0}) values of the deceleration parameter, the redshift of the cosmic transition from deceleration to acceleration (z{sub t}) and the redshift width of such transition (τ). By assuming a flat space geometry, q{sub i} = 1/2 and adopting a likelihood approach to deal with the SN Ia data we obtain, at the 68% confidence level (C.L.), that: z{sub t} = 0.56{sup +0.13}{sub −0.10}, τ = 0.47{sup +0.16}{sub −0.20} and q{sub 0} = −0.31{sup +0.11}{sub −0.11} when we combine BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve fitter. When in this combination we use the SALT2 fitter we get instead, at the same C.L.: z{sub t} = 0.64{sup +0.13}{sub −0.07}, τ = 0.36{sup +0.11}{sub −0.17} and q{sub 0} = −0.53{sup +0.17}{sub −0.13}. Our results indicate, with a quite general and model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like cosmological models, while SALT2 favors ΛCDM-like ones. Progress in determining the transition redshift and/or the present value of the deceleration parameter depends crucially on solving the issue of the difference obtained when using these two light-curve fitters.

  14. Probing the physics and history of cosmic reionization with the Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.; Emritte, M. S.

    2016-10-01

    Context. The evolution of the Universe during the dark ages (DA) and the epoch of reonization (EoR) marks an important transition in the history of the Universe but it is not yet fully understood. Aims: We study here an alternative technique to probe the DA and EoR that makes use of the Comptonization of the CMB spectrum modified by physical effects occurring during this epoch related to the emergence of the 21-cm radiation background. Inverse Compton scattering of 21-cm photon background by thermal and non-thermal electrons residing in the atmospheres of cosmic structures like galaxy clusters, radiogalaxy lobes and galaxy halos, produces a specific form of Sunyaev-Zel'dovich effect (SZE) that we refer to as SZE-21 cm. Methods: We derived the SZE-21 cm in a general relativistic approach, which is required to describe the correct spectral features of this astrophysical effect. We calculated the spectral features of the thermal and non-thermal SZE-21 cm in galaxy clusters and in radiogalaxy lobes, and their dependence on the history of physical mechanisms occurring during the DA and EoR. We studied how the spectral shape of the SZE-21 cm can be used to establish the global features in the mean 21-cm spectrum generated during and prior to the EoR, and how it depends on the properties of the (thermal and non-thermal) plasma in cosmic structures. Results: We found that the thermal and non-thermal SZE-21 cm have peculiar spectral shapes that allow to investigate the physics and history of the EoR and DA. Its spectrum depends on the gas temperature (for the thermal SZE-21 cm) and on the electrons minimum momentum (for the non-thermal SZE-21 cm). The global SZE-21 cm signal can be detected (in ~ 1000 h) by SKA1-low in the frequency range ν ≳ 75-90 MHz, for clusters in the temperature range 5 to 20 keV, and the difference between the SZE-21 cm and the standard SZE can be detected by SKA1 or SKA2 at frequencies depending on the background model and the cluster temperature

  15. Cosmic Ray Neutron Probe Soil Water Measurements over Complex Terrain in Austria

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Weltin, Georg; Kheng Heng, Lee; Wahbi, Ammar; Oismueller, Markus; Dercon, Gerd

    2014-05-01

    The importance of surface soil water (rooting zone) has become evident with climate change affecting rainfall patterns and crop production. The use of Cosmic Ray Neutron Probe (CRNP) for measuring surface soil water has become increasingly popular. The advantage of CRNP is that it is a non-invasive technique for measuring soil water content at an area-wide scale, in contrast to more conventional, techniques which measure mainly at field scale (point level). The CRNP integrates over a circular area of ca. 600 meters in diameter, to a depth of 70 cm, giving an average value for soil water content. Cosmic radiation interacting with the Earth's atmosphere continuously generates neutrons. At Earth's surface, these neutrons interact with surface water, and are slowed down. At sub-micrometer geometrics, these neutrons affect semiconductor devices, so they can be counted, slow and fast ones separately. From the difference in numbers between fast and slow neutrons, soil water content is calculated. As first in Austria, a CRNP (CRS 1000/B model) consisting of two neutron counters (one tuned for slow, the other one for fast neutrons), data logger and an Iridium modem, has been installed at Petzenkirchen research station of the Doctoral Programme for Water Resource Systems (TU Vienna) at 48.14 latitude and 15.17 longitude, 100 km west of Vienna, in late autumn 2013. The research station is located in an undulating agricultural landscape, characterized by heavy Cambisols and Planosols, and winter wheat and barley as main crops in winter, and maize and sunflower in summer. In addition, an in-situ soil moisture network consisting of 32 stations of Time Domain Transmissivity (TDT) sensors measuring soil water at 4 depths (0.05, 0.10,0.20 and 0.50 m) over an area of 64 ha has been established. This TDT network is currently being used to validate the use of the innovative CRNP technique. First results will be shown at the EGU 2014.

  16. The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Binns, W. R.; Bose, R, G.; Braun, D. L.; Christian, E. R.; Daniels, W. M; DeNolfo, G. A.; Dowkontt, P. F.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Moore, P. R.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; SanSebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.

    2011-01-01

    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference.

  17. On the non-thermal electron-to-proton ratio at cosmic ray acceleration sites

    NASA Astrophysics Data System (ADS)

    Merten, Lukas; Becker Tjus, Julia; Eichmann, Björn; Dettmar, Ralf-Jürgen

    2017-04-01

    The luminosity ratio of electrons to protons as it is produced in stochastic acceleration processes in cosmic ray sources is an important quantity relevant for several aspects of the modeling of the sources themselves. It is usually assumed to be around 1: 100 in the case of Galactic sources, while a value of 1: 10 is typically assumed when describing extragalactic sources. It is supported by observations that the average ratios should be close to these values. At this point, however, there is no possibility to investigate how each individual source behaves. When looking at the physics aspects, a 1: 100 ratio is well supported in theory when making the following assumptions: (1) the total number of electrons and protons that is accelerated are the same; (2) the spectral index of both populations after acceleration is αe =αp ≈ 2.2 . In this paper, we reinvestigate these assumptions. In particular, assumption (2) is not supported by observational data of the sources and PIC simulation yield different spectral indices as well. We present the detailed calculation of the electron-to-proton ratio, dropping the assumption of equal spectral indices. We distinguish between the ratio of luminosities and the ratio of the differential spectral behavior, which becomes necessary for cases where the spectral indices of the two particle populations are not the same. We discuss the possible range of values when allowing for different spectral indices concerning the spectral behavior of electrons and protons. Additionally, it is shown that the minimum energy of the accelerated population can have a large influence on the results. We find, in the case of the classical minimum energy of T0 , e =T0 , p = 10 keV, that when allowing for a difference in the spectral indices of up to 0.1 with absolute spectral indices varying between 2.0 < α < 2.3, the luminosity ratio varies between 0.008 < Kep < 0.12. The differential particle number ratio is in the range 0.008

  18. A new limit on the time between the nucleosynthesis and the acceleration of cosmic rays in supernova remnants using the Co/Ni ratio

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.

    1990-01-01

    Using new cross section measurements of Ni into Co, data on the Co/Ni ratio in cosmic rays from the HEAO C spacecraft have been reinterpreted in terms of the time between nucleosynthesis and the acceleration of cosmic rays, delta t. The observed Co/Ni ratio is now consistent with interstellar fragmentation only, leading to a small or zero source abundance. In terms of the decay of e-process nucleosynthesis nuclides into Co after a supernova explosion, this permits an estimate of delta t = 4-30,000 yr for the time between nucleosynthesis and the acceleration of cosmic rays if supernovae are the direct progenitors of cosmic rays. These age limits are used in conjunction with models of the expansion of supernova remnants (SNRs), to estimate that cosmic rays are accelerated when the radius of these remnants is between 0.1 and 25 pc.

  19. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.

    PubMed

    Kim, Myung-Hee Y; Rusek, Adam; Cucinotta, Francis A

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam-energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and (4)He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research.

  20. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators

    PubMed Central

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.

    2015-01-01

    For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339

  1. Analytic Solution for Self-regulated Collective Escape of Cosmic Rays from Their Acceleration Sites

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Diamond, P. H.; Sagdeev, R. Z.; Aharonian, F. A.; Moskalenko, I. V.

    2013-05-01

    Supernova remnants (SNRs), as the major contributors to the galactic cosmic rays (CRs), are believed to maintain an average CR spectrum by diffusive shock acceleration regardless of the way they release CRs into the interstellar medium (ISM). However, the interaction of the CRs with nearby gas clouds crucially depends on the release mechanism. We call into question two aspects of a popular paradigm of the CR injection into the ISM, according to which they passively and isotropically diffuse in the prescribed magnetic fluctuations as test particles. First, we treat the escaping CR and the Alfvén waves excited by them on an equal footing. Second, we adopt field-aligned CR escape outside the source, where the waves become weak. An exact analytic self-similar solution for a CR "cloud" released by a dimmed accelerator strongly deviates from the test-particle result. The normalized CR partial pressure may be approximated as {P}(p,z,t)=2[|z|^{5/3}+z_{dif}^{5/3}(p,t)]^{-3/5}\\exp [-z^{2}/4D_{ISM}(p)t], where p is the momentum of CR particle, and z is directed along the field. The core of the cloud expands as z_{dif}\\propto \\sqrt{D_{NL}\\left(p\\right)t} and decays in time as {P}\\propto 2z_{dif}^{-1}\\left(t\\right). The diffusion coefficient D NL is strongly suppressed compared to its background ISM value D ISM: D NL ~ D ISMexp (- Π) Lt D ISM for sufficiently high field-line-integrated CR partial pressure, Π. When Π Gt 1, the CRs drive Alfvén waves efficiently enough to build a transport barrier ( {P}\\approx 2/\\left|z\\right|—"pedestal") that strongly reduces the leakage. The solution has a spectral break at p = p br, where p br satisfies the equation D NL(p br) ~= z 2/t.

  2. Probing 'Parent Universe' in Loop Quantum Cosmology with B-mode Polarization in Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Lucky Chang, Wen-Hsuan; Proty Wu, Jiun-Huei

    2016-06-01

    We aim to use the observations of B-mode polarization in the Cosmic Microwave Background (CMB) to probe the ‘parent universe’ under the context of Loop Quantum Cosmology (LQC). In particular, we investigate the possibility for the gravitational waves (GW) such as those from the stellar binary systems in the parent universe to survive the big bounce and thus to be still observable today. Our study is based on the background dynamics with the zeroth-order holonomy correction using the Arnowitt-Deser-Misner (ADM) formalism. We propose a new framework in which transfer functions are invoked to bring the GWs in the parent universe through the big bounce, inflation, and big bang to reach today. This transparent and intuitive formalism allows us to accurately discuss the influence of the GWs from the parent universe on the B-mode polarization in the CMB today under backgrounds of different LQC parameters. These features can soon be tested by the forth-coming CMB observations and we note that the LQC backgrounds with symmetric bouncing scenarios are ruled out by the latest observational results from Planck and BICEP2/Keck experiments.

  3. Radius of influence for a cosmic-ray soil moisture probe : theory and Monte Carlo simulations.

    SciTech Connect

    Desilets, Darin

    2011-02-01

    The lateral footprint of a cosmic-ray soil moisture probe was determined using diffusion theory and neutron transport simulations. The footprint is radial and can be described by a single parameter, an e-folding length that is closely related to the slowing down length in air. In our work the slowing down length is defined as the crow-flight distance traveled by a neutron from nuclear emission as a fast neutron to detection at a lower energy threshold defined by the detector. Here the footprint is defined as the area encompassed by two e-fold distances, i.e. the area from which 86% of the recorded neutrons originate. The slowing down length is approximately 150 m at sea level for neutrons detected over a wide range of energies - from 10{sup 0} to 10{sup 5} eV. Both theory and simulations indicate that the slowing down length is inversely proportional to air density and linearly proportional to the height of the sensor above the ground for heights up to 100 m. Simulations suggest that the radius of influence for neutrons >1 eV is only slightly influenced by soil moisture content, and depends weakly on the energy sensitivity of the neutron detector. Good agreement between the theoretical slowing down length in air and the simulated slowing down length near the air/ground interface support the conclusion that the footprint is determined mainly by the neutron scattering properties of air.

  4. Probing The Cosmic History of Light With High-Energy Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter

    2016-01-01

    The Cosmic Microwave Background (CMB) holds answers to many questions of moderrn cosmology. The origin of the CMB lies in the early universe, and when it was released during the recombination phase the conditions were not yet right for new sources of light. But the first generation of stars born in a mostly neutral universe quickly re-ionized their surroubding baryonic environments, and dust was produced which allowed reprocessing of some star light into the infrared specral region. Black holes and other compact objects were born and the emissions from their accretion processes and relativistic jetted outflws contributed new light. Today, we observe this evolving radiation field as the Extragalactic Backgroud Light (EBL), ranging from the radio- to the gamma-ray band. The evolution of the diffuse electromagnetic energy content of the universe is the focus of this special session, and I will discuss its importance within the context of modern cosmology. I will emphasize the role of gamma-ray astronomy, which probes the EBL and the CMB through the opacity created by photon-photon pair production.

  5. Studying Star and Planet Formation with the Submillimeter Probe of the Evolution of Cosmic Structure

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2005-01-01

    The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a far- infrared/submillimeter (40-640 micrometers) spaceborne interferometry concept, studied through the NASA Vision Missions program. SPECS is envisioned as a 1-km baseline Michelson interferometer with two 4- meter collecting mirrors. To maximize science return, SPECS will have three operational modes: a photometric imaging mode, an intermediate spectral resolution mode (R approximately equal to 1000-3000), and a high spectral resolution mode (R approximately equal to 3 x 10(exp 5)). The first two of these modes will provide information on all sources within a 1 arcminute field-of-view (FOV), while the the third will include sources in a small (approximately equal to 5 arcsec) FOV. With this design, SPECS will have angular resolution comparable to the Hubble Space Telescope (50 mas) and sensitivity more than two orders of magnitude better than Spitzer (5sigma in 10ks of approximately equal to 3 x 10(exp 7) Jy Hz). We present here some of the results of the recently-completed Vision Mission Study for SPECS, and discuss the application of this mission to future studies of star and planet formation.

  6. A 6% measurement of the Hubble parameter at z~0.45: direct evidence of the epoch of cosmic re-acceleration

    NASA Astrophysics Data System (ADS)

    Moresco, Michele; Pozzetti, Lucia; Cimatti, Andrea; Jimenez, Raul; Maraston, Claudia; Verde, Licia; Thomas, Daniel; Citro, Annalisa; Tojeiro, Rita; Wilkinson, David

    2016-05-01

    Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H(z) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H(z) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ~11-16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H(z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring zt = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.

  7. Cosmic-Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Warren, Jessica S.; Hughes, John P.; Badenes, Carles; Ghavamian, Parviz; McKee, Christopher F.; Moffett, David; Plucinsky, Paul P.; Rakowski, Cara; Reynoso, Estela; Slane, Patrick

    2005-11-01

    We present evidence for cosmic-ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamic models of SNR evolution. The CD:BW ratio can be explained if cosmic-ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Kα emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is nonthermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.

  8. Achievement of Broad Acceleration Profile for Launching Active Transient Internal Probes

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Jarboe, Thomas; Mattick, Arthur; Smith, Roger

    2003-10-01

    The Transient Internal Probe (TIP) is a diagnostic for the direct measurement of internal local magnetic or electric fields with high spatial and temporal resolution (1 cm, 1 MHz). A two-stage light-gas gun launches an optic probe at high velocity (1.5 km/s ˜ 1.8 km/s) so that the probe can transit the plasma before severe ablation occurs. The polarization change of a light, retroreflected after double-pass through the probe, provides one component of the field measurements along a chord of a plasma. A Faraday rotator glass or a Pockels cell has been used for the present passive optic probes. Active probes, currently in development, utilizing on-board sensor and electronics will allow measurements of multi-parameters including 3-D magnetic- and electric fields, plasma temperature, and density. The frequency-modulated sensor information will be transmitted to the remote detector using a LED or a laser diode. At issue is whether the on-board microelectronic components will survive the high acceleration during launch. A recent study emonstrated the survivability of a standard size electronic circuitry on ˜ 25 mm diameter circuit board, launched in a rail-gun at ˜ 1 × 10^6 m/s^2 (0.1 Mg¡¯s). [1] Considering the size of the TIP probes, ( ˜ 5 mm in diameter) it is believed the TIP active probes with surface-mount electronic components will survive much higher accelerations, up to 2 × 10^6 m/s^2 or more. Experimental and numerical studies of the TIP light gas gun have been performed to achieve a launch condition that lowers the peak acceleration and broadens the acceleration profile of the probe. [1] K. A. Schroder et al, IEEE Transactions on Magnetics, 35(1), Jan. 1999

  9. Cosmology of a Friedmann-Lamaître-Robertson-Walker 3-brane, late-time cosmic acceleration, and the cosmic coincidence.

    PubMed

    Doolin, Ciaran; Neupane, Ishwaree P

    2013-04-05

    A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.

  10. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kontar, Eduard P.; Gary, Dale E.

    2016-07-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and, at the same time, show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than three in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically thick thermal emission, the spectral index cannot be steeper than two), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs, otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI data, which allow for detailed, joint diagnostics of the source parameters and evolution. Based on an analysis of radio-to-X-ray spatial relationships, timing, and spectral fits, we conclude that the microwave emission in these narrowband bursts originates directly from the acceleration regions, which have a relatively strong magnetic field, high density, and low temperature. In contrast, the thermal X-ray emission comes from a distinct loop with a smaller magnetic field, lower density, but higher temperature. Therefore, these flares likely occurred due to interaction between two (or more) magnetic loops.

  11. Non Parametric Determination of Acceleration Characteristics in Supernova Shocks Based on Spectra of Cosmic Rays and Remnant Radiation

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    We have developed an inversion method for determination of the characteristics of the acceleration mechanism directly and non-parametrically from observations, in contrast to the usual forward fitting of parametric model variables to observations. This is done in the frame work of the so-called leaky box model of acceleration, valid for isotropic momentum distribution and for volume integrated characteristics in a finite acceleration site. We consider both acceleration by shocks and stochastic acceleration where turbulence plays the primary role to determine the acceleration, scattering and escape rates. Assuming a knowledge of the background plasma the model has essentially two unknown parameters, namely the momentum and pitch angle scattering diffusion coefficients, which can be evaluated given two independent spectral observations. These coefficients are obtained directly from the spectrum of radiation from the supernova remnants (SNRs), which gives the spectrum of accelerated particles, and the observed spectrum of cosmic rays (CRs), which are related to the spectrum of particles escaping the SNRs. The results obtained from application of this method will be presented.

  12. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  13. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  14. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  15. ON THE e{sup +}e{sup -} EXCESSES AND THE KNEE OF THE COSMIC RAY SPECTRA-HINTS OF COSMIC RAY ACCELERATION IN YOUNG SUPERNOVA REMNANTS

    SciTech Connect

    Hu Hongbo; Yuan Qiang; Wang Bo; Fan Chao; Zhang Jianli; Bi Xiaojun

    2009-08-01

    Supernova remnants (SNRs) have long been regarded as sources of the Galactic cosmic rays (CRs) up to petaelectronvolts, but convincing evidence is still lacking. In this work we explore the common origin of the subtle features of the CR spectra, such as the knee of CR spectra and the excesses of electron/positron fluxes recently observed by ATIC, H.E.S.S., Fermi-LAT, and PAMELA. Numerical calculation shows that those features of CR spectra can be well reproduced in a scenario with e{sup +}e{sup -} pair production by interactions between high-energy CRs and background photons in an environment similar to the young SNR. The success of such a coherent explanation serves in turn as evidence that at least a portion of CRs might be accelerated in young SNRs.

  16. Influence of total biomass and rainfall interception on soil moisture measurements using cosmic-ray neutron probes

    NASA Astrophysics Data System (ADS)

    Fuchs, Hannah; Reemt Bogena, Heye; Huisman, Johan Alexander; Hendricks-Franssen, Harrie-Jan; Vereecken, Harry

    2016-04-01

    Cosmic-ray neutron probes are an emerging technology to continuously monitor soil water content at a scale significant to land surface processes. This method relies on the negative correlation between near-surface fast neutron counts and soil moisture content since hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of changing above- and below-ground biomass and intercepted water in the canopy on the cosmic-ray neutron counts and calibration parameters. For this, the arable field test site Selhausen, which is part of the TERENO and ICOS observation networks, was cropped with winter wheat and additionally instrumented with cosmic-ray neutron probes and a wireless sensor network with 108 soil moisture sensors. In order to increase the sensitivity of the cosmic-ray neutron measurements, we used seven neutron detectors simultaneously. In addition, we measured rainfall interception in the wheat canopy at several locations in the field. In order to track the changes in above and below-ground biomass of the winter wheat, roots and plants were sampled approximately every four weeks and LAI was measured weekly during the growing season. Weekly biomass changes were derived by relating LAI to total biomass. As expected, we found an increasing discrepancy between cosmic-ray-derived and in-situ measured soil moisture during the growing season and a sharp decrease in discrepancy after the harvest. In order to quantify the effect of hydrogen stored in the vegetation on fast neutron intensity, we derived a daily and weekly time series of

  17. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Huisman, J. A.; Baatz, R.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-09-01

    Soil water content is one of the key state variables in the soil-vegetation-atmosphere continuum due to its important role in the exchange of water and energy at the soil surface. A new promising method to measure integral soil water content at the field or small catchment scale is the cosmic-ray probe (CRP). Recent studies of CRP measurements have mainly presented results from test sites located in very dry areas and from agricultural fields with sandy soils. In this study, distributed continuous soil water content measurements from a wireless sensor network (SoilNet) were used to investigate the accuracy of CRP measurements for soil water content determination in a humid forest ecosystem. Such ecosystems are less favorable for CRP applications due to the presence of a litter layer. In addition, lattice water and carbohydrates of soil organic matter and belowground biomass reduce the effective sensor depth and thus were accounted for in the calibration of the CRP. The hydrogen located in the biomass decreased the level of neutron count rates and thus also decreased the sensitivity of the cosmic-ray probe, which in turn resulted in an increase of the measurement uncertainty. This uncertainty was compensated by using longer integration times (e.g., 24 h). For the Wüstebach forest site, the cosmic-ray probe enabled the assessment of integral daily soil water content dynamics with a RMSE of about 0.03 cm3/cm3 without explicitly considering the litter layer. By including simulated water contents of the litter layer in the calibration, a better accuracy could be achieved.

  18. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  19. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  20. Diffusive Cosmic Ray Acceleration at Relativistic Shock Waves with Magnetostatic Turbulence II. Influence of a Finite Downstream Medium

    NASA Astrophysics Data System (ADS)

    Antecki, T.; Schlickeiser, R.; Krakau, S.

    2016-12-01

    The diffusive acceleration of relativistic cosmic rays at parallel shock waves with magnetostatic turbulence and a finite size of the downstream medium is investigated. For ultrarelativistic shock speeds with Lorentz factor {{{Γ }}}1\\gg 1, both the differential momentum spectrum at the shock and the volume-integrated momentum spectrum are power-law distribution functions with different spectral indices as compared to the case of an infinitely extended downstream medium. However, the spectral differences are only modest as compared to the case of nonrelativistic shocks. The behavior of the momentum spectrum of shock-accelerated particles depends sensitively on the relativistic shock wave Peclet number G(p)={τ }D(p)/{τ }C, i.e., the ratio between the diffusion and convection timescales of cosmic rays to propagate from the shock position to the downstream boundary z 0. For large values of G(p)\\gg 1 the free-escape boundary has no influence on the effectiveness of particle acceleration, still providing a flat momentum power-law spectrum of the accelerated particles. In the opposite case of small Peclet numbers G(p)\\ll 1 at all momenta, the momentum spectrum at the shock steepens to the greater spectral index {ξ }0=3-s+(3.18/{{{Γ }}}1), whereas the volume-integrated momentum spectrum flattens by the same factor 2-s for its power-law spectral index, where s denotes the spectral index of the downstream power spectrum of magnetostatic turbulence. This effectiveness of relativistic shocks in generating flat power-law momentum spectra irrespective of the Peclet number G(p) differs completely from the behavior of nonrelativistic shocks.

  1. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    NASA Astrophysics Data System (ADS)

    Gabici, Stefano; Krause, Julian; Morlino, Giovanni; Nava, Lara

    2015-12-01

    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  2. Scaling from Jupiter to pulsars and the acceleration of cosmic ray particles by pulsars, 3

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.

    1985-01-01

    An expression for the rate of energy generation by a pulsar an estimate of contribution from all the pulsars in our galaxy to the observed cosmic ray intensity was presented. The theory was then developed to an expanded version, and observational facts supporting the theory were cited.

  3. Direct Acceleration of Pickup Ions at The Solar Wind Termination Shock: The Production of Anomalous Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.

    1998-01-01

    We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.

  4. About possibility of primary cosmic rays proton acceleration up to super-high relativistic energies in the Neutral Layer of the Interplanetary Magnetic Field (IMF)

    NASA Astrophysics Data System (ADS)

    Khazaradze, Nodar; Vanishvili, George; Bakradze, Themur; Kordzadze, Lia; Elizbarashvili, Misha; Bazerashvili, Eka

    2013-02-01

    Theoretical considerations concerning of the charged particles acceleration in general, and in particular, the peculiarities of protons acceleration in the Neutral Layer of Cosmic Space, in the frame of Maxwell Electro-Magnetic Field Theory have been reviewed on the article. A brief historical review of events is given, indicating that protons can be speeding up to ultra-relativistic energies in the Neutral Layer of the Interplanetary Magnetic Field, which is affirmed by anomalously high number of cosmic μ-mesons, generated by protons, through the decay of π- and -mesons, have been discovered in lower layers of the Earth's Atmosphere, as well as in a great depths of underground

  5. Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.

  6. Comparison of distributed acceleration and standard models of cosmic-ray transport

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1995-01-01

    Recent cosmic-ray abundance measurements for elements in the range 3 less than or equal to Z less than or equal to 28 and energies 10 MeV/n less than or equal to E less than or equal to 1 TeV/n have been analyzed with computer transport modeling. About 500 elemental and isotopic measurements have been explored in this analysis. The transport code includes the effects of ionization losses, nuclear spallation reactions (including those of secondaries), all nuclear decay modes, stripping and attachment of electrons, escape from the Galaxy, weak reacceleration and solar modulation. Four models of reacceleration (with several submodels of various reacceleration strengths) were explored. A chi (exp 2) analysis show that the reacceleration models yield at least equally good fits to the data as the standard propagation model. However, with reacceleration, the ad hoc assumptions of the standard model regarding discontinuities in the energy dependence of the mean path length traversed by cosmic rays, and in the momentum spectrum of the cosmic-ray source spectrum are eliminated. Futhermore, the difficulty between rigidity dependent leakage and energy independent anisotropy below energies of 10(exp 14) eV is alleviated.

  7. Cosmic Mach Number: a sensitive probe for the growth of structure

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe; Ostriker, Jeremiah P.; Zhao, Gong-Bo

    2012-06-01

    We investigate the potential power of the Cosmic Mach Number (CMN), which is the ratio between the mean velocity and the velocity dispersion of galaxies as a function of cosmic scales, to constrain cosmologies. We first measure the CMN from 4 catalogs of galaxy peculiar velocity surveys at low redshift (zin[0.002,0.03]), and use them to contrast cosmological models. Overall, current data is consistent with the WMAP7 ΛCDM model. We find that the CMN is highly sensitive to the growth of structure on scales kin[0.01,0.1] h/Mpc in Fourier space. Therefore, modified gravity models, and models with massive neutrinos, in which the structure growth generically deviates from that of the ΛCDM model in a scale-dependent way, can be well differentiated from the ΛCDM model by using future CMN data.

  8. Probe of the Solar Magnetic Field Using the ``Cosmic-Ray Shadow'' of the Sun

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu; Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; Hakamada, K.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Mizutani, K.; Munakata, K.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yang, Z.; Yasue, S.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X. X.

    2013-07-01

    We report on a clear solar-cycle variation of the Sun’s shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Sun’s shadow, using the potential field source surface model and the current sheet source surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Sun’s shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Sun’s shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Sun’s shadow observed in the TeV cosmic-ray flux.

  9. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  10. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    SciTech Connect

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-10-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H{sup +} {sub 3}), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He{sup +} chemistry reveals that only a small fraction of He{sup +} will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find zeta{sub He} < 1.2 x 10{sup -15} s{sup -1}, an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H{sup +} {sub 3}. While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H{sup +} {sub 3} in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  11. Cosmic-Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.

    2001-09-01

    We investigate the production of cosmic-ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large-scale structure formation that include directly the acceleration, transport, and energy losses of the high-energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the CR protons accounts for losses owing to adiabatic expansion/compression, Coulomb collisions, and inelastic p-p scattering. Our results suggest that CR protons produced at shocks formed in association with the process of large-scale structure formation could amount to a substantial fraction of the total pressure in the intracluster medium. Their presence should be easily revealed by GLAST (Gamma-Ray Large-Area Space Telescope) through detection of γ-ray flux from the decay of π0 produced in inelastic p-p collisions of such CR protons with nuclei of the intracluster gas. This measurement will allow a direct determination of the CR pressure contribution in the intracluster medium. We also find that the spatial distribution of CR is typically more irregular than that of the thermal gas because it is more influenced by the underlying distribution of shocks. This feature is reflected in the appearance of our γ-ray synthetic images. Finally, the average CR pressure distribution appears statistically slightly more extended than the thermal pressure.

  12. Ultra-High-Energy Cosmic-Ray Acceleration by Magnetic Reconnection in Newborn Accretion-induced Collapse Pulsars.

    PubMed

    de Gouveia Dal Pino EM; Lazarian

    2000-06-10

    We here investigate the possibility that the ultra-high-energy cosmic-ray (UHECR) events observed above the Greisen-Zatsepin-Kuzmin (GZK) limit are mostly protons accelerated in reconnection sites just above the magnetosphere of newborn millisecond pulsars that are originated by accretion-induced collapse (AIC). We formulate the requirements for the acceleration mechanism and show that AIC pulsars with surface magnetic fields 1012 Gaccelerate particles to energies >/=10(20) eV. Because the expected rate of AIC sources in our Galaxy is very small ( approximately 10(-5) yr(-1)), the corresponding contribution to the flux of UHECRs is negligible and the total flux is given by the integrated contribution from AIC sources produced by the distribution of galaxies located within the distance that is unaffected by the GZK cutoff ( approximately 50 Mpc). We find that reconnection should convert a fraction xi greater, similar0.1 of magnetic energy into UHECRs in order to reproduce the observed flux.

  13. Cosmic Visions Dark Energy: Technology

    SciTech Connect

    Dodelson, Scott; Heitmann, Katrin; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uroš; Slosar, Anže; Trodden, Mark

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  14. DIFFUSE EMISSION MEASUREMENT WITH THE SPECTROMETER ON INTEGRAL AS AN INDIRECT PROBE OF COSMIC-RAY ELECTRONS AND POSITRONS

    SciTech Connect

    Bouchet, Laurent; Jourdain, Elisabeth; Roques, Jean-Pierre; Strong, Andrew W.; Porter, Troy A.; Moskalenko, Igor V.

    2011-09-20

    Significant advances have been made in the understanding of the diffuse Galactic hard X-ray continuum emission using data from the INTEGRAL observatory. The diffuse hard power-law component seen with the SPectrometer on INTEGRAL (SPI) has been identified with inverse-Compton emission from relativistic (GeV) electrons on the cosmic microwave background and Galactic interstellar radiation field. In the present analysis, SPI data from 2003 to 2009, with a total exposure time of {approx}10{sup 8} s, are used to derive the Galactic ridge hard X-ray spatial distribution and spectrum between 20 keV and 2.4 MeV. Both are consistent with predictions from the GALPROP code. The good agreement between measured and predicted emission from keV to GeV energies suggests that the correct production mechanisms have been identified. We discuss the potential of the SPI data to provide an indirect probe of the interstellar cosmic-ray electron distribution, in particular for energies below a few GeV.

  15. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  16. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    PubMed

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  17. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms

    PubMed Central

    NAGAMINE, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described. PMID:27725469

  18. Test by JANZOS of the Standard Model of Cosmic Ray Acceleration in the COMPTEL/ROSAT Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Abe, F.

    1999-08-01

    A search for ultra-high energy gamma-rays emitted by the young, nearby supernova remnant that was discovered recently by the COMPTEL and ROSAT satellites was made using the JANZOS database for the period 1987-1993. A 95% confidence upper limit on the flux above 100 TeV of 3 2 10013 cm02 sec01 was obtained. This is an order of magnitude below the expected flux based on the standard model of cosmic ray acceleration in supernova shocks. An optical survey of the region that has been commenced is also reported. This uses UK and ESO Schmidt plates, and CCD images by a NZ/Japan microlensing group.

  19. RAPID COSMIC-RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS

    SciTech Connect

    Takamoto, Makoto; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de

    2015-08-10

    Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio u{sub s} of the shock speed to the particle speed roughly equals the ratio 1/η of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for ηu{sub s} ≈ 1, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of the diffusive shock acceleration theory. These results provide a theoretical basis for the 30 year old conjecture that a supernova exploding into the wind of a Wolf–Rayet star may accelerate protons to an energy exceeding 10{sup 15} eV.

  20. Symmetry breaking and onset of cosmic acceleration in scalar field models

    NASA Astrophysics Data System (ADS)

    Mohseni Sadjadi, H.; Honardoost, M.; Sepangi, H. R.

    2016-12-01

    We propose a new scenario for the onset of positive acceleration of our Universe based on symmetry breaking in coupled dark energy scalar field model. In a symmetry breaking process where the scalar field rolls down its own potential, the potential reduction is not in favor of acceleration. In our model, when dark matter density becomes less than a critical value, the shape of the effective potential is changed and, the quintessence field climbs up along its own potential while rolls down the effective potential. We show that this procedure may establish the positivity of the potential required for the Universe to accelerate. In addition, we show that by choosing an appropriate interaction between dark sectors there is the possibility that the scalar field resides in a new vacuum giving rise to a positive cosmological constant which is responsible for a permanent late time acceleration.

  1. Data acquisition, storage and control architecture for the SuperNova Acceleration Probe

    SciTech Connect

    Prosser, Alan; Cardoso, Guilherme; Chramowicz, John; Marriner, John; Rivera, Ryan; Turqueti, Marcos; /Fermilab

    2007-05-01

    The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well.

  2. Numerical simulation of solar cosmic ray acceleration in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    Balabin, Yury; Podgorny, Igor; Podgorny, Alexander; Vashenyuk, Eduard

    The set of neutron monitors measurements reveals two components of relativistic protons that accompaniment a flare. The prompt component of relativistic protons is created simultaneously with flare hard X-ray radiation. It possesses information about the mechanism of particle acceleration in a flare up to 10 GeV. Prompt component shows the exponential spectrum with W0 order of 0.5 GeV. The possibility of particle acceleration in a current sheet has been considered in the frame of the elctrodynamical solar flare model. Particles can get energy during acceleration in the Lorenz electric field along a singular line. The similar mechanism of acceleration has been observed in the powerful pinch discharge. In previous simulation works it has been shown that exponential spectrum appears, if the electric field is applied along a magnetic symmetrical X-type singular line. Such simulation can be considered as a first step for reality, because the real field distribution is much more complicated. Now numerical simulations have been carried out for the real magnetic and electric configurations calculated in MHD numerical experiments for the famous Bastille flare. The result of simulation shows that the spectrum of accelerated protons during a flare indeed is the exponential one. From comparison of simulation results with observable spectra of solar protons the rate of reconnection of order of 107 cm/s for W0 0.5 GeV is estimated.

  3. A new probe of the magnetic field power spectrum in cosmic web filaments

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.

  4. The Titan Haze Simulation experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Ricketts, Claire L.; Salama, Farid

    2014-11-01

    The aim of the Titan Haze Simulation (THS) experiment is to contribute to a better understanding of aerosol formation in Titan's atmosphere through the study of the chemical formation pathways that link the simpler gas phase molecules resulting from the first steps of the N2-CH4 chemistry, to the more complex gas phase precursors of aerosols; and more specifically, to investigate the role of polycyclic aromatic hydrocarbons (PAHs) and nitrogenated polycyclic aromatic hydrocarbons (PANHs), among other hydrocarbons, in this process. In the THS experiment developed at the NASA Ames Cosmic simulation facility (COSmIC), Titan's atmospheric chemistry is simulated by a pulsed plasma jet expansion at temperature conditions (∼150 K) close to those found in Titan's atmosphere in regions where aerosols are formed. In addition, because of the very short residence time of the gas in the plasma discharge, only the initial steps of the chemistry occur, making the COSmIC/THS a unique tool to study the first and intermediate (when adding heavier precursors to the initial N2-CH4 mixture) steps of Titan's atmospheric chemistry at low temperature as shown in the study presented here. We further illustrate the potential of COSmIC/THS for the simulation of Titan's atmospheric chemistry by presenting very promising results from a preliminary comparison of the laboratory data to data from the Cassini Plasma Spectrometer-Ion Beam Spectrometer (CAPS-IBS) instrument.

  5. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Technical Reports Server (NTRS)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  6. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.; Volk, H. J.

    1983-06-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The authors confine themselves to the test particle approximation and oversimplify adiabatic losses, but include unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum. Monoenergetic (T0 = 1 keV) protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law αT-μ, (T = kinetic energy), 2.1 ≤ μ ≤ 2.3 over several orders of magnitude, independent of the specific details of the supernova remnant.

  7. Probing the High-Redshift Universe Using Fluctuations in the Cosmic Microwave and Infrared Backgrounds

    NASA Astrophysics Data System (ADS)

    Smidt, Joseph Michael

    Background (CIB) continues to be one of the best probes of physics at the early stages of the universe. If the CMB were a purely Gaussian field, all statistical information would be contained in the power spectrum or two-point correlation function. However, non-Gaussianities ensure that new physics may be extracted from higher n-point correlation functions including the bispectrum and trispectrum of the CMB. In this thesis discuss new estimators we have formulated to probe primordial non-Gaussianity in the bispectrum and trispectrum of CMB data and the constraints we have made using WMAP data while discussing implications for inflationary models. I discuss how these same methods may be used to probe CMB Lensing. Finally, I discuss how upcoming measurements of near and far-infrared CIB fluctuations may be used to constrain the redshift of reionization and clustering of various populations of galaxies. Some preliminary results involving CANDELS, Spitzer SDWFS, CIBER and Herschel datasets is presented.

  8. Archimedean-type force in a cosmic dark fluid. I. Exact solutions for the late-time accelerated expansion

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Bochkarev, Vladimir V.

    2011-01-01

    We establish a new self-consistent model in order to explain from a unified viewpoint two key features of the cosmological evolution: the inflation in the early Universe and the late-time accelerated expansion. The key element of this new model is the Archimedean-type coupling of the dark matter with dark energy, which form the so-called cosmic dark fluid. We suppose that dark matter particles immersed into the dark energy reservoir are affected by the force proportional to the four-gradient of the dark energy pressure. The Archimedean-type coupling is shown to play a role of effective energy-momentum redistributor between the dark matter and the dark energy components of the dark fluid, thus providing the Universe evolution to be a quasiperiodic and/or multistage process. In the first part of the work we discuss a theoretical base and new exact solutions of the model master equations. Special attention is focused on the exact solutions, for which the scale factor is presented by the anti-Gaussian function: these solutions describe the late-time acceleration and are characterized by a nonsingular behavior in the early Universe. The second part contains qualitative and numerical analysis of the master equations; we focus there on the solutions describing a multi-inflationary Universe.

  9. Q/U Imaging Experiment (QUIET): a ground-based probe of cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Buder, Immanuel

    2010-07-01

    QUIET is an experimental program to measure the polarization of the Cosmic Microwave Background (CMB) radiation from the ground. Previous CMB polarization data have been used to constrain the cosmological parameters that model the history of our universe. The exciting target for current and future experiments is detecting and measuring the faint polarization signals caused by gravity waves from the inflationary epoch which occurred < 10-30 s after the Big Bang. QUIET has finished an observing season at 44 GHz (Q-Band); observing at 95 GHz (W-Band) is ongoing. The instrument incorporates several technologies and approaches novel to CMB experiments. We describe the observing strategy, optics design, detector technology, and data acquisition. These systems combine to produce a polarization sensitivity of 64 (57) μK for a 1 s exposure of the Phase I Q (W) Band array. We describe the QUIET Phase I instrument and explain how systematic errors are reduced and quantified.

  10. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    PubMed Central

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-01-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip–sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip–sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach. PMID:16551751

  11. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  12. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale.

    PubMed

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-28

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  13. Monitoring soil water content at a heterogeneous oil sand reclamation site using a cosmic-ray soil moisture probe

    NASA Astrophysics Data System (ADS)

    Sigouin, Mark J. P.; Dyck, Miles; Si, Bing Cheng; Hu, Wei

    2016-12-01

    Soil water content (SWC) measurements are important for numerous applications including climate and weather prediction, agriculture and irrigation activities, and monitoring the progress of reclamation on land disturbed by mining or other industrial activities. We assessed the SWC measurement accuracy of a cosmic-ray soil moisture probe (CRP) and explored the possibility of downscaling the CRP measurement to the plot scale. The experiments were conducted at a highly heterogeneous reclamation site in the Alberta Oil Sands near Fort McMurray, Alberta, Canada. The study site is unique because it consists of 36 one hectare plots composed of 12 different reclamation covers made up of various layering schemes of peat and coarse-textured soil. The one-hectare plots also contain different vegetation (species and density). A CRP was installed in the center of the reclamation study site and calibrated using soil core samples. CRP-measured SWC was compared to weighted average SWC measured from soil cores and a network of soil moisture probes within the CRP footprint over two summers. The CRP responded clearly to precipitation events with peaks in the measured SWC and the CRP estimates of SWC were very close to SWC estimated with soil cores and in-situ soil moisture probes with a RMSE of 0.027 cm3 cm-3 and 0.027 cm3 cm-3, respectively, over the two summers. We also attempted to downscale the CRP measurements from the 2014 season to the plot scale using HYDRUS-1D modeling and the known soil texture in order to unweight the CRP-measured SWC. The modeled SWC (optimized with the CRP measurements) within the CRP footprint was relatively close to the CRP-measured SWC with a RMSE of 0.047 cm3 cm-3. Overall, the CRP provided accurate average SWC measurements at the reclamation site despite the soil and vegetation heterogeneity.

  14. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Pakmor, Rüdiger; Marinacci, Federico; Pfrommer, Christoph; Springel, Volker; Glover, Simon C. O.; Clark, Paul C.; Smith, Rowan J.

    2016-08-01

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  15. Cosmic star formation probed via parametric stack-fitting of known sources to radio imaging

    NASA Astrophysics Data System (ADS)

    Roseboom, I. G.; Best, P. N.

    2014-04-01

    The promise of multiwavelength astronomy has been tempered by the large disparity in sensitivity and resolution between different wavelength regimes. Here, we present a statistical approach which attempts to overcome this by fitting parametric models directly to image data. Specifically, we fit a model for the radio luminosity function (LF) of star-forming galaxies to pixel intensity distributions at 1.4 GHz coincident with near-IR selected sources in COSMOS. Taking a mass-limited sample in redshift bins across the range 0 < z < 4, we are able to fit the radio LF with ˜0.2 dex precision in the key parameters (e.g. Φ*,L*). Good agreement is seen between our results and those using standard methods at radio and other wavelengths. Integrating our LFs to get the star formation rate density, we find that galaxies with M* > 109.5 M⊙ contribute ≳50 per cent of cosmic star formation at 0 < z < 4. The scalability of our approach is empirically estimated, with the precision in LF parameter estimates found to scale with the number of sources in the stack, Ns, as ∝ √{N_s}. This type of approach will be invaluable in the multiwavelength analysis of upcoming surveys with the Square Kilometre Array pathfinder facilities: LOFAR, ASKAP and MeerKAT.

  16. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  17. Cosmic Infrared Background ExpeRiment (CIBER): A probe of Extragalactic Background Light from reionization

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Bock, Jamie; Kawada, Mitsunobu; Keating, Brian; Lange, Andrew; Lee, Dae-Hee; Levenson, Louis; Matsumoto, Toshio; Matsuura, Shuji; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2012-08-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown in February 2009 and July 2010 and four more flights are planned by 2014, including an upgrade (CIBER-II). We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  18. Cosmic Infrared Background Experiment (CIBER): A Probe of Extragalactic Background Light from Reionization

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Bock, Jamie; Kawada, Mitsunobu; Keating, Brian; Lee, Dae-Hee; Levenson, Louis; Matsumoto, Toshio; Matsuura, Shuji; Renbarger, Tom; Sullivan, Ian; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2010-11-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and is expected to be flown three more times over the next two years at six month intervals. CIBER-II is a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high sigma detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With an etendue (a figure-of-merit for survey studies) a factor of 50 to 500 larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  19. Cosmic Infrared Background ExpeRiment (CIBER): A Probe of Extragalactic Background Light from Reionization

    NASA Astrophysics Data System (ADS)

    Cooray, A.; Bock, J.; Kawada, M.; Keating, B.; Lange, A.; Lee, D.-H.; Levenson, L.; Matsumoto, T.; Matsuura, S.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-12-01

    The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times larger than existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.

  20. Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data

    SciTech Connect

    Holanda, R.F.L.; Busti, V.C.; Alcaniz, J.S. E-mail: vcbusti@astro.iag.usp.br

    2016-02-01

    We propose and perform a new test of the cosmic distance-duality relation (CDDR), D{sub L}(z) / D{sub A}(z) (1 + z){sup 2} = 1, where D{sub A} is the angular diameter distance and D{sub L} is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=D{sub A{sub 1{sub 2}}}/D{sub A{sub 2}} and D{sup *}=D{sub L{sub 1{sub 2}}}/D{sub L{sub 2}}, where the subscripts 1 and 2 correspond, respectively, to redshifts z{sub 1} and z{sub 2}, are linked by D/D{sup *}=(1+z{sub 1}){sup 2} if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z{sub 1}), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) ≅ 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.

  1. ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD

    SciTech Connect

    Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo; Xue, Liang

    2012-05-01

    The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

  2. Accelerating the cosmic microwave background map-making procedure through preconditioning

    NASA Astrophysics Data System (ADS)

    Szydlarski, M.; Grigori, L.; Stompor, R.

    2014-12-01

    Estimation of the sky signal from sequences of time ordered data is one of the key steps in cosmic microwave background (CMB) data analysis, commonly referred to as the map-making problem. Some of the most popular and general methods proposed for this problem involve solving generalised least-squares (GLS) equations with non-diagonal noise weights given by a block-diagonal matrix with Toeplitz blocks. In this work, we study new map-making solvers potentially suitable for applications to the largest anticipated data sets. They are based on iterative conjugate gradient (CG) approaches enhanced with novel, parallel, two-level preconditioners. We apply the proposed solvers to examples of simulated non-polarised and polarised CMB observations and a set of idealised scanning strategies with sky coverage ranging from a nearly full sky down to small sky patches. We discuss their implementation for massively parallel computational platforms and their performance for a broad range of parameters that characterise the simulated data sets in detail. We find that our best new solver can outperform carefully optimised standard solvers used today by a factor of as much as five in terms of the convergence rate and a factor of up to four in terms of the time to solution, without significantly increasing the memory consumption and the volume of inter-processor communication. The performance of the new algorithms is also found to be more stable and robust and less dependent on specific characteristics of the analysed data set. We therefore conclude that the proposed approaches are well suited to address successfully challenges posed by new and forthcoming CMB data sets.

  3. Unveiling the Origin of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  4. PROBING THE DARK FLOW SIGNAL IN WMAP 9 -YEAR AND PLANCK COSMIC MICROWAVE BACKGROUND MAPS

    SciTech Connect

    Atrio-Barandela, F.; Kashlinsky, A.; Ebeling, H.; Fixsen, D. J.; Kocevski, D. E-mail: Alexander.Kashlinsky@nasa.gov E-mail: Dale.Fixsen@nasa.gov

    2015-09-10

    The “dark flow” dipole is a statistically significant dipole found at the position of galaxy clusters in filtered maps of Cosmic Microwave Background (CMB) temperature anisotropies. The dipole measured in WMAP 3-, 5-, and 7- year data releases was (1) mutually consistent, (2) roughly aligned with the all-sky CMB dipole, and (3) correlated with clusters’ X-ray luminosities. We analyzed WMAP 9 -year and Planck 1st- year data releases using a catalog of 980 clusters outside of the Kp0 mask to test our earlier findings. The dipoles measured on these new data sets are fully compatible with our earlier estimates, are similar in amplitude and direction to our previous results, and are in disagreement with the results of an earlier study by the Planck Collaboration. Furthermore, in the Planck data sets dipoles are found to be independent of frequency, ruling out the thermal Sunyaev–Zeldovich as the source of the effect. In the data of both WMAP and Planck we find a clear correlation between the dipole measured at the cluster location in filtered maps and the average anisotropy on the original maps, further proving that the dipole is associated with clusters. The dipole signal is dominated by the most massive clusters, with a statistical significance that is better than 99%, slightly larger than in WMAP. Since both data sets differ in foreground contributions, instrumental noise, and other systematics, the agreement between the WMAP and Planck dipoles argues against them being due to systematic effects in either of the experiments.

  5. Probing the interstellar dust in galaxies over >10 Gyr of cosmic history

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Aller, Monique C.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2016-11-01

    Dust has a profound effect on the physics and chemistry of the interstellar gas in galaxies and on the appearance of galaxies. Understanding the cosmic evolution of dust with time is therefore crucial for understanding the evolution of galaxies. Despite the importance of interstellar dust, very little is known about its nature and composition in distant galaxies. We summarize the results of our ongoing programs using observations of distant quasars to obtain better constraints on dust grains in foreground galaxies that happen to lie along the quasar sightlines. These observations consist of a combination of mid-infrared data obtained with the Spitzer Space Telescope and optical/UV data obtained with ground-based telescopes and/or the Hubble Space Telescope. The mid-IR data target the 10 μm and 18 μm silicate absorption features, while the optical/UV data allow determinations of element depletions, extinction curves, 2175 Å bumps, etc. Measurements of such properties in absorption-selected galaxies with redshifts ranging from z 0 to z > 2 provide constraints on the evolution of interstellar dust over the past > 10 Gyr . The optical depth of the 10 μm silicate absorption feature (τ10) in these galaxies is correlated with the amount of reddening along the sightline. But there are indications (e.g., based on the τ10 / E(B - V) ratio and possible grain crystallinity) that the dust in these distant galaxies differs in structure and composition from the dust in the Milky Way and the Magellanic Clouds. We briefly discuss the implications of these results for the evolution of galaxies and their star formation history.

  6. Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team

    2017-01-01

    High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.

  7. Transient Weakening of Earth's Magnetic Shield Probed by a Cosmic Ray Burst.

    PubMed

    Mohanty, P K; Arunbabu, K P; Aziz, T; Dugad, S R; Gupta, S K; Hariharan, B; Jagadeesan, P; Jain, A; Morris, S D; Rao, B S; Hayashi, Y; Kawakami, S; Oshima, A; Shibata, S; Raha, S; Subramanian, P; Kojima, H

    2016-10-21

    The GRAPES-3 tracking muon telescope in Ooty, India measures muon intensity at high cutoff rigidities (15-24 GV) along nine independent directions covering 2.3 sr. The arrival of a coronal mass ejection on 22 June 2015 18:40 UT had triggered a severe G4-class geomagnetic storm (storm). Starting 19:00 UT, the GRAPES-3 muon telescope recorded a 2 h high-energy (∼20  GeV) burst of galactic cosmic rays (GCRs) that was strongly correlated with a 40 nT surge in the interplanetary magnetic field (IMF). Simulations have shown that a large (17×) compression of the IMF to 680 nT, followed by reconnection with the geomagnetic field (GMF) leading to lower cutoff rigidities could generate this burst. Here, 680 nT represents a short-term change in GMF around Earth, averaged over 7 times its volume. The GCRs, due to lowering of cutoff rigidities, were deflected from Earth's day side by ∼210° in longitude, offering a natural explanation of its night-time detection by the GRAPES-3. The simultaneous occurrence of the burst in all nine directions suggests its origin close to Earth. It also indicates a transient weakening of Earth's magnetic shield, and may hold clues for a better understanding of future superstorms that could cripple modern technological infrastructure on Earth, and endanger the lives of the astronauts in space.

  8. Cherenkov Telescope Array: Unveiling the Gamma Ray Universe and its Cosmic Particle Accelerators

    NASA Astrophysics Data System (ADS)

    de Gouveia Dal Pino, Elisabete M.

    2016-10-01

    Gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. The Cherenkov Telescope Array (CTA) is an international initiative to build the next-generation ground-based gamma-ray observatory which will have a factor of 5-10 improvement in sensitivity in the 100 GeV - 10 TeV range and an extension to energies well below 100 GeV and above 100 TeV. CTA is planned to consist of two arrays (one in the North and another in the South Hemisphere) and will provide the deepest insight ever reached into the non-thermal high-energy Universe and its particle accelerators.

  9. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  10. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: klind@mpa-garching.mpg.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200 K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.

  11. Cosmic Evolution Through UV Spectroscopy (CETUS): A NASA Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; CETUS Team

    2017-01-01

    CETUS is a probe-class mission concept proposed for study to NASA in November 2016. Its overarching objective is to provide access to the ultraviolet (~100-400 nm) after Hubble has died. CETUS will be a major player in the emerging global network of powerful, new telescopes such as E-ROSITA, DESI, Subaru/PFS, GMT, LSST, WFIRST, JWST, and SKA. The CETUS mission concept provisionally features a 1.5-m telescope with a suite of instruments including a near-UV multi-object spectrograph (200-400 nm) complementing Subaru/PFS observations, wide-field far-UV and near-UV cameras, and far-UV and near-UV spectrographs that can be operated in either high-resolution or low-resolution mode. We have derived the scope and specific science requirements for CETUS for understanding the evolutionary history of galaxies, stars, and dust, but other applications are possible.

  12. Using Betatron Emissions from Laser Wakefield Accelerated Electrons to Probe Ultra-fast Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Kotick, Jordan; Schumaker, Will; Condamine, Florian; Albert, Felicie; Barbrel, Benjamin; Galtier, Eric; Granados, Eduardo; Ravasio, Alessandra; Glenzer, Siegfried

    2015-11-01

    Laser wakefield acceleration (LWFA) has been shown to produce short X-ray pulses from betatron oscillations of electrons within the plasma wake. These betatron X-rays pulses have a broad, synchrotron-like energy spectrum and a duration on the order of the driving laser pulse, thereby enabling probing of ultrafast interactions. Using the 1 J, 40fs short-pulse laser at the Matter in Extreme Conditions experimental station at LCLS, we have implemented LWFA to generate and subsequently characterized betatron X-rays. Notch filtering and single photon counting techniques were used to measure the betatron X-ray spectrum while the spatial profile was measured using X-ray CCDs and image plates. We used an ellipsoidal mirror to focus the soft betatron X-rays for pump-probe studies on various targets in conjunction with LCLS X-ray and optical laser pulses. This experimental platform provides the conditions necessary to do a detailed study of warm-dense matter dynamics on the ultrafast time-scale.

  13. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  14. Using Supra-Arcade Downflows as Probes of Particle Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2012-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial- and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. We provide measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  15. Late cosmic acceleration in a vector-Gauss-Bonnet gravity model

    NASA Astrophysics Data System (ADS)

    Oliveros, A.; Solis, Enzo L.; Acero, Mario A.

    2016-12-01

    In this work, we study a general vector-tensor model of dark energy (DE) with a Gauss-Bonnet term coupled to a vector field and without explicit potential terms. Considering a spatially flat Friedmann-Robertson-Walker (FRW) type universe and a vector field without spatial components, the cosmological evolution is analyzed from the field equations of this model considering two sets of parameters. In this context, we have shown that it is possible to obtain an accelerated expansion phase of the universe since the equation state parameter w satisfies the restriction - 1 < w < -1/3 (for suitable values of model parameters). Further, analytical expressions for the Hubble parameter H, equation state parameter w and the invariant scalar ϕ are obtained. We also find that the square of the speed of sound is negative for all values of redshift, therefore, the model presented here shows a sign of instability under small perturbations. We finally perform an analysis using H(z) observational data and we find that for the free parameter ξ in the interval (-23.9,-3.46) × 10-5, at 99.73% C.L. (and fixing η = -1 and ω = 1/4), the model has a good fit to the data.

  16. The connection between supernova remnants and the Galactic magnetic field: An analysis of quasi-parallel and quasi-perpendicular cosmic-ray acceleration for the axisymmetric sample

    NASA Astrophysics Data System (ADS)

    West, J. L.; Safi-Harb, S.; Ferrand, G.

    2017-01-01

    The mechanism for the acceleration of cosmic-rays in supernova remnants (SNRs) is an outstanding question in the field. We model a sample of 32 axisymmetric SNRs using the quasi-perpendicular and quasi-parallel cosmic-ray-electron (CRE) acceleration cases. The axisymmetric sample is defined to include SNRs with a double-sided, bilateral morphology, and also those with a one-sided morphology where one limb is much brighter than the other. Using a coordinate transformation technique, we insert a bubble-like model SNR into a model of the Galactic magnetic field. Since radio emission of SNRs is dominated by synchrotron emission and since this emission depends on the magnetic field and CRE distribution, we are able to simulate the SNR emission and compare this to data. We find that the quasi-perpendicular CRE acceleration case is much more consistent with the data than the quasi-parallel CRE acceleration case, with G327.6+14.6 (SN1006) being a notable exception. We propose that SN1006 may be a case where both quasi-parallel and quasi-perpendicular acceleration are simultaneously at play in a single SNR.

  17. Cosmic Microwave Background Fluctuations from the Kinetic Sunyaev-Zeldovich Effect as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Shapiro, P.; Komatsu, E.

    2012-01-01

    We present a calculation of the kinetic Sunyaev-Zel'dovich (kSZ) effect on of the Comic Microwave Background fluctuation. We focus on the scale at the multipole moment of l = 3000 10000 that is currently being probed by the South Pole Telescope (SPT) and the Atacama Cosmology Telescope. For the post-reionization contribution of the total signal, we use the 3rd order perturbation theory (3PT) to model non-linearity of post-reionization epoch. We evaluate a non-linear expression for momentum powerspectrum in Ma and Fry (2002) with the 3PT density and velocity powerspectrum. And, we use the 3PT momentum powerspectrum to calculate the kSZ signal. We show that the 3PT is a reasonable approximation by comparing our result with previous work by Zhang, Pen and Trac (2004). For reionization contribution, we use our N-body radiative transfer simulations to take patchiness of ionization of intergalactic medium in reionization epoch into account. Using ionized fraction field in the simulation, we calculate the momentum field of the ionized gas. And, we correct for the missing power in finite size boxes of simulations. Finally, we show the kSZ calculation for different simulations with reionization scenarios. With contributions from each epoch, we predict total kSZ signal for different reionization history and put constraint on reionization scenario using an upper bound of the signal from recent SPT measurement.

  18. Testing flatness of the universe with probes of cosmic distances and growth

    NASA Astrophysics Data System (ADS)

    Mortonson, Michael J.

    2009-06-01

    When using distance measurements to probe spatial curvature, the geometric degeneracy between curvature and dark energy in the distance-redshift relation typically requires either making strong assumptions about the dark energy evolution or sacrificing precision in a more model-independent approach. Measurements of the redshift evolution of the linear growth of perturbations can break the geometric degeneracy, providing curvature constraints that are both precise and model-independent. Future supernova, CMB, and cluster data have the potential to measure the curvature with an accuracy of s(O K ) 0.002, without specifying a particular dark energy phenomenology. In combination with distance measurements, the evolution of the growth function at low redshifts provides the strongest curvature constraint if the high-redshift universe is well approximated as being purely matter dominated. However, in the presence of early dark energy or massive neutrinos, the precision in curvature is reduced due to additional degeneracies, and precise normalization of the growth function relative to recombination is important for obtaining accurate constraints. Curvature limits from distances and growth compare favorably to other approaches to curvature estimation proposed in the literature, providing either greater accuracy or greater freedom from dark energy modeling assumptions, and are complementary due to the use of independent data sets. Model-independent estimates of curvature are critical for both testing inflation and obtaining unbiased constraints on dark energy parameters.

  19. Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data

    NASA Astrophysics Data System (ADS)

    Vargas dos Santos, M.; Reis, R. R. R.; Waga, I.

    2016-02-01

    We revisit the kink-like parametrization of the deceleration parameter q(z) [1], which considers a transition, at redshift zt, from cosmic deceleration to acceleration. In this parametrization the initial, at z gg zt, value of the q-parameter is qi, its final, z=-1, value is qf and the duration of the transition is parametrized by τ. By assuming a flat space geometry we obtain constraints on the free parameters of the model using recent data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), cosmic microwave background (CMB) and the Hubble parameter H(z). The use of H(z) data introduces an explicit dependence of the combined likelihood on the present value of the Hubble parameter H0, allowing us to explore the influence of different priors when marginalizing over this parameter. We also study the importance of the CMB information in the results by considering data from WMAP7, WMAP9 (Wilkinson Microwave Anisotropy Probe—7 and 9 years) and Planck 2015. We show that the contours and best fit do not depend much on the different CMB data used and that the considered new BAO data is responsible for most of the improvement in the results. Assuming a flat space geometry, qi=1/2 and expressing the present value of the deceleration parameter q0 as a function of the other three free parameters, we obtain zt=0.67+0.10-0.08, τ=0.26+0.14-0.10 and q0=-0.48+0.11-0.13, at 68% of confidence level, with an uniform prior over H0. If in addition we fix qf=-1, as in flat ΛCDM, DGP and Chaplygin quartessence that are special models described by our parametrization, we get zt=0.66+0.03-0.04, τ=0.33+0.04-0.04 and q0=-0.54+0.05-0.07, in excellent agreement with flat ΛCDM for which τ=1/3. We also obtain for flat wCDM, another dark energy model described by our parametrization, the constraint on the equation of state parameter -1.22 < w < -0.78 at more than 99% confidence level.

  20. Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

    NASA Astrophysics Data System (ADS)

    Sigouin, Mark J. P.; Si, Bing C.

    2016-06-01

    Measuring snow water equivalent (SWE) is important for many hydrological purposes such as modelling and flood forecasting. Measurements of SWE are also crucial for agricultural production in areas where snowmelt runoff dominates spring soil water recharge. Typical methods for measuring SWE include point measurements (snow tubes) and large-scale measurements (remote sensing). We explored the potential of using the cosmic-ray soil moisture probe (CRP) to measure average SWE at a spatial scale between those provided by snow tubes and remote sensing. The CRP measures above-ground moderated neutron intensity within a radius of approximately 300 m. Using snow tubes, surveys were performed over two winters (2013/2014 and 2014/2015) in an area surrounding a CRP in an agricultural field in Saskatoon, Saskatchewan, Canada. The raw moderated neutron intensity counts were corrected for atmospheric pressure, water vapour, and temporal variability of incoming cosmic-ray flux. The mean SWE from manually measured snow surveys was adjusted for differences in soil water storage before snowfall between both winters because the CRP reading appeared to be affected by soil water below the snowpack. The SWE from the snow surveys was negatively correlated with the CRP-measured moderated neutron intensity, giving Pearson correlation coefficients of -0.90 (2013/2014) and -0.87 (2014/2015). A linear regression performed on the manually measured SWE and moderated neutron intensity counts for 2013/2014 yielded an r2 of 0.81. Linear regression lines from the 2013/2014 and 2014/2015 manually measured SWE and moderated neutron counts were similar; thus differences in antecedent soil water storage did not appear to affect the slope of the SWE vs. neutron relationship. The regression equation obtained from 2013/2014 was used to model SWE using the moderated neutron intensity data for 2014/2015. The CRP-estimated SWE for 2014/2015 was similar to that of the snow survey, with an root

  1. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  2. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  3. Probing the cosmic gamma-ray burst rate with trigger simulations of the swift burst alert telescope

    SciTech Connect

    Lien, Amy; Cannizzo, John K.; Sakamoto, Takanori; Gehrels, Neil; Barthelmy, Scott D.; Palmer, David M.; Graziani, Carlo

    2014-03-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae, and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and an additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest that bursts need to be dimmer than previously expected to avoid overproducing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568{sub −1429}{sup +825} GRBs per year that are beamed toward us in the whole universe.

  4. Real space tests of the statistical isotropy and Gaussianity of the Wilkinson Microwave Anisotropy Probe cosmic microwave background data

    SciTech Connect

    Lew, Bartosz

    2008-08-15

    We introduce and analyze a method for testing statistical isotropy and Gaussianity and apply it to the Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background (CMB) foreground reduced temperature maps. We also test cross-channel difference maps to constrain levels of residual foreground contamination and systematic uncertainties. We divide the sky into regions of varying size and shape and measure the first four moments of the one-point distribution within these regions, and using their simulated spatial distributions we test the statistical isotropy and Gaussianity hypotheses. By randomly varying orientations of these regions, we sample the underlying CMB field in a new manner, that offers a richer exploration of the data content, and avoids possible biasing due to a single choice of sky division. In our analysis we account for all two-point correlations between different regions and also show the impact on the results when these correlations are neglected. The statistical significance is assessed via comparison with realistic Monte Carlo simulations. We find the three-year WMAP maps to agree well with the isotropic, Gaussian random field simulations as probed by regions corresponding to the angular scales ranging from 6 Degree-Sign to 30 Degree-Sign at 68% confidence level (CL). We report a strong, anomalous (99.8% CL) dipole 'excess' in the V band of the three-year WMAP data and also in the V band of the WMAP five-year data (99.3% CL). Using our statistics, we notice large scale hemispherical power asymmetry, and find that it is not highly statistically significant in the WMAP three-year data ( Less-Than-Or-Equivalent-To 97%) at scales l{<=}40. The significance is even smaller if multipoles up to l=1024 are considered ({approx}90% CL). We give constraints on the amplitude of the previously proposed CMB dipole modulation field parameter. We find some hints of foreground contamination in the form of a locally strong, anomalous kurtosis excess in

  5. Cosmic Visions Dark Energy:Technology

    SciTech Connect

    Dodelson, Scott; Slosar, Anze; Heitmann, Katrin; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uros

    2016-05-02

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire DOE HEP program.

  6. Probing the cosmic ray mass composition in the knee region through TeV secondary particle fluxes from solar surroundings

    NASA Astrophysics Data System (ADS)

    Banik, Prabir; Bijay, Biplab; Sarkar, Samir K.; Bhadra, Arunava

    2017-03-01

    The possibility of estimating the mass composition of primary cosmic rays above the knee of their energy spectrum through the study of high-energy gamma rays, muons, and neutrinos produced in the interactions of cosmic rays with solar ambient matter and radiation is explored. It is found that the theoretical fluxes of TeV gamma rays, muons, and neutrinos from a region around 15° of the Sun are sensitive to a mass composition of cosmic rays in the PeV energy range. The experimental prospects for the detection of such TeV gamma rays/neutrinos by future experiments are discussed.

  7. Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data

    SciTech Connect

    Santos, M. Vargas dos; Reis, R.R.R.; Waga, I. E-mail: ribamar@if.ufrj.br

    2016-02-01

    We revisit the kink-like parametrization of the deceleration parameter q(z) [1], which considers a transition, at redshift z{sub t}, from cosmic deceleration to acceleration. In this parametrization the initial, at z >> z{sub t}, value of the q-parameter is q{sub i}, its final, z=−1, value is q{sub f} and the duration of the transition is parametrized by τ. By assuming a flat space geometry we obtain constraints on the free parameters of the model using recent data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), cosmic microwave background (CMB) and the Hubble parameter H(z). The use of H(z) data introduces an explicit dependence of the combined likelihood on the present value of the Hubble parameter H{sub 0}, allowing us to explore the influence of different priors when marginalizing over this parameter. We also study the importance of the CMB information in the results by considering data from WMAP7, WMAP9 (Wilkinson Microwave Anisotropy Probe—7 and 9 years) and Planck 2015. We show that the contours and best fit do not depend much on the different CMB data used and that the considered new BAO data is responsible for most of the improvement in the results. Assuming a flat space geometry, q{sub i}=1/2 and expressing the present value of the deceleration parameter q{sub 0} as a function of the other three free parameters, we obtain z{sub t}=0.67{sup +0.10}{sub −0.08}, τ=0.26{sup +0.14}{sub −0.10} and q{sub 0}=−0.48{sup +0.11}{sub −0.13}, at 68% of confidence level, with an uniform prior over H{sub 0}. If in addition we fix q{sub f}=−1, as in flat ΛCDM, DGP and Chaplygin quartessence that are special models described by our parametrization, we get z{sub t}=0.66{sup +0.03}{sub −0.04}, τ=0.33{sup +0.04}{sub −0.04} and q{sub 0}=−0.54{sup +0.05}{sub −0.07}, in excellent agreement with flat ΛCDM for which τ=1/3. We also obtain for flat wCDM, another dark energy model described by our parametrization, the constraint on

  8. A New Method for the Reconstruction of Very-High-Energy Gamma-Ray Spectra and Application to Galactic Cosmic-Ray Accelerators

    NASA Astrophysics Data System (ADS)

    Fernandes, Milton Virgílio

    2014-06-01

    In this thesis, high-energy (HE; E > 0.1 GeV) and very-high-energy (VHE; E > 0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESS J1646-458 (2.2° in size) towards the SC Westerlund 1 (Wd 1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESS J1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of

  9. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    PubMed

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-08

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  10. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    NASA Astrophysics Data System (ADS)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  11. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  12. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  13. Non-Linear Effects of Self Generated Alfven Waves in Oblique Shocks and Cosmic Ray Acceleration Efficiency

    NASA Astrophysics Data System (ADS)

    Medina-Tanco, G. A.; Opher, R.

    1990-11-01

    RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES

  14. Supernova / Acceleration Probe: a Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; /LBL, Berkeley /SLAC /Stockholm U. /Fermilab /Paris U., VI-VII /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Marseille, CPPM /Indiana U. /American Astron. Society /Caltech /Case Western Reserve U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-15

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  15. Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, E.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, C.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; Craig, W.; Day, C.; DeJongh, F.; Deustua, S.; Diehl, T.; Dodelson, S.; Ealet, A.; Ellis, R.; Emmet, W.; Fouchez, D.; Frieman, J.; Fruchter, A.; Gerdes, D.; Gladney, L.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Hoff, M.; Holland, S.; Huffer, M.; Hui, L.; Huterer, D.; Jain, B.; Jelinsky, P.; Karcher, A.; Kent, S.; Kahn, S.; Kim, A.; Kolbe, W.; Krieger, B.; Kushner, G.; Kuznetsova, N.; Lafever, R.; Lamoureux, J.; Lampton, M.; Le Fevre, O.; Levi, M.; Limon, P.; Lin, H.; Linder, E.; Loken, S.; Lorenzon, W.; Malina, R.; Marriner, J.; Marshall, P.; Massey, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Peoples, J.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Roe, N.; Rusin, D.; Scarpine, V.; Schubnell, M.; Sholl, M.; Samdja, G.; Smith, R.M.; Smoot, G.; Snyder, J.; Spadafora, A.; Stebbine, A.; Stoughton, C.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Tucker, D.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.; Wester, W.

    2004-05-12

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  16. A Critical Shock Mach Number for Particle Acceleration in the Absence of Pre-existing Cosmic Rays: M=\\sqrt{5}

    NASA Astrophysics Data System (ADS)

    Vink, Jacco; Yamazaki, Ryo

    2014-01-01

    It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M\\gt\\sqrt{5}. The reason is that for M\\le \\sqrt{5} the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfill the energetic requirements for the formation of shock with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.

  17. Probing the climatological impact of a cosmic ray-cloud connection through low-frequency radio observations

    NASA Astrophysics Data System (ADS)

    Magee, Nathan; Kavic, Michael

    2012-01-01

    It has been proposed that cosmic ray events could have a causal relationship with cloud formation rates. Given the weak constraints on the role that cloud formation plays in climate forcing it is essential to understand the role such a relationship could have in shaping the Earth's climate. This issue has been previously investigated in the context of the long-term effect of cosmic ray events on climate. However, in order to establish whether or not such a relationship exists, measurements of short-timescale solar events, individual cosmic ray events, and spatially correlated cloud parameters could be of great significance. Here we propose such a comparison using observations from a pair of radio telescopes arrays, the Long Wavelength Array (LWA) and the Eight-meter-wavelength Transient Array (ETA). These low-frequency radio arrays have a unique ability to simultaneously conduct solar, ionospheric and cosmic rays observations and are thus ideal for such a comparison. We will outline plans for a comparison using data from these instruments, satellite images of cloud formation as well as expected cloud formation rates from numerical models. We present some preliminary results illustrating the efficacy of this type of comparison and discuss future plans to carryout this program.

  18. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    SciTech Connect

    Inoue, Yoshiyuki; Murase, Kohta; Madejski, Grzegorz M.; Uchiyama, Yasunobu

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  19. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    SciTech Connect

    Inoue, Yoshiyuki; Murase, Kohta; Madejski, Grzegorz M.; Uchiyama, Yasunobu

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  20. Astrophysics: Cosmic jet engines

    NASA Astrophysics Data System (ADS)

    Young, Andy

    2010-02-01

    In some galaxies, matter falling onto a supermassive black hole is ejected in narrow jets moving at close to the speed of light. New observations provide insight into the workings of these cosmic accelerators.

  1. Requirements on Atmospheric Entry of Small Probes for Several Planets: Venus, Saturn, Neptune and Uranus in Preparation for the Future ESA Cosmic Vision Missions

    NASA Astrophysics Data System (ADS)

    Tomuta, D.; Rebuffat, D.; Larranaga, J.; Erd, C.; Bavdaz, M.; Falkner, P.

    2011-02-01

    In preparation for the ESA Cosmic Vision new call for medium class missions, a set of entry probes for inner and outer planets have been preliminary investigated by ESA using its Concurrent Design Facility. These Entry Probe missions are hypothetically assumed for launching time 2020-2035. A preliminary design of the probes arrived at a mass of about 300kg. In the following, the study is focused on the entry conditions for each of the planets Venus, Saturn, Neptune and Uranus with the aim to define the conditions for the Entry and Descent System (EDS) and its required technologies. For Venus case, two scenarios where considered: one where the entry probe is released during a typical gravity assist by a large interplanetary mission and another scenario featuring a stand alone mission targeted to Venus. During the entry in Venus atmosphere (mainly composed of CO2 (96.5%) and N2 (3.5%)), the probes are subjected to maximum heat fluxes of 60MW/m2, which is highly demanding in both scenarios. For the outer planet missions, only flyby scenarios with a targeted release of the probe were considered. The entry probes for the outer planets are subjected to heat fluxes above 100MW/m2, which is even more challenging the Thermal Protection Systems (TPS) and therefore requiring the use of special high temperature protection technology to prevent the destruction during the entry. ESA efforts for future missions are directed towards the development of an European Light Ablative Material (ELAM), though used in PEP study only for the Back Cover of the Entry Module. The TPS as well as both radiative and convective heat fluxes need simulations and verification by means of ground facility experiments. Based on the lessons learned from previous mission studies (mission to a near-Earth objects c.f. Marco Polo, Deimos Sample return), an Atmospheric Mars Sample Return is now under study. For sample return missions on return to Earth, a passive re-entry capsule delivering the sample

  2. The 'toothbrush-cluster': probing particle acceleration by merger induced shock waves

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2012-09-01

    We have discovered a spectacular merging galaxy cluster hosting a 2-Mpc elongated radio source, suggesting particle acceleration at merger shocks. The large straight extent is however very difficult to explain with current merger scenarios and a very high Mach number of 4.5 is required to explain the radio spectral index. We therefore argue that this cluster is a key object to test current models of shock acceleration and cluster formation. The proposed Chandra+EVLA observations will address the following: (i) is there a compelling need for a more sophisticated particle acceleration mechanism than standard diffusive shock acceleration? And (ii) are we witnessing a very special configuration consisting of multiple merger events that collectively conspire to yield such a linear shock?

  3. Noninvasive Laser Probing of Ultrashort Single Electron Bunches for Accelerator And Light Source Development

    SciTech Connect

    Bolton, P.R.; /SLAC

    2007-06-11

    Companion development of ultrafast electron beam diagnostics capable of noninvasively resolving single bunch detail is essential for the development of high energy, high brightness accelerator facilities and associated beam-based light source applications. Existing conventional accelerators can exhibit timing-jitter down to the 100 femtosecond level which exceeds their single bunch duration capability. At the other extreme, in relatively jitterless environments, laser-plasma wakefield accelerators (LWFA) can generate single electron bunches of duration estimated to be of order 10 femtoseconds making this setting a valuable testbed for development of broadband electron bunch diagnostics. Characteristics of electro-optic schemes and laser-induced reflectance are discussed with emphasis on temporal resolution.

  4. Data processing for a cosmic ray experiment onboard the solar probes Helios 1 and 2: Experiment 6

    NASA Technical Reports Server (NTRS)

    Mueller-Mellin, R.; Green, G.; Iwers, B.; Kunow, H.; Wibberenz, G.; Fuckner, J.; Hempe, H.; Witte, M.

    1982-01-01

    The data processing system for the Helios experiment 6, measuring energetic charged particles of solar, planetary and galactic origin in the inner solar system, is described. The aim of this experiment is to extend knowledge on origin and propagation of cosmic rays. The different programs for data reduction, analysis, presentation, and scientific evaluation are described as well as hardware and software of the data processing equipment. A chronological presentation of the data processing operation is given. Procedures and methods for data analysis which were developed can be used with minor modifications for analysis of other space research experiments.

  5. Soil moisture sensing with cosmic ray neutron probes: Do forests and other low-count locations call for additional calibration?

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Güntner, Andreas; Blume, Theresa

    2015-04-01

    Cosmic ray neutron sensors are bridging the scale gap between point measurements and remotely sensed data of soil moisture. We present a best practice for the calibration of cosmic ray neutron sensors in areas with low count rates (<1000 counts/hour). These areas can include low altitude and high latitude regions as well as forested areas where the sensor is situated below the canopy. After calibrating a sensor ten times within a single year it became clear that individual calibrations at different points in time yield a soil moisture-neutron count relationship that cannot be described by the Desilets et al. (2010) calibration function. Neither can it be explained by the dynamics in canopy biomass (we analyzed the influence of growing and falling leaves and water redistribution within the vegetation surrounding the instrument). Our empirically determined function appears to be flatter, i.e. a decrease in soil moisture causes a smaller increase in neutron counts than would be expected from the Desilets calibration function. Therefore we cannot assume that the calibration function has a constant shape irrespective of the measurement location. In order to yield consistent soil moisture measurements we thus recommend a two-point calibration with one of the calibrations being performed during high soil moisture conditions and a second one during low soil moisture conditions.

  6. Resource Letter DEAU-1: Dark energy and the accelerating universe

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2008-03-01

    This Resource Letter provides a guide to the literature on dark energy and the accelerating universe. It is intended to be of use to researchers, teachers, and students at several levels. Journal articles, books, and websites are cited for the following topics: Einstein's cosmological constant, quintessence or dynamical scalar fields, modified cosmic gravity, relations to high-energy physics, cosmological probes and observations, terrestrial probes, calculational tools and parameter estimation, teaching strategies and educational resources, and the fate of the universe.

  7. Variations of the relative abundances of He, (C,N,O) and Fe-group nuclei in solar cosmic rays and their relationship to solar particle acceleration

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Fichtel, C. E.; Pellerin, C. J.; Reames, D. V.

    1973-01-01

    Measurements of the flux of helium nuclei in the 24 January 1971 event and of helium and (C,N,O) nuclei in the 1 September 1971 event are combined with previous measurements to obtain the relative abundances of helium, (C,N,O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C,N,O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C,N,O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.

  8. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  9. Probing lattice dynamics in silicon with laser-wakefield accelerated electrons

    NASA Astrophysics Data System (ADS)

    Nees, John; He, Z.-H.; Thomas, A. G. R.; Krushelnick, Karl; Scott, S.; Legally, M.; Beaurepaire, B.; Gallé, G.; Faure, J.

    2016-10-01

    Laser wakefield acceleration is the key technology in a new breed of electron and photon beam sources that operate in the ultrafast domain. We show that the spatial and temporal properties of wakefield-generated electron beams can be manipulated to enable them interrogate ultrafast lattice dynamics in freestanding single-crystal silicon membranes, while maintaining spatial resolution on the atomic scale. In particular, picosecond resolution of Si lattice dynamics is obtained by recording streaked electron diffraction peaks using static magnetic fields. We will also discuss the role of wave front control in establishing optimal beam characteristics and the significance of single-shot measurements. Michigan support from NSF PHY-1535628.

  10. Betatron x-rays from laser plasma accelerators: a new probe for warm dense matter at LCLS

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2016-10-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation for x-ray absorption spectroscopy of HED matter at large-scale laser facilities. A detailed presentation of the source mechanisms and characteristics in the blowout regime of laser-wakefield acceleration will be followed by a description of recent experiments performed at the Linac Coherent Light Source (LCLS). At LCLS, we have recently commissioned the betatron x-ray source driven by the MEC short pulse laser (1 J, 40 fs). The source is used as a probe for investigating the X-ray absorption near edge structure (XANES) spectrum at the K- or L-edge of iron and silicon oxide driven to a warm dense matter state (temperature of a few eV and solid densities). The driver is either LCLS itself or an optical laser. These experiments demonstrate the capability to study the electron-ion equilibration mechanisms in warm dense matter with sub-picosecond resolution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed research and development program under tracking codes 13-LW-076, 16-ERD-041 and by the Office of Fusion Energy Sciences under SCW1476 and SCW1569.

  11. SOFIA-EXES: Probing the Thermal Structure of M Supergiant Wind Acceleration Zones

    NASA Astrophysics Data System (ADS)

    Harper, Graham M.; O'Gorman, Eamon; Guinan, Edward F.; EXES Instrument Team, EXES Science Team

    2016-01-01

    There is no standard model for mass loss from cool evolved stars, particularly for non-pulsating giants and supergiants. For the early-M supergiants, radiation pressure, convective ejections, magnetic fields, and Alfven waves have all been put forward as potential mass loss mechanisms. A potential discriminator between these ideas is the thermal structure resulting from the heating-cooling balance in the acceleration zone - the most important region to study mass loss physics.We present mid-IR [Fe II] emission line profiles of Betelgeuse and Antares obtained with NASA-DLR SOFIA-EXES and NASA IRTF-TEXES that were obtained as part of a GO program (Harper: Cycle 2-0004) and EXES instrument commissioning observations. The intra-term transitions sample a range of excitation conditions, Texc=540K, 3,400K, and 11,700K, i.e., from the warm chromospheric plasma, that also emits in the cm-radio and ultraviolet, to the cold inner circumstellar envelope. The spectrally-resolved profiles, when combined with VLA cm-radio observations, provide new constraints on the temperature and flow velocity in the outflow accelerating region. The semi-empirical energy balance can be used to test theoretical predictions of wind heating.

  12. DETECTION OF OH{sup +} IN TRANSLUCENT INTERSTELLAR CLOUDS: NEW ELECTRONIC TRANSITIONS AND PROBING THE PRIMARY COSMIC RAY IONIZATION RATE

    SciTech Connect

    Zhao, D.; Linnartz, H.; Galazutdinov, G. A.; Krełowski, J.

    2015-06-01

    We present the detection of rotationally resolved electronic transitions in the OH{sup +} A{sup 3}Π–X{sup 3}Σ{sup −} (0, 0) and (1, 0) bands toward CD-32 4348, HD 63804, HD 78344, and HD 80077. These four translucent clouds have been studied in a recent Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph observational run. In total, seven absorption features of OH{sup +} are detected, and six of them are identified here for the first time, providing a precise tool to trace OH{sup +} in translucent interstellar clouds. An improved set of line positions and oscillator strengths is compiled to support our data interpretation. A dedicated analysis of the observed features in individual targets yields an accurate determination of OH{sup +} column densities. The results are applied to estimate the primary cosmic ray ionization rate in the investigated translucent clouds, which yields a typical value of ∼1.0 × 10{sup −16} s{sup −1}. In addition, following this work, two of the new interstellar features recently reported by Bhatt and Cami, at ∼3572.65 and 3346.96 Å, can be identified as OH{sup +} absorption lines now.

  13. Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of their Matter Content

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric; Stecker, Floyd W.

    2004-01-01

    We propose a method for estimating the composition, i.e. the relative amounts of leptons and protons, of extragalactic jets which exhibit Chandra - detected knots in their kpc scale jets. The method relies on measuring, or setting upper limits on, the component of the Cosmic Microwave Background (CMB) radiation that is bulk-Comptonized by the cold electrons in the relativistically flowing jet. These measurements, along with modeling of the broadband knot emission that constrain the bulk Lorentz factor GAMMA of the jets, can yield estimates of the jet power carried by protons and leptons. We provide an explicit calculation of the spectrum of the bulk-Comptonized (BC) CMB component and apply these results to PKS 0637 - 752 and 3C 273, two superluminal quasars with Chandra - detected large scale jets. What makes these sources particularly suited for such a procedure is the absence of significant non-thermal jet emission in the 'bridge', the region between the core and the first bright jet knot, which guarantees that most of the electrons are cold there, leaving the BC scattered CMB radiation as the only significant source of photons in this region. At lambda = 3.6 - 8.0 microns, the most likely band to observe the BC scattered CMB emission, the Spitzer angular resolution (approximately 1" - 3") is considerably smaller than the the 'bridges' of these jets (approximately 10"), making it possible to both measure and resolve this emission.

  14. Observations of galactic cosmic ray energy spectra between 1 and 9 AU. [Pioneer space probes and Helios 1

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B.; Lal, N.; Vanhollebeke, M. A. I.; Trainor, J. H.; Webber, W. R.

    1977-01-01

    The variation of the 5 to 500 MeV/nuc cosmic ray helium component was studied between 1 and 9 A.U. using essentially identical detector systems on Pioneer 10 and 11 and Helios I. Between 100 and 200 MeV/nuc a radial gradient of 3.3?1.3%/A.U. is found. At 15 MeV/nuc this value increases to 20?4%/A.U. Between 4 and 9 A.U. a well defined intensity maximum is observed at approximately 17 MeV/nuc. The average adiabatic energy loss between 1 and 9 A.U. is approximately 4 MeV/nuc/A.U. The observed radial variation between 1 and 9 A.U. is well described by the Gleeson-Axford force field solution of the modulation equations over an energy range extending from 15 to 500 MeV/nuc and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted.

  15. Probing the accelerating Universe with redshift-space distortions in VIPERS

    NASA Astrophysics Data System (ADS)

    de la Torre, Sylvain

    2016-10-01

    We present the first measurement of the growth rate of structure at z=0.8. It has been obtained from the redshift-space distortions observed in the galaxy clustering pattern in the VIMOS Public Redshift survey (VIPERS) first data release. VIPERS is a large galaxy redshift survey probing the large-scale structure at 0.5 < z < 1.2 with an unprecedented accuracy. This measurement represents a new reference in the distant Universe, which has been poorly explored until now. We obtain σ8 = 0.47 +/- 0.08 at z = 0.8 that is consistent with the predictions of standard cosmological models based on Einstein gravity. This measurement alone is however not accurate enough to allow the detection of possible deviations from standard gravity.

  16. Cosmic Gauge-Field Dark Energy

    NASA Astrophysics Data System (ADS)

    Devulder, Christopher; Caldwell, Robert

    2017-01-01

    We present a cosmological model in which dark energy consists of a cosmic gauge field. At early times it behaves like radiation; at late times it drives cosmic acceleration. By varying the number of fields, their coupling strength and handedness, a wide range of behavior is shown to emerge. Joint constraints on the model from SNe, BAO and CMB data are presented. We discuss the possibility that the gauge field may seed a spectrum of primordial gravitational waves with a distinct imprint on the power spectrum, as well as act like a dissipative medium for high frequency gravitational waves. We show that this model could have an impact on the B-mode polarization pattern in the CMB, as well as future probes that use standard sirens to constrain the energy budget of the Universe.

  17. Accelerating ab initio Molecular Dynamics and Probing the Weak Dispersive Forces in Dense Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Sorella, Sandro

    2017-01-01

    We propose an ab initio molecular dynamics method, capable of dramatically reducing the autocorrelation time required for the simulation of classical and quantum particles at finite temperatures. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix S . Here, we apply this technique to both Lennard-Jones models, to demonstrate the accuracy and speeding-up of the sampling, and within a quantum Monte Carlo based wave function approach, for determining the phase diagram of high-pressure hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in a few hundred steps even close to the liquid-liquid phase transition (LLT). Within our approach, we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressure when the long range dispersive forces are taken into account.

  18. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise ;Modal;, the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  19. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    SciTech Connect

    Briggs, J.P.; Pennycook, S.J.; Fergusson, J.R.; Jäykkä, J.; Shellard, E.P.S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise “Modal”, the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  20. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    SciTech Connect

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  1. Future evolution and finite-time singularities in F(R) gravity unifying inflation and cosmic acceleration

    SciTech Connect

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2008-08-15

    We study the future evolution of quintessence/phantom-dominated epoch in modified F(R) gravity which unifies the early-time inflation with late-time acceleration and which is consistent with observational tests. Using the reconstruction technique it is demonstrated that there are models where any known (big rip, II, III, or IV type) singularity may classically occur. From another side, in Einstein frame (scalar-tensor description) only IV type singularity occurs. Near the singularity the classical description breaks up, and it is demonstrated that quantum effects act against the singularity and may prevent its appearance. The realistic F(R) gravity which is future singularity free is proposed. We point out that additional modification of any F(R) gravity by the terms relevant at the early universe is possible, in such a way that future singularity does not occur even classically.

  2. 1/R multidimensional gravity with form-fields: Stabilization of extra dimensions, cosmic acceleration, and domain walls

    SciTech Connect

    Saidov, Tamerlan; Zhuk, Alexander

    2007-04-15

    We study multidimensional gravitational models with scalar curvature nonlinearity of the type 1/R and with form-fields (fluxes) as a matter source. It is assumed that the higher dimensional space-time undergoes Freund-Rubin-like spontaneous compactification to a warped product manifold. It is shown that for certain parameter regions the model allows for a freezing stabilization of the internal space near the positive minimum of the effective potential which plays the role of the positive cosmological constant. This cosmological constant provides the observable late-time accelerating expansion of the Universe if the parameters of the model are fine tuned. Additionally, the effective potential has the saddle point. It results in domain walls in the Universe. We show that these domain walls do not undergo inflation.

  3. 1/R multidimensional gravity with form-fields: Stabilization of extra dimensions, cosmic acceleration, and domain walls

    NASA Astrophysics Data System (ADS)

    Saidov, Tamerlan; Zhuk, Alexander

    2007-04-01

    We study multidimensional gravitational models with scalar curvature nonlinearity of the type 1/R and with form-fields (fluxes) as a matter source. It is assumed that the higher dimensional space-time undergoes Freund-Rubin-like spontaneous compactification to a warped product manifold. It is shown that for certain parameter regions the model allows for a freezing stabilization of the internal space near the positive minimum of the effective potential which plays the role of the positive cosmological constant. This cosmological constant provides the observable late-time accelerating expansion of the Universe if the parameters of the model are fine tuned. Additionally, the effective potential has the saddle point. It results in domain walls in the Universe. We show that these domain walls do not undergo inflation.

  4. Experiments with probe masses

    PubMed Central

    Braginsky, V. B.

    2007-01-01

    It is reasonable to regard the experiments performed by C. Coulomb and H. Cavendish in the end of the 18th century as the beginning of laboratory experimental physics. These outstanding scientists have measured forces (accelerations) produced by electric charges and by gravitational “charges” on probe masses that were attached to torque balance. Among the variety of different research programs and projects existing today, experiments with probe masses are still playing an important role. In this short review, the achieved and planned sensitivities of very challenging LIGO (Laser Interferometer Gravitational wave Observatory) and LISA (Laser Interferometer Space Antennae) projects are described, and a list of nonsolved problems is discussed as well. The role of quantum fluctuations in high precision measurements is also outlined. Apart from these main topics, the limitations of sensitivity caused by cosmic rays and the prospects of clock frequency stability are presented. PMID:17296944

  5. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.; Michelson, Peter F.; Ormes, Jonathan F.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.

  6. Probing half βy* optics in the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Patecki, M.; Bett, D.; Marin, E.; Plassard, F.; Tomás, R.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.

    2016-10-01

    A nanometer beam size at the interaction point (IP) is required for future linear colliders to achieve the desired rate of particle collisions. KEK Accelerator Test Facility 2 (ATF2), a scaled down implementation of the linear collider beam delivery system, serves for demonstrating the feasibility of the final focus system (FFS). An unprecedented low vertical beam size at the IP of about 40 nm has been already measured in ATF2 using the optics with a nominal βy* . In our study we decrease the βy* value in order to investigate the performance of more chromatic optics and to study the limits of beam focusing at the IP. Stronger beam focusing amplifies the aberrations from the final focus imperfections which cause an increase of the beam size at the IP. Simulations show that the multipolar errors and final doublet fringe fields spoil the IP beam sizes for ultralow βy* optics but can be mitigated either by increasing the value of the horizontal β* or installing a pair of octupole magnets. We report on our first experimental steps towards the ultralow βy* in ATF2. New methods for the beam diagnostics at the IP were developed in order to precisely set the desired optics. βy* value was half the nominal value. The beam tuning was performed and the measured beam size is compared with the simulation results.

  7. PROBING THE SOLAR WIND ACCELERATION REGION WITH THE SUN-GRAZING COMET C/2002 S2

    SciTech Connect

    Giordano, S.; Raymond, J. C.; Lamy, P.; Uzzo, M.; Dobrzycka, D.

    2015-01-01

    Comet C/2002 S2, a member of the Kreutz family of sungrazing comets, was discovered in white-light images of the Large Angle and Spectromeric Coronagraph Experiment coronagraph on the Solar and Heliospheric Observatory (SOHO) on 2002 September 18 and observed in H I Lyα emission by the SOHO Ultraviolet Coronagraph Spectrometer (UVCS) instrument at four different heights as it approached the Sun. The H I Lyα line profiles detected by UVCS are analyzed to determine the spectral parameters: line intensity, width, and Doppler shift with respect to the coronal background. Two-dimensional comet images of these parameters are reconstructed at the different heights. A novel aspect of the observations of this sungrazing comet data is that, whereas the emission from most of the tail is blueshifted, that along one edge of the tail is redshifted. We attribute these shifts to a combination of solar wind speed and interaction with the magnetic field. In order to use the comet to probe the density, temperature, and speed of the corona and solar wind through which it passes, as well as to determine the outgassing rate of the comet, we develop a Monte Carlo simulation of the H I Lyα emission of a comet moving through a coronal plasma. From the outgassing rate, we estimate a nucleus diameter of about 9 m. This rate steadily increases as the comet approaches the Sun, while the optical brightness decreases by more than a factor of 10 and suddenly recovers. This indicates that the optical brightness is determined by the lifetimes of the grains, sodium atoms, and molecules produced by the comet.

  8. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2000-07-01

    In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.

  9. From the sprinkler to satellite: Combining fixed and mobile cosmic-ray neutron probes for realtime multiscale monitoring of soil moisture in agricultural systems

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.

    2015-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at various scales by combining fixed and roving cosmic-ray neutron probes at four study sites across an East-West precipitation gradient overtopping the High Plains Aquifer (HPA). Each of the four study sites consisted of coarse scale mapping of the entire ~12 by 12 km domain and detailed mapping of 1 quarter section (0.8 by 0.8 km) agricultural field. By using a simplistic data merging technique we are able to produce a statistical daily soil moisture product at a variety of key spatial scales in support of irrigation water management technology: the individual sprinkler (~102 m2) for variable rate irrigation, the individual pie slice (~103 m2) for variable speed irrigation, and the quarter section (0.64 km2) for uniform rate irrigation. In addition, we are able to provide a daily soil moisture product over the 144 km2 study area at a variety of key remote sensing scales 1, 9, and 144 km2. These products can be used to support SMAP/SMOS through calibration, validation, and value addition by statistical downscaling. Future work could include larger scale monitoring in support of GRACE total water storage calculations in the HPA or other key groundwater resource locations by incorporating existing COSMOS sites or establishment of new networks.

  10. Application of temporal stability analysis in depth-scaling estimated soil water content by cosmic-ray neutron probe on the northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Xuchao; Shao, Ming'an; Jia, Xiaoxu; Huang, Laiming; Zhu, Juntao; Zhang, Yangjian

    2017-03-01

    Soil moisture is a key limiting factor in grass growth and restoration in alpine meadow ecosystems on the northern Tibetan Plateau. In the deeper layers, soil moisture influences the processes of freeze-thaw, erosion and water cycle. Cosmic-ray neutron probe (CRNP) is a new method for continuously monitoring mean soil water content (SWC) at hectometer scale, which has been applied in an alpine meadow at a high accuracy. However, with CRNP measuring depth of only 30 cm, depth-scaling is needed for sufficient insight into deep-layer soil moisture. This study evaluated the accuracy of CRNP measurement of SWC in the 2015 and 2016 growing seasons and the performance of temporal stability (TS) analysis in depth-scaling CRNP-estimated SWC. During the study period, 11 field samplings were done for calibration of CRNP-estimated SWC. Using 22 occasions of neutron probe measurements for each of 113 investigated locations, the TS of SWC was analyzed and its performance in depth-scaling CRNP-estimated SWC at five soil depths (10, 20, 30, 40 and 50 cm) was evaluated. The results showed that the mean SWCs to the depth of 50 cm were 12.9 and 17.0%, respectively in 2015 and 2016 growing seasons and were temporally influenced by precipitation and spatially by soil depth. The accuracy of the CRNP-measured SWC was high, with root mean square error and Nash-Sutcliffe efficiency coefficient (NSE) of 2.1% and 0.832, respectively. Representative locations for TS existed in all the soil layers, which increased with increasing soil depth. For the various soil layers, TS-estimated SWC was close to field-measured value. Only a relatively small error and high NSE were noted, suggesting that TS was reliable in application in CRNP depth-scaling. The study provided further scientific basis for the application of CRNP and an effective way of depth-scaling CRNP-estimated mean SWC in alpine meadow ecosystems.

  11. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  12. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2016-07-12

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  13. Cosmic Acceleration from Topological Considerations

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel ángel; Chassin, Tonatiuh Matos; Rodriguez Montoya, Ivan

    In this work we explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the global topology of the cosmos. We explore two concentric three-dimensional spherical branes immersed in a five-dimensional space-time. Before to the collision, in the interior sphere there exist only a spin-zero fundamental field (scalar field), in the exterior one there exist only fundamental spin-one interactions and spin-two interactions in the bulk. In this model, like in the Epkyrotic, the Big Bang is caused for the collision of the branes and generate all the fields predicted by the standard model in the exterior brane (our universe). In the interior brane the scalar field behaves like scalar field dark matter. Finally we show the perturbations in the modifield Einstein equations of the scalar field dark matter in the inner brane and the consequence in the high energy universe dynamics and the corrections in the standard general relativity.

  14. Cosmic Acceleration from Topological Considerations

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel Ángel; Matos, Tonatiuh

    2010-06-01

    In this work we explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the global topology of the cosmos. We explore two concentric three-dimensional spherical branes immersed in a five-dimensional space-time. Before to the collision, in the interior sphere there exist only a spin-zero fundamental field (scalar field), in the exterior one there exist only fundamental spin-one interactions and spin-two interactions in the bulk. In this model, like in the Epkyrotic, the Big Bang is caused for the collision of the branes and generate all the fields predicted by the standard model in the exterior brane (our universe). In the interior brane the scalar field behaves like scalar field dark matter. We discuss two different regimens where the energy density and the brane tension are compared, with the aim to obtain the dynamics of the universe after and before the collision. Finally we discuse the perturbations in the modified Einstein equations of the scalar field dark matter in the inner brane and the consequence in the high energy universe dynamics and the corrections in the standard general relativity.

  15. Decoherence can relax cosmic acceleration

    SciTech Connect

    Markkanen, Tommi

    2016-11-11

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  16. Decoherence can relax cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi

    2016-11-01

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  17. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; deNolfo, G. A.; Rauch, B. F.; Schindler, S. M.; Scott, L. M.; Streitmatter, R. E.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  18. Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content

    NASA Astrophysics Data System (ADS)

    Avery, William Alexander; Finkenbiner, Catherine; Franz, Trenton E.; Wang, Tiejun; Nguy-Robertson, Anthony L.; Suyker, Andrew; Arkebauer, Timothy; Muñoz-Arriola, Francisco

    2016-09-01

    The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and predict the Earth's terrestrial energy, water, and nutrient cycles. One promising technique to help meet this demand is fixed and roving cosmic-ray neutron probes (CRNPs). However, the relationship between observed low-energy neutrons and SWC is affected by local soil and vegetation calibration parameters. This effect may be accounted for by a calibration equation based on local soil type and the amount of vegetation. However, determining the calibration parameters for this equation is labor- and time-intensive, thus limiting the full potential of the roving CRNP in large surveys and long transects, or its use in novel environments. In this work, our objective is to develop and test the accuracy of globally available datasets (clay weight percent, soil bulk density, and soil organic carbon) to support the operability of the roving CRNP. Here, we develop a 1 km product of soil lattice water over the continental United States (CONUS) using a database of in situ calibration samples and globally available soil taxonomy and soil texture data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in situ samples of clay percent (RMSE = 5.45 wt %, R2 = 0.68), soil bulk density (RMSE = 0.173 g cm-3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt %, R2 = 0.175). Next, we conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error propagation analysis (maximum RMSE ˜ 0.035 cm3 cm-3 at a SWC = 0.40 cm3 cm-3). In terms of vegetation, fast-growing crops (i.e., maize and soybeans), grasslands, and forests contribute to the CRNP signal primarily through the water within their biomass and this signal must be accounted for accurate estimation of SWC. We estimated the biomass water signal by using a vegetation index derived from

  19. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  20. Probing the K-edge of a laser heated aluminum plasma using X-rays from betatron oscillations in a laser wakefield accelerator with femtosecond resolution

    NASA Astrophysics Data System (ADS)

    Behm, Keegan; Hussein, Amina; Zhao, Tony; Hill, Edward; Maksimchuk, Anatoly; Nees, John; Yanovsky, Victor; Mangles, Stuart; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team; Plasmas Group Team

    2016-10-01

    Presented here are data from a two-beam pump-probe experiment. We used synchrotron-like X-rays created by betatron oscillations to probe a thin metal foil that is pumped by the secondary laser beam. The Hercules Ti:Sapphire laser facility was operated with a pulse duration of 34 fs and a power of 80 TW split. A 75-25 beam splitter was used to drive a laser wakefield accelerator and heat the secondary target. We observed opacity changes around the K-edge of thin aluminum foil as it was heated by an ultrafast pump laser. To understand how the opacity is changing with heating and expansion of the plasma, the delay between the two laser paths was adjusted on a femtosecond time scale from 50 to 400 fs. Experimental data for aluminum shows variation in opacity around the K-edge with changes in the probe delay. The transmitted synchrotron-like spectrum was measured using single photon counting on an X-ray CCD camera and was available on a shot-by-shot basis. The success of this work demonstrates a practical application for X-rays produced from betatron oscillations in a wakefield accelerator. U.S. Department of Energy and the National Nuclear Security Administration.

  1. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  2. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    PubMed

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  3. Cosmic rays and space weather

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    It is well known that in periods of great FEP (Flare Energetic Particle), fluxes can be so big that memory of computers and other electronics in space may be destroyed, satellites and spacecrafts became dead (each year insurance companies paid more than 500,000,000 dollars for these failures). In these periods is necessary to switch off some part of electronics for short time to protect computer memories. These periods are also dangerous for astronauts on space-ships, and passengers and crew in commercial jets (especially during S5 radiation storms according to classification of NOAA). The problem is how to forecast exactly these dangerous phenomena. We show that exact forecast can be made by using high-energy particles (about 5-10 GeV/nucleon and higher) which transportation from the Sun is characterized by much bigger diffusion coefficient than for small and middle energy particles. Therefore high energy particles came from the Sun much more early (8-20 minutes after acceleration and escaping into solar wind) than main part of smaller energy particles caused dangerous situation for electronics and people health (about 30-60 minutes later). We describe here principles and experience of automatically working programs "FEP-Search-1 min", "FEP-Search-2 min","FEP-Search-5 min", developed and checked in the Emilio Segre' Observatory of Israel Cosmic Ray Center (2025 m above sea level, cut-off rigidity 10.8 GV). The second step is automatically determination of flare energetic particle spectrum, and then automatically determination of diffusion coefficient in the interplanetary space, time of ejection and energy spectrum of FEP in source; forecasting of expected FEP flux and radiation hazard for space-probes in space, satellites in the magnetosphere, jets and various objects in the atmosphere and on the ground. We will describe also the theory and experience of high energy cosmic ray using for forecasting of major geomagnetic storms accompanied by Forbush-effects (what

  4. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  5. Cosmic Rays and Particle Physics

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.; Engel, Ralph; Resconi, Elisa

    2016-06-01

    Preface to the first edition; Preface to the second edition; 1. Cosmic rays; 2. Cosmic ray data; 3. Particle physics; 4. Hadronic interactions and accelerator data; 5. Cascade equations; 6. Atmospheric muons and neutrinos; 7. Neutrino masses and oscillations; 8. Muons and neutrinos underground; 9. Cosmic rays in the Galaxy; 10. Extragalactic propagation of cosmic rays; 11. Astrophysical - rays and neutrinos; 12. Acceleration; 13. Supernovae in the Milky Way; 14. Astrophysical accelerators and beam dumps; 15. Electromagnetic cascades; 16. Extensive air showers; 17. Very high energy cosmic rays; 18. Neutrino astronomy; A.1. Units, constants and definitions; A.2. References to flux measurements; A.3. Particle flux, density, and interaction cross section; A.4. Fundamentals of scattering theory; A.5. Regge amplitude; A.6. Glauber model of nuclear cross sections; A.7. Earth's atmosphere; A.8. Longitudinal development of air showers; A.9. Secondary positrons and electrons; A.10. Liouville's theorem and cosmic ray propagation; A.11. Cosmology and distances measures; A.12. The Hillas splitting algorithm; References; Index.

  6. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

  7. Ultrahigh-energy photons as a probe of nearby transient ultrahigh-energy cosmic-ray sources and possible Lorentz-invariance violation.

    PubMed

    Murase, Kohta

    2009-08-21

    Detecting neutrinos and photons is crucial to identifying the sources of ultrahigh-energy cosmic rays (UHECRs), especially for transient sources. We focus on ultrahigh-energy gamma-ray emission from transient sources such as gamma-ray bursts, since >EeV gamma rays can be more direct evidence of UHECRs than approximately PeV neutrinos and GeV-TeV gamma rays. We demonstrate that coincident detections of approximately 1-100 events can be expected by current and future UHECR detectors such as Auger and JEM-EUSO, and the detection probability can be higher than that of neutrinos for nearby transient sources at < or approximately equal to 50-100 Mpc. They may be useful for constraining the uncertain cosmic radio background as well as knowing the source properties and maximum energy of UHECRs. They can also give us more than 10(4) times stronger limits on the Lorentz-invariance violation than current constraints.

  8. Progress in Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2017-01-01

    I will review recent progress in Astrophysics of Cosmic Rays and new challenges. I will discuss measurements that have to be done to address these challenges and to further advance our understanding of the phenomenon of cosmic rays, mechanisms of their acceleration and interactions with interstellar medium. Partial support from NASA Grant No. NNX13AC47G is greatly acknowledged.

  9. Nonresonant Alfven waves driven by cosmic rays

    SciTech Connect

    Melrose, Don

    2005-08-01

    Nonresonant growth of Alfven waves due to streaming cosmic rays is considered, emphasizing the relation between resonant and nonresonant growth and the polarization of the growing waves. The suggested application of this mechanism to the scattering of higher energy cosmic rays in diffusive shock acceleration is discussed critically.

  10. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  11. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  12. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    SciTech Connect

    Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta; Bartos, Imre

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

  13. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  14. Compressive Acceleration of Solar Energetic Particles within Coronal Mass Ejections: Observations and Theory Relevant to the Solar Probe Plus and Solar Orbiter Missions

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-12-01

    observational technique by which (divV) may be extracted directly from coronograph white-light movies of out-going CMEs, thus offering observational closure of the new theory for SEP acceleration/injection that should be relevant to the Solar Probe Plus and Solar Orbiter missions.

  15. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  16. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  17. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  18. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  19. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  20. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta

    2016-12-01

    The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive

  1. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  2. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  3. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  4. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  5. Exploding Stars and the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.

    2012-01-01

    Supernovae are exceptionally interesting astronomical objects: they punctuate the end of stellar evolution, create the heavy elements, and blast the interstellar gas with energetic shock waves. By studying supernovae, we can learn how these important aspects of cosmic evolution take place. Over the decades, we have learned that some supernovae are produced by gravitational collapse, and others by thermonuclear explosions. By understanding what supernovae are, or at least learning how they behave, supernovae explosions have been harnessed for the problem of measuring cosmic distances with some astonishing results. Carefully calibrated supernovae provide the best extragalactic distance indicators to probe the distances to galaxies and to measure the Hubble constant. Even more interesting is the evidence from supernovae that cosmic expansion has been speeding up over the last 5 billion years. We attribute this acceleration to a mysterious dark energy whose effects are clear, but whose nature is obscure. Combining the cosmic expansion history traced by supernovae with clues from galaxy clustering and cosmic geometry from the microwave background has produced today's standard, but peculiar, picture of a universe that is mostly dark energy, braked (with diminishing effect) by dark matter, and illuminated by a pinch of luminous baryons. In this talk, I will show how the attempt to understand supernovae, facilitated by ever-improving instruments, has led to the ability to measure the properties of dark energy. Looking ahead, the properties of supernovae as measured at infrared wavelengths seem to hold the best promise for more precise and accurate distances to help us understand the puzzle of dark energy. My own contribution to this work has been carried out in joyful collaboration with many excellent students, postdocs, and colleagues and with generous support from the places I have worked, the National Science Foundation, and from NASA.

  6. Hubble space telescope/cosmic origins spectrograph observations of the quasar Q0302–003: Probing the He II reionization epoch and QSO proximity effects

    SciTech Connect

    Syphers, David; Shull, J. Michael

    2014-03-20

    Q0302–003 (z = 3.2860 ± 0.0005) was the first quasar discovered that showed a He II Gunn-Peterson trough, a sign of incomplete helium reionization at z ≳ 2.9. We present its Hubble Space Telescope/Cosmic Origins Spectrograph far-UV medium-resolution spectrum, which resolves many spectral features for the first time, allowing study of the quasar itself, the intergalactic medium, and quasar proximity effects. Q0302–003 has a harder intrinsic extreme-UV spectral index than previously claimed, as determined from both a direct fit to the spectrum (yielding α{sub ν} ≈ –0.8) and the helium-to-hydrogen ion ratio in the quasar's line-of-sight proximity zone. Intergalactic absorption along this sightline shows that the helium Gunn-Peterson trough is largely black in the range 2.87 < z < 3.20, apart from ionization due to local sources, indicating that helium reionization has not completed at these redshifts. However, we tentatively report a detection of nonzero flux in the high-redshift trough when looking at low-density regions, but zero flux in higher-density regions. This constrains the He II fraction to be about 1% in the low-density intergalactic medium (IGM) and possibly a factor of a few higher in the IGM as a whole, suggesting helium reionization has progressed substantially by z ∼ 3.1. The Gunn-Peterson trough recovers to a He II Lyα forest at z < 2.87. We confirm a transmission feature due to the ionization zone around a z = 3.05 quasar just off the sightline, and resolve the feature for the first time. We discover a similar such feature possibly caused by a luminous z = 3.23 quasar further from the sightline, which suggests that this quasar has been luminous for >34 Myr.

  7. Robust Constraint on Cosmic Textures from the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V.

    2012-06-01

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  8. THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT AS A PROBE OF THE PHYSICS OF COSMIC REIONIZATION: THE EFFECT OF SELF-REGULATED REIONIZATION

    SciTech Connect

    Park, Hyunbae; Shapiro, Paul R.; Komatsu, Eiichiro; Iliev, Ilian T.; Ahn, Kyungjin; Mellema, Garrelt

    2013-06-01

    We calculate the angular power spectrum of the cosmic microwave background temperature fluctuations induced by the kinetic Sunyaev-Zel'dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed N-body+radiative-transfer simulations to follow inhomogeneous reionization of the intergalactic medium. For the first time, we take into account the ''self-regulation'' of reionization: star formation in low-mass dwarf galaxies (10{sup 8} M{sub Sun} {approx}< M {approx}< 10{sup 9} M{sub Sun }) or minihalos (10{sup 5} M{sub Sun} {approx}< M {approx}< 10{sup 8} M{sub Sun }) is suppressed if these halos form in the regions that were already ionized or Lyman-Werner dissociated. Some previous work suggested that the amplitude of the kSZ power spectrum from the EOR can be described by a two-parameter family: the epoch of half-ionization and the duration of reionization. However, we argue that this picture applies only to simple forms of the reionization history which are roughly symmetric about the half-ionization epoch. In self-regulated reionization, the universe begins to be ionized early, maintains a low level of ionization for an extended period, and then finishes reionization as soon as high-mass atomically cooling halos dominate. While inclusion of self-regulation affects the amplitude of the kSZ power spectrum only modestly ({approx}10%), it can change the duration of reionization by a factor of more than two. We conclude that the simple two-parameter family does not capture the effect of a physical, yet complex, reionization history caused by self-regulation. When added to the post-reionization kSZ contribution, our prediction for the total kSZ power spectrum is below the current upper bound from the South Pole Telescope. Therefore, the current upper bound on the kSZ effect from the EOR is consistent with our understanding of the physics of reionization.

  9. Cosmic Galaxy-IGM HI Relation at z ∼ 2–3 Probed in the COSMOS/UltraVISTA 1.6 Deg2 Field

    NASA Astrophysics Data System (ADS)

    Mukae, Shiro; Ouchi, Masami; Kakiichi, Koki; Suzuki, Nao; Ono, Yoshiaki; Cai, Zheng; Inoue, Akio K.; Chiang, Yi-Kuan; Shibuya, Takatoshi; Matsuda, Yuichi

    2017-02-01

    We present spatial correlations of galaxies and IGM neutral hydrogen H i in the COSMOS/UltraVISTA 1.62 deg2 field. Our data consist of 13,415 photo-z galaxies at z ∼ 2–3 with {K}s< 23.4 and the Lyα forest absorption lines in the background quasar spectra selected from SDSS data with no signature of damped Lyα system contamination. We estimate a galaxy overdensity δ gal in an impact parameter of 2.5 (proper) Mpc, and calculate the Lyα forest fluctuations {δ }< F> whose negative values correspond to the strong Lyα forest absorption lines. We identify weak evidence of an anti-correlation between δ gal and {δ }< F> with a Spearman’s rank correlation coefficient of ‑0.39 suggesting that the galaxy overdensities and the Lyα forest absorption lines positively correlate in space at the ∼90% confidence level. This positive correlation indicates that high-z galaxies exist around an excess of H i gas in the Lyα forest. We find four cosmic volumes, dubbed A obs, B obs, C obs, and D obs, that have extremely large (small) values of δ gal ≃ 0.8 (‑1) and {δ }< F> ≃ 0.1(-0.4), three of which, B obs–D obs, significantly depart from the δ gal–{δ }< F> correlation, and weaken the correlation signal. We perform cosmological hydrodynamical simulations and compare with our observational results. Our simulations reproduce the δ gal–{δ }< F> correlation, agreeing with the observational results. Moreover, our simulations have model counterparts of A obs–D obs, and suggest that the observations pinpoint, by chance, a galaxy overdensity like a proto-cluster, gas filaments lying on the quasar sightline, a large void, and orthogonal low-density filaments. Our simulations indicate that the significant departures of B obs–D obs are produced by the filamentary large-scale structures and the observation sightline effects.

  10. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  11. Cosmic impacts, cosmic catastrophes. II

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1990-01-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  12. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  13. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  14. Distributed reacceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Eichler, David; Letaw, John R.; Silberberg, Rein; Tsao, C. H.

    1985-01-01

    A model is developed in which cosmic rays, in addition to their initial acceleration by a strong shock, are continuously reaccelerated while propagating through the Galaxy. The equations describing this acceleration scheme are solved analytically and numerically. Solutions for the spectra of primary and secondary cosmic rays are given in a closed analytic form, allowing a rapid search in parameter space for viable propagation models with distributed reeacceleration included. The observed boron-to-carbon ratio can be reproduced by the reacceleration theory over a range of escape parameters, some of them quite different from the standard leaky-box model. It is also shown that even a very modest amount of reacceleration by strong shocks causes the boron-to-carbon ratio to level off at sufficiently high energies.

  15. Redshift-space distortions in deep redshift surveys as a probe of the invisible Universe

    NASA Astrophysics Data System (ADS)

    Guzzo, Luigi; Le Fèvre, Olivier

    2010-06-01

    Massive redshift surveys of galaxies beyond the local Universe (i.e.z>0.3) provide an exhaustive probe of the observed acceleration of cosmic expansion. While they have the ability to measure the expansion history H(z) through Baryonic Acoustic Oscillations in the galaxy power spectrum, they can at the same time probe f(z) using the redshift-space distortions introduced in the observed clustering pattern by galaxy peculiar motions. Coupling these two measurements one can in principle distinguish whether cosmic acceleration is due to a new form of `dark energy' in the cosmic budget, or rather requires a modification of General Relativity. These two radically alternative scenarios are degenerate when considering H(z) alone, as yielded, e.g., by the Hubble diagram of Type Ia supernovae. We review our recent measurements of redshift distortions at z~ 1 based on the VIMOS VLT Deep Survey ``Wide'' data and discuss the revived interest on this technique in the context of dark energy. Current results are consistent with the simplest cosmological-constant scenario, but error bars are still too large to rule out alternative models. Forecasts based both on extensive simulations and Fisher-matrix computations, show that next-generation deep surveys optimizing the combination of large volumes and good galaxy sampling will be able to use redshift distortions as a key tool to understand the physical origin of cosmic acceleration. Among these, we introduce the newly started VIMOS Public Extragalactic Redshift Survey (VIPERS) at the ESO VLT, which is building at ~0.8 a sample comparable to current local redshift surveys (105 redshifts in a volume 5×107 h-1 Mpc3). Finally, we provide an example of the exquisite accuracy that could be reached on measurements of redshift-space distortions (among many others), with a massive 20,000 deg2 near-infrared spectroscopic survey from space, as foreseen by the EUCLID mission for the ESA `Cosmic Vision' program.

  16. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  17. Novel Probes of Gravity and Dark Energy

    SciTech Connect

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  18. Results from the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  19. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  20. Dark before light: testing the cosmic expansion history through the cosmic microwave background

    SciTech Connect

    Linder, Eric V.; Smith, Tristan L. E-mail: tlsmith@berkeley.edu

    2011-04-01

    The cosmic expansion history proceeds in broad terms from a radiation dominated epoch to matter domination to an accelerated, dark energy dominated epoch. We investigate whether intermittent periods of acceleration (from a canonical, minimally coupled scalar field) are possible in the early universe — between Big Bang nucleosynthesis (BBN) and recombination and beyond. We establish that the standard picture is remarkably robust: anisotropies in the cosmic microwave background consistent with ΛCDM will exclude any extra period of accelerated expansion between 1 ≤ z∼<10{sup 5} (corresponding to 5 × 10{sup −4}eV ≤ T∼<25eV)

  1. On the Bispectrum of Cosmic String Seeded CMB Fluctuations

    NASA Astrophysics Data System (ADS)

    Landriau, M.

    2013-07-01

    I compute the bispectrum of maps of cosmic microwave background (CMB) fluctuations seeded by cosmic strings from large to 30 arcminute scales. Examining the distribution of triangle configurations and comparing with Gaussian realizations with the same power spectrum, I conclude that the CMB bispectrum cannot pick up the mild non-Gaussianity present in the maps and thus that it cannot characterize cosmic string induced non-Gaussianity produced in the regimes probed by these maps.

  2. Review of Gravity Probe B

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In response to a request by the NASA Administrator, the National Research Council (NRC) has conducted an accelerated scientific review of NASA's Gravity Probe B (GP-B) mission. The review was carried out by the Task Group on Gravity Probe B, under the auspices of the NRC's Space Studies Board and Board on Physics and Astronomy. The specific charge to the task group was to review the GP-B mission with respect to the following terms of reference: (1) scientific importance - including a current assessment of the value of the project in the context of recent progress in gravitational physics and relevant technology; (2) technical feasibility - the technical approach will be evaluated for likelihood of success, both in terms of achievement of flight mission objectives but also in terms of scientific conclusiveness of the various possible outcomes for the measurements to be made; and (3) competitive value - if possible, GP-B science will be assessed qualitatively against the objectives and accomplishments of one or more fundamental physics projects of similar cost (e.g., the Cosmic Background Explorer, COBE).

  3. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  4. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  5. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  6. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  7. Cosmic plasma

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1981-01-01

    Attention is given to experimental and theoretical approaches to plasma physics, plasma phenomena in laboratory and space, field and particle aspects of plasmas, the present state of the classical theory, boundary conditions and circuit dependence, and cosmology. Electric currents in space plasmas are considered, taking into account dualism in physics, particle-related phenomena in plasma physics, magnetic field lines, filaments, local plasma properties and the circuit, electric double layers, field-aligned currents as 'cables', an expanding circuit, different types of plasma regions, the cellular structure of space, and the fine structure of active plasma regions. Other topics discussed are related to circuits, the theory of cosmic plasmas, the origin of the solar system, the coexistence of matter and antimatter, annihilation as a source of energy, the Hubble expansion in a Euclidean space, and a model for the evolution of the Metagalaxy.

  8. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  9. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  10. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  11. Cosmic acceleration as an optical illusion

    NASA Astrophysics Data System (ADS)

    Skarke, Harald

    2017-03-01

    We consider light propagation in an inhomogeneous irrotational dust universe with vanishing cosmological constant, with initial conditions as in standard linear perturbation theory. A non-perturbative approach to the dynamics of such a universe is combined with a distance formula based on the Sachs optical equations. Then a numerical study implies a redshift-distance relation that roughly agrees with observations. Interpreted in the standard homogeneous setup, our results would appear to imply the currently accepted values for the Hubble rate and the deceleration parameter; furthermore there is consistency with density perturbations at last scattering. The determination of these three quantities relies only on a single parameter related to a cutoff scale. Discrepancies with the existing literature are related to subtleties of higher order perturbation theory which make both the reliability of the present approach and the magnitude of perturbative effects beyond second order hard to assess.

  12. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  13. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  14. Characterising CCDs with cosmic rays

    DOE PAGES

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  15. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  16. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  17. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  18. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John; Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Sembach, Kenneth; Linsky, Jeffrey L.; Savage, Blair D.; Siegmund, Oswald H. W.; Spencer, John; Alan Stern, S.; Welsh, Barry; and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  19. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Morse, Jon

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  20. The Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  1. DIFFUSIVE SHOCK ACCELERATION SIMULATIONS OF RADIO RELICS

    SciTech Connect

    Kang, Hyesung; Ryu, Dongsu; Jones, T. W. E-mail: ryu@canopus.cnu.ac.kr

    2012-09-01

    Recent radio observations have identified a class of structures, so-called radio relics, in clusters of galaxies. The radio emission from these sources is interpreted as synchrotron radiation from GeV electrons gyrating in {mu}G-level magnetic fields. Radio relics, located mostly in the outskirts of clusters, seem to associate with shock waves, especially those developed during mergers. In fact, they seem to be good structures to identify and probe such shocks in intracluster media (ICMs), provided we understand the electron acceleration and re-acceleration at those shocks. In this paper, we describe time-dependent simulations for diffusive shock acceleration at weak shocks that are expected to be found in ICMs. Freshly injected as well as pre-existing populations of cosmic-ray (CR) electrons are considered, and energy losses via synchrotron and inverse Compton are included. We then compare the synchrotron flux and spectral distributions estimated from the simulations with those in two well-observed radio relics in CIZA J2242.8+5301 and ZwCl0008.8+5215. Considering that CR electron injection is expected to be rather inefficient at weak shocks with Mach number M {approx}< a few, the existence of radio relics could indicate the pre-existing population of low-energy CR electrons in ICMs. The implication of our results on the merger shock scenario of radio relics is discussed.

  2. Cosmic rays, supernova and the origin of ultrahigh energy particles

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    1985-07-01

    The acceleration of ultrahigh energy cosmic rays, greater than or equal to 10(15 to 20) eV, is still an unsolved problem in high-energy astrophysics. The now classical mechanism of stochastic acceleration of cosmic rays in a strong shock in the interstellar or intergalactic medium is limited in time and dimension for all likely acceleration sites, particularly for the highest energies. Acceleration of cosmic rays across a plasma shock of velocity, (BETA)/sub s/ ((BETA)/sub s/ = v/sub shock//c), requires 1/(BETA)/sub s/ number of crossings and therefore (1/(BETA)/sub s/) (2) number of scatterings for doubling the energy of a particle. This requires space of the order of 1/9BETA)/sub s/ x the scattering length, or a multiple of the Larmor radius and hence, the space requirements to cosmic ray acceleration are very many Larmor orbits in dimension, as well as times that are larger by (1/(BETA)/sub s/) (2) x t/sub Larmor/. The acceleration of cosmic rays by the shock in the envelope of a Type 1 supernova is reviewed, and the interaction of the accelerated matter with the nearby ISM is considered.

  3. International Cosmic Ray Conference, 17th, Paris, France, July 13-25, 1981, Conference Papers. Volume 2

    NASA Astrophysics Data System (ADS)

    Topics discussed include gamma ray line emission from the galactic plane, cosmic-ray elemental and isotopic compositions, the spectra, composition, and anisotropies of cosmic rays above 1000 GeV, and the analysis of galactic cosmic-ray propagation models. Particular attention is given to the characteristics of low-energy galactic cosmic-rays in interstellar space, cosmic ray sources and acceleration, and observations of secular variations and cosmogenic nuclei. Consideration is also given to nucleosynthesis of light and by-passed isotopes in the solar system matter, fluctuations in the cosmic microwave background, and the magnetic monopole pair and its observation in cosmic rays.

  4. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  5. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  6. PAMELA measurements of cosmic-ray proton and helium spectra.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Jerse, G; Karelin, A V; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Malvezzi, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Wu, J; Zampa, G; Zampa, N; Zverev, V G

    2011-04-01

    Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.

  7. Cosmic Microwave Background Data Analysis

    NASA Astrophysics Data System (ADS)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    that the highest power fluctuations occur at scales of about one degree. A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array [16], Degree Angular Scale Interferometer (DASI) [61], and the Cosmic Background Imager (CBI) [78]. DASI was the first to detect the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum. In June 2001, NASA launched its second CMB mission (after COBE), Wilkinson Microwave Anisotropy Explorer (WMAP) [44], to make much more precise measurements of the CMB sky. WMAP measured the differences in the CMB temperature across the sky creating a full-sky map of the CMB in five different frequency bands. The mission also measured the CMB's E-mode and the foreground polarization. As of October 2010, the WMAP spacecraft has ended its mission after nine years of operation. Although WMAP provided very accurate measurements of the large angular-scale fluctuations in the CMB, it did not have the angular resolution to cover the smaller-scale fluctuations that had been observed by previous ground-based interferometers. A third space mission, the Planck Surveyor [1], was launched by ESA* in May 2009 to measure the CMB on smaller scales than WMAP, as well as making precise measurements of the polarization of CMB. Planck represents an advance over WMAP in several respects: it observes in higher resolution, hence allowing one to probe the CMB power spectrum to smaller scales; it has a higher sensitivity and observes in nine frequency bands rather than five, hence improving the astrophysical foreground models. The mission has a wide variety of scientific aims, including: (1) detecting the total intensity/polarization of the primordial CMB anisotropies; (2) creating a galaxy-cluster catalogue through the Sunyaev-Zel'dovich (SZ) effect [93]; (3) observing the

  8. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  9. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  10. A close-up of the sun. [solar probe mission planning conference

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Davies, R. W. (Editor)

    1978-01-01

    NASA's long-range plan for the study of solar-terrestrial relations includes a Solar Probe Mission in which a spacecraft is put into an eccentric orbit with perihelion near 4 solar radii (0.02 AU). The scientific experiments which might be done with such a mission are discussed. Topics include the distribution of mass within the Sun, solar angular momentum, the fine structure of the solar surface and corona, the acceleration of the solar wind and energetic particles, and the evolution of interplanetary dust. The mission could also contribute to high-accuracy tests of general relativity and the search for cosmic gravitational radiation.

  11. Cosmic electrons. [literature review

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1974-01-01

    The published literature on cosmic electrons is summarized. The primary and secondary sources of cosmic electrons are discussed, and the propagation of the electrons in the interstellar medium is studied with respect to energy loss mechanisms, age distributions, and spectral modifications during flight. Various portions of the electron and positron spectra are then considered in relation to problems of astrophysics. New information is presented on such topics as the origin of low-energy positrons, the decay kinematics of the pi-mu-e process, the application of age distributions for nuclear cosmic rays to cosmic electrons, and the possibility of nonidentical sources for cosmic electrons and protons.

  12. From Auger to AugerPrime: Understanding Ultrahigh-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Montanet, F.; Pierre Auger Collaboration

    2016-12-01

    Ultrahigh-energy cosmic rays (UHECRs), whose origin is still mysterious, provide a unique probe of the most extreme environments in the universe, of the intergalactic space and of particle physics beyond the reach of terrestrial accelerators. The Pierre Auger Observatory started operating more than a decade ago. Outperforming preceding experiments both in size and in precision, it has boosted forward the field of UHECRs as witnessed by a wealth of results. These include the study of the energy spectrum beyond 1 EeV with its spectral suppression around 40 EeV, of the large-scale anisotropy, of the mass composition, as well as stringent limits on photon and neutrino fluxes. But any harvest of new results also calls for new questions: what is the true nature of the spectral suppression: a propagation effect (so-called Greisen, Zatsepin and Kuz'min or GZK cutoff) or cosmic accelerators running out of steam? What is the composition of UHECRs at the highest energies? In order to answer these questions, the Auger Collaboration is undertaking a major upgrade program of its detectors, the AugerPrime project. The science case and motivations, the technical strategy and the scientific prospects are presented.

  13. Cosmic ray antiprotons at high energies

    NASA Astrophysics Data System (ADS)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  14. Positrons and Antiprotons in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Cowsik, R.

    2016-10-01

    I consider the impact of recent measurements of positron and antiproton spectra in cosmic rays on our understanding of the origins and propagation of cosmic rays, as well as on the annihilation and decay characteristics of particles of Galactic dark matter, from the perspective of current models postulating energy-dependent leakage of cosmic rays from the Galaxy and of the nested leaky-box model, in which the leakage from the Galaxy is independent of energy. The nested leaky-box model provides a straightforward and consistent explanation of the observed spectral intensities, and finds no compelling need for a contribution from the annihilation or decay of Galactic dark matter. Improved observations and modeling efforts are needed to probe the properties of dark matter deeply enough to be significant to particle physics and cosmology.

  15. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  16. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  17. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  18. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  19. Accelerators for Intensity Frontier Research

    SciTech Connect

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  20. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  1. Constraints on cosmic superstrings from Kaluza-Klein emission.

    PubMed

    Dufaux, Jean-François

    2012-07-06

    Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.

  2. A Detector for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Hsieh, W.-T.; Moseley, S. Harvey; Stevenson, T.; U-yen, K.

    2008-01-01

    We present preliminary design and development work on polarized detectors intended to enable Cosmic Microwave Background polarization measurements that will probe the first moments of the universe. The ultimate measurement will be challenging, requiring background-limited detectors and good control of systematic errors. Toward this end, we are integrating the beam control of HE-11 feedhorns with the sensitivity of transition-edge sensors. The coupling between these two devices is achieved via waveguide probe antennas and superconducting microstrip lines. This implementation allows band-pass filters to be incorporated on the detector chip. We believe that a large collection of single-mode polarized detectors will eventually be required for the reliable detection of the weak polarized signature that is expected to result from gravitational waves produced by cosmic inflation. This focal plane prototype is an important step along the path to this detection, resulting in a capability that will enable various future high performance instrument concepts.

  3. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  4. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  5. The Cosmic Microwave Background and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2017-01-01

    The subtle spatial variations in the cosmic microwave background (CMB) radiation provide a unique astrophysical probe of the early Universe. Characterization of this relic radiation and its polarization have the power to reveal and constrain the properties of light astroparticle species, long wave gravitational radiation, and intervening mass concentrations. Recent advances in theory, observation, and instrumentation have set the stage to experimentally confront the inflationary paradigm via precision polarimetric surveys of the CMB. Current and proposed future observational efforts from the ground, balloon, and spaceborne platforms will be briefly surveyed in this presentation. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be presented.

  6. Report of the cosmic and heliospheric panel

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Mason, Glenn M.; Barnes, Aaron; Binns, W. Robert; Burlaga, Leonard F.; Cherry, Michael L.; Holzer, Thomas E.; Jokipii, J. R.; Jones, Vernon; Ling, James C.

    1991-01-01

    The Cosmic and Heliospheric Branch proposes a bold new program for the years 1995 to 2010 that is centered on the following two themes: (1) the global heliosphere and interstellar space; and (2) cosmic particle acceleration and the evolution of matter. Within these major themes are more specific goals that have been studied and continue to be examined for a better understanding of their processes. These include: origin, structure, and evolution of the solar wind; interaction of the heliosphere, the solar wind, and the interstellar medium; fundamental microscopic and macroscopic plasma processes; acceleration and transport of energetic particles; and the origin and evolution of matter. Finally, the report summarizes a wide variety of proposed small and large space missions.

  7. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  8. The cold, the dense and the energetic : cosmic ray bombardment of molecular cores near supernova remnants

    NASA Astrophysics Data System (ADS)

    Maxted, Nigel Ivan

    2013-04-01

    One of the oldest unsolved mysteries in astrophysics is the origin of cosmic rays, particles that travel at speeds close to the speed of light. A plausible theory to explain the acceleration of these particles is shock-acceleration in the expanding shells of supernova remnants (SNRs) within our galaxy. In this thesis, the interstellar medium towards supernova remnants that display indicators of particle acceleration, ie., gamma-ray emission, are investigated. More specifically, results from mm-wavelength molecular gas surveys towards two gamma-ray emitting SNRs, RXJ1713.7-3946 and CTB37A are presented. Chapter 1 summarises astrophysics at high energies, including what cosmic rays are, how they may be accelerated, their connection to gamma-ray emission and how gamma-ray astronomy is performed from the ground. On the opposite (low-energy) side of the energy spectrum, Chapter 2 describes some of the theory of single dish radio astronomy, which allows us to probe molecular environments. By tuning the receiver to home-in on particular molecular species, different interstellar environoments can be targeted. Some specific molecular species are outlined in Chapter 3, before utilising these species in following chapters. The bulk of chapters 4 and 5 are composed of published articles presenting interstellar gas observations and investigation. Chapter 4 is an in-depth analysis of the molecular environment towards the supernova remnant RXJ1713.7-3946 (in 3 articles) using several independent molecular gas tracers, including transitions of the CS, NH3 and N2H+ molecules. In addition to various specific mm-phenomena, the presence of dense gas was confirmed via our observations. The issue of cosmic ray transport into dense star-forming cores was then addressed. Due to enhanced magnetic turbulence, cosmic ray propagation may be slower than the galactic average, so predictions for several slow-diffusion scenarios are made. Through modeling, scenarios where low energy cosmic rays

  9. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  10. Distinguishing between void models and dark energy with cosmic parallax and redshift drift

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Amendola, Luca

    2010-02-01

    Two recently proposed techniques, involving the measurement of the cosmic parallax and redshift drift, provide novel ways of directly probing (over a time span of several years) the background metric of the universe and therefore shed light on the dark-energy conundrum. The former makes use of upcoming high-precision astrometry measurements to either observe or put tight constraints on cosmological anisotropy for off-center observers, while the latter employs high-precision spectroscopy to give an independent test of the present acceleration of the universe. In this paper, we show that both methods can break the degeneracy between Lemaître-Tolman-Bondi void models and more traditional dark-energy theories. Using the near-future observational missions Gaia and CODEX we show that this distinction might be made with high confidence levels in the course of a decade.

  11. Global modulation of cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius

    2016-07-01

    It is possible, now for the first time, to describe the total, global modulation of cosmic rays in the heliosphere using Voyager observations from the Earth to the heliopause and from the PAMELA space mission at the Earth, in comparison with comprehensive numerical models. The very local interstellar spectra for several cosmic ray species have become much better known so that together with knowledge of where the heliopause is located, comprehensive modelling has taken a huge step forward. New and exciting observations, with ample challenges to theoretical and modelling approaches to the acceleration, transport and modulation of cosmic rays in the heliosphere will be reviewed in this presentation.

  12. Sources of the ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Margolis, S. H.; Blake, J. B.

    1985-01-01

    The suggestions that the source abundances of cosmic ray nuclei heavier then Fe differ significantly from Solar System abundances are not well supported by the data without assuming preferential acceleration. The Solar System abundances of Pb and Bi are split into r-, standard s-, and cyclic 8-process components; the apprarent deficiency of Pb seen in the HEAO-3 Heavy Nuclei Experiment data might indicate an absence of Pb from the recycling 8-process.

  13. Evidence for the Superbubble Origin of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W.

    2012-12-01

    Measurements of the isotopic and elemental abundances of galactic cosmic rays from the Cosmic Ray Isotope Spectrometer (CRIS) aboard the NASA-ACE spacecraft, and elemental abundances from the balloon-borne Trans-Iron Galactic Element Recorder (TIGER) provide strong evidence that a large fraction of galactic cosmic rays originate and are accelerated in associations of massive stars (OB associations) and their associated superbubbles. Neon and iron isotopic abundances point to a superbubble origin in which the galactic cosmic rays (GCRs) come from material that is roughly a 20%-80% mix of OB association material and ordinary interstellar medium material (ISM). This assumption that GCRs come from such a mix instead of ordinary ISM results in greatly improved ordering of volatile and refractory GCR elemental abundances when plotted versus atomic mass. This strengthens the OB association-superbubble connection with cosmic ray origin. More recently, the LAT instrument aboard the Fermi spacecraft has identified distributed emission of gamma-rays from a "cocoon" identified with the Cygnus-X superbubble, indicating the acceleration of cosmic rays in the superbubble. These measurements and the implications for the OB-association/superbubble origin of galactic cosmic rays will be discussed. Principal funding for this research was from NASA under grants NNG05WC04G and NAG5-12929.

  14. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  15. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  16. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  17. Cosmic inhomogeneities and averaged cosmological dynamics.

    PubMed

    Paranjape, Aseem; Singh, T P

    2008-10-31

    If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a "dark energy." However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be "no." Averaging effects negligibly influence the cosmological dynamics.

  18. Test of the cosmic evolution using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Xia, Jun-Qing

    2016-12-01

    Much focus was on the possible slowing down of cosmic acceleration under the dark energy parametrization. In the present paper, we investigate this subject using the Gaussian processes (GP), without resorting to a particular template of dark energy. The reconstruction is carried out by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and dynamical Hubble parameter. It suggests that slowing down of cosmic acceleration cannot be presented within 95% C.L., in considering the influence of spatial curvature and Hubble constant. In order to reveal the reason of tension between our reconstruction and previous parametrization constraint for Union2 data, we compare them and find that slowing down of acceleration in some parametrization is only a ``mirage". Although these parameterizations fits well with the observational data, their tension can be revealed by high order derivative of distance D. Instead, GP method is able to faithfully model the cosmic expansion history.

  19. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S. A.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Vos, E. E.

    2016-06-01

    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

  20. Time Dependence of the Electron and Positron Components of the Cosmic Radiation Measured by the PAMELA Experiment between July 2006 and December 2015.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carlson, P; Casolino, M; Castellini, G; De Santis, C; Di Felice, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S A; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N; Potgieter, M S; Vos, E E

    2016-06-17

    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

  1. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  2. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  3. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  4. USING COSMIC MICROWAVE BACKGROUND LENSING TO CONSTRAIN THE MULTIPLICATIVE BIAS OF COSMIC SHEAR

    SciTech Connect

    Vallinotto, Alberto

    2012-11-01

    Weak gravitational lensing is one of the key probes of cosmology. Cosmic shear surveys aimed at measuring the distribution of matter in the universe are currently being carried out (Pan-STARRS) or planned for the coming decade (DES, LSST, EUCLID, WFIRST). Crucial to the success of these surveys is the control of systematics. In this work, a new method to constrain one such family of systematics, known as multiplicative bias, is proposed. This method exploits the cross-correlation between weak-lensing measurements from galaxy surveys and the ones obtained from high-resolution cosmic microwave background experiments. This cross-correlation is shown to have the power to break the degeneracy between the normalization of the matter power spectrum and the multiplicative bias of cosmic shear and to be able to constrain the latter to a few percent.

  5. The Origin of Cosmic Rays: What can GLAST Say?

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger

    2000-01-01

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  6. Transient internal probe

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas R.; Mattick, Arthur T.

    1993-12-01

    The Transient Internal Probe (TIP) diagnostic is a novel method for probing the interior of hot magnetic fusion plasmas that are inaccessible with ordinary stationary probes. A small probe of magneto-optic (Verdet) material is fired through a plasma at speeds of several km/sec, illuminated by a laser beam. The beam's polarization is rotated in the probe by the local magnetic field and retroreflection back to a polarimetry detector allows determination of the B-field profile across the diameter of a plasma at a spatial resolution of better than 1-cm and an absolute B-field resolution of a few tens of Gauss. The principal components of a TIP diagnostic system were developed and tested. A two-stage light gas gun was constructed that accelerates 30-caliber projectiles to 3 km/sec, and methods were examined for stripping a lexan sabot from a probe prior to entry into a plasma. Probes of CdMnTe and FR-5 Verdet glass were fabricated, and a polarimetry system was constructed for resolving polarization to within 0.25 deg. The diagnostic was validated by measuring a static B-field with a moving (dropped) TIP probe, and finding agreement with Hall-probe measurements to within experimental accuracy (40 Gauss).

  7. A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689

    SciTech Connect

    Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T.; Jullo, Eric E-mail: veronica.motta@uv.cl E-mail: tomasverdugo@gmail.com

    2015-11-01

    In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.

  8. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  9. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  10. Quasars in miniature: new insights into particle acceleration from X-ray binaries

    NASA Astrophysics Data System (ADS)

    Markoff, Sera

    2013-04-01

    A variety of astronomical objects routinely accelerate particles to high energy, with the maximum possible energy per particle typically limited by the size of the system and magnetic field strength. For that reason, much attention has focused on the massive jets of relativistic plasma ejected from supermassive black holes in Active Galactic Nuclei (AGN), which are at least theoretically capable of producing particles (cosmic rays) up to a whopping 10{20 }eV. However neither how these jets are formed or function, nor how exactly they accelerate particles, is well understood. While we do not expect the mechanisms for particle acceleration in stellar remnant black holes within X-ray binaries (XRBs) to be particularly different than in other sources, XRBs do offer some unique insights. Primarily, jets very similar to those in AGN come and go on timescales of weeks to months, while often monitored simultaneously across the entire electromagnetic spectrum. Through such observations we have been able to probe the processes by which jets not only build up dynamically, but also at what point the jets begin to accelerate particles, providing hints about the necessary conditions and efficiencies. Because the physics of accretion-driven processes such as jets seems to scale predictably with black hole mass, we can also potentially apply what we are learning in these smaller systems to the same phenomena AGN, giving us a new handle on several longstanding questions. I will review our current understanding of particle acceleration in XRBs, as well as the increasing body of evidence suggesting that XRBs indeed seem to represent scaled-down (and thus handily faster evolving) versions of the much more powerful AGN. I will also touch on how accelerated particles from XRBs may contribute significantly to the low-energy Galactic cosmic ray distribution, with local impact on gas chemistry and star formation.

  11. Supermassive cosmic string compactifications

    SciTech Connect

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon E-mail: borja.reina@ehu.es E-mail: jon.urrestilla@ehu.es

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  12. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-07

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry.

  13. Shear Acceleration in Expanding Flows

    NASA Astrophysics Data System (ADS)

    Rieger, F. M.; Duffy, P.

    2016-12-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  15. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  16. Cross-Correlating the Cosmic Infrared and Cosmic X-Ray Background Fluctuations

    NASA Astrophysics Data System (ADS)

    Cooper, Rachel Ann; Cappelluti, Nico; Li, Yanxia; Urry, C. Megan; Guo, Joyce

    2017-01-01

    Studying unresolved (i.e., undetected) sources is a way to probe the faintest, and thus the least understood, source populations. In particular, such studies have suggested a population of high redshift accreting black holes. We present cross-power spectra and coherence between the cosmic infrared and cosmic x-ray background fluctuations, using infrared images from Spitzer Space Telescope and x-ray images from XMM-Newton of the ˜2 square degree area of the COSMOS field. We first masked all known sources and subtracted model images of the masked x-ray sources’ PSF tails so as to isolate the unresolved cosmic backgrounds. We have considered infrared data from two bands, 3.6 and 4.5 μm, and x-ray data from five bands, [0.3-0.5], [0.5-1], [1-2], [0.5-2], and [2-10] keV. We find strong correlation between the cosmic infrared and cosmic x-ray backgrounds, which suggests an origin in a common population, i.e., stars and/or growing black holes.

  17. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  18. The Cosmic Labyrinth

    NASA Astrophysics Data System (ADS)

    Atkinson, M.

    2011-06-01

    This paper discusses the intertwined relationship between the terrestrial and celestial using the labyrinth as a metaphor referencing sources from art, gardens and Australian Indigenous culture. Including the Morning Star with the labyrinthine mortuary ritual in Arnhem Land, the cosmic plan garden at Auschwitz and Marea Atkinson's art project undertaken at the Villa Garzoni garden in Italy to create The Cosmic Labyrinth installation exhibited at Palazzo Franchetti, Venice, during the sixth conference on the Inspiration of Astronomical Phenomena.

  19. SLOW DIFFUSION OF COSMIC RAYS AROUND A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Takahara, Fumio

    2010-04-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in the interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte Carlo simulations, we found that the cosmic rays with energies of {approx}< TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  20. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  1. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  2. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  3. Beyond the myth of the supernova-remnant origin of cosmic rays.

    PubMed

    Butt, Yousaf

    2009-08-06

    The origin of Galactic cosmic-ray ions has remained an enigma for almost a century. Although it has generally been thought that they are accelerated in the shock waves associated with powerful supernova explosions-for which there have been recent claims of evidence-the mystery is far from resolved. In fact, we may be on the wrong track altogether in looking for isolated regions of cosmic-ray acceleration.

  4. Super-alfvenic propagation of cosmic rays: The role of streaming modes

    NASA Technical Reports Server (NTRS)

    Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.

    1980-01-01

    Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.

  5. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission

    NASA Astrophysics Data System (ADS)

    Brunetti, Gianfranco; Jones, Thomas W.

    2014-03-01

    Radio observations prove the existence of relativistic particles and magnetic field associated with the intra-cluster-medium (ICM) through the presence of extended synchrotron emission in the form of radio halos and peripheral relics. This observational evidence has fundamental implications on the physics of the ICM. Nonthermal components in galaxy clusters are indeed unique probes of very energetic processes operating within clusters that drain gravitational and electromagnetic energy into cosmic rays (CRs) and magnetic fields. These components strongly affect the (micro-)physical properties of the ICM, including viscosity and electrical conductivities, and have also potential consequences on the evolution of clusters themselves. The nature and properties of CRs in galaxy clusters, including the origin of the observed radio emission on cluster-scales, have triggered an active theoretical debate in the last decade. Only recently we can start addressing some of the most important questions in this field, thanks to recent observational advances, both in the radio and at high energies. The properties of CRs and of cluster nonthermal emissions depend on the dynamical state of the ICM, the efficiency of particle acceleration mechanisms in the ICM and on the dynamics of these CRs. In this paper, we discuss in some detail the acceleration and transport of CRs in galaxy clusters and the most relevant observational milestones that have provided important steps on our understanding of this physics. Finally, looking forward to the possibilities from new generations of observational tools, we focus on what appear to be the most important prospects for the near future from radio and high-energy observations.

  6. MHD turbulence, reconnection, and test-particle acceleration

    NASA Technical Reports Server (NTRS)

    Gray, Perry C.; Matthaeus, William H.

    1992-01-01

    We examine homogeneous MHD turbulence and turbulent magnetic reconnection as possible mechanisms for accelerating cosmic ray particles. Test particle calculations are performed using fields from MHD simulations, and initially Maxwellian particle distributions are shown to evolve into power-law distributions. Simple estimates for both the maximum energy attainable and the mean energies of the accelerated particles are fairly successful and are consistent with timescales for flares and cosmic rays.

  7. Plans for Extreme Energy Cosmic Ray Observations from Space

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2004-01-01

    Cosmic rays have been detected at energies beyond 10(exp 20) eV, where Universe is predicted to become opaque to protons. The acceleration of cosmic rays to such extreme energies in known astrophysical objects has also proven difficult to understand, leading to many suggestions that new physics may be required to explain their existence. This has prompted the construction of new experiments designed to detect cosmic rays with fluxes below 1 particle/km/century and follow their spectrum to even higher energies. To detect large numbers of these particles, the next generation of these experiments must be performed on space-based platforms that look on very large detection volumes in the Earth's atmosphere. The talk will review the experimental and theoretical investigations of extreme energy cosmic rays and discuss the present and planned experiments to extend measurements beyond 10(exp 21) eV.

  8. On wave stability in relativistic cosmic-ray hydrodynamics

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1989-01-01

    Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.

  9. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  10. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  11. INTRINSIC BISPECTRA OF COSMIC MAGNETIC FIELDS

    SciTech Connect

    Brown, Iain A.

    2011-06-01

    Forthcoming data sets from the Planck experiment and others are in a position to probe the cosmic microwave background (CMB) non-Gaussianity with higher accuracy than has yet been possible, and potentially open a new window into the physics of the very early universe. However, a signal need not necessarily be inflationary in origin, and possible contaminants should be examined in detail. One such is provided by early universe magnetic fields, which can be produced by a variety of models including during an inflationary phase, at phase transitions, or seeded by cosmic defects. Should such fields have been extant in the early universe, they would provide a natural source of CMB non-Gaussianity. Knowledge of the CMB angular bispectrum requires the complete Fourier-space (or 'intrinsic') bispectrum. In this paper, I consider in detail the intrinsic bispectra of an early-universe magnetic field for a range of power-law magnetic spectra.

  12. Detection prospects of the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  13. Detection Prospects of the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review.

  14. HD/H{sub 2} AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Liszt, H. S.

    2015-01-20

    We modeled recent observations of UV absorption of HD and H{sub 2} in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N(H{sub 2}) ratios reflect the separate self-shieldings of HD and H{sub 2} and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm{sup –3} ≲ n(H) ≲ 128 cm{sup –3} if the cosmic-ray ionization rate per H nucleus ζ {sub H} =2 × 10{sup –16} s{sup –1}, as inferred from H{sub 3} {sup +} and OH{sup +}. The dominant influence on N(HD)/N(H{sub 2}) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N(H{sub 2}). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N(H{sub 2}) and somewhat smaller N(H{sub 2})/N(H I). Comparison of our Galaxy with the Magellanic Clouds shows that smaller H{sub 2}/H is expected at subsolar metallicity, and we show by modeling that HD/H{sub 2} increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/H{sub 2} at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt H{sub 2} transition to H{sub 2}/H ≈ 1%-10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm{sup –3}. Interior H{sub 2} fractions are substantially increased by dust extinction below ≲ 32 cm{sup –3}. At smaller n(H), ζ {sub H}, small increases in H{sub 2} triggered by dust extinction can trigger abrupt increases in N(HD)

  15. A Cerenkov-delta E-Cerenkov detector for high energy cosmic ray isotopes and an accelerator study of Ar-40 and Fe-56 fragmentation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lau, K. H.

    1985-01-01

    A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae.

  16. YOUNG SUPERNOVAE AS EXPERIMENTAL SITES FOR STUDYING THE ELECTRON ACCELERATION MECHANISM

    SciTech Connect

    Maeda, Keiichi

    2013-01-10

    Radio emissions from young supernovae ({approx}<1 year after the explosion) show a peculiar feature in the relativistic electron population at a shock wave, where their energy distribution is steeper than typically found in supernova remnants and than that predicted from the standard diffusive shock acceleration (DSA) mechanism. This has been especially established for the case for a class of stripped envelope supernovae (SNe IIb/Ib/Ic), where a combination of high shock velocity and low circumstellar material density makes it easier to derive the intrinsic energy distribution than in other classes of SNe. We suggest that this apparent discrepancy reflects a situation where the low energy electrons, before being accelerated by the DSA-like mechanism, are responsible for the radio synchrotron emission from young SNe, and that studying young SNe sheds light on the still-unresolved electron injection problem in the acceleration theory of cosmic rays. We suggest that the electron's energy distribution could be flattened toward high energy, most likely around 100 MeV, which marks a transition from inefficient to efficient acceleration. Identifying this feature will be a major advance in understanding the electron acceleration mechanism. We suggest two further probes: (1) millimeter/submillimeter observations in the first year after the explosion and (2) X-ray observations at about one year and thereafter. We show that these are reachable by ALMA and Chandra for nearby SNe.

  17. ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE

    SciTech Connect

    Liu Ruoyu; Wang Xiangyu

    2012-02-10

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultrahigh energies and provide a sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultrahigh energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  18. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  19. Anomalous cosmic ray studies using the geomagnetic field

    SciTech Connect

    Mewaldt, R. A.; Cummings, J. R.; Leske, R. A.; Selesnick, R. S.; Stone, E. C.; Rosenvinge, T. T. von

    1996-07-20

    We use instrumentation on SAMPEX and the Earth's field as a magnetic filter, to obtain a 'pure' sample of anomalous cosmic rays. The energy spectrum of anomalous oxygen is found to extend to {approx}100 MeV/nuc, which has implications for models of the acceleration of these nuclei.

  20. The dark mark of large-scale structure on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Granett, Benjamin R.

    2010-10-01

    The cosmic microwave background (CMB) offers a screen to study the Universe in projection. Large-scale structures leave gravitational imprints on the background radiation through the integrated Sachs-Wolfe effect. In an accelerating universe, photons following trajectories across large clusters or voids are heated or cooled as the gravitational potential decays. The hot and cold marks left on the radiation field are a direct signature of dark energy in a spatially flat universe. We use the Sloan Digital Sky Survey to trace large-scale structures and confirm their effect on the cosmic microwave background. We construct a map of the anisotropy over the survey area and find that the pattern is present on the microwave sky. This detection demonstrates that the positive statistical correlation between the galaxy density and the CMB temperature reported in the literature is consistent with the integrated Sachs-Wolfe effect under dark energy. The imprints of individual voids and clusters can be isolated on the cosmic microwave background. By summing the signal from voids and clusters, we overcome the noise of primary fluctuations and produce an image of the average imprint left by the gravitational potential of the structures. Intriguingly, the detection level surpasses the all-sky integrated Sachs-Wolfe measurement. We suggest that the technique may be used as a new probe of dark energy. Supervoid and supercluster structures could be responsible for anomalous regions on the microwave background. We introduce the method of constrained realization to identify statistically anomalous regions on the sky. Of particular interest is the Cold Spot which could arise from a supervoid structure at low redshift. To test this idea, we conduct a photometric redshift survey of the region to moderate redshift. However, we find no strong evidence that a large void is responsible.

  1. Distance Probes of Dark Energy

    DOE PAGES

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; ...

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  2. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  3. Cosmic questions: an introduction.

    PubMed

    Primack, J R; Abrams, N E

    2001-12-01

    This introductory talk at the Cosmic Questions conference sponsored by the AAAS summarizes some earlier pictures of the universe and some pictures based on modern physics and cosmology. The uroboros (snake swallowing its tail) is an example of a traditional picture. The Biblical flat-earth picture was very different from the Greek spherical earth-centered picture, which was the standard view until the end of the Middle Ages. Many people incorrectly assume that the Newtonian picture of stars scattered through otherwise empty space is still the prevailing view. Seeing Earth from space shows the power of a new picture. The Hubble Space Telescope can see all the bright galaxies, all the way to the cosmic Dark Ages. We are at the center of cosmic spheres of time: looking outward is looking backward in time. All the matter and energy in the universe can be represented as a cosmic density pyramid. The laws of physics only allow the material objects in the universe to occupy a wedge-shaped region on a diagram of mass versus size. All sizes--from the smallest size scale, the Planck scale, to the entire visible universe--can be represented on the Cosmic Uroboros. There are interesting connections across this diagram, and the human scale lies in the middle.

  4. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  5. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  6. Ultrahigh-energy particles from cosmic strings

    SciTech Connect

    Bhattacharjee, P. . Astronomy and Astrophysics Center Fermi National Accelerator Lab., Batavia, IL )

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as {alpha}'s or Fe's are in the spectrum. 43 refs., 3 figs.

  7. Testing parity-violating physics from cosmic rotation power reconstruction

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya

    2017-02-01

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extention framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%-20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.

  8. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  9. Probing Dark Energy with Constellation-X

    SciTech Connect

    Rapetti, David; Allen, Steven W.; /KIPAC, Menlo Park

    2006-09-08

    Constellation-X (Con-X) will carry out two powerful and independent sets of tests of dark energy based on X-ray observations of galaxy clusters, providing comparable accuracy to other leading dark energy probes. The first group of tests will measure the absolute distances to clusters, primarily using measurements of the X-ray gas mass fraction in the largest, dynamically relaxed clusters, but with additional constraining power provided by follow-up observations of the Sunyaev-Zel'dovich (SZ) effect. As with supernovae studies, such data determine the transformation between redshift and true distance, d(z), allowing cosmic acceleration to be measured directly. The second, independent group of tests will use the exquisite spectroscopic capabilities of Con-X to determine scaling relations between X-ray observables and mass. Together with forthcoming X-ray and SZ cluster surveys, these data will help to constrain the growth of structure, which is also a strong function of cosmological parameters.

  10. Probing Final Stages of Stellar Evolution with X-Ray Observations of SN 2013ej

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak; Smith, Randall; Margutti, Raffaella; Pooley, David; Bose, Subhash; Sutaria, Firoza; Chandra, Poonam; Dwarkadas, Vikram V.; Ryder, Stuart; Maeda, Keiichi

    2016-01-01

    Massive stars shape their surroundings with mass loss from winds during their lifetimes. Fast ejecta from supernovae (SNe), from these massive stars, shock this circumstellar medium. Emission generated by this interaction provides a window into the final stages of stellar evolution, by probing the history of mass loss from the progenitor. Here we use Chandra and Swift X-ray observations of the type II-P/L SN 2013ej to probe the history of mass loss from its progenitor. We model the observed X-rays as emission from both heated circumstellar matter and SN ejecta. The circumstellar density profile probed by the SN shock reveals a history of steady mass loss during the final 400 years. The inferred mass loss rate of 3× {10}-6 {M}⊙ {{yr}}-1 points back to a 14 {M}⊙ progenitor. Soon after the explosion we find significant absorption of reverse shock emission by a cooling shell. The column depth of this shell observed in absorption provides an independent and consistent measurement of the circumstellar density seen in emission. We also determine the efficiency of cosmic ray acceleration from X-rays produced by Inverse Compton scattering of optical photons by relativistic electrons. Only about 1% of the thermal energy is used to accelerate electrons. Our X-ray observations and modeling provide stringent tests for models of massive stellar evolution and micro-physics of shocks.

  11. Mapping the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven

    The following sections are included: * A Brief History of Our Universe: From Soup to Galaxies * The Hidden Cosmic Dawn * The Solution: Flipping Spins * The Spin-Flip Transition as an Astronomical Tool * Foiled!: Early Cosmology with the Spin-Flip Transition * Spin-Flip Radiation Holds the Key to Observing the Cosmic Dawn * The Spin-Flip Background: The First Stars * The Spin-Flip Background: The First Black Holes * The Spin-Flip Background: The Epoch of Reionization * FM Radio Antennae as Cosmic Observatories * Piles and Tiles of Antennae: Mapping the Spin-Flip Background * Mountains to Scale: Challenges to Observing the Spin-Flip Background * Sound and Fury, Signifying Statistics * An Explosion of Telescopes * Dreams for the Future * An Unfinished Story

  12. Maxwell Prize: The Basis for Cosmic Ray Feedback: Written on the Wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen

    2016-10-01

    Cosmic rays represent only about a billionth of the interstellar gas in galaxies by number, but their energy density is equivalent to that of the thermal gas, Although virtually collisionless, they exchange energy and momentum with the thermal gas through their coupling to the interstellar magnetic field, thus playing a critical role in interstellar gas dynamics and energy balance. Cosmic ray driven galactic outflows, or winds, are one of their most dramatic and consequential signatures. Because cosmic rays are believed to be accelerated by stellar explosions, and removing gas in a wind reduces the rate of star formation, cosmic ray driven winds are considered a form of ``feedback''. I will discuss the physical basis for magnetically mediated cosmic ray - thermal gas coupling, which spans scales from astronomical units to thousands of light years, in galaxies of many types as they evolve over cosmic time. The University of Wisconsin and the National Science Foundation.

  13. A review and interpretation of recent cosmic ray beryllium isotope measurements

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1978-01-01

    Beryllium-10 is of interest for cosmic ray propagation, because its radioactive decay half-life is well matched to the expected cosmic ray age. Recent beryllium isotope measurements from satellites and balloon covered an energy range from about 30 to 300 MeV/nucleon. At the lowest energies, most of the Be-10 is absent, indicating a cosmic ray lifetime of order 2 x 10 to the 7th power years and the rather low average density of 0.2 atoms/cc traversed by the cosmic rays. At higher energies, a greater propagation of Be-10 is observed, indicating a somewhat shorter lifetime. These experiments will be reviewed and then compared with a new experiment covering from 100 to 1000 MeV/nucleon. Although improved experiments will be necessary to realize the full potential of cosmic ray beryllium isotope measurements, these first results are already disclosing interesting and unexpected facts about cosmic ray acceleration and propagation.

  14. Extensive Air Showers and Cosmic Ray Physics above 1017 eV

    NASA Astrophysics Data System (ADS)

    Bertaina, Mario

    2016-07-01

    Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3-5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.

  15. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    SciTech Connect

    Moharana, Reetanjali; Razzaque, Soebur E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  16. Cosmic Needles versus Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2003-02-01

    It has been suggested by a number of authors that the 2.7 K cosmic microwave background (CMB) radiation might have arisen from the radiation of ``Population III'' objects thermalized by conducting cosmic graphite/iron needle-shaped dust. Due to a lack of an accurate solution to the absorption properties of exceedingly elongated grains, in existing literature which studies the CMB thermalizing process they are generally modeled as (1) needle-like spheroids in terms of the Rayleigh approximation, (2) infinite cylinders, and (3) antennae. We show here that the Rayleigh approximation is not valid since the Rayleigh criterion is not satisfied for highly conducting needles. We also show that the available intergalactic iron dust, if modeled as infinite cylinders, is not sufficient to supply the required opacity at long wavelengths to obtain the observed isotropy and Planckian nature of the CMB. If appealing to the antenna theory, conducting iron needles with exceedingly large elongations ( >104) appear able to provide sufficient opacity to thermalize the CMB within the iron density limit. But the applicability of the antenna theory to exceedingly thin needles of nanometer/micrometer thickness has not yet been verified.

  17. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  18. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  19. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  20. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  1. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  2. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  3. Multiple-measurement beam probe

    SciTech Connect

    Gilpatrick, J.D.; Grant, D.L.

    1986-01-01

    Particle accelerators are becoming smaller and are producing more intense beams; therefore, it is critical that beam-diagnostic instrumentation provide accelerator operators and automated control systems with a complete set of beam information. Traditionally, these beam data were collected and processed using limited-bandwidth interceptive techniques. For the new-generation accelerators, we are developing a multiple-measurement microstrip probe to obtain broadband beam data from inside a drift tube without perturbing the beam. The cylindrical probe's dimensions are 6-cm OD by 1.0 m long, and the probe is mounted inside a drift tube. The probe (and its associated electronics) monitors bunched-beam current, energy, and transverse position by sensing the beam's electromagnetic fields through the annular opening in the drift tube. The electrical impedance is tightly controlled through the full length of the probe and transmission lines to maintain beam-induced signal fidelity. The probe's small, cylindrical structure is matched to beam-bunch characteristics at specific beamline locations so that signal-to-noise ratios are optimized. Surrounding the probe, a mechanical structure attaches to the drift-tube interior and the quadrupole magnets; thus, the entire assembly's mechanical and electrical centers can be aligned and calibrated with respect to the rest of the linac.

  4. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  5. Correlation between galactic HI and the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Land, Kate; Slosar, Anže

    2007-10-01

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation.

  6. Correlation between galactic HI and the cosmic microwave background

    SciTech Connect

    Land, Kate; Slosar, Anze

    2007-10-15

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation.

  7. Particle astrophysics - The NASA cosmic ray program for the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Jones, W. V. (Editor); Kerr, Frank J. (Editor); Ormes, Jonathan F. (Editor)

    1990-01-01

    Various papers on particle astrophysics are presented. Individual topics addressed include: the NASA cosmic ray (CR) program for the 1990s and beyond, SAMPEX Mission overview, the Advanced Composition Explorer, Positron Electron Magnet Spectrometer for the Eos Mission, Heavy Nucleus Collector for Space Station, the Astromag Facility, Large Isotope Spectrometer for Astromag, the Solar Probe Mission, the Mercury Dual Orbiter Mission, CRs in the heliosphere, origin of high-energy Galactic CRs, CR studies with the Gamma-Ray Observatory, gamma-ray astronomy at 1 TeV, experimental search for point sources above 1 TeV, the UMC Extensive Air Shower Array, status of the MACRO experiment. Also discussed are: CRs above 1 TeV/n and neutrino astronomy, abundance of ultraheavy nuclei in solar energetic particles, CR studies with an interstellar probe, isotopic composition of CR nuclei beyond the iron peak, experimental studies of CR isotopic composition up to Zr-40, use of accelerators in particle astrophysics, development of long-duration ballooning in Antarctica, Lunar-Based Heavy Nucleus Detector, neutrino astronomy on the moon, gamma rays at airplane altitudes, source composition of CRs.

  8. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  9. Ultraheavy cosmic rays - Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1978-01-01

    The recent extreme ultraheavy cosmic-ray observations (Z greater than or equal to 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar-system abundances is also used. There is the continued strong indication of an r-process dominance in the extreme ultraheavy cosmic rays. It is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fitted with the same r-process calculation which also fits the solar-system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. An estimate is also made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  10. The anisotropy of multi-TeV cosmic rays

    NASA Astrophysics Data System (ADS)

    Dingus, Brenda

    2013-02-01

    The arrival directions of cosmic rays will be isotropized by the deflection of these charged particles in the Galactic magnetic fields. For example, a 10 TeV proton in a typical Galactic field of 2 micro Gauss has a gyroradius of only 0.005 parsec (=1000 AU) which is much smaller than the distance to any postulated sources. However, observations of TeV cosmic rays by Milagro, Tibet III, ARGO, and IceCube, show anisotropies on both large and small angular scales. These observations require the detection of large numbers of cosmic rays because the anisotropies are less than a few parts in 1000. The large angular scale anisotropies, such as a dipole, could point to diffusion from a nearby source, but the smaller scale anisotropies of extent ~10 degrees are much more difficult to explain. Possibilities that have been explored in the literature include magnetic funneling of cosmic rays from nearby sources and acceleration by magnetic reconnection in the heliosphere's magnetotail. No matter what the mechanism, these observations provide new information about cosmic ray production, nearby magnetic fields, and how the cosmic rays observed at Earth are affected by their propagation.

  11. Response of the D0 calorimeter to cosmic ray muons

    SciTech Connect

    Kotcher, J.

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multi-purpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 4{pi} muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February - May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run.

  12. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth; Li, Hui

    2016-10-01

    > eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.

  13. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  14. Current and Future Measurements of Ultra-Heavy Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Link, Jason; Supertiger Collaboration

    2016-03-01

    There is strong evidence from recent experiments that suggest a source of galactic cosmic rays is in superbubble regions and that particles here are accelerated through the shocks from supernova explosions. Through further study of ultra-heavy cosmic-rays, those particles with a Z >26, we can verify and explore the particle source and acceleration process of cosmic-rays. Measuring these particles is a challenge due to their low flux and high interaction cross section, requiring extremely large detectors flown on balloons and in space. In this talk we will discuss how past and recent ultra-heavy cosmic ray measurements have shaped our understanding of the cosmic-ray source and acceleration process and what we hope to learn from future measurements. We will present results on the abundances of ultra-heavy cosmic rays in the charge range 26 <= Z <= 40 from the SuperTIGER Antarctic balloon flight and compare these with previous results from ACE-CRIS and TIGER. We will also review the current status of active missions to measure ultra-heavy cosmic rays and discuss future possibilities.

  15. Testing modified gravity with cosmic shear

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, J.; Munshi, D.; Valageas, P.; van Waerbeke, L.; Brax, P.; Coles, P.; Rizzo, L.

    2015-12-01

    We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is highly complementary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General Relativity (GR) + Λ cold dark matter (ΛCDM) scenario occurs at k ˜ 1 h Mpc-1. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parametrization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the f(R) \\lbrace |f_{R_0}| = 10^{-4}, n = 1\\rbrace model with more than 99.9 per cent confidence interval (CI) when assuming a ΛCDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least 94 per cent CI in all different combinations studied. Constraints on the \\lbrace |f_{R_0}| = 10^{-4}, n = 2\\rbrace model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

  16. Hunting for Cosmic-Ray Origins with SuperTIGER

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Illustration of cosmic-ray nuclei impacting Earths atmosphere and decaying into lighter particles. [ESA]The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment flew over Antarctica for 55 days, collecting millions of galactic cosmic rays. What can it tell us about the origins of these high-energy particles?High-Energy ImpactsGalactic cosmic rays are immensely high-energy protons and atomic nuclei that impact our atmosphere, originating from outside of our solar system. Where do they come from, and how are they accelerated? These are both open topics of research.One of the leading theories is that cosmic-ray source material is primarily a mixture of material that has been ejected from massive stars either from supernovae or in stellar wind outflows and normal interstellar medium (ISM). This material is then accelerated to cosmic-ray energies by supernova shocks.Number of nuclei of each element detected by SuperTIGER. Note the change of scale between the two plots (click for a closer look)! [Murphy et al. 2016]How can we test this model? An important step is understanding the composition of galactic cosmic rays: what elemental nuclei are they made up of? If abundances are similar to solar-system abundances, then the material is likely mostly ISM. If the abundances of rarer heavy elements are high, however, then the material is more likely to have come from massive stars in star-forming regions.Balloon-Borne DetectionsEnter SuperTIGER, an experiment designed to collect cosmic rays and measure the abundances of the rare heavy elements those with atomic number between iron (Z=26) and zirconium (Z=40).The path that SuperTIGER took over Antarctica during its flight, with a different color denoting each circuit around the pole. Note where it got stuck in an eddy over the Transarctic Mountains at the end of its second circuit! [Columbia Scientific Balloon Facility]To gather galactic cosmic rays, the detector must be above the Earths atmosphere; interactions with

  17. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  18. Is the Expansion of the Universe Accelerating? All Signs Point to Yes

    NASA Astrophysics Data System (ADS)

    Rubin, D.; Hayden, B.

    2016-12-01

    The accelerating expansion of the universe is one of the most profound discoveries in modern cosmology, suggesting a universe in which 70% of the mass-energy density has an unknown form spread uniformly across the universe. This result has been well established using a combination of cosmological probes, resulting in a “standard model” of modern cosmology that is a combination of a cosmological constant with cold dark matter and baryons. The first compelling evidence for the acceleration came in the late 1990s, when two independent teams studying Type Ia supernovae discovered that distant SNe Ia were dimmer than expected. The combined analysis of modern cosmology experiments, including SNe Ia, the Hubble constant, baryon acoustic oscillations, and the cosmic microwave background, has now measured the contributions of matter and the cosmological constant to the energy density of the universe to better than 0.01, providing a secure measurement of acceleration. A recent study has claimed that the evidence for acceleration from SNe Ia is “marginal.” Here we demonstrate errors in that analysis that reduce the acceleration significance from SNe Ia, and further demonstrate that conservative constraints on the curvature or matter density of the universe increase the significance even more. Analyzing the Joint Light-curve Analysis supernova sample, we find 4.2σ evidence for acceleration with SNe Ia alone, and 11.2σ in a flat universe. With our improved supernova analysis and not rejecting all other cosmological constraints, we find that acceleration is quite secure.

  19. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  20. Cosmic structure formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edumund

    1994-01-01

    This article reviews the prevailing paradigm for how galaxies and larger structures formed in the universe: gravitational instability. Basic observational facts are summarized to motivate the standard cosmological framework underlying most detailed investigations of structure formation. The observed univers approaches spatial uniformity on scales larger than about 10(exp 26) cm. On these scales gravitational dynamics is almost linear and therefore relatively easy to relate to observations of large-scale structure. On smaller scales cosmic structure is complicated not only by nonlinear gravitational clustering but also by nonlinear nongravitational gas dynamical processes. The complexity of these phenomena makes galaxy formation one of the grand challenge problems of the physical sciences. No fully satisfactory theory can presently account in detail for the observed cosmic structure. However, as this article summarizes, significant progress has been made during the last few years.

  1. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  2. Cosmic Origin of Quantization

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    An estimate is presented of the angular momentum associated with the stochastic cosmic tremor, which has been hypothesized to be caused by universal gravitation and by the granularity of matter, and to be itself the cause of quantization ("cosmic origin of quantization"). If that universal tremor has the spatial coherence which is instrumental in order that the estimated action associated with it have the order of magnitude of Planck's constant h, then the estimated order of magnitude of the angular momentum associated with it also has the same value. We moreover indicate how these findings (originally based on a simplified model of the Universe, as being made up only of particles having the nucleon mass) are affected (in fact, essentially unaffected) by the possible presence in the mass of the Universe of a large component made up of particles much lighter than nucleons ("dark", or "missing", mass).

  3. Note on cosmic censorship

    NASA Astrophysics Data System (ADS)

    Tipler, F. J.

    1985-05-01

    A number of recent theorems by Krolak (1983) and Newman (1983) purport to prove cosmic censorship by showing that strong-curvature singularities must be hidden behind horizons. It is shown that the 'null strong-curvature' condition which Newman imposes on certain classes of null geodesics to restrict curvature growth in the space-time does not hold in many physically realistic space-times: it is not satisfied by any null geodesic in the relevant class in any open Friedmann cosmological model, nor does it hold for any null geodesic in the relevant class in maximal Schwarzschild space. More generally it is argued that the singularity predicted by the Penrose singularity theorem is unlikely to be of the type eliminated by Newman. Thus the Newman theorems are probably without physical significance. The Krolak theorems, although based on a physically significant definition of strong curvature singularity, are mathematically invalid, and this approach cannot be used to obtain a cosmic-censorship theorem.

  4. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  5. Web life: Cosmic Diary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    What is it? Cosmic Diary brings together a smorgasbord of blogging astronomers from around the world, with more than 50 contributors commenting on new discoveries and long-standing questions in astronomy - as well as offering insights into their ordinary working lives and outside interests. The site is sponsored by the International Astronomical Union and UNESCO, and it is one of 11 "cornerstone projects" of the International Year of Astronomy 2009 (IYA2009).

  6. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  7. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  8. A Warped Cosmic String

    SciTech Connect

    Slagter, R. J.

    2010-06-23

    We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.

  9. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  10. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  11. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  12. Investigating the Effect of Cosmic Opacity on Standard Candles

    NASA Astrophysics Data System (ADS)

    Hu, J.; Yu, H.; Wang, F. Y.

    2017-02-01

    Standard candles can probe the evolution of dark energy over a large redshift range. But the cosmic opacity can degrade the quality of standard candles. In this paper, we use the latest observations, including Type Ia supernovae (SNe Ia) from the “joint light-curve analysis” sample and Hubble parameters, to probe the opacity of the universe. A joint fitting of the SNe Ia light-curve parameters, cosmological parameters, and opacity is used in order to avoid the cosmological dependence of SNe Ia luminosity distances. The latest gamma-ray bursts are used in order to explore the cosmic opacity at high redshifts. The cosmic reionization process is considered at high redshifts. We find that the sample supports an almost transparent universe for flat ΛCDM and XCDM models. Meanwhile, free electrons deplete photons from standard candles through (inverse) Compton scattering, which is known as an important component of opacity. This Compton dimming may play an important role in future supernova surveys. From analysis, we find that about a few per cent of the cosmic opacity is caused by Compton dimming in the two models, which can be corrected.

  13. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  14. On the size and velocity distribution of cosmic dust particles entering the atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Plane, J M C; Feng, W; Nesvorný, D; Janches, D

    2015-08-16

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s(-1)) particles.

  15. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Plane, J. M. C.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-08-01

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s-1) particles.

  16. Gamma rays from grazing incidence cosmic rays in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Interactions of grazing incidence, ultra high-energy cosmic rays with the earth's atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond timescales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth's surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 10(exp 20) eV is found to be more than two orders of magnitude higher than Earth-based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic-ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the Earth's atmosphere.

  17. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    SciTech Connect

    Feng, J. L.; Ritz, S.; Beatty, J. J.; Buckley, J.; Cowen, D. F.; Cushman, P.; Dodelson, S.; Galbiati, C.; Honscheid, K.; Hooper, D.; Kaplinghat, M.; Kusenko, A.; Matchev, K.; McKinsey, D.; Nelson, A. E.; Olinto, A.; Profumo, S.; Robertson, H.; Rosenberg, L.; Sinnis, G.; Tait, T. M.P.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.

  18. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  19. Critical Issues in Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Hosokai, T.

    2004-10-01

    Updated achievements and critical issues in plasma accelerators are summarized. As to laser plasma accelerators, we cover the results of plasma cathodes by U.Michigan, LBNL, LOA and U.Tokyo. Although many new results of accelerated electrons have been reported, the electrons do not yet form a bunch with narrow energy spread. Several injection schemes and measurements to verify ultrashort bunch (tens fs) with narrow energy spread, low emittance and many charges are planned. E-162 experiments by UCLA / USC / SLAC and a newly proposed experiment on density transition trapping are introduced for electron beam driven plasma accelerators. Their main purpose is realization of GeV plasma accelerator, but application to pump-and-probe analysis for investigation of ultrafast quantum phenomena is also promising.

  20. Cosmic super-strings and Kaluza-Klein modes

    SciTech Connect

    Dufaux, Jean-François

    2012-09-01

    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.