Science.gov

Sample records for probing intra-molecular mechanics

  1. Application to processing system using intra-molecular BRET

    NASA Astrophysics Data System (ADS)

    Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro

    2003-07-01

    Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.

  2. Intra-molecular Triplet Energy Transfer is a General Approach to Improve Organic Fluorophore Photostability

    PubMed Central

    Zheng, Qinsi; Jockusch, Steffen; Rodríguez-Calero, Gabriel G.; Zhou, Zhou; Zhao, Hong; Altman, Roger B.; Abruña, Héctor D.; Blanchard, Scott C.

    2015-01-01

    Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability. PMID:26700693

  3. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  4. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  5. Optimized measurements of separations and angles between intra-molecular fluorescent markers

    NASA Astrophysics Data System (ADS)

    Mortensen, Kim I.; Sung, Jongmin; Flyvbjerg, Henrik; Spudich, James A.

    2015-10-01

    We demonstrate a novel, yet simple tool for the study of structure and function of biomolecules by extending two-colour co-localization microscopy to fluorescent molecules with fixed orientations and in intra-molecular proximity. From each colour-separated microscope image in a time-lapse movie and using only simple means, we simultaneously determine both the relative (x,y)-separation of the fluorophores and their individual orientations in space with accuracy and precision. The positions and orientations of two domains of the same molecule are thus time-resolved. Using short double-stranded DNA molecules internally labelled with two fixed fluorophores, we demonstrate the accuracy and precision of our method using the known structure of double-stranded DNA as a benchmark, resolve 10-base-pair differences in fluorophore separations, and determine the unique 3D orientation of each DNA molecule, thereby establishing short, double-labelled DNA molecules as probes of 3D orientation of anything to which one can attach them firmly.

  6. Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems.

    PubMed

    Roden, Jan; Strunz, Walter T; Whaley, K Birgitta; Eisfeld, Alexander

    2012-11-28

    Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.

  7. Mean-Field Theory of Intra-Molecular Charge Ordering in (TTM--TTP)I3

    NASA Astrophysics Data System (ADS)

    Omori, Yukiko; Tsuchiizu, Masahisa; Suzumura, Yoshikazu

    2011-02-01

    We examine an intra-molecular charge-ordered (ICO) state in the multi-orbital molecular compound (TTM--TTP)I3 on the basis of an effective two-orbital model derived from ab initio calculations. Representing the model in terms of the fragment molecular-orbital (MO) picture, the ICO state is described as the charge disproportionation on the left and right fragment MOs. By applying the mean-field theory, the phase diagram of the ground state is obtained as a function of the inter-molecular Coulomb repulsion and the intra-molecular transfer integral. The ICO state is stabilized by large inter-fragment Coulomb interactions, and the small intra-molecular transfer energy between two fragment MOs. Furthermore, we examine the finite-temperature phase diagram. The relevance to the experimental observations in the molecular compound of (TTM--TTP)I3 is also discussed.

  8. Intra-molecular enantiomerism in R-(+)-Limonene as evidenced by the differential bond polarizabilities

    NASA Astrophysics Data System (ADS)

    Shen, Hongxia; Wu, Guozhen; Wang, Peijie

    2014-07-01

    We propose an algorithm to obtain the differential bond polarizabilities from the Raman and Raman optical activity (ROA) spectral intensities. The signs of the differential bond polarizabilities of R-Limonene demonstrate that there is intra-molecular enantiomerism in its six membered ring structure. That is, the signs of the differential bond polarizabilities around the six membered ring are inversed under an intra-molecular mirror reflection. This is similar to what happens in the right and left handed chiral isomers under a mirror conversion.

  9. Elastic mechanism design of a CMM contact probe

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Fan, Kuang-Chao; Zhou, Hao; Wang, Na; Huang, Qiang-xian

    2013-10-01

    The measurement of miniature components with a micro- or nano-coordinate measuring machine requires a high precision contact scanning probe. The elastic mechanism of low stiffness is a major component of the contact scanning probe. A new elastic mechanism is analyzed by the theory of elasticity and finite element analysis in this paper. It is to realize the probe's mechanical behavior and stiffness when designing an elastic mechanism for a contact scanning probe. The contact scanning probe is composed of a tungsten stylus with a ruby ball tip, a mechanism of floating plate suspended by four V-shaped leaf springs, and a 3D optical sensor. The leaf spring experiences elastic deformation when a contact force is applied. Uniform stiffness model is analyzed. Simulation and experimental results verify the correctness of the analysis.

  10. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM

    NASA Astrophysics Data System (ADS)

    Ziebarth, Noël M.; Rico, Felix; Moy, Vincent T.

    In recent years, the atomic force microscope (AFM) has become an important tool in ophthalmic research. It has gained popularity largely because AFM is not restricted by the diffraction limits of light microscopy and can be applied to resolve images with molecular resolution. AFM is a minimally invasive technique and can be used to visualize molecular structures under near-physiological conditions. In addition, the AFM can be employed as a force apparatus to characterize the viscoelastic properties of biomaterials on the micron level and at the level of individual proteins. In this article, we summarize recent AFM studies of ocular tissues, while highlighting the great potential of AFM technology in ophthalmic research. Previous research demonstrates the versatility of the AFM as high resolution imaging technique and as a sensitive force apparatus for probing the mechanical properties of ocular tissues. The structural and mechanical properties of ocular tissues are of major importance to the understanding of the optomechanical functions of the human eye. In addition, AFM has played an important role in the development and characterization of ocular biomaterials, such as contact lenses and intraocular lenses. Studying ocular tissues using Atomic Force Microscopy has enabled several advances in ophthalmic research.

  11. Intra-molecular electron transfer and electric conductance via sequential hopping: Unified theoretical description

    NASA Astrophysics Data System (ADS)

    Berlin, Yuri A.; Ratner, Mark A.

    2005-10-01

    The relation between intra-molecular electron transfer in the donor-bridge-acceptor system and zero-bias conductance of the same bridge in the metal-molecule-metal junction is analyzed for the sequential hopping regime of both processes. The electron transfer rate and molecular conductance are expressed in terms of rates characterizing each individual step of electron motion. Based on the results obtained, we derive the analytical expression that relates these two quantities in the general case of the energy landscape governing hopping transport.

  12. Environmental genotoxicity: Probing the underlying mechanisms

    SciTech Connect

    Shugart, L.; Theodorakis, C.

    1993-12-31

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  13. Cell mechanics and mechanotransduction: pathways, probes, and physiology.

    PubMed

    Huang, Hayden; Kamm, Roger D; Lee, Richard T

    2004-07-01

    Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces.

  14. Probe into the Internal Mechanism of Interlanguage Fossilization

    ERIC Educational Resources Information Center

    Huang, Qian

    2009-01-01

    Interlanguage fossilization is normal for second language acquisition. It is also a hotspot for studies on theory of foreign language acquisition. Many reasons cause the interlanguage fossilization. This paper probes into the internal mechanism of interlanguage fossilization from five aspects, namely the physiological aspect, the psychological…

  15. Dynamics of the chemical bond: inter- and intra-molecular hydrogen bond.

    PubMed

    Arunan, Elangannan; Mani, Devendra

    2015-01-01

    In this discussion, we show that a static definition of a 'bond' is not viable by looking at a few examples for both inter- and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate 'hydrogen bonding' from 'van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg∙∙∙HX complexes (Rg=He/Ne/Ar and X=F/Cl/Br) and ethane-1,2-diol. Results for the Rg∙∙∙HX/DX complexes show that Rg∙∙∙DX could have a 'deuterium bond' even when Rg∙∙∙HX is not 'hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an 'intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the OO stretching, though a 'bond' is not found in the equilibrium structure. This dynamical 'bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration 'breaks' an existing bond and in the later case, a vibration leads to 'bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this 'hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition.

  16. Probing single-cell mechanics with picosecond ultrasonics.

    PubMed

    Dehoux, Thomas; Abi Ghanem, Maroun; Zouani, Omar F; Ducousso, Mathieu; Chigarev, Nikolay; Rossignol, Clément; Tsapis, Nicolas; Durrieu, Marie-Christine; Audoin, Bertrand

    2015-02-01

    The mechanical properties of cells play a key role in several fundamental biological processes, such as migration, proliferation, differentiation and tissue morphogenesis. The complexity of the inner cell composition and the intricate meshwork formed by transmembrane cell-substrate interactions demands a non-invasive technique to probe cell mechanics and cell adhesion at a subcell scale. In this paper we review the use of laser-generated GHz acoustic waves--a technique called picosecond ultrasonics (PU)--to probe the mechanical properties of single cells. We first describe applications to vegetal cells and biomimetic systems. We show how these systems can be used as simple models to understand more complex animal cells. We then present an opto-acoustic bio-transducer designed for in vivo measurements in physiological conditions. We illustrate the use of this transducer through the simultaneous probing of the density and compressibility of Allium cepa cells. Finally, we demonstrate that this technique can quantify animal-cell adhesion on metallic surfaces by analyzing the acoustic pulses reflected off the cell-metal interface. This innovative approach allows investigating quantitatively cell mechanics without fluorescent labels or mechanical contact to the cell.

  17. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.

    PubMed

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Zahn, Jeffrey D; Shreiber, David I

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the "safety factor", as it indicated the degree to which the coating should be over

  18. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    PubMed Central

    Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Zahn, Jeffrey D.; Shreiber, David I.

    2016-01-01

    Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating should be over

  19. Identifying mechanism-of-action targets for drugs and probes

    PubMed Central

    Gregori-Puigjané, Elisabet; Setola, Vincent; Hert, Jérôme; Crews, Brenda A.; Irwin, John J.; Lounkine, Eugen; Marnett, Lawrence; Roth, Bryan L.; Shoichet, Brian K.

    2012-01-01

    Notwithstanding their key roles in therapy and as biological probes, 7% of approved drugs are purported to have no known primary target, and up to 18% lack a well-defined mechanism of action. Using a chemoinformatics approach, we sought to “de-orphanize” drugs that lack primary targets. Surprisingly, targets could be easily predicted for many: Whereas these targets were not known to us nor to the common databases, most could be confirmed by literature search, leaving only 13 Food and Drug Administration—approved drugs with unknown targets; the number of drugs without molecular targets likely is far fewer than reported. The number of worldwide drugs without reasonable molecular targets similarly dropped, from 352 (25%) to 44 (4%). Nevertheless, there remained at least seven drugs for which reasonable mechanism-of-action targets were unknown but could be predicted, including the antitussives clemastine, cloperastine, and nepinalone; the antiemetic benzquinamide; the muscle relaxant cyclobenzaprine; the analgesic nefopam; and the immunomodulator lobenzarit. For each, predicted targets were confirmed experimentally, with affinities within their physiological concentration ranges. Turning this question on its head, we next asked which drugs were specific enough to act as chemical probes. Over 100 drugs met the standard criteria for probes, and 40 did so by more stringent criteria. A chemical information approach to drug-target association can guide therapeutic development and reveal applications to probe biology, a focus of much current interest. PMID:22711801

  20. Identifying mechanism-of-action targets for drugs and probes.

    PubMed

    Gregori-Puigjané, Elisabet; Setola, Vincent; Hert, Jérôme; Crews, Brenda A; Irwin, John J; Lounkine, Eugen; Marnett, Lawrence; Roth, Bryan L; Shoichet, Brian K

    2012-07-10

    Notwithstanding their key roles in therapy and as biological probes, 7% of approved drugs are purported to have no known primary target, and up to 18% lack a well-defined mechanism of action. Using a chemoinformatics approach, we sought to "de-orphanize" drugs that lack primary targets. Surprisingly, targets could be easily predicted for many: Whereas these targets were not known to us nor to the common databases, most could be confirmed by literature search, leaving only 13 Food and Drug Administration-approved drugs with unknown targets; the number of drugs without molecular targets likely is far fewer than reported. The number of worldwide drugs without reasonable molecular targets similarly dropped, from 352 (25%) to 44 (4%). Nevertheless, there remained at least seven drugs for which reasonable mechanism-of-action targets were unknown but could be predicted, including the antitussives clemastine, cloperastine, and nepinalone; the antiemetic benzquinamide; the muscle relaxant cyclobenzaprine; the analgesic nefopam; and the immunomodulator lobenzarit. For each, predicted targets were confirmed experimentally, with affinities within their physiological concentration ranges. Turning this question on its head, we next asked which drugs were specific enough to act as chemical probes. Over 100 drugs met the standard criteria for probes, and 40 did so by more stringent criteria. A chemical information approach to drug-target association can guide therapeutic development and reveal applications to probe biology, a focus of much current interest. PMID:22711801

  1. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  2. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  3. The interplay between inter- and intra-molecular dynamics in a series of alkylcitrates

    SciTech Connect

    Kipnusu, Wycliffe Kiprop; Kossack, Wilhelm; Iacob, Ciprian; Zeigermann, Philipp; Jasiurkowska, Malgorzata; Sangoro, Joshua R; Valiullin, Rustem; Kremer, Friedrich

    2013-01-01

    The inter- and intra-molecular dynamics in a series of glass-forming alkylcitrates is studied by a combination of Broadband Dielectric Spectroscopy (BDS), Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR), Fourier-Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Analyzing the temperature dependencies of specific IR absorption bands in terms of their spectral position and the corresponding oscillator strengths enables one to unravel the intramolecular dynamics of specific molecular moieties and to compare them with the (primarily dielectrically) determined intermolecular dynamics. With decreasing temperature, the IR band positions of carbonyls (part of the core units) and H-bonded moieties of citrates show a red shift with a kink at the calorimetric glass transition temperature (Tg) while other moieties, whose dynamics are decoupled from those of the core units, exhibit a blue shift with nominal changes at Tg. The oscillator strength of all units in citrates depicts stronger temperature dependencies above Tg and in some, the ester linkage and H-bonded units show a change of slope at a temperature where structural and faster secondary relaxations merge. By that, a wealth of novel information is obtained proving the fundamental importance of intramolecular mobility in the process of glass formation, beyond coarse-grained descriptions.

  4. Probing the switching mechanism in ZnO nanoparticle memristors

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Beirne, Gareth J.; Kamita, Gen; Lakhwani, Girish; Wang, Jianpu; Greenham, Neil C.

    2014-09-01

    We investigate the resistance switching mechanism in memristors based on colloidal ZnO nanoparticles using electroabsorption (EA) spectroscopy. In this EA experiment, we incorporate a small amount of low-bandgap polymer, poly(9,9-dioctylfluorene-co-benzothiadiazole), as a probe molecule in ZnO-nanoparticle memristors. By characterizing this polymer, we can study the change of built-in potential (VBI) in the device during the resistance switching process without disturbing the resistance state by the EA probe light. Our results show that VBI increases when the device is switched to the high resistance state, suggesting a shift of effective workfunction of the electrode. Thus, we attribute the resistance switching to the field-dependent migration of oxygen vacancies associated with the adsorption and desorption of oxygen molecules at the Al/ZnO interface. This process results in the modulation of the interfacial injection barrier, which governs the resistance state of the device.

  5. Probing multiscale mechanics of collagen with optical tweezers

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Rezaei, Naghmeh; Lam, Norman H.; Altindal, Tuba; Wieczorek, Andrew; Forde, Nancy R.

    2013-09-01

    How the molecular structure of the structural, extracellular matrix protein collagen correlates with its mechanical properties at different hierarchical structural levels is not known. We demonstrate the utility of optical tweezers to probe collagen's mechanical response throughout its assembly hierarchy, from single molecule force-extension measurements through microrheology measurements on solutions of collagen molecules, collagen fibrillar gels and gelatin. These experiments enable the determination of collagen's flexibility, mechanics, and timescales and strengths of interaction at different levels of hierarchy, information critical to developing models of how collagen's physiological function and stability are influenced by its chemical composition. By investigating how the viscoelastic properties of collagen are affected by the presence of telopeptides, protein domains that strongly influence fibril formation, we demonstrate that these play a role in conferring transient elasticity to collagen solutions.

  6. A new pair for inter- and intra-molecular FRET measurement

    SciTech Connect

    Yang Xiaofei; Xu Pingyong; Xu Tao . E-mail: xutao@sun5.ibp.ac.cn

    2005-05-13

    Fluorescence resonance energy transfer between mutant green fluorescent proteins provides powerful means to monitor in vivo protein-protein proximity and intracellular signaling. However, the current widely applied FRET pair of this class (CFP/YFP) requires excitation by expensive UV lasers, thereby hindering FRET imaging on many confocal microscopes. Further challenges arise from the large spectral overlap of CFP/YFP emission. Another FRET pair GFP/DsRed could obviate such limitations. However, the use of DsRed as a FRET acceptor is hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization. A tandem dimer mutant of DsRed (TDimer2) has similar spectral properties as those of DsRed. The rapid maturation and non-oligomerization make TDimer2 a promising substitute for DsRed in FRET experiments. Here, we have explored the possibility of using TDimer2 as a FRET acceptor for the donor EGFP. FRET was demonstrated between the EGFP-TDimer2 chimeric fusion protein. By substituting CFP/YFP in the Ca{sup 2+}-sensor cameleon with EGFP/TDimer2, dynamic changes in cytosolic free Ca{sup 2+} concentrations were observed with 488 nm excitation under conventional wide-field microscopy. The EGFP/TDimer2 pair was further successfully employed to monitor inter-molecular interaction between Syntaxin and SNAP25. These results reveal EGFP/TDimer2 as a promising FRET pair in monitoring intra-molecular conformation change as well as inter-molecular interaction.

  7. Mechanism of cis-prenyltransferase reaction probed by substrate analogues

    SciTech Connect

    Lu, Yen-Pin; Liu, Hon-Ge; Teng, Kuo-Hsun; Liang, Po-Huang

    2010-10-01

    Research highlights: {yields} The extremely slow trans-OPPS reaction using 2-Fluoro-FPP supports the sequential mechanism with the carbocation intermediate. {yields} The similar UPPS reaction rate under single turnover supports the concerted mechanism, without the carbocation intermediate. {yields} The secondary kinetic isotope effect also supports associate transition state for UPPS reaction, without the carbocation intermediate. -- Abstract: Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C{sub 55} product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-{sup 2}H{sub 2}]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985 {+-} 0.022 measured for UPPS reaction using [1,1-{sup 2}H{sub 2}]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.

  8. Extreme Mechanics of Probing the Ultimate Strength of Nanotwinned Diamond.

    PubMed

    Li, Bing; Sun, Hong; Chen, Changfeng

    2016-09-01

    Recently synthesized nanotwinned diamond (NTD) exhibits unprecedented Vickers hardness exceeding 200 GPa [Q. Huang et al., Nature (London) 510, 250 (2014)]. This extraordinary finding challenges the prevailing understanding of material deformation and stress response under extreme loading conditions. Here we unveil by first-principles calculations a novel indenter-deformation generated stress confinement mechanism that suppresses the graphitization or bond collapse failure modes commonly known in strong covalent solids, leading to greatly enhanced peak stress and strain range in the indented diamond lattice. Moreover, the twin boundaries in NTD promote a strong stress concentration that drives preferential bond realignments, producing a giant indentation strain stiffening. These results explain the exceptional indentation strength of NTD and offer insights into the extreme mechanics of the intricate interplay of the indenter and indented crystal in probing ultrahard materials.

  9. Extreme Mechanics of Probing the Ultimate Strength of Nanotwinned Diamond.

    PubMed

    Li, Bing; Sun, Hong; Chen, Changfeng

    2016-09-01

    Recently synthesized nanotwinned diamond (NTD) exhibits unprecedented Vickers hardness exceeding 200 GPa [Q. Huang et al., Nature (London) 510, 250 (2014)]. This extraordinary finding challenges the prevailing understanding of material deformation and stress response under extreme loading conditions. Here we unveil by first-principles calculations a novel indenter-deformation generated stress confinement mechanism that suppresses the graphitization or bond collapse failure modes commonly known in strong covalent solids, leading to greatly enhanced peak stress and strain range in the indented diamond lattice. Moreover, the twin boundaries in NTD promote a strong stress concentration that drives preferential bond realignments, producing a giant indentation strain stiffening. These results explain the exceptional indentation strength of NTD and offer insights into the extreme mechanics of the intricate interplay of the indenter and indented crystal in probing ultrahard materials. PMID:27661704

  10. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  11. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction.

    PubMed

    Zhao, Bingchuan; Zhang, Qingzhou; Li, Zigang

    2016-08-01

    Thiol-ene reactions have been used in a variety of applications that mostly involve an inter-molecular pathway. Herein, we report a facile method to construct thioether-tethered cyclic peptides via an intra-molecular thiol-ene reaction. This reaction is efficient, selective, and has good residue compatibility. Short peptides with thioether tethers were constructed and were used to construct longer cyclic peptides. This synthetic method may be useful for constructing bioactive peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27378284

  12. Probing the Molecular Mechanisms of the Fracture of Semicrystalline Polyethylene

    NASA Astrophysics Data System (ADS)

    Benkoski, J. J.; Flores, P.; Kramer, E. J.

    2003-03-01

    The effects of molecular architecture on the fracture properties of semicrystalline polymers were probed at diblock copolymer-reinforced interfaces between polystyrene (PS) and polyethylene (PE). The PE used for this study was a model ethylene-butene copolymer which was chosen for its compatibility with hydrogenated poly(styrene-b-1,4-tetradeuteriobutadiene). For a series of these diblock copolymers, the areal chain density (Σ) and the molecular weight of the PE block (M_n) were varied systematically to observe their effects on the interfacial fracture energy (G_c). At low Σ, Gc stayed relatively constant, and was roughly 1 J/m^2. Above a critical value of Σ, the fracture energy climbed rapidly. This critical value decreased with increasing M_n. The detection of deuterium on the fracture surfaces indicated that pullout of the PE block was the predominant failure mechanism when Mn <= 30 kg/mol. Since the entanglement molecular weight of PE is approximately 1 kg/mol, interfacial reinforcement does not appear to depend on the formation of entanglements for this system. The critical Mn coincides instead with the point at which the root-mean-square end-to-end length of the PE block exceeds the long period of the PE crystal lamellae (L).

  13. Hydrogen tunneling in adenosylcobalamin-dependent glutamate mutase: evidence from intrinsic kinetic isotope effects measured by intra-molecular competition †

    PubMed Central

    Yoon, Miri; Song, Hangtian; Håkansson, Kristina; Marsh, E. Neil G.

    2010-01-01

    Hydrogen atom transfer reactions between substrate and coenzyme are a key mechanistic feature of all AdoCbl-dependent enzymes. For one of these enzymes, glutamate mutase, we have investigated whether hydrogen tunneling makes a significant contribution to the mechanism by examining the temperature-dependence of the deuterium kinetic isotope effect associated with hydrogen atom transfer from methylaspartate to the coenzyme. To do this we designed a novel intra-molecular competition experiment that allowed us to measure the intrinsic kinetic isotope effect, even though hydrogen transfer may not be rate determining. From the Arrhenius plot of the kinetic isotope effect, the ratio of the pre-exponential factors AH/AD was 0.17 ± 0.04 and the isotope effect on the activation energy, ΔEa(D – H) was 1.94 ± 0.13 kcal/mol. The results imply that significant degree of hydrogen tunneling occurs in glutamate mutase, even though the intrinsic kinetic isotope effects are well within the semi-classical limit and are much smaller than those measured for other AdoCbl enzymes and model reactions for which hydrogen tunneling has been implicated. PMID:20225826

  14. In search of the cochlear amplifier: New mechanical and molecular tools to probe transduction channel function

    NASA Astrophysics Data System (ADS)

    Karavitaki, K. Domenica; Indzhykulian, Artur A.; Zhang, Duan-Sun; Corey, David P.

    2015-12-01

    The study of mechanotransduction in cochlear hair cells requires stimulus methods that mimic the in-vivo stimulation. We have developed a new mechanical probe to better mimic the physiological stimulus delivered to cochlear hair cells through the overlying tectorial membrane. We combine these new probes with electroporation to study the contribution of different components of the transduction apparatus.

  15. Probing Mechanical Properties of Rock with InSAR

    NASA Astrophysics Data System (ADS)

    Jónsson, S.

    2012-04-01

    Interferometric Synthetic Aperture Radar (InSAR) observations from satellites have revolutionized our crustal deformation measurement capabilities with its high spatial resolution, global coverage, and low cost. The high spatial resolution (typically 5-20 m) allows us to map many small-scale surface deformation phenomena in great detail. These include surface faulting, fissuring, fault creep, and other strain localization phenomena. Another advantage of the small-scale deformation mapping is that it can provide information about mechanical properties of near-surface rocks. Several studies have already been published on using InSAR to probe material properties of rock. Strain localizations at fault zones have been observed in co-seismic deformation fields near to large earthquakes and interpreted as expressions of weak fault zone materials that are a factor of two more compliant than the surrounding unbroken rock [Fialko et al., 2002]. Peltzer et al. [1999] argued that asymmetries in coseismic deformation patterns observed by InSAR showed evidence for non-linear elasticity, i.e. that the elastic moduli of shallow crustal material are different for compression and extension, due to small-scale cracks in the medium. This interpretation was later disputed by Funning et al. [2007], who provided an alternative explanation for observed deformation pattern based on along-strike variations in fault geometry and slip. In addition, observations and modeling of poro-elastic rebound after earthquakes have provided information about the difference in undrained and drained Poisson's ratio values of the near-surface rocks [Peltzer et al., 1996; Jónsson et al., 2003]. More recently we have used InSAR observations to put bounds on the tensional bulk strength of surface rocks. A dyke intrusion that took place in western Saudi Arabia in 2009 caused many moderate-sized earthquakes and extensive surface faulting. InSAR data of the area show that large-scale (40 km x 40 km) east

  16. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  17. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature.

    PubMed

    Chremos, Alexandros; Glynos, Emmanouil; Green, Peter F

    2015-01-28

    Structural and dynamical properties of star melts have been investigated with molecular dynamics simulations of a bead-spring model. Star polymers are known to be heterogeneous, but a systematic simulation study of their properties in melt conditions near the glass transition temperature was lacking. To probe their properties, we have expanded from linear to star polymers the applicability of Dobkowski's chain-length dependence correlation function [Z. Dobkowski, Eur. Polym. J. 18, 563 (1982)]. The density and the isokinetic temperature, based on the canonical definition of the laboratory glass-transition, can be described well by the correlation function and a subtle behavior manifests as the architecture becomes more complex. For linear polymer chains and low functionality star polymers, we find that an increase of the arm length would result in an increase of the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior. The effect between low and high functionalities is more pronounced for short arm lengths. Complementary results such as the specific volume and number of neighbors in contact provide further insights on the subtle relation between structure and dynamics. The findings would be valuable to polymer, colloidal, and nanocomposites fields for the design of materials in absence of solution with the desired properties. PMID:25638003

  18. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy

    SciTech Connect

    Fukuzawa, Kenji; Terada, Satoshi; Shikida, Mitsuhiro; Amakawa, Hiroaki; Zhang, Hedong; Mitsuya, Yasunaga

    2007-02-01

    A dual-axis micromechanical probe that combines a double cantilever and torsion beams is presented. This probe can reduce the mechanical cross-talk between the lateral and vertical force detections. In addition, dual-axis forces can be detected by measuring the dual-axis displacement of the probe end using the optical lever-based method used in conventional friction force microscopes (FFMs). In this paper, the mechanical design of the probe, the details of the fabrication method, FFM performance, and calibration of the friction force are discussed. The mechanical design and the microfabrication method for probes that can provide a force resolution of the order of 1 nN without mechanical cross-talk are presented. Calibration of the lateral force signal is possible by using the relationship between the lateral force and the piezodisplacement at the onset of the probe scanning. The micromechanical probe enables simultaneous and independent detection of atomic and friction forces. This leads to accurate investigation of nanotribological phenomena and visualization of the distribution of the friction properties, which helps the identification of the material properties.

  19. Probing mechanical quantum coherence with an ultracold-atom meter

    SciTech Connect

    Lo Gullo, N.; Busch, Th.; Palma, G. M.; Paternostro, M.

    2011-12-15

    We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.

  20. PERSPECTIVE: Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control

    NASA Astrophysics Data System (ADS)

    Tsai, Chung-Jung; Ma, Buyong; Nussinov, Ruth

    2009-03-01

    The vast majority of the proteins in nature are under thermodynamic control, consistent with the universally accepted notion that proteins exist in their thermodynamically most stable state. Yet, recently a number of examples of proteins whose fold is under kinetic control have come to light. Their functions and environments vary. The first among these are some proteases, discovered in the early 1990s. There, an N-terminal proregion is self-cleaved after the protein folded, leaving the remainder of the chain in a kinetically trapped state. A related scenario was observed for microcin J25, an antibacterial peptide. This peptide presents a trapped covalently knotted conformation. The third and the most recently discovered case is the multidrug-resistant transporter protein, P-glycoprotein. There, a synonymous 'silent' mutation leads to ribosome stalling with a consequent altered kinetically trapped state. Here we argue that in all three examples, the N-terminal plays the role of an intra-molecular chaperone, that is, the N-terminal conformation selects among all competing local conformations of a downstream segment. By providing a pattern, the N-terminal chaperone segment assists the protein folding process. If the N-terminal is subsequently cleaved, the protein can be under kinetic control, since it is trapped in a thermodynamically less-stable state.

  1. Intra-molecular cohesion of coils mediated by phenylalanine-glycine motifs in the natively unfolded domain of a nucleoporin

    SciTech Connect

    Krishnan, V V; Lau, E Y; Yamada, J; Denning, D P; Patel, S S; Colvin, M E; Rexach, M F

    2007-04-19

    The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and cytoplasm of cells. Its conduit contains a size-selective gate and is populated by a family of NPC proteins that feature long natively-unfolded domains with phenylalanine-glycine repeats. These FG nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results show that its FG motifs function as intra-molecular cohesion elements that impart order to the FG domain. The cohesion of coils mediated by FG motifs in the natively unfolded domain of Nup116 supports a type of tertiary structure, a native pre-molten globule, that could become quaternary at the NPC through recruitment of neighboring FG nucleoporins, forming one cohesive meshwork of intertwined filaments capable of gating protein diffusion across the NPC by size exclusion.

  2. Inter- and intra-molecular interactions of Arabidopsis thaliana DELLA protein RGL1

    PubMed Central

    Sheerin, David J.; Buchanan, Jeremy; Kirk, Chris; Harvey, Dawn; Sun, Xiaolin; Spagnuolo, Julian; Li, Sheng; Liu, Tong; Woods, Virgil A.; Foster, Toshi; Jones, William T.; Rakonjac, Jasna

    2011-01-01

    The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A–RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1. PMID:21323638

  3. Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction.

    PubMed

    Bunting, J R; Phan, T V; Kamali, E; Dowben, R M

    1989-11-01

    Mitochondria strongly accumulate amphiphilic cations. We report here a study of the association of respiring rat liver mitochondria with several fluorescent cationic dyes from differing structural classes. Using gravimetric and fluorometric analysis of dye partition, we find that dyes and mitochondria interact in three ways: (a) uptake with fluorescence quenching, (b) uptake without change in fluorescence intensity, and (c) lack of uptake. For dyes that quench upon uptake, the extent of quenching correlates with the degree of aggregation of the dye to dimers, as predicted by theory (Tomov, T.C. 1986. J. Biochem. Biophys. Methods. 13:29-38). Also predicted is the relationship observed between quenching and the mitochondria concentration when constant dye is titrated with mitochondria. Not predicted is the relationship observed between quenching and dye concentration when constant mitochondria are titrated with dye. Because a limit to dye uptake exists, in this case, the degree of quenching decreases as dye is added. A Langmuir isotherm analysis gives phenomenological parameters that predict quenching when it is observed as a function of dye concentration. By allowing for a decrease in membrane potential, caused by incorporation of cationic dye into the lipid bilayer, a modification of the Tomov theory predicts the dye titration data. We present a model of cationic dye-mitochondria interaction and discuss the use of these as probes of mitochondrial membrane potential.

  4. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1995-01-01

    We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.

  5. Probing Mechanisms That Underlie Human Neurodegenerative Diseases in Drosophila

    PubMed Central

    Jaiswal, M.; Sandoval, H.; Zhang, K.; Bayat, V.; Bellen, H.J.

    2013-01-01

    The fruit fly, Drosophila melanogaster, is an excellent organism for the study of the genetic and molecular basis of metazoan development. Drosophila provides numerous tools and reagents to unravel the molecular and cellular functions of genes that cause human disease, and the past decade has witnessed a significant expansion of the study of neurodegenerative disease mechanisms in flies. Here we review the interplay between oxidative stress and neuronal toxicity. We cover some of the studies that show how proteasome degradation of protein aggregates, autophagy, mitophagy, and lysosomal function affect the quality control mechanisms required for neuronal survival. We discuss how forward genetic screens in flies have led to the isolation of a few loci that cause neurodegeneration, paving the way for large-scale systematic screens to identify such loci in flies as well as promoting gene discovery in humans. PMID:22974305

  6. Probing mechanical properties of living cells by magnetopneumography.

    PubMed

    Möller, W; Takenaka, S; Rust, M; Stahlhofen, W; Heyder, J

    1997-01-01

    Magnetopneumography (MPG) has been used to study long-term particle clearance from human lungs as well as cellular motility of pulmonary macrophages (PMs). This study describes an extension of the method enabling the measurement of mechanical properties of PM cells in vivo. Ferromagnetic microparticles are inhaled and then retained in the alveolar region of the lungs, where they are phagocytized within hours by PMs. The magnetic particles can be rotated in weak magnetic fields, and the response to this twisting shear (force) is detected as a macroscopic magnetic field producing a measure of cytoskeletal mechanics. Cytoplasmic viscosity is very high compared with that of water and is strongly non-Newtonian. Under rotational stresses from 0.4 to 6.4 Pa, it acts like a pseudoplastic fluid showing a characteristic shear rate dependence. The viscosity as well as the stiffness of the cytoskeleton increases with increasing shear stress as seems typical for living tissue and evidence for an intact cytoskeletal matrix. The particle recoil as measured by the amount of recoverable strain following a short twisting force describes a cytoplasmic elasticity that depends on both level and duration of stress. These investigations on the mechanical properties of living human cells are promising and should lead to better understanding of cellular dysfunction in disease as well as pathways for drug administration. PMID:10174196

  7. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    PubMed Central

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-01-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis. PMID:26906294

  8. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-01

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  9. Subnanometre enzyme mechanics probed by single-molecule force spectroscopy.

    PubMed

    Pelz, Benjamin; Žoldák, Gabriel; Zeller, Fabian; Zacharias, Martin; Rief, Matthias

    2016-02-24

    Enzymes are molecular machines that bind substrates specifically, provide an adequate chemical environment for catalysis and exchange products rapidly, to ensure fast turnover rates. Direct information about the energetics that drive conformational changes is difficult to obtain. We used subnanometre single-molecule force spectroscopy to study the energetic drive of substrate-dependent lid closing in the enzyme adenylate kinase. Here we show that in the presence of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A), closing and opening of both lids is cooperative and tightly coupled to inhibitor binding. Surprisingly, binding of the substrates ADP and ATP exhibits a much smaller energetic drive towards the fully closed state. Instead, we observe a new dominant energetic minimum with both lids half closed. Our results, combining experiment and molecular dynamics simulations, give detailed mechanical insights into how an enzyme can cope with the seemingly contradictory requirements of rapid substrate exchange and tight closing, to ensure efficient catalysis.

  10. Probing scattering mechanisms with symmetric quantum cascade lasers.

    PubMed

    Deutsch, Christoph; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Klang, Pavel; Kubis, Tillmann; Klimeck, Gerhard; Schuster, Manfred E; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2013-03-25

    A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.

  11. Probing the mechanical properties of dental porcelain through nanoindentation

    NASA Astrophysics Data System (ADS)

    Manda, Marianthi; Moschakis, Nikolaos; Konstantinidis, Avraam; Christophilos, Demetrios; Papadopoulou, Lambrini; Koidis, Petros; Aifantis, Elias

    2012-11-01

    The purpose of this short communication is to report on some micro/nanoscale aspects of the mechanical behavior of dental porcelain. Specimens were characterized by micro-Raman spectroscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Massive nanoindentation experiments on the surface of the specimens were performed, and typical load-displacement or load-depth (P-h) curves were obtained, which in turn were used to determine the Young modulus (E) and nanoindentation hardness (n-H), based on the Oliver-Pharr method [1]. Statistical analyses were carried out to determine the Spearman’s rank correlation coefficient (Spearman’s ρ), along with non-parametric linear regression analysis by employing Kolmogorov-Smirnov and Two-Step Cluster tests. Densification due to grain boundary diffusion and open-pore elimination was revealed by SEM. EDS analysis indicated a leucite-dispersed silicate glass matrix, as well as its contamination by traces of other minerals. Raman spectroscopy supported the EDS assignments. The P-h curves suggested that inelastic deformation and material flow increases at larger depths. Spearman’s ρ value showed strong dependence of E and n-H on h, indicating the occurrence of a size effect. The logarithmic data of E and n-H as functions of h were fitted by using linear regression analysis. The data did not obey a normal distribution (as the Kolmogorov-Smirnov test showed) due to the chemical heterogeneity involved. The Two-Step Cluster analysis indicated clustering in four groups associated with the chemical heterogeneity of the surface. Similar works using nanoindentation to determine the mechanical properties of dental materials can be found, for example, in [2, 3]. Corresponding methods for extracting the values of E and n-H from P-h experimental curves can be found, for example, in [4-6].

  12. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times.

  13. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times. PMID:18922534

  14. Probing mechanical principles of cell-nanomaterial interactions

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    2014-01-01

    With the rapid development of nanotechnology, various types of nanoparticles, nanowires, nanofibers, nanotubes, and atomically thin plates and sheets have emerged as candidates for an ever increasing list of potential applications for next generation electronics, microchips, composites, barrier coatings, biosensors, drug delivery, and energy harvesting and conversion systems. There is now an urgent societal need to understand both beneficial and hazardous effects of nanotechnology which is projected to produce and release thousands of tons of nanomaterials into the environment in the coming decades. This paper aims to present an overview of some recent studies conducted at Brown University on the mechanics of cell-nanomaterial interactions, including the modeling of nanoparticles entering cells by receptor-mediated endocytosis and coarse-grained molecular dynamics simulations of nanoparticles interacting with cell membranes. The discussions will be organized around the following questions: Why and how does cellular uptake of nanoparticles depend on particle size, shape, elasticity and surface structure? In particular, we will discuss the effect of nanoparticle size on receptor-mediated endocytosis, the effect of elastic stiffness on cell-particle interactions, how high aspect ratio nanomaterials such as carbon nanotubes and graphenes enter cells and how different geometrical patterns of ligands on a nanoparticle can be designed to control the rate of particle uptake.

  15. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  16. AFM investigation on surface damage caused by mechanical probing with small ruby spheres

    NASA Astrophysics Data System (ADS)

    Meli, Felix; Küng, Alain

    2007-02-01

    One challenge for today's coordinate metrology is fast and accurate 3D measurements on small objects. Mechanical probing is considered to be simple and accurate but limitations may arise from elastic and plastic deformations at the contact point. Understanding these limits quantitatively will help to avoid surface damage and measurement errors. Static and dynamic forces for single point probings and for scanning measurements were investigated in the present work using a metrology AFM and a micro-CMM. The obtained results were compared with theoretical predictions made by Hertz's theory. We found that the standard forces used by the METAS micro-CMM can be kept below the macroscopic damage threshold. On the other hand, plastic deformation of microscopic contact points which forms at the interface due to the surface roughness of the probe and sample is always present. Additionally, probe contamination by build-up of ductile metal on the probe surface was observed and probe wear on a hard sample was measured.

  17. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes

    PubMed Central

    Jurchenko, Carol

    2015-01-01

    The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes. PMID:26031334

  18. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  19. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.

    PubMed

    Rico, Félix; Roca-Cusachs, Pere; Gavara, Núria; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2005-08-01

    Atomic force microscopy (AFM) allows the acquisition of high-resolution images and the measurement of mechanical properties of living cells under physiological conditions. AFM cantilevers with blunted pyramidal tips are commonly used to obtain images of living cells. Measurement of mechanical properties with these tips requires a contact model that takes into account their blunted geometry. The aim of this work was to develop a contact model of a blunted pyramidal tip and to assess the suitability of pyramidal tips for probing mechanical properties of soft gels and living cells. We developed a contact model of a blunted pyramidal tip indenting an elastic half-space. We measured Young's modulus (E) and the complex shear modulus (G*= G' +i G" ) of agarose gels and A549 alveolar epithelial cells with pyramidal tips and compared them with those obtained with spherical tips. The gels exhibited an elastic behavior with almost coincident loading and unloading force curves and negligible values of G". E fell sharply with indentation up to approximately 300 nm , showing a linear regime for deeper indentations. A similar indentation dependence of E with twofold lower values at the linear regime was obtained with the spherical tip fitted with Hertz's model. The dependence of E on indentation in cells paralleled that found in gels. Cells exhibited viscoelastic behavior with G"/G' approximately 1/4 . Pyramidal tips commonly used for AFM imaging are suitable for probing mechanical properties of soft gels and living cells. PMID:16196611

  20. Mechanisms of small molecule-DNA interactions probed by single-molecule force spectroscopy.

    PubMed

    Almaqwashi, Ali A; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C

    2016-05-19

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA-ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  1. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  2. A Monte Carlo-quantum mechanics study of a solvatochromic π* probe.

    PubMed

    Domínguez, Moisés; Rezende, Marcos Caroli

    2016-09-01

    The solvation and the solvatochromic behavior of 5-(dimethylamino)-5'-nitro-2,2'-bithiophene 1, the basis of a π* scale of solvent polarities, was investigated theoretically in toluene, dichloromethane, methanol and formamide with a Monte Carlo and quantum mechanics (QM/MM) iterative approach. The calculated transition energies of the solvatochromic band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first solvation layer, besides showing good agreement with the experimental transitions, reproduced very well the positive solvatochromism of this probe in various solvents.

  3. A Monte Carlo-quantum mechanics study of a solvatochromic π* probe.

    PubMed

    Domínguez, Moisés; Rezende, Marcos Caroli

    2016-09-01

    The solvation and the solvatochromic behavior of 5-(dimethylamino)-5'-nitro-2,2'-bithiophene 1, the basis of a π* scale of solvent polarities, was investigated theoretically in toluene, dichloromethane, methanol and formamide with a Monte Carlo and quantum mechanics (QM/MM) iterative approach. The calculated transition energies of the solvatochromic band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first solvation layer, besides showing good agreement with the experimental transitions, reproduced very well the positive solvatochromism of this probe in various solvents. PMID:27553303

  4. Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular π-π stacking interactions.

    PubMed

    Zhang, Yunge; Zhang, Dongdong; Cai, Minghan; Li, Yilang; Zhang, Deqiang; Qiu, Yong; Duan, Lian

    2016-03-01

    Thermally activated delayed fluorescence (TADF) materials have attracted much attention as they can achieve 100% theoretical internal quantum efficiency without using expensive noble metals. However, efficient red TADF emitters are hard to realize according to the energy gap law. Here, three donor-acceptor-donor type TADF emitters with the same acceptor of o-phthalodinitrile (PN) but different donors (9, 9-dimethyl-9, 10-dihydroacridine (DMAC), phenoxazine (PXZ), and phenothiazine (PTZ) for DMAC-PN, PXZ-PN, and PTZ-PN, respectively) have been synthesized, and it is observed that the performance of the emitters can be improved by reducing the intra-molecular π-π stacking. DMAC-PN with reduced intra-molecular π-π stacking shows a photoluminescence quantum yield (PLQY) of 20.2% in degassed toluene solution, much higher than those of PXZ-PN, and PTZ-PN (0.8%, 0.2%, respectively). An organic light-emitting diode (OLED) employing DMAC-PN doped into 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) as the emitting layer exhibits a maximum external quantum efficiency (EQE) of 10.2% with the emission peak at 564 nm. Moreover, when DMAC-PN is doped into a polar host, bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO), the OLED shows a large redshift of the emission maximum to 594 nm, while maintaining a peak EQE as high as 7.2%, indicating that efficient red TADF OLEDs can be fabricated by doping orange TADF emitters into hosts with proper polarity. PMID:26821694

  5. Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular π-π stacking interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yunge; Zhang, Dongdong; Cai, Minghan; Li, Yilang; Zhang, Deqiang; Qiu, Yong; Duan, Lian

    2016-03-01

    Thermally activated delayed fluorescence (TADF) materials have attracted much attention as they can achieve 100% theoretical internal quantum efficiency without using expensive noble metals. However, efficient red TADF emitters are hard to realize according to the energy gap law. Here, three donor-acceptor-donor type TADF emitters with the same acceptor of o-phthalodinitrile (PN) but different donors (9, 9-dimethyl-9, 10-dihydroacridine (DMAC), phenoxazine (PXZ), and phenothiazine (PTZ) for DMAC-PN, PXZ-PN, and PTZ-PN, respectively) have been synthesized, and it is observed that the performance of the emitters can be improved by reducing the intra-molecular π-π stacking. DMAC-PN with reduced intra-molecular π-π stacking shows a photoluminescence quantum yield (PLQY) of 20.2% in degassed toluene solution, much higher than those of PXZ-PN, and PTZ-PN (0.8%, 0.2%, respectively). An organic light-emitting diode (OLED) employing DMAC-PN doped into 4,4‧-bis(9H-carbazol-9-yl)biphenyl (CBP) as the emitting layer exhibits a maximum external quantum efficiency (EQE) of 10.2% with the emission peak at 564 nm. Moreover, when DMAC-PN is doped into a polar host, bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO), the OLED shows a large redshift of the emission maximum to 594 nm, while maintaining a peak EQE as high as 7.2%, indicating that efficient red TADF OLEDs can be fabricated by doping orange TADF emitters into hosts with proper polarity.

  6. Mechanism of Fluorescence Switching in One ESIPT-Based Al(3+) Probe.

    PubMed

    Budzák, Šimon; Jacquemin, Denis

    2016-07-14

    A recently synthesized Schiff base used as a probe for aluminum cations was studied with ab initio models. The primary reason for the lack of fluorescence in aprotic solvents was found to be the presence of an efficient conical intersection (CI) between the ground-states and the first singlet excited-states close to the Franck-Condon geometry. The excited-state pathway leading to this CI is barrierless but implies large amplitude motions, explaining why the fluorescence was observed in frozen acetonitrile matrix. Our calculations suggest that constraining the molecule by impending the rotation around the imino bond enables excited-state intramolecular proton transfer. A similar stiffening mechanism is responsible for the strong fluorescence turn-on after formation of complexes between Al(3+) cations and dehydrogenated Schiff base. Finally, the analysis of the possible fluorescence mechanisms in water indicates that the anion of 1 is the likely fluorescence source. Overall, this work allows one to disentangle the various origins of fluorescence switching in a probe. PMID:27281545

  7. Mechanisms, kinetics, and dynamics of oxidation and reactions on oxide surfaces investigated by scanning probe microscopy.

    PubMed

    Altman, Eric I; Schwarz, Udo D

    2010-07-20

    Advances in scanning probe microscopies (SPM) have allowed the mechanisms and rates of adsorption, diffusion and reactions on surfaces to be characterized by directly observing the motions of the individual atoms and molecules involved. The importance of oxides as thermal and photocatalysts, chemical sensors, and substrates for epitaxial growth has motivated dynamical SPM studies of oxide surfaces and their formation. Work on the TiO(2) (110) surface is reviewed as an example of how dynamic SPM studies have revealed unexpected interactions between adsorbates and defects that influence macroscopic reaction rates. Studies following diffusion, adsorption and phase transitions on bulk and surface oxides are also discussed. A perspective is provided on advanced SPM techniques that hold great promise for yielding new insights into the mechanisms and rates of elemental processes that take place either during oxidation or on oxide surfaces, with particular emphasis on methods that extend the time and chemical resolution of dynamical SPM measurements.

  8. Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.

    PubMed

    Põder, Endel

    2014-11-06

    Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data.

  9. Carbon-dot-loaded alginate gels as recoverable probes: fabrication and mechanism of fluorescent detection.

    PubMed

    Hu, Shengliang; Zhao, Qing; Dong, Yingge; Yang, Jinlong; Liu, Jun; Chang, Qing

    2013-10-01

    We prepare a solid and green film of carbon-dot-loaded alginate gels with a pore structure. Compared to carbon dot suspension, the film exhibits stronger blue light emission. The porous structure of the film enables ion diffusion and contact with the CDs incorporated in the gel network, and thus the photoluminescence (PL) behavior of the film can be influenced by ions. The PL of the film shows a sensitive and selective quenching effect to Cu(2+), and it can be repeatedly used as a fluorescent probe to recognize Cu(2+) with a detection limit of 5 ppm. A band bending mechanism is proposed to understand the effects of surface/interface states and metal ions on the PL behavior of carbon-dot-loaded alginate gels, and it has been supported by our further experimental results. This band bending mechanism provides a clear physical insight into ion detection by PL behavior.

  10. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.

    PubMed

    Hu, Ping; Yan, Mengyu; Wang, Xuanpeng; Han, Chunhua; He, Liang; Wei, Xiujuan; Niu, Chaojiang; Zhao, Kangning; Tian, Xiaocong; Wei, Qiulong; Li, Zijia; Mai, Liqiang

    2016-03-01

    Graphene has been widely used to enhance the performance of energy storage devices due to its high conductivity, large surface area, and excellent mechanical flexibility. However, it is still unclear how graphene influences the electrochemical performance and reaction mechanisms of electrode materials. The single-nanowire electrochemical probe is an effective tool to explore the intrinsic mechanisms of the electrochemical reactions in situ. Here, pure MnO2 nanowires, reduced graphene oxide/MnO2 wire-in-scroll nanowires, and porous graphene oxide/MnO2 wire-in-scroll nanowires are employed to investigate the capacitance, ion diffusion coefficient, and charge storage mechanisms in single-nanowire electrochemical devices. The porous graphene oxide/MnO2 wire-in-scroll nanowire delivers an areal capacitance of 104 nF/μm(2), which is 4.0 and 2.8 times as high as those of reduced graphene oxide/MnO2 wire-in-scroll nanowire and MnO2 nanowire, respectively, at a scan rate of 20 mV/s. It is demonstrated that the reduced graphene oxide wrapping around the MnO2 nanowire greatly increases the electronic conductivity of the active materials, but decreases the ion diffusion coefficient because of the shielding effect of graphene. By creating pores in the graphene, the ion diffusion coefficient is recovered without degradation of the electron transport rate, which significantly improves the capacitance. Such single-nanowire electrochemical probes, which can detect electrochemical processes and behavior in situ, can also be fabricated with other active materials for energy storage and other applications in related fields.

  11. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.

    PubMed

    Hu, Ping; Yan, Mengyu; Wang, Xuanpeng; Han, Chunhua; He, Liang; Wei, Xiujuan; Niu, Chaojiang; Zhao, Kangning; Tian, Xiaocong; Wei, Qiulong; Li, Zijia; Mai, Liqiang

    2016-03-01

    Graphene has been widely used to enhance the performance of energy storage devices due to its high conductivity, large surface area, and excellent mechanical flexibility. However, it is still unclear how graphene influences the electrochemical performance and reaction mechanisms of electrode materials. The single-nanowire electrochemical probe is an effective tool to explore the intrinsic mechanisms of the electrochemical reactions in situ. Here, pure MnO2 nanowires, reduced graphene oxide/MnO2 wire-in-scroll nanowires, and porous graphene oxide/MnO2 wire-in-scroll nanowires are employed to investigate the capacitance, ion diffusion coefficient, and charge storage mechanisms in single-nanowire electrochemical devices. The porous graphene oxide/MnO2 wire-in-scroll nanowire delivers an areal capacitance of 104 nF/μm(2), which is 4.0 and 2.8 times as high as those of reduced graphene oxide/MnO2 wire-in-scroll nanowire and MnO2 nanowire, respectively, at a scan rate of 20 mV/s. It is demonstrated that the reduced graphene oxide wrapping around the MnO2 nanowire greatly increases the electronic conductivity of the active materials, but decreases the ion diffusion coefficient because of the shielding effect of graphene. By creating pores in the graphene, the ion diffusion coefficient is recovered without degradation of the electron transport rate, which significantly improves the capacitance. Such single-nanowire electrochemical probes, which can detect electrochemical processes and behavior in situ, can also be fabricated with other active materials for energy storage and other applications in related fields. PMID:26882441

  12. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    PubMed

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.

  13. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures.

    PubMed

    Chen, Xiaolong; Wu, Zefei; Xu, Shuigang; Wang, Lin; Huang, Rui; Han, Yu; Ye, Weiguang; Xiong, Wei; Han, Tianyi; Long, Gen; Wang, Yang; He, Yuheng; Cai, Yuan; Sheng, Ping; Wang, Ning

    2015-01-01

    The metal-insulator transition is one of the remarkable electrical properties of atomically thin molybdenum disulphide. Although the theory of electron-electron interactions has been used in modelling the metal-insulator transition in molybdenum disulphide, the underlying mechanism and detailed transition process still remain largely unexplored. Here we demonstrate that the vertical metal-insulator-semiconductor heterostructures built from atomically thin molybdenum disulphide are ideal capacitor structures for probing the electron states. The vertical configuration offers the added advantage of eliminating the influence of large impedance at the band tails and allows the observation of fully excited electron states near the surface of molybdenum disulphide over a wide excitation frequency and temperature range. By combining capacitance and transport measurements, we have observed a percolation-type metal-insulator transition, driven by density inhomogeneities of electron states, in monolayer and multilayer molybdenum disulphide. In addition, the valence band of thin molybdenum disulphide layers and their intrinsic properties are accessed.

  14. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  15. Characterization of intra-molecular distances and site-specific dynamics in chemically unfolded barstar: evidence for denaturant-dependent non-random structure.

    PubMed

    Saxena, Anoop M; Udgaonkar, Jayant B; Krishnamoorthy, G

    2006-05-26

    The structure and dynamics of the unfolded form of a protein are expected to play critical roles in determining folding pathways. In this study, the urea and guanidine hydrochloride (GdnHCl)-unfolded forms of the small protein barstar were explored by time-resolved fluorescence techniques. Barstar was labeled specifically with thionitrobenzoate (TNB), by coupling it to the thiol side-chain of a cysteine residue at one of the following positions on the sequence: 14, 25, 40, 42, 62, 82 and 89, in single cysteine-containing mutant proteins. Seven intra-molecular distances (R(DA)) under unfolding conditions were estimated from measurements of time-resolved fluorescence resonance energy transfer between the donor Trp53 and the non-fluorescent acceptor TNB coupled to one of the seven cysteine side-chains. The unfolded protein chain expands with an increase in the concentration of the denaturants. The extent of expansion was found to be non-uniform, with different intra-molecular distances expanding to different extents. In general, shorter distances were found to expand less when compared to longer spans. The extent of expansion was higher in the case of GdnHCl when compared to urea. A comparison of the measured values of R(DA) with those derived from a model based on excluded volume, revealed that while shorter spans showed good agreement, the experimental values of R(DA) of longer spans were smaller when compared to the theoretical values. Sequence-specific flexibility of the polypeptide was determined by time-resolved fluorescence anisotropy decay measurements on acrylodan or 1,5-IAEDANS labeled single cysteine-containing proteins under unfolding conditions. Rotational dynamics derived from these measurements indicated that the level of flexibility increased with increase in the concentration of denaturants and showed a graded increase towards the C-terminal end. Taken together, these results appear to indicate the presence of specific non-random coil structures and

  16. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological

  17. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis.

    PubMed

    Castellanos, Milagros; Carrillo, Pablo J P; Mateu, Mauricio G

    2015-03-19

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.

  18. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  19. Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation.

    PubMed

    Ma, Xiaodong; Lv, Xiaoqing; Qiu, Ni; Yang, Bo; He, Qiaojun; Hu, Yongzhou

    2015-12-15

    A series of quinoline derivatives featuring the novelty of introducing intra-molecular hydrogen bonding scaffold (iMHBS) were designed, synthesized and biologically evaluated for their mTOR inhibitory activity, as well as anti-proliferative efficacies against HCT-116, PC-3 and MCF-7 cell lines. As a result, six compounds exhibited significant inhibition against mTOR with IC50 values below 35nM. Compound 15a, the most potent mTOR inhibitor reported herein (IC50=14nM), also displayed the most favorable cellular activities, with the IC50 values of 0.46, 0.61 and 0.24μM against HCT-116, PC-3 and MCF-7, respectively. Besides, several compounds in this series were identified to be selective over class I PI3Ks. Further western blot analysis of 16b, a representative compound in this series, highlighted their advantage in surmounting the S6K/IRS1/PI3K negative feedback loop upon dual inhibition of mTORC1 and mTORC2. In addition to the remarkable activity, 15a demonstrated acceptable stability in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and liver microsome, thereby being valuable for extensive in vivo investigation.

  20. Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Baia, M.; Toderas, F.; Baia, L.; Popp, J.; Astilean, S.

    2006-04-01

    Gold colloidal nanoparticles were immobilized upon a glass substrate and their morphology and optical properties are analyzed with TEM and UV-Vis absorption spectroscopy. The substrate suitability for surface-enhanced Raman spectroscopy (SERS) in visible and near-infrared spectral region is demonstrated with four excitation lines using p-aminothiophenol. The SERS spectra of probing molecules exhibit a clear signature of electromagnetic and charge-transfer enhancement mechanisms, which critically depend on the laser lines. The large tunability of surface plasmon excitation combined with the advantage of highly chemical affinity to gold of probe molecules recommends this SERS-active system as a useful model for probing the mechanisms of Raman enhancement.

  1. Combining colloidal probe atomic force and reflection interference contrast microscopy to study the compressive mechanics of hyaluronan brushes.

    PubMed

    Attili, Seetharamaiah; Richter, Ralf P

    2012-02-14

    We describe a method that combines colloidal probe atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) to characterize the mechanical properties of thin and solvated polymer films. When analyzing polymer films, a fundamental problem in colloidal probe AFM experiments is to determine the distance at closest approach between the probe and the substrate on which the film is deposited. By combining AFM and RICM in situ, forces and absolute distances can be measured simultaneously. Using the combined setup, we quantify the compressive mechanics of films of the polysaccharide hyaluronan that is end-grafted to a supported lipid bilayer. The experimental data, and comparison with polymer theory, show that hyaluronan films are well-described as elastic, very soft and highly solvated polymer brushes. The data on these well-defined films should be a useful reference for the investigation of the more complex hyaluronan-rich coats that surround many living cells.

  2. Space Science Education by Mathematica Demonstrations: Interactive Design of Moving Space Probe Elements Mechanics by Foldable and Extendable Structures for Space Applications

    NASA Astrophysics Data System (ADS)

    Kabai, S.; Bérczi, Sz.

    2010-03-01

    By the interactive Mathematica Demonstrations of the Wolfram Research several mechanics for space probe operation and motion simulations were studied as space robotics and science educational program.

  3. Chiral, J-Aggregate-Forming Dyes for Alternative Signal Modulation Mechanisms in Self-Immolative Enzyme-Activatable Optical Probes.

    PubMed

    Sloniec-Myszk, Jagoda; Resch-Genger, Ute; Hennig, Andreas

    2016-02-11

    Enzyme-activatable optical probes are important for future advances in cancer imaging, but may easily suffer from low signal-to-background ratios unless not optimized. To address this shortcoming, numerous mechanisms to modulate the fluorescence signal have been explored. We report herein newly synthesized probes based on self-immolative linkers containing chiral J-aggregate-forming dyes. Signal modulation by formation of chiral J-aggregates is yet unexplored in optical enzyme probe design. The comprehensive characterization of the probes by absorption, CD, fluorescence, and time-resolved fluorescence spectroscopy revealed dye-dye interactions not observed for the free dyes in solution as well as dye-protein interactions with the enzyme. This suggested that J-aggregate formation is challenging to achieve with current probe design and that interactions of the dyes with the enzyme may interfere with achieving high signal-to-background ratios. The detailed understanding of the interactions provided herein provides valuable guidelines for the future design of similar probes.

  4. Hydrophobic Interactions Contribute to Conformational Stabilization of Endoglycoceramidase II by Mechanism-Based Probes.

    PubMed

    Ben Bdira, Fredj; Jiang, Jianbing; Kallemeijn, Wouter; de Haan, Annett; Florea, Bogdan I; Bleijlevens, Boris; Boot, Rolf; Overkleeft, Herman S; Aerts, Johannes M; Ubbink, Marcellus

    2016-08-30

    Small compound active site interactors receive considerable attention for their ability to positively influence the fold of glycosidases. Endoglycoceramidase II (EGCII) from Rhodococcus sp. is an endo-β-glucosidase releasing the complete glycan from ceramide in glycosphingolipids. Cleavage of the β-glycosidic linkage between glucose and ceramide is also catalyzed by glucocerebrosidase (GBA), the exo-β-glucosidase deficient in Gaucher disease. We demonstrate that established β-glucoside-configured cyclophellitol-type activity-based probes (ABPs) for GBA also are effective, mechanism-based, and irreversible inhibitors of EGCII. The stability of EGCII is markedly enhanced by formation of covalent complexes with cyclophellitol ABPs substituted with hydrophobic moieties, as evidenced by an increased melting temperature, resistance against tryptic digestion, changes in (15)N-(1)H transverse relaxation optimized spectroscopy spectra of the [(15)N]Leu-labeled enzyme, and relative hydrophobicity as determined by 8-anilino-1-naphthalenesulfonic acid fluorescence. The stabilization of EGCII conformation correlates with the shape and hydrophobicity of the substituents of the ABPs. We conclude that the amphipathic active site binders with aliphatic moieties act as a "hydrophobic zipper" on the flexible EGCII protein structure. PMID:27455091

  5. Probing interfacial dynamics and mechanics using submerged particle microrheology. I. Theory

    NASA Astrophysics Data System (ADS)

    Shlomovitz, Roie; Evans, Arthur A.; Boatwright, Thomas; Dennin, Michael; Levine, Alex J.

    2014-07-01

    Microrheology relies on tracking the thermal or driven motion of microscopic particles in a soft material. It is well suited to the study of materials that have no three-dimensional realization, which makes them difficult to study using a macroscopic rheometer. For this reason, microrheology is becoming an important rheological probe of Langmuir monolayers and membranes. Interfacial microrheology, however, has been difficult to reconcile quantitatively with more traditional macroscopic approaches. We suggest that uncertainties in accounting for the mechanical coupling of the tracer particle to the interface or membrane are responsible for these discrepancies. To resolve them, we propose a new non-contact approach to interfacial microrheology that uses particles submerged in the subphase a known distance below the interface. In this first of two papers, we present calculations of the response function (and thus the equilibrium fluctuation spectrum) of a spherical particle submerged below a viscoelastic surface that has a finite surface tension and/or bending modulus. In the second paper, we compare these results to submerged particle microrheology in a few example systems, showing quantitative agreement.

  6. Probing interfacial dynamics and mechanics using submerged particle microrheology. II. Experiment

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Dennin, Michael; Shlomovitz, Roie; Evans, Arthur A.; Levine, Alex J.

    2014-07-01

    A non-contact microrheological technique to probe the mechanics of the air/water interface is explored. Polystyrene spheres dissolved in water are trapped with an optical tweezer near the free surface of water, allowing the response functions of the particles to be measured as a function of the distance from the air/water interface. These measurements show that at the surface, the imaginary part of the response function increases by approximately 30% from the Stokes value measured in the bulk. As the particle is moved away from the surface via an optical trap, the response function returns to the bulk value. The method is tested by comparing the response function of particles near a rigid wall to the theory developed by Faxèn. A newly developed hydrodynamic theory is used to explain the results at the free interface through a calculation of the linear response function as a function of depth. These results show a range of sensitivity that can be utilized to study the microrheology of a Langmuir monolayer without distorting its structure.

  7. Probing Binding Sites and Mechanisms of Action of an IKs Activator by Computations and Experiments

    PubMed Central

    Xu, Yu; Wang, Yuhong; Zhang, Mei; Jiang, Min; Rosenhouse-Dantsker, Avia; Wassenaar, Tsjerk; Tseng, Gea-Ny

    2015-01-01

    The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4–S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K+ ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect. PMID:25564853

  8. Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries

    SciTech Connect

    Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Li, Ju; Wang, Chong M.

    2013-09-30

    Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

  9. Structure of the Receptor-Binding Carboxy-Terminal Domain of the Bacteriophage T5 L-Shaped Tail Fibre with and without Its Intra-Molecular Chaperone

    PubMed Central

    Garcia-Doval, Carmela; Castón, José R.; Luque, Daniel; Granell, Meritxell; Otero, José M.; Llamas-Saiz, Antonio L.; Renouard, Madalena; Boulanger, Pascale; van Raaij, Mark J.

    2015-01-01

    Bacteriophage T5, a Siphovirus belonging to the order Caudovirales, has a flexible, three-fold symmetric tail, to which three L-shaped fibres are attached. These fibres recognize oligo-mannose units on the bacterial cell surface prior to infection and are composed of homotrimers of the pb1 protein. Pb1 has 1396 amino acids, of which the carboxy-terminal 133 residues form a trimeric intra-molecular chaperone that is auto-proteolyzed after correct folding. The structure of a trimer of residues 970–1263 was determined by single anomalous dispersion phasing using incorporated selenomethionine residues and refined at 2.3 Å resolution using crystals grown from native, methionine-containing, protein. The protein inhibits phage infection by competition. The phage-distal receptor-binding domain resembles a bullet, with the walls formed by partially intertwined beta-sheets, conferring stability to the structure. The fold of the domain is novel and the topology unique to the pb1 structure. A site-directed mutant (Ser1264 to Ala), in which auto-proteolysis is impeded, was also produced, crystallized and its 2.5 Å structure solved by molecular replacement. The additional chaperone domain (residues 1263–1396) consists of a central trimeric alpha-helical coiled-coil flanked by a mixed alpha-beta domain. Three long beta-hairpin tentacles, one from each chaperone monomer, extend into long curved grooves of the bullet-shaped domain. The chaperone-containing mutant did not inhibit infection by competition. PMID:26670244

  10. Probing the Failure Mechanism of SnO{sub 2} Nanowires for Sodium-Ion Batteries

    SciTech Connect

    Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Li, Ju; Wang, Chongmin

    2013-09-30

    Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO{sub 2} nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515-1520). Upon Na insertion into SnO{sub 2}, a displacement reaction occurs, leading to the formation of amorphous Na{sub x}Sn nanoparticles dispersed in Na{sub 2}O matrix. With further Na insertion, the Na{sub x}Sn crystallized into Na{sub 15}Sn{sub 4} (x = 3.75). Upon extraction of Na (desodiation), the Na{sub x}Sn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na{sub 2}O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO{sub 2}. DFT calculations indicate that Na{sup +} diffuses 30 times slower than Li{sup +} in SnO{sub 2}, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO{sub 2} significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

  11. Interaction Mechanism of Oil-in-Water Emulsions with Asphaltenes Determined Using Droplet Probe AFM.

    PubMed

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; Mantilla, Cesar A; van den Berg, Frans G A; Zeng, Hongbo

    2016-03-15

    Emulsions with interface-active components at the oil/water interface have long been of fundamental and practical interest in many fields. In this work, the interaction forces between two oil droplets in water in the absence/presence of asphaltenes were directly measured using droplet probe atomic force microscopy (AFM) and analyzed using a theoretical model based on Reynolds lubrication theory and the augmented Young-Laplace equation by including the effects of disjoining pressure. It was revealed that the interaction forces measured between two pristine oil droplets (i.e., toluene) could be well described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, while an additional steric interaction should be included in the presence of asphaltenes in the oil. The surface interaction and the stability of oil droplets in aqueous solution were demonstrated to be significantly influenced by the asphaltenes concentration in oil, salt concentration, pH, and presence of divalent ions (Ca(2+)) in water. Adsorbed asphaltenes at the oil/water interface led to more negative surface potential of the oil/water interface and also induced steric repulsion between oil droplets, inhibiting the drop coalescence and stabilizing the oil-in-water emulsion. Lower pH of aqueous solution could lead to less negative surface potential and weaken the repulsion between oil droplets. Addition of divalent ions (Ca(2+)) was found to disrupt the protecting effects of adsorbed asphaltenes at oil/water interface and induce coalescence of oil droplets. Our results provide a useful methodology for quantifying the interaction forces and investigating the properties of asphaltenes at the oil/water interfaces and provide insights into the stabilization mechanism of oil-in-water emulsions due to asphaltenes in oil production and water treatment.

  12. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5

    PubMed Central

    Zheng, Jie; Yong, Hui Yee; Panutdaporn, Nantika; Liu, Chuanfa; Tang, Kai; Luo, Dahai

    2015-01-01

    RIG-I and MDA5 are the major intracellular immune receptors that recognize viral RNA species and undergo a series of conformational transitions leading to the activation of the interferon-mediated antiviral response. However, to date, full-length RLRs have resisted crystallographic efforts and a molecular description of their activation pathways remains hypothetical. Here we employ hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to probe the apo states of RIG-I and MDA5 and to dissect the molecular details with respect to distinct RNA species recognition, ATP binding and hydrolysis and CARDs activation. We show that human RIG-I maintains an auto-inhibited resting state owing to the intra-molecular HEL2i-CARD2 interactions while apo MDA5 lacks the analogous intra-molecular interactions and therefore adopts an extended conformation. Our work demonstrates that RIG-I binds and responds differently to short triphosphorylated RNA and long duplex RNA and that sequential addition of RNA and ATP triggers specific allosteric effects leading to RIG-I CARDs activation. We also present a high-resolution protein surface mapping technique that refines the cooperative oligomerization model of neighboring MDA5 molecules on long duplex RNA. Taken together, our data provide a high-resolution view of RLR activation in solution and offer new evidence for the molecular mechanism of RLR activation. PMID:25539915

  13. HNO/NO Conversion Mechanisms of Cu-Based HNO Probes with Implications for Cu,Zn-SOD

    PubMed Central

    2015-01-01

    HNO has broad biological effects and pharmacological activities. Direct HNO probes for in vivo applications were recently reported, which are CuII-based complexes having fluorescence reporters with reaction to HNO resulting in CuI systems and the release of NO. Their coordination environments are similar to that in Cu,Zn-superoxide dismutase (SOD), which plays a significant role in cellular HNO/NO conversion. However, none of these conversion mechanisms are known. A quantum chemical investigation was performed here to provide structural, energetic, and electronic profiles of HNO/NO conversion pathways via the first CuII-based direct HNO probe. Results not only are consistent with experimental observations but also provide numerous structural and mechanistic details unknown before. Results also suggest the first HNO/NO conversion mechanism for Cu,Zn-SOD, as well as useful guidelines for future design of metal-based HNO probes. These results shall facilitate development of direct HNO probes and studies of HNO/NO conversions via metal complexes and metalloproteins. PMID:24803995

  14. Probing the micro-mechanical behavior of bone via high-energy x-rays.

    SciTech Connect

    Almer, J.; Stock, S. R.; X-Ray Science Division; Northwestern Univ.

    2006-01-01

    Bone is a highly-adaptive, particulate-reinforced composite which, through a complex hierarchical structure, achieves excellent mechanical performance. The composite preserves, to a large degree, the desirable properties of the individual components: high toughness of the bone matrix, collagen fibrils stabilized by water, and high stiffness of the reinforcing phase, nano-sized crystallites of carbonated apatite. Understanding bone fragility (osteoporosis) requires quantifying mechanical input to bone and identifying 'weak-link' microstructures. This mechanical input has been quantified in vivo with strain gages attached to cortical bone, but attached strain gages do not probe subsurface mechanical response. We addressed this shortcoming recently by appling wide- and small-angle x-ray scattering to canine fibula sections, to study the micro-mechanical response of bone on different length scales. These data provide a unique view of load partition between the constituent phases of bone, and here we extend these measurements to an entire rat tibia, where strain gradients due to bending are anticipated. Tibiae of 14 week old Sprague-Dawley rats were studied. A 3D microCT rendering of the sample and definitions of the loading (y) and transverse (x) directions appear in Fig.1, with the y-axis approximately parallel to the bone's longitudinal axis. Due to the curved shape of the tibia, significant sample bending in the x-direction was anticipated even under uniaxial compression, similar to that expected in vivo (there was little curvature in the y-z plane). The sample cross-section at y=0 was determined by microCT to be approximately 4 mm{sup 2}. The sample was potted in epoxy and compressed in a load frame designed for in situ x-ray scattering studies. Loading was in displacement control, at a rate of 0.06 {micro}m/sec. The aggregate macroscopic response was followed using a load cell combined with strain gages located on both the 'convex' (-x) and 'concave' (+x) sides of

  15. Mechanical characterization of conducting polymer actuated neural probes under physiological settings

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene D.; Smela, Elisabeth; Kipke, Daryl R.

    2010-04-01

    Most implantable chronic neural probes have fixed electrode sites on the shank of the probe. Neural probe shapes and insertion methods have been shown to have considerable effects on the resulting chronic reactive tissue response that encapsulates probes. We are developing probes with controllable articulated electrode projections, which are expected to provoke less reactive tissue response due to the projections being minimally sized, as well as to permit a degree of independence from the probe shank allowing the recording sites to "float" within the brain. The objective of this study was to predict and analyze the force-generating capability of conducting polymer bilayer actuators under physiological settings. Custom parylene beams 21 μm thick, 1 cm long, and of varying widths (200 - 1000 μm) were coated with Cr/Au. Electroplated weights were fabricated at the ends of the beams to apply known forces. Polypyrrole was potentiostatically polymerized to varying thicknesses onto the Au at 0.5 V in a solution of 0.1 M pyrrole and 0.1 M dodecylbenzenesulfonate (DBS). Using cyclic voltammetry, the bilayer beams were cycled in artificial cerebrospinal fluid (aCSF) at 37 °C, as well as in aqueous NaDBS as a control. Digital images and video were analyzed to quantify the deflections. The images and the cyclic voltammograms showed that divalent cations in the aCSF interfered with polymer reduction. By integrating polypyrrole-based conducting polymer actuators, we present a type novel neural probe. We demonstrate that actuating PPy(DBS) under physiological settings is possible, and that the technique of microfabricating weights onto the actuators is a useful tool for studying actuation forces.

  16. Multi-Scale Mechanical Probing Techniques To Investigate The Stability Of BEOL Layer Stacks With Sub-100 nm Structures

    NASA Astrophysics Data System (ADS)

    Geisler, Holm; Lehr, Matthias U.; Platz, Alexander; Mayer, Ulrich; Hofmann, Petra; Engelmann, Hans-Jürgen

    2011-09-01

    The stress levels induced by chip-package interaction (CPI) impose an increased risk of mechanical failure on advanced backend-of-line (BEOL) layer stacks in microelectronic circuits if they contain fragile ultralow-k (ULK) interlayer dielectric (ILD) films. On the one hand, multilevel finite element modeling is used to assess the potential risk at an early stage of the development of new microelectronic products. On the other hand, the theoretical models need as accurate as possible materials parameters as an input to provide realistic results. Moreover, it is highly desirable to have multi-scale experimental probes available which can provide complementary data to support the modeling calculations. The present paper provides an overview about various mechanical probing techniques which operate on the scale of less than 100 nm up to more than 100 μm. In this way, typical feature sizes are covered which occur from the package level via solder bumps or copper pillars down to small Cu/ULK interconnect structures. The experimental approaches are based on nanoindentation with lateral force detection and in-situ scanning probe microscopy (SPM) imaging capabilities, and they include a novel technique named bump assisted BEOL stability indentation (BABSI) test. Especially, the interrelation between small-scale mechanical properties of ULK dielectric films and stresses acting on larger scales are quantitatively assessed by means of the experimental approaches described here.

  17. Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles.

    PubMed

    Liu, Ying X; Karsai, Arpad; Anderson, Donald S; Silva, Rona M; Uyeminami, Dale L; Van Winkle, Laura S; Pinkerton, Kent E; Liu, Gang-yu

    2015-12-10

    Single-cell mechanics, derived from atomic force microscopy-based technology, provides a new and effective means to investigate nanomaterial-cell interactions upon in vivo exposure. Lung macrophages represent initial and important responses upon introducing nanoparticles into the respiratory tract, as well as particle clearance with time. Cellular mechanics has previously proven effective to probe in vitro nanomaterial-cell interactions. This study extends technology further to probe the interactions between primary alveolar macrophages (AM) and silver nanoparticles (AgNPs) upon in vivo exposure. Two types of AgNPs, 20 and 110 nm, were instilled to rat lung at 0.5 mg AgNPs/kg body weight, and allowed 24 h interaction. The consequences of these interactions were investigated by harvesting the primary AMs while maintaining their biological status. Cellular mechanics measurements revealed the diverse responses among AM cells, due to variations in AgNP uptake and oxidative dissolving into Ag(+). Three major responses are evident: zero to low uptake that does not alter cellular mechanics, intracellular accumulation of AgNPs trigger cytoskeleton rearrangement resulting in the stiffening of mechanics, and damage of cytoskeleton that softens the mechanical profile. These effects were confirmed using confocal imaging of F-actin and measurements of reactive oxygen species production. More detailed intracellular interactions will also be discussed on the basis of this study in conjunction with prior knowledge of AgNP toxicity.

  18. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics.

  19. Transverse mechanical properties of cell walls of single living plant cells probed by laser-generated acoustic waves.

    PubMed

    Gadalla, Atef; Dehoux, Thomas; Audoin, Bertrand

    2014-05-01

    Probing the mechanical properties of plant cell wall is crucial to understand tissue dynamics. However, the exact symmetry of the mechanical properties of this anisotropic fiber-reinforced composite remains uncertain. For this reason, biologically relevant measurements of the stiffness coefficients on individual living cells are a challenge. For this purpose, we have developed the single-cell optoacoustic nanoprobe (SCOPE) technique, which uses laser-generated acoustic waves to probe the stiffness, thickness and viscosity of live single-cell subcompartments. This all-optical technique offers a sub-micrometer lateral resolution, nanometer in-depth resolution, and allows the non-contact measurement of the mechanical properties of live turgid tissues without any assumption of mechanical symmetry. SCOPE experiments reveal that single-cell wall transverse stiffness in the direction perpendicular to the epidermis layer of onion cells is close to that of cellulose. This observation demonstrates that cellulose microfibrils are the main load-bearing structure in this direction, and suggests strong bonding of microfibrils by hemicelluloses. Altogether our measurement of the viscosity at high frequencies suggests that the rheology of the wall is dominated by glass-like dynamics. From a comparison with literature, we attribute this behavior to the influence of the pectin matrix. SCOPE's ability to unravel cell rheology and cell anisotropy defines a new class of experiments to enlighten cell nano-mechanics. PMID:24615232

  20. Miniature probe for mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; Ma, Teng; He, Youmin; Yu, Mingyue; Li, Rui; Zhu, Jiang; Dai, Cuixia; Piao, Zhonglie; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    Changes in tissue biomechanical properties often signify the onset and progression of diseases, such as in determining the vulnerability of atherosclerotic plaques. Acoustic radiation force optical coherence elastography (ARF-OCE) has been used in the detection of tissue elasticity to obtain high-resolution elasticity maps. We have developed a probe-based ARF-OCE technology that utilizes a miniature 10 MHz ring ultrasonic transducer for excitation and Doppler optical coherence tomography (OCT) for detection. The transducer has a small hole in the center for the OCT light to propagate through. This allows for a confocal stress field and light detection within a small region for high sensitivity and localized excitation. This device is a front-facing probe that is only 3.5 mm in diameter and it is the smallest ARF-OCE catheter to the best of our knowledge. We have tested the feasibility of the probe by measuring the point displacement of an agarose tissue-mimicking phantom using different ARF excitation voltages. Small displacement values ranging from 30 nm to 90 nm have been detected and are shown to be directly proportional to the excitation voltage as expected. We are currently working on obtaining 2D images using a scanning mechanism. We will be testing to capture 2D elastograms of phantoms to further verify feasibility, and eventually characterize the mechanical properties of cardiovascular tissue. With its high portability and sensitivity, this novel technology can be applied to the diagnosis and characterization of vulnerable atherosclerotic plaques.

  1. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  2. ML212: A small-molecule probe for investigating fluconazole resistance mechanisms in Candida albicans

    PubMed Central

    Youngsaye, Willmen; Hartland, Cathy L; Morgan, Barbara J; Ting, Amal; Nag, Partha P; Vincent, Benjamin; Mosher, Carrie A; Bittker, Joshua A; Dandapani, Sivaraman; Palmer, Michelle; Whitesell, Luke; Lindquist, Susan; Schreiber, Stuart L

    2013-01-01

    Summary The National Institutes of Health Molecular Libraries and Probe Production Centers Network (NIH-MLPCN) screened >300,000 compounds to evaluate their ability to restore fluconazole susceptibility in resistant Candida albicans isolates. Additional counter screens were incorporated to remove substances inherently toxic to either mammalian or fungal cells. A substituted indazole possessing the desired bioactivity profile was selected for further development, and initial investigation of structure–activity relationships led to the discovery of ML212. PMID:23946849

  3. Mechanical Properties of Silicone Rubber Acoustic Lens Material Doped with Fine Zinc Oxide Powders for Ultrasonic Medical Probe

    NASA Astrophysics Data System (ADS)

    Yamamoto, Noriko; Yohachi; Yamashita; Itsumi, Kazuhiro

    2009-07-01

    The mechanical properties of high-temperature-vulcanization silicone (Q) rubber doped with zinc oxide (ZnO) fine powders have been investigated to develop an acoustic lens material with high reliability. The ZnO-doped Q rubber with an acoustic impedance (Z) of 1.46×106 kg·m-2·s-1 showed a tear strength of 43 N/mm and an elongation of 560%. These mechanical property values were about 3 times higher than those of conventional acoustic Q lens materials. The ZnO-doped Q rubbers also showed a lower abrasion loss. These superior characteristics are attributable to the microstructure with fewer origins of breaks; few pores and spherical fine ZnO powder. The high mechanical properties of ZnO-doped Q rubber acoustic lenses enable higher performance during long-life and safe operation during diagnosis using medical array probe applications.

  4. A Class of Multiresponsive Colorimetric and Fluorescent pH Probes via Three Different Reaction Mechanisms of Salen Complexes: A Selective and Accurate pH Measurement.

    PubMed

    Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng

    2016-09-19

    We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.

  5. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.

    PubMed

    Kruse, Holger; Grimme, Stefan

    2012-04-21

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  6. Oxygen isotope effects as probes of electron transfer mechanisms and structures of activated O2.

    PubMed

    Roth, Justine P

    2009-03-17

    Competitively determined oxygen ((18)O) isotope effects can be powerful probes of chemical and biological transformations involving molecular oxygen as well as superoxide and hydrogen peroxide. They play a complementary role to crystallography and spectroscopy in the study of activated oxygen intermediates by forging a link between electronic/vibrational structure and the bonding that occurs within ground and transition states along the reaction coordinate. Such analyses can be used to assess the plausibility of intermediates and their catalytic relevance in oxidative processes. This Account describes efforts to advance oxygen kinetic isotope effects ((18)O KIEs) and equilibrium isotope effects ((18)O EIEs) as mechanistic probes of reactive, oxygen-derived species. We focus primarily on transition metal mediated oxidations, outlining both advances over the past five years and current limitations of this approach. Computational methods are now being developed to probe transition states and the accompanying kinetic isotope effects. In particular, we describe the importance of using a full-frequency model to accurately predict the magnitudes as well as the temperature dependence of the isotope effects. Earlier studies have used a "cut-off model," which employs only a few isotopic vibrational modes, and such models tend to overestimate (18)O EIEs. Researchers in mechanistic biological inorganic chemistry would like to differentiate "inner-sphere" from "outer-sphere" reactivity of O(2), a designation that describes the extent of the bonding interaction between metal and oxygen in the transition state. Though this problem remains unsolved, we expect that this isotopic approach will help differentiate these processes. For example, comparisons of (18)O KIEs to (18)O EIEs provide benchmarks that allow us to calibrate computationally derived reaction coordinates. Once the physical origins of heavy atom isotope effects are better understood, researchers will be able to apply

  7. Probing the dynamic responses of individual actin filaments under fluidic mechanical stimulation via microfluidics

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Min; Yang, Chung-Yao; Kim, YongTae; LeDuc, Philip R.

    2013-05-01

    Herein, we demonstrate an easy-to-handle approach that employs a combination of microcurvilinear flow and fluorescence microscopy for probing the dynamic responses of individual synthesized actin filaments. We observed morphological changes of single actin filaments with different spatiotemporal responses when they were elongated with rotation or underwent significant bending during fluidic shear stress, and found that they may initially increase their curvature but then start releasing the external force immediately thereafter. Our approach allowed us to visibly examine the dynamic responses of individual actin filaments under simultaneous forces of rotation and elongation, as well as bending resulting from fluidic shear stress.

  8. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    SciTech Connect

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE as a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.

  9. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action.

    PubMed

    Castro-Falcón, Gabriel; Hahn, Dongyup; Reimer, Daniela; Hughes, Chambers C

    2016-08-19

    New methods are urgently needed to find novel natural products as structural leads for the development of new drugs against emerging diseases such as cancer and multiresistant bacterial infections. Here we introduce a reactivity-guided drug discovery approach for electrophilic natural products, a therapeutically relevant class of natural products that covalently modify their cellular targets, in crude extracts. Using carefully designed halogenated aromatic reagents, the process furnishes derivatives that are UV-active and highly conspicuous via mass spectrometry by virtue of an isotopically unique bromine or chlorine tag. In addition to the identification of high-value metabolites, the process facilitates the difficult task of structure elucidation by providing derivatives that are primed for X-ray crystallographic analysis. We show that a cysteine probe efficiently and chemoselectively labels enone-, β-lactam-, and β-lactone-based electrophilic natural products (parthenolide, andrographolide, wortmannin, penicillin G, salinosporamide), while a thiophenol probe preferentially labels epoxide-based electrophilic natural products (triptolide, epoxomicin, eponemycin, cyclomarin, salinamide). Using the optimized method, we were able to detect and isolate the epoxide-bearing natural product tirandalydigin from Salinispora and thereby link an orphan gene cluster to its gene product.

  10. The elastase-PK101 structure: Mechanism of an ultrasensitive activity-based probe revealed

    DOE PAGES

    Lechtenberg, Bernhard C.; Robinson, Howard R.; Kasperkiewicz, Paulina; Drag, Marcin; Riedl, Stefan J.

    2015-01-22

    Human neutrophil elastase (HNE) plays a central role in neutrophil host defense, but its broad specificity makes HNE a difficult target for both inhibitor and probe development. Recently, we identified the unnatural amino acid containing activity-based probe PK101, which exhibits astounding sensitivity and selectivity for HNE, yet completely lacks mechanistic explanation for its unique characteristics. Here, we present the crystal structure of the HNE-PK101 complex which not only reveals the basis for PK101 ultrasensitivity but also uncovers so far unrecognized HNE features. Strikingly, the Nle(O-Bzl) function in the P4 position of PK101 reveals and leverages an “exo-pocket” on HNE asmore » a critical factor for selectivity. Furthermore, the PK101 P3 position harbors a methionine dioxide function, which mimics a post-translationally oxidized methionine residue and forms a critical hydrogen bond to the backbone amide of Gly219 of HNE. Gly219 resides in a Gly–Gly motif that is unique to HNE, yet compulsory for this interaction. Consequently, this feature enables HNE to accommodate substrates that have undergone methionine oxidation, which constitutes a hallmark post-translational modification of neutrophil signaling.« less

  11. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale.

    PubMed

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-28

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach. PMID:16551751

  12. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  13. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action.

    PubMed

    Castro-Falcón, Gabriel; Hahn, Dongyup; Reimer, Daniela; Hughes, Chambers C

    2016-08-19

    New methods are urgently needed to find novel natural products as structural leads for the development of new drugs against emerging diseases such as cancer and multiresistant bacterial infections. Here we introduce a reactivity-guided drug discovery approach for electrophilic natural products, a therapeutically relevant class of natural products that covalently modify their cellular targets, in crude extracts. Using carefully designed halogenated aromatic reagents, the process furnishes derivatives that are UV-active and highly conspicuous via mass spectrometry by virtue of an isotopically unique bromine or chlorine tag. In addition to the identification of high-value metabolites, the process facilitates the difficult task of structure elucidation by providing derivatives that are primed for X-ray crystallographic analysis. We show that a cysteine probe efficiently and chemoselectively labels enone-, β-lactam-, and β-lactone-based electrophilic natural products (parthenolide, andrographolide, wortmannin, penicillin G, salinosporamide), while a thiophenol probe preferentially labels epoxide-based electrophilic natural products (triptolide, epoxomicin, eponemycin, cyclomarin, salinamide). Using the optimized method, we were able to detect and isolate the epoxide-bearing natural product tirandalydigin from Salinispora and thereby link an orphan gene cluster to its gene product. PMID:27294329

  14. Rupture mechanism of aromatic systems from graphite probed with molecular dynamics simulations.

    PubMed

    Leng, Yumin; Chen, Jian; Zhou, Beifei; Gräter, Frauke

    2010-07-01

    Intermolecular interactions involving aromatic rings are of pivotal importance in many areas of chemistry, biology and materials science. Mimicking recent atomic force microscopy (AFM) experiments that measured the adhesion forces of single pi-pi complexes, here interactions between pyrene/coronene and graphite have been probed by force-probe molecular dynamics (FPMD) simulations. The pyrene or coronene molecule was connected to a virtual spring through a flexible poly(ethylene glycol) (PEG) linker and was pulled away from graphite in water under constant velocity. Pyrene and coronene showed similar unbinding pathways featuring four states, with a transition and an intermediate state connecting the bound and unbound states in terms of distance and interplanar angles. Transient conformations with tilted orientations (approximately 40 degrees) and with one side of the aromatic structure still in contact with the graphite surface (approximately 70 degrees) were identified as the transition and intermediate states, respectively, similar to previously observed perpendicularly stacked benzene dimers. The distance to transition state x(tr) was determined to be 0.23 +/- 0.03 nm both for pyrene/graphite and coronene/graphite. The complexes share similar unbinding pathways, but coronene binds to graphite more strongly than to pyrene.

  15. Sensing surface mechanical deformation using active probes driven by motor proteins

    PubMed Central

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  16. Sensing surface mechanical deformation using active probes driven by motor proteins

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-10-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science.

  17. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  18. Reinforcement Mechanism Of Polyurethane-Urea/Clay Nanocomposites Probed By Positron Annihilation Lifetime Spectroscopy And Dynamic Mechanical Analysis

    SciTech Connect

    Rath, S. K.; Patri, M.; Sudarshan, K.; Pujari, P. K.; Khakhar, D. V.

    2010-12-01

    A basis for quantitative analysis of the reinforcement mechanism of polyurethane-urea/clay nanocomposites using two characterization methods, positron annihilation life time spectroscopy (PALS) and dynamic mechanical analysis (DMA) is provided. DMA was used to measure the constrained volume fraction of amorphous soft segments induced by nanoclay and the storage modulus of the nanocomposites. The interfacial interactions in the nanocomposites were investigated by PALS. The modulus enhancement of the organoclay nanocomposites was found to have a good correlation with the volume fraction of the constrained region and the interfacial interactions.

  19. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells.

    PubMed

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833

  20. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells

    NASA Astrophysics Data System (ADS)

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

  1. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells.

    PubMed

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

  2. Shape of clusters of galaxies as a probe of screening mechanisms in modified gravity.

    PubMed

    Llinares, Claudio; Mota, David F

    2013-04-12

    Scalar fields are crucial components in high energy physics and extensions of general relativity. The fact that they are not observed in the Solar System may be due to a mechanism which screens their presence in high dense regions. We show how observations of the ellipticity of galaxy clusters can discriminate between models with and without scalar fields and even between different screening mechanisms. Using current x-ray observations we put novel constraints on the different models.

  3. Shape of clusters of galaxies as a probe of screening mechanisms in modified gravity.

    PubMed

    Llinares, Claudio; Mota, David F

    2013-04-12

    Scalar fields are crucial components in high energy physics and extensions of general relativity. The fact that they are not observed in the Solar System may be due to a mechanism which screens their presence in high dense regions. We show how observations of the ellipticity of galaxy clusters can discriminate between models with and without scalar fields and even between different screening mechanisms. Using current x-ray observations we put novel constraints on the different models. PMID:25167244

  4. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording.

    PubMed

    Kozai, Takashi D Y; Catt, Kasey; Li, Xia; Gugel, Zhannetta V; Olafsson, Valur T; Vazquez, Alberto L; Cui, X Tracy

    2015-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.

  5. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  6. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect

    Wang, Zhihua; Zou, Qingze; Tan, Jun; Jiang, Wei

    2013-11-15

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  7. Common and differential electrophysiological mechanisms underlying semantic object memory retrieval probed by features presented in different stimulus types.

    PubMed

    Chiang, Hsueh-Sheng; Eroh, Justin; Spence, Jeffrey S; Motes, Michael A; Maguire, Mandy J; Krawczyk, Daniel C; Brier, Matthew R; Hart, John; Kraut, Michael A

    2016-08-01

    How the brain combines the neural representations of features that comprise an object in order to activate a coherent object memory is poorly understood, especially when the features are presented in different modalities (visual vs. auditory) and domains (verbal vs. nonverbal). We examined this question using three versions of a modified Semantic Object Retrieval Test, where object memory was probed by a feature presented as a written word, a spoken word, or a picture, followed by a second feature always presented as a visual word. Participants indicated whether each feature pair elicited retrieval of the memory of a particular object. Sixteen subjects completed one of the three versions (N=48 in total) while their EEG were recorded simultaneously. We analyzed EEG data in four separate frequency bands (delta: 1-4Hz, theta: 4-7Hz; alpha: 8-12Hz; beta: 13-19Hz) using a multivariate data-driven approach. We found that alpha power time-locked to response was modulated by both cross-modality (visual vs. auditory) and cross-domain (verbal vs. nonverbal) probing of semantic object memory. In addition, retrieval trials showed greater changes in all frequency bands compared to non-retrieval trials across all stimulus types in both response-locked and stimulus-locked analyses, suggesting dissociable neural subcomponents involved in binding object features to retrieve a memory. We conclude that these findings support both modality/domain-dependent and modality/domain-independent mechanisms during semantic object memory retrieval. PMID:27329353

  8. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  9. MUPUS - a thermal and mechanical properties probe for the Rosetta Lander Philae

    NASA Astrophysics Data System (ADS)

    Knollenberg, Jörg; Spohn, Tilman; Seiferlin, Karsten; Hagermann, Axel; Ball, Andrew; Banaszkiewicz, Marek; Grygorczuk, Jerzy; Grott, Matthias; Kargl, Günter; Kuehrt, Ekkehard; Koemle, Norbert; Marczewski, Wojciech

    2014-05-01

    MUPUS, the multi purpose sensor package onboard the Rosetta lander PHILAE, will measure the energy balance and the thermophysical and mechnical parameters in the near-surface layers - up to about 30 cm depth- of the nucleus of Rosetta's target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as the comet approaches the Sun. The data should increase our knowledge of how comets work, and how the coma gases form. The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data will indicate how pristine cometary matter sampled and analysed by other experiments on PHILAE really is. The MUPUS package consists of three major parts, the penetrator MUPUS PEN with ist sub-systems, the radiometer MUPUS TM, and the anchor sensors MUPUS ANC. the PEN is equipped with 16 RTD-type sensors along the penetrator tube aimed at measuring the temperature profile. Furthermore, they can also be actively heated in order to be used as a thermal conductivity probe. TM uses 4 thermopile sensors and different filters covering the wavelength range from 6-25 µm to measure the emitted flux from the comets surface. Both anchors are equipped with an accelerometer (ANC-M) and a Pt-100 temperature sensor to determine the hardness profile at the landing site and the thermal diffusivity at the final depth. An update of the status of the instrument after about 10 years in space with emphasis on the results of the latest tests performed during the post-hibernation commissioning will be given. Furthermore, an overview of related modelling efforts as well as supporting laboratory work in preparation of the data analysis will be provided.

  10. Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis.

    PubMed

    Amarie, Sergiu; Standfuss, Jörg; Barros, Tiago; Kühlbrandt, Werner; Dreuw, Andreas; Wachtveitl, Josef

    2007-04-01

    Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car*+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car*+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio*+) band at 909 nm and the Zea*+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car*+ signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.

  11. Probing mechanical principles of focal contacts in cell–matrix adhesion with a coupled stochastic–elastic modelling framework

    PubMed Central

    Gao, Huajian; Qian, Jin; Chen, Bin

    2011-01-01

    Cell–matrix adhesion depends on the collective behaviours of clusters of receptor–ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell–matrix adhesion via stochastic–elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction–separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell–matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings. PMID:21632610

  12. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    NASA Astrophysics Data System (ADS)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  13. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  14. Intrinsic carrier scattering mechanism in anatase Ti O2 investigated by ultraviolet-pump terahertz-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Y.; Terashige, T.; Uchida, R.; Miyamoto, T.; Yada, H.; Matsuzaki, H.; Li, B.-S.; Sawa, A.; Okamoto, H.

    2016-07-01

    We measured the optical conductivity σ ˜(ω ) spectra caused by photocarriers in anatase Ti O2 by applying ultraviolet-pump terahertz-probe spectroscopy on epitaxially grown thin films. Drude model analyses of σ ˜(ω ) spectra reveal that, in the terahertz region, the reduced mass (m ̂) of the carriers is greater and their damping constant (γ ) is smaller than those in the infrared region. With regard to the extended Drude model, these differences can be attributed to the frequency dependence of m ̂ and γ originating from carrier-phonon scatterings. Furthermore, the interaction between carriers and Ti-O stretching modes in the 500 -1000 -c m-1 region strongly influences the intrinsic carrier scattering mechanism in anatase Ti O2 .

  15. Theoretical investigation on ratiometric two-photon fluorescent probe for Zn2+ detection based on ICT mechanism

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Yang, Bao-Zhu; Ren, Ai-Min

    2016-06-01

    OPA (one-photon absorption), TPA (two-photon absorption) and fluorescence properties of a free ligand L upon coordination with Zn2+, and the regeneration with CN- were investigated in theory. According to our research, OPA spectra of ligand L show red-shift binding with Zn2+ while blue-shift with CN-. The fluorescence spectra and TPA wavelength are shifted in the same situation as those of OPA spectra. The value of TPA cross-section decreased at first, and then increased to 1813 GM for [L-Zn(CN)4]2-. Intramolecular charge transfer (ICT) mechanism was investigated by natural bond orbital (NBO) analysis. It demonstrates that L is hopeful to be a good ratiometric fluorescent probe for zinc ion detection in solution, and it can regenerate after CN- was introduced.

  16. Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog

    PubMed Central

    Pineda-Sanabria, Sandra E.; Robertson, Ian M.; Sun, Yin-Biao; Irving, Malcolm; Sykes, Brian D.

    2016-01-01

    One approach to improve contraction in the failing heart is the administration of calcium (Ca2 +) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca2 + sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca2 + sensitivity of cardiac muscle. We conclude that i9 enhances Ca2 + sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca2 + sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy. PMID:26853943

  17. Operation mechanism of rotary molecular motor F1 probed by single-molecule techniques

    NASA Astrophysics Data System (ADS)

    Iino, Ryota

    2013-03-01

    F1 is a rotary motor protein. Three catalytic β - subunitsinthestator 33ring are torque generators, and rotate the rotor γ-subunit by sequential and cooperative conformational changes coupled with adenosine triphosphate (ATP) hydrolysis reaction. F1 shows remarkable performances such as rotation rate faster than 10,000 rpm, high reversibility and efficiency in chemo-mechanical energy conversion. I will introduce basic characteristics of F1 revealed by single-molecule imaging and manipulation techniques based on optical microscopy and high-speed atomic force microscopy. I will also discuss the possible operation mechanism behind the F1, along with structurally-related hexameric ATPases, also mentioning the possibility of generating hybrid molecular motors.

  18. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine.

    PubMed

    Jahnel, Oliver; Hoffmann, Bernd; Merkel, Rudolf; Bossinger, Olaf; Leube, Rudolf E

    2016-01-01

    It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible.

  19. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine.

    PubMed

    Jahnel, Oliver; Hoffmann, Bernd; Merkel, Rudolf; Bossinger, Olaf; Leube, Rudolf E

    2016-01-01

    It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible. PMID:26795489

  20. Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments

    SciTech Connect

    Henriques, Barbara J.; Saraiva, Ligia M.; Gomes, Claudio M. . E-mail: gomes@itqb.unl.pt

    2005-08-05

    Rubredoxins are the simplest type of iron-sulphur proteins and in recent years they have been used as model systems in protein folding and stability studies, especially the proteins from thermophilic sources. Here, we report our studies on the rubredoxin from the hyperthermophile Methanococcus jannaschii (T {sub opt} = 85 deg C), which was investigated in respect to its thermal unfolding kinetics by temperature jump experiments. Different spectroscopic probes were used to monitor distinct structural protein features during the thermal transition: the integrity of the iron-sulphur centre was monitored by visible absorption spectroscopy, whereas tertiary structure was followed by intrinsic tryptophan fluorescence and exposure of protein hydrophobic patches was sensed by 1-anilinonaphthalene-8-sulphonate fluorescence. The studies were performed at acidic pH conditions in which any stabilising contributions from salt bridges are annulled due to protonation of protein side chain groups. In these conditions, M. jannaschii rubredoxin assumes a native-like, albeit more flexible and open conformation, as indicated by a red shift in the tryptophan emission maximum and 1-anilinonaphthalene-8-sulphonate binding. Temperature jumps were monitored by the three distinct techniques and showed that the protein undergoes thermal denaturation via a simple two step mechanism, as loss of tertiary structure, hydrophobic collapse, and disintegration of the iron-sulphur centre are concomitant processes. The proposed mechanism is framed with the multiphasic one proposed for Pyrococcus furiosus rubredoxin, showing that a common thermal unfolding mechanism is not observed between these two closely related thermophilic rubredoxins.

  1. Probing the effect of elevated cholesterol on the mechanical properties of membrane-cytoskeleton by optical tweezers

    NASA Astrophysics Data System (ADS)

    Rajkumar, Arun S.; Muley, Ajit; Chatterjee, Suvro; Jaffar Ali, B. M.

    2010-08-01

    The composition of the cell membrane and the surrounding physiological factors determine the nature and dynamics of membrane-cytoskeleton coupling. Mechanical strength of a cell is mainly derived from such coupling. In this article, we investigate the effect of extra cellular cholesterol on the membrane-cytoskelaton connectivity of single cell endothelium and consequent remodeling of its mechanical properties. Using optical tweezers as a force probe, we have measured membrane stiffness (km), membrane microviscosity (ηeff ) and the two-dimensional shear modulus (G'(f)) as a function of extracellular cholesterol in the range of 0.1mM to 6mM. We find that membrane stiffness and shear modulus are dependent on cholesterol-induced membrane-cytoskeletal organization. Further, by disrupting the membranecytoskeletal connectivity with Cytochalasin D, an actin delpolymerizing molecule, we recover pure membrane behaviour devoid of any cytoskeleton attachment. However, behaviour of ηeff was found to be unaffected by disruption of membrane-cytoskeleton organization. We infer that cholesterol is playing a distinct role in modulating membrane organization and membrane-cytoskeleton connectivity independently. We further discuss implications of our approach in characterizing cellular mechanics.

  2. Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG

    PubMed Central

    Vaziri, Hamidreza; Baldwin, Stephen A.; Baldwin, Jocelyn M.; Adams, David G.; Young, James D.

    2013-01-01

    Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H+ Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H+ Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features. PMID:23256604

  3. Probing the Role of HDACs and Mechanisms of Chromatin-Mediated Neuroplasticity

    PubMed Central

    Haggarty, Stephen J.; Tsai, Li-Huei

    2011-01-01

    Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as ‘chromatinopathies’, in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of ‘neuroepigenetics’ in the years to come will be summarized. PMID:21545841

  4. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants

    NASA Astrophysics Data System (ADS)

    Perni, Stefano; Shama, Gilbert; Hobman, J. L.; Lund, P. A.; Kershaw, C. J.; Hidalgo-Arroyo, G. A.; Penn, C. W.; Deng, X. T.; Walsh, J. L.; Kong, M. G.

    2007-02-01

    Mechanisms of plasma-induced microbial inactivation have commonly been studied with physicochemical techniques. In this letter, Escherichia coli K-12 and its ΔrecA, ΔrpoS, and ΔsoxS mutants are employed to discriminate effects of UV photons, OH radicals, and reactive oxygen species produced in atmospheric discharges. This microbiological approach exploits the fact that these E. coli mutants are defective in their resistance against various external stresses. By interplaying bacterial inactivation kinetics with optical emission spectroscopy, oxygen atoms are identified as a major contributor in plasma inactivation with minor contributions from UV photons, OH radicals, singlet oxygen metastables, and nitric oxide.

  5. Probing photocurrent generation mechanisms in hybrid IR-senstive quantum dot/conjugated polymer solar cells

    NASA Astrophysics Data System (ADS)

    Strein, Elisabeth

    The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.

  6. Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites.

    PubMed

    DeLisio, Jeffery B; Hu, Xiuli; Wu, Tao; Egan, Garth C; Young, Gregory; Zachariah, Michael R

    2016-06-23

    Energetic thin films with high mass loadings of nanosized components have been recently fabricated using electrospray deposition. These films are composed of aluminum nanoparticles (nAl) homogeneously dispersed in an energetic fluoropolymer binder, poly(vinylidene fluoride) (PVDF). The nascent oxide shell of the nAl has been previously shown to undergo a preignition reaction (PIR) with fluoropolymers such as polytetrafluoroethylene (PTFE). This work examines the PIR between alumina and PVDF to further explain the reaction mechanism of the Al/PVDF system. Temperature jump (T-jump) ignition experiments in air, argon, and vacuum environments showed that the nAl is fluorinated by gas phase species due to a decrease in reactivity in a vacuum. Thermogravimetric analysis coupled with differential scanning calorimetry (TGA/DSC) was used to confirm the occurrence of a PIR, and gas phase products during the PIR and fluorination of nAl were investigated with temperature jump time-of-flight mass spectrometry (T-jump TOFMS). Results show a direct correlation between the amount of alumina in the PVDF film and the relative signal intensity of hydrogen fluoride release (HF). Although the PIR between alumina and PVDF plays an important role in the Al/PVDF reaction mechanism, burn speeds of Al/PVDF films containing additional pure alumina particles showed no burn speed enhancement. PMID:27228361

  7. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy.

    PubMed

    Lee, Sei-Young; Zaske, Ana-Maria; Novellino, Tommaso; Danila, Delia; Ferrari, Mauro; Conyers, Jodie; Decuzzi, Paolo

    2011-01-01

    TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction. PMID:21499414

  8. Responsive mechanism of a newly synthesized fluorescent probe for sensing H2O2, NO and H2O2/NO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Jin; Wang, Xin; Zhou, Yong; Zhao, Ke; Wang, Chuan-Kui

    2016-10-01

    Optical properties of a newly synthesized fluorescent probe for H2O2, NO and H2O2/NO are investigated by employing time-dependent density functional theory. Three different sets of fluorescence signals are obtained when the probe reacts with H2O2, NO and H2O2/NO. Analysis of molecular orbitals is presented to explore responsive mechanism of the probe for the detected objects, where the fluorescent resonance energy transfer process is for H2O2 (H2O2/NO) and the intramolecular charge transfer process is for NO. Our results provide theoretical explanation of the experimental results, and importantly, suggest possibility of the probe as a two-photon fluorescent sensor.

  9. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  10. Non-Gilbert-damping Mechanism in a Ferromagnetic Heusler Compound Probed by Nonlinear Spin Dynamics.

    PubMed

    Pirro, P; Sebastian, T; Brächer, T; Serga, A A; Kubota, T; Naganuma, H; Oogane, M; Ando, Y; Hillebrands, B

    2014-11-28

    The nonlinear decay of propagating spin waves in the low-Gilbert-damping Heusler film Co_{2}Mn_{0.6}Fe_{0.4}Si is reported. Here, two initial magnons with frequency f_{0} scatter into two secondary magnons with frequencies f_{1} and f_{2}. The most remarkable observation is that f_{1} stays fixed if f_{0} is changed. This indicates, that the f_{1} magnon mode has the lowest instability threshold, which, however, cannot be understood if only Gilbert damping is present. We show that the observed behavior is caused by interaction of the magnon modes f_{1} and f_{2} with the thermal magnon bath. This evidences a significant contribution of the intrinsic magnon-magnon scattering mechanisms to the magnetic damping in high-quality Heusler compounds.

  11. Simulated Microgravity as a Probe for Understanding the Mechanisms of Early Pattern Specification

    NASA Technical Reports Server (NTRS)

    Neff, A. W.; Malacinski, G. M.

    1985-01-01

    Early pattern specification (e.g., axial structure morphogenesis, doreal ventral polarity, etc.) is monitored in amphibian eggs which were subjected to microgravity simulation by constant rotation on a horizontal clinostat. In contrast to previous clinostat experiments, rotation is initiated either prior to fertilization or immediately thereafter. Large proportions of clinostated eggs developed normal axial structures. A model which employs a multiple set of signals for specifying early pattern is discussed. Effects of microgravity simulation on the earliest post fertilization pattern specification event dorsal/ventral polarization is analyzed in detail. Other models are developed and they are discussed. As a general mechanism for explaining the manner in which regional developmental patterns emerge from the initial, radially symmetrial egg, the density compartment model is described. The identification of the various zones or compartments of egg cytoplasm using inverted eggs is explained.

  12. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    DOE PAGES

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in themore » microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.« less

  13. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    PubMed Central

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-01-01

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane. PMID:26831599

  14. Probing the reaction mechanism of IspH protein by x-ray structure analysis

    PubMed Central

    Gräwert, Tobias; Span, Ingrid; Eisenreich, Wolfgang; Rohdich, Felix; Eppinger, Jörg; Bacher, Adelbert; Groll, Michael

    2010-01-01

    Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) represent the two central intermediates in the biosynthesis of isoprenoids. The recently discovered deoxyxylulose 5-phosphate pathway generates a mixture of IPP and DMAPP in its final step by reductive dehydroxylation of 1-hydroxy-2-methyl-2-butenyl 4-diphosphate. This conversion is catalyzed by IspH protein comprising a central iron-sulfur cluster as electron transfer cofactor in the active site. The five crystal structures of IspH in complex with substrate, converted substrate, products and PPi reported in this article provide unique insights into the mechanism of this enzyme. While IspH protein crystallizes with substrate bound to a [4Fe-4S] cluster, crystals of IspH in complex with IPP, DMAPP or inorganic pyrophosphate feature [3Fe-4S] clusters. The IspH:substrate complex reveals a hairpin conformation of the ligand with the C(1) hydroxyl group coordinated to the unique site in a [4Fe-4S] cluster of aconitase type. The resulting alkoxide complex is coupled to a hydrogen-bonding network, which serves as proton reservoir via a Thr167 proton relay. Prolonged x-ray irradiation leads to cleavage of the C(1)-O bond (initiated by reducing photo electrons). The data suggest a reaction mechanism involving a combination of Lewis-acid activation and proton coupled electron transfer. The resulting allyl radical intermediate can acquire a second electron via the iron-sulfur cluster. The reaction may be terminated by the transfer of a proton from the β-phosphate of the substrate to C(1) (affording DMAPP) or C(3) (affording IPP). PMID:20080550

  15. Selective Probing of Gaseous Ammonia Using Red-Emitting Carbon Dots Based on an Interfacial Response Mechanism.

    PubMed

    Jiang, Bang-Ping; Zhou, Bo; Shen, Xing-Can; Yu, Yun-Xiang; Ji, Shi-Chen; Wen, Chang-Chun; Liang, Hong

    2015-12-21

    Solid-state fluorescence sensing is one of the most appealing detection techniques because of its simplicity and convenience in practical operation. Herein, we report the development of a red-emitting carbon dots (RCDs)-based material as a solid-state fluorescence sensor for the selective probing of gaseous ammonia. The RCDs were prepared by a low-cost, one-step carbonization method using sugar cane bagasse as the carbon precursor. The pristine RCDs were then directly coated on polyvinylidene fluoride membrane to produce a new fluorescence sensor capable of selectively distinguishing toxic gaseous ammonia from other analyte vapors through sensitive fluorescence quenching with a low detection limit. More importantly, the interfacial response mechanism occurring on the surface of the RCDs has been studied by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman measurements. The results indicate that fluorescence quenching in the RCDs might result from ammonia-induced Michael addition through insertion of N into the C=C group and deprotonation of the carboxyl group. To the best of our knowledge, this is the first report that provides clear insight into the mechanism of surface chemistry on CDs in the solid state. PMID:26514914

  16. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams

    NASA Astrophysics Data System (ADS)

    Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.

    2016-01-01

    Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict

  17. Probing irradiation induced DNA damage mechanisms using excited state Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Markwick, Phineus R. L.; Doltsinis, Nikos L.; Schlitter, Jürgen

    2007-01-01

    Photoinduced proton transfer in the Watson-Crick guanine (G)-cytosine (C) base pair has been studied using Car-Parrinello molecular dynamics (CP-MD). A flexible mechanical constraint acting on all three hydrogen bonds in an unbiased fashion has been devised to explore the free energy profile along the proton transfer coordinate. The lowest barrier has been found for proton transfer from G to C along the central hydrogen bond. The resulting charge transfer excited state lies energetically close to the electronic ground state suggesting the possibility of efficient radiationless decay. It is found that dynamic, finite temperature fluctuations significantly reduce the energy gap between the ground and excited states for this charge transfer product, promoting the internal conversion process. A detailed analysis of the internal degrees of freedom reveals that the energy gap is considerably reduced by out-of-plane molecular vibrations, in particular. Consequently, it appears that considering only the minimum energy path provides an upper-bound estimate of the associated energy gap compared to the full-dimension dynamical reaction coordinate. Furthermore, the first CP-MD simulations of the G-C base pair in liquid water are presented, and the effects of solvation on its electronic structure are analyzed.

  18. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.

    PubMed

    Vashishtha, Ashwani K; West, Ann H; Cook, Paul F

    2015-10-15

    Saccharopine reductase catalyzes the reductive amination of l-α-aminoadipate-δ-semialdehyde with l-glutamate to give saccharopine. Two mechanisms have been proposed for the reductase, one that makes use of enzyme side chains as acid-base catalytic groups, and a second, in which the reaction is catalyzed by enzyme-bound reactants. Site-directed mutagenesis was used to change acid-base candidates in the active site of the reductase to eliminate their ionizable side chain. Thus, the D126A, C154S and Y99F and several double mutant enzymes were prepared. Kinetic parameters in the direction of glutamate formation exhibited modest decreases, inconsistent with the loss of an acid-base catalyst. The pH-rate profiles obtained with all mutant enzymes decrease at low and high pH, suggesting acid and base catalytic groups are still present in all enzymes. Solvent kinetic deuterium isotope effects are all larger than those observed for wild type enzyme, and approximately equal to one another, suggesting the slow step is the same as that of wild type enzyme, a conformational change to open the site and release products (in the direction of saccharopine formation). Overall, the acid-base chemistry is likely catalyzed by bound reactants, with the exception of deprotonation of the α-amine of glutamate, which likely requires an enzyme residue. PMID:26342457

  19. Mechanical properties of poly(dimethylsiloxane)-block-poly(2-methyloxazoline) polymersomes probed by atomic force microscopy.

    PubMed

    Jaskiewicz, Karmena; Makowski, Marcin; Kappl, Michael; Landfester, Katharina; Kroeger, Anja

    2012-08-28

    Poly(dimethylsiloxane)-block-poly(2-methyloxazoline) (PDMS-b-PMOXA) vesicles were characterized by a combination of dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy imaging and force spectroscopy (AFM). From DLS data, a hydrodynamic radius of ~150 nm was determined, and cryo-TEM micrographs revealed a bilayer thickness of ~16 nm. In AFM experiments on a silicon wafer substrate, adsorption led to a stable spherical caplike conformation of the polymersomes, whereas on mica, adsorption resulted also in vesicle fusion and formation of bilayer patches or multilayer stacks. This indicates a delicate balance between the mechanical stability of PDMS-b-PMOXA polymersomes on one hand and the driving forces for spreading on the other. A Young's modulus of 17 ± 11 MPa and a bending modulus of 7 ± 5 × 10(-18) J were derived from AFM force spectroscopy measurements. Therefore, the elastic response of the PDMS-b-PMOXA polymersomes to external stimuli is much closer to that of lipid vesicles compared to other types of polymersomes, such as polystyrene-block-poly(acrylic acid) (PS-b-PAA).

  20. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots.

    PubMed

    Liang, Zicheng; Kang, Mijeong; Payne, Gregory F; Wang, Xiaohui; Sun, Runcang

    2016-07-13

    The recent discovery of biomass-derived carbon quantum dots (CQDs) offers the potential to extend the sensing and imaging capabilities of quantum dots (QDs) to applications that require biocompatibility and environmental friendliness. Many studies have confirmed the exciting optical properties of CQDs and suggested a range of applications, but realizing the potential of CQDs will require a deeper fundamental understanding of their photophysical behavior. Here, biomass-derived CQDs were synthesized by hydrothermal processing methods from the aminopolysaccharide chitosan, and their fluorescence quenching behaviors were investigated. A family of nitroaromatics with different ring substituents was used to generate systematically varying CQD-quenching behaviors. Experimental evidence including a correlation between quenching constant and spectral overlap, fluorescence lifetime decay, and donor-acceptor distance all demonstrate that the primary mechanism for QCD-quenching is Förster resonance energy transfer (FRET) and not electron transfer. Spectroelectrochemical studies with redox-dependent quenching molecules and studies with complex dye molecules further support this conclusion. We envision this fundamental understanding of CQDs will facilitate the application of these emerging nanomaterials for sensing and imaging.

  1. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots.

    PubMed

    Liang, Zicheng; Kang, Mijeong; Payne, Gregory F; Wang, Xiaohui; Sun, Runcang

    2016-07-13

    The recent discovery of biomass-derived carbon quantum dots (CQDs) offers the potential to extend the sensing and imaging capabilities of quantum dots (QDs) to applications that require biocompatibility and environmental friendliness. Many studies have confirmed the exciting optical properties of CQDs and suggested a range of applications, but realizing the potential of CQDs will require a deeper fundamental understanding of their photophysical behavior. Here, biomass-derived CQDs were synthesized by hydrothermal processing methods from the aminopolysaccharide chitosan, and their fluorescence quenching behaviors were investigated. A family of nitroaromatics with different ring substituents was used to generate systematically varying CQD-quenching behaviors. Experimental evidence including a correlation between quenching constant and spectral overlap, fluorescence lifetime decay, and donor-acceptor distance all demonstrate that the primary mechanism for QCD-quenching is Förster resonance energy transfer (FRET) and not electron transfer. Spectroelectrochemical studies with redox-dependent quenching molecules and studies with complex dye molecules further support this conclusion. We envision this fundamental understanding of CQDs will facilitate the application of these emerging nanomaterials for sensing and imaging. PMID:27314592

  2. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.

    PubMed

    Vashishtha, Ashwani K; West, Ann H; Cook, Paul F

    2015-10-15

    Saccharopine reductase catalyzes the reductive amination of l-α-aminoadipate-δ-semialdehyde with l-glutamate to give saccharopine. Two mechanisms have been proposed for the reductase, one that makes use of enzyme side chains as acid-base catalytic groups, and a second, in which the reaction is catalyzed by enzyme-bound reactants. Site-directed mutagenesis was used to change acid-base candidates in the active site of the reductase to eliminate their ionizable side chain. Thus, the D126A, C154S and Y99F and several double mutant enzymes were prepared. Kinetic parameters in the direction of glutamate formation exhibited modest decreases, inconsistent with the loss of an acid-base catalyst. The pH-rate profiles obtained with all mutant enzymes decrease at low and high pH, suggesting acid and base catalytic groups are still present in all enzymes. Solvent kinetic deuterium isotope effects are all larger than those observed for wild type enzyme, and approximately equal to one another, suggesting the slow step is the same as that of wild type enzyme, a conformational change to open the site and release products (in the direction of saccharopine formation). Overall, the acid-base chemistry is likely catalyzed by bound reactants, with the exception of deprotonation of the α-amine of glutamate, which likely requires an enzyme residue.

  3. Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions.

    PubMed

    Murakawa, Takeshi; Hamaguchi, Akio; Nakanishi, Shota; Kataoka, Misumi; Nakai, Tadashi; Kawano, Yoshiaki; Yamaguchi, Hiroshi; Hayashi, Hideyuki; Tanizawa, Katsuyuki; Okajima, Toshihide

    2015-09-18

    The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.

  4. Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue

    PubMed Central

    Meekrathok, Piyanat; Suginta, Wipa

    2016-01-01

    Background Vibrio harveyi GH20 β-N-acetylglucosaminidase (VhGlcNAcase) is a chitinolytic enzyme responsible for the successive degradation of chitin fragments to GlcNAc monomers, activating the onset of the chitin catabolic cascade in marine Vibrios. Methods Two invariant acidic pairs (Asp303-Asp304 and Asp437-Glu438) of VhGlcNAcase were mutated using a site-directed mutagenesis strategy. The effects of these mutations were examined and the catalytic roles of these active-site residues were elucidated using a chemical rescue approach. Enhancement of the enzymic activity of the VhGlcNAcase mutants was evaluated by a colorimetric assay using pNP-GlcNAc as substrate. Results Substitution of Asp303, Asp304, Asp437 or Glu438 with Ala/Asn/Gln produced a dramatic loss of the GlcNAcase activity. However, the activity of the inactive D437A mutant was recovered in the presence of sodium formate. Our kinetic data suggest that formate ion plays a nucleophilic role by mimicking the β-COO-side chain of Asp437, thereby stabilizing the reaction intermediate during both the glycosylation and the deglycosylation steps. Conclusions Chemical rescue of the inactive D437A mutant of VhGlcNAcase by an added nucleophile helped to identify Asp437 as the catalytic nucleophile/base, and hence its acidic partner Glu438 as the catalytic proton donor/acceptor. General Significance Identification of the catalytic nucleophile of VhGlcNAcases supports the proposal of a substrate-assisted mechanism of GH20 GlcNAcases, requiring the catalytic pair Asp437-Glu438 for catalysis. The results suggest the mechanistic basis of the participation of β-N-acetylglucosaminidase in the chitin catabolic pathway of marine Vibrios. PMID:26870945

  5. Specificity fingerprinting of retaining beta-1,4-glycanases in the Cellulomonas fimi secretome using two fluorescent mechanism-based probes.

    PubMed

    Hekmat, Omid; Florizone, Christine; Kim, Young-Wan; Eltis, Lindsay D; Warren, R Antony J; Withers, Stephen G

    2007-11-23

    Functional proteomics methods are crucial for activity- and mechanism-based investigation of enzymes in biological systems at a post-translational stage. Glycosidases have central roles in cellular metabolism and its regulation, and their dysfunction can have detrimental effects. These enzymes also play key roles in biomass conversion. A functional profiling methodology was developed for direct, fluorescence-based, in-gel analysis of retaining beta-glycosidases. Two spectrally nonoverlapping fluorescent, mechanism-based probes containing different recognition elements for retaining cellulases and xylanases were prepared. The specificity-based covalent labelling of retaining glycanases by the two probes was demonstrated in model enzyme mixtures. Using the two probes and mass spectrometry, the secretomes of the biomass-converting bacterium Cellulomonas fimi, under induction by different polyglycan growth substrates, were analysed to obtain a specificity profile of the C. fimi retaining beta-glycanases. This is a facile strategy for the analysis of glycosidases produced by biomass-degrading organisms.

  6. Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Lamastra, A.; Menci, N.; Bongiorno, A.; Fiore, F.

    2015-04-01

    Using an advanced semi-analytical model (SAM) for galaxy formation, we investigated the statistical effects of assuming two different mechanisms for triggering AGN activity on the properties of AGN host galaxies. We considered a first accretion mode where AGN activity is triggered by disk instabilities (DI) in isolated galaxies, and a second feeding mode where galaxy mergers and fly-by events (interactions, IT) are responsible for producing a sudden destabilization of large quantities of gas, causing the mass inflow onto the central supermassive black hole. The effects of including IT and DI modes in our SAM were studied and compared with observations separately to single out the regimes in which they might be responsible for triggering AGN activity. We obtained the following results: i) the predictions of our model concerning the stellar mass functions of AGN hosts point out that both DI and IT modes are able to account for the observed abundance of AGN host galaxies with M∗ ≲ 1011M⊙; for more massive hosts, the DI scenario predicts a much lower space density than the IT model in every redshift bin, lying below the observational estimates for redshift z > 0.8. ii) The analysis of the colour-magnitude diagram of AGN hosts for redshift z < 1.5 can provide a good observational test to effectively distinguish between DI and IT mode, since DIs are expected to yield AGN host galaxy colours skewed towards bluer colours, while in the IT scenario the majority of hosts are expected to reside in the red sequence. iii) While both IT and DI scenarios can account for AGN triggered in main sequence or starburst galaxies, DIs fail in triggering AGN activity in passive galaxies. The lack of DI AGN in passive hosts is rather insensitive to changes in the model describing the DI mass inflow, and it is mainly caused by the criterion for the onset of disk instabilities included in our SAM. iv) The two modes are characterized by a different duration of the AGN phase, with DIs

  7. Probing Selection Mechanism of the Most Favorable Conformation of a Dipeptide in Chaotropic and Kosmotropic Solution.

    PubMed

    Jas, Gouri S; Middaugh, C Russell; Kuczera, Krzysztof

    2016-07-21

    Chaotropes like urea and guanidinium chloride (GdmCl) tend to destabilize, and kosmotropes like proline tend to stabilize folded structures of peptides and proteins. Here, we combine fluorescence anisotropy decay measurements and molecular dynamics simulations to gain a microscopic understanding of the molecular mechanism for shifting conformational preferences in aqueous, GdmCl, urea, and proline solutions of a simple model dipeptide, N-acetyl-tryptophan-amide (NATA). Measured anisotropy decay of NATA as a function of temperature, pH, and cosolvent concentrations showed reorientations moderately slower in GdmCl and urea and substantially slower in proline compared to those of aqueous environment. A small change in pH significantly slows orientation time in water and GdmCl and less markedly in urea. Computationally, we use molecular dynamics with dihedral restraints to separately analyze the motions and interactions of the representative NATA conformers in the four different solvent environments. This novel analysis provides a dissection of the observed overall diffusion rates into contributions from individual dipeptide conformations. The variation of rotational diffusion rates with conformation are quite large. Population-weighted averaging or using properties of the major cluster reproduces the dynamical features of the full unrestrained dynamics. Additionally, we correlate the observable diffusion rates with microscopic features of conformer size, shape, and solvation. This analysis uncovered underlying differences in detailed atomistic behavior of the three cosolvents-urea, GdmCl, and proline. For both urea and the pure water system we find good agreement with hydrodynamic theory, with diffusion rates primarily correlated with conformer size and shape. In contrast, for GdmCl and proline solutions, the variation in conformer diffusion rates was mostly determined by specific interactions with the cosolvents. We also find preferences for different molecular

  8. Human augmenter of liver regeneration: probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase.

    PubMed

    Schaefer-Ramadan, Stephanie; Gannon, Shawn A; Thorpe, Colin

    2013-11-19

    Augmenter of liver regeneration is a member of the ERV family of small flavin-dependent sulfhydryl oxidases that contain a redox-active CxxC disulfide bond in redox communication with the isoalloxazine ring of bound FAD. These enzymes catalyze the oxidation of thiol substrates with the reduction of molecular oxygen to hydrogen peroxide. This work studies the catalytic mechanism of the short, cytokine form of augmenter of liver regeneration (sfALR) using model thiol substrates of the enzyme. The redox potential of the proximal disulfide in sfALR was found to be approximately 57 mV more reducing than the flavin chromophore, in agreement with titration experiments. Rapid reaction studies show that dithiothreitol (DTT) generates a transient mixed disulfide intermediate with sfALR signaled by a weak charge-transfer interaction between the thiolate of C145 and the oxidized flavin. The subsequent transfer of reducing equivalents to the flavin ring is relatively slow, with a limiting apparent rate constant of 12.4 s(-1). However, reoxidation of the reduced flavin by molecular oxygen is even slower (2.3 s(-1) at air saturation) and thus largely limits turnover at 5 mM DTT. The nature of the charge-transfer complexes observed with DTT was explored using a range of simple monothiols to mimic the initial nucleophilic attack on the proximal disulfide. While β-mercaptoethanol is a very poor substrate of sfALR (∼0.3 min(-1) at 100 mM thiol), it rapidly generates a mixed disulfide intermediate allowing the thiolate of C145 to form a strong charge-transfer complex with the flavin. Unlike the other monothiols tested, glutathione is unable to form charge-transfer complexes and is an undetectable substrate of the oxidase. These data are rationalized on the basis of the stringent steric requirements for thiol-disulfide exchange reactions. The inability of the relatively bulky glutathione to attain the in-line geometry required for efficient disulfide exchange in sfALR may be

  9. Probing the Complicated Atmospheres of Cepheids with HST-COS: Plasma Dynamics, Shock Energetics and Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Guinan, Edward

    2012-10-01

    Classical Cepheids, although well studied in terms of their cosmologically important Period-Luminosity Law, are proving to be increasingly complex and astrophysically intriguing in terms of the atmospheric energetics. This proposal expands Cycle 17/18 programs to probe Cepheid atmospheres and understand the mechanisms by which they are heated. Our previous COS spectra revealed a wealth of 10,000-300,000K plasma emission lines {far beyond what previous IUE data show due to severe scattered light contamination}, phase-locked with the Cepheid pulsation periods, indicating that a pulsation-driven heating mechanism is at work. We propose multiple observations of selected Cepheids {delta Cep, beta Dor and l Car} with HST-COS through the G130M & G160M gratings, to provide comprehensive and detailed diagnostics of the atmospheric plasmas of Cepheids with a range of periods and pulsation types, and give the best look yet at how large-scale, radial pulsations affect the upper atmospheres of supergiants. The phase constraints placed on some of the visits will allow phase-lags between the emission lines to be detailed, giving important additional information on the heating mechanism and extents of the atmospheres. Numerous emission lines are covered by the G130M and G160M wavelength range { 1150-1750A}, including N V 1240, O I, C IV 1550 and He II 1640. When combined with our approved and future proposed X-ray observations of Cepheids, the HST-COS data will allow us to construct an understanding of Cepheid atmospheric plasmas with temperatures of tens of thousands to millions of degrees - the most thorough atmospheric study to date for this important class of pulsating stars.

  10. Design of modular probes for stratospheric balloon mission: Thermo mechanical aspects and lession learned from SORA mission.

    NASA Astrophysics Data System (ADS)

    Bettanini, Carlo; Friso, Enrico; Colombatti, Giacomo; Aboudan, Alessio; Flamini, Enrico; Pirrotta, Simone; Debei, Stefano

    Stratospheric balloon missions provide a very effective facility for testing instruments in a space-like environment with drastically lower requirements in funding and sensibly shorter timelines than common space mission. Mainly during ascent to operative altitude and parachuted de-scent the flight units face fast changing environmental conditions which may induce issues in the mechanical and thermal behavior of the equipment. A new concept modular gondola was engineered by CISAS "G.Colombo" at University of Padova,to be easily reconfigured to host scientific experiments with different power and thermal requirements thus sensibly reducing development times and costs. The gondola was mechanically designed to withstand dynamic loads related to parachute opening and ground impact and provided a 1 m x 1m x 0.3 m volume for scientific payloads which is pressure regulated with the use of relief valves and thermally controlled by main CDMU.Furthermore the whole system was able to float in case of descent in water thanks to an optmised design of the main aluminium structure and use of hermetic connections. A custom Command and Data Management Unit with hard-real-time control capabilities has been developed to manage sensors acquisition, data storage, and experiments monitoring and control. The gondola was equipped with IMU, GPS, a downward looking cam-era and a set of health check and housekeeping sensors which sample key parameters as attitude, acceleration and temperature in several parts of the structure feeding housekeeping data to the main pc in order to monitor overall system health. The unit was successfully assembled and tested at University of Padova and used in the flight of the SORA mission launched in summer 2009 from Svalbard islands to map with a penetrating radar the stratification of ice and rock above Northern Greenland. Because of unexpected wind directions the mission trajectory was several hundred kilometers southern than predicted terminating with a

  11. Single Molecule Investigation of Glycine-Chlorite Interaction by Cross-Correlated Scanning Probe Microscopy and Quantum Mechanics Simulations.

    PubMed

    Moro, Daniele; Ulian, Gianfranco; Valdrè, Giovanni

    2015-04-21

    In this work, we studied the interaction of glycine with the (001) surface of chlorite mineral at a single molecule level by cross-correlating scanning probe microscopy (SPM) and ab initio quantum mechanics (QM) investigations. Chlorite mineral is particularly interesting and peculiar for the interaction with organic molecules because it presents an alternated stacking of brucite-like (hydrophobic) and talc-like (hydrophilic) layers of different polarities. Brucite-like is positive, whereas talc-like is negative. The experimental atomic force microscopy (AFM) observations show that glycine is stably and selectively adsorbed on the brucite-like layer, organized in monolayers with different patterns. The sizes of single molecules of glycine measured by AFM are in agreement with those calculated by QM. Glycine molecules were found to align both at the edges and on the terraces of the brucitic surface. QM simulations confirmed the AFM observations that glycine molecule is adsorbed with high adsorption energy preferentially with its plane parallel to the (001) brucite-like surface. QM also provided the geometry conformation of the molecule and the bonding scheme between glycine and brucite surface. This kind of data can be very helpful both to biotechnological applications of this substrate and to depict some important processes that might have been occurred in prebiotic environments.

  12. Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; van Riessen, Arie; Saxey, David W.; Johnson, Tim E.; Rickard, William D. A.; Fougerouse, Denis; Fischer, Sebastian; Prosa, Ty J.; Rice, Katherine P.; Reinhard, David A.; Chen, Yimeng; Olson, David

    2016-12-01

    The widespread use of zircon in geochemical and geochronological studies of crustal rocks is underpinned by an understanding of the processes that may modify its composition. Deformation during tectonic and impact related strain is known to modify zircon trace element compositions, but the mechanisms by which this occurs remain unresolved. Here we combine electron backscatter diffraction, transmission Kikuchi diffraction and atom probe microscopy to investigate trace element migration associated with a ∼20 nm wide, 2° low-angle subgrain boundary formed in zircon during a single, high-strain rate, deformation associated with a bolide impact. The low-angle boundary shows elevated concentrations of both substitutional (Y) and interstitial (Al, Mg and Be) ions. The observed compositional variations reflect a dynamic process associated with the recovery of shock-induced vacancies and dislocations into lower energy low-angle boundaries. Y segregation is linked to the migration and localisation of oxygen vacancies, whilst the interstitial ions migrate in association with dislocations. These data represent the direct nanoscale observation of geologically-instantaneous, trace element migration associated with crystal plasticity of zircon and provide a framework for further understanding mass transfer processes in zircon.

  13. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.

    PubMed

    Kim, Yunok; Muhammad, Shoaib; Kim, Hyunchul; Cho, Yong-Hun; Kim, Hansu; Kim, Ji Man; Yoon, Won-Sub

    2015-07-20

    The structural changes and electrochemical behavior of RuO2 are investigated by using in situ XRD, X-ray absorption spectroscopy, and electrochemical techniques to understand the electrochemical reaction mechanism of this metal oxide anode material. Intermediate phase-assisted transformation of RuO2 to LiRuO2 takes place at the start of discharge. Upon further lithiation, LiRuO2 formed by intercalation decomposes to nanosized Ru metal and Li2 O by a conversion reaction. A reversible capacity in addition to its theoretical capacity is observed on discharging below 0.5 V during which no redox activity involving Ru is observed. TEM, X-ray photoelectron spectroscopy, and the galvanostatic intermittent titration technique are used to probe this additional capacity. The results show that the additional capacity is a result of Li storage in the grain boundary between nanosized Ru metal and Li2 O. Findings of this study provide a better understanding of the quantitative share of capacity by a unique combination of intercalation, conversion, and interfacial Li storage in a RuO2 anode.

  14. Probing the Catalytic Mechanism Involved in the Isocitrate Lyase Superfamily: Hybrid Quantum Mechanical/Molecular Mechanical Calculations on 2,3-Dimethylmalate Lyase.

    PubMed

    Jongkon, Nathjanan; Chotpatiwetchkul, Warot; Gleeson, M Paul

    2015-09-01

    The isocitrate lyase (ICL) superfamily catalyzes the cleavage of the C(2)-C(3) bond of various α-hydroxy acid substrates. Members of the family are found in bacteria, fungi, and plants and include ICL itself, oxaloacetate hydrolase (OAH), 2-methylisocitrate lyase (MICL), and (2R,3S)-dimethylmalate lyase (DMML) among others. ICL and related targets have been the focus of recent studies to treat bacterial and fungal infections, including tuberculosis. The catalytic process by which this family achieves C(2)-C(3) bond breaking is still not clear. Extensive structural studies have been performed on this family, leading to a number of plausible proposals for the catalytic mechanism. In this paper, we have applied quantum mechanical/molecular mechanical (QM/MM) methods to the most recently reported family member, DMML, to assess whether any of the mechanistic proposals offers a clear energetic advantage over the others. Our results suggest that Arg161 is the general base in the reaction and Cys124 is the general acid, giving rise to a rate-determining barrier of approximately 10 kcal/mol. PMID:26224328

  15. FT-IR spectroscopy, intra-molecular C-H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Anoop Kumar; Jain, Sudha; Misra, Neeraj

    2015-02-01

    The present study deals with two natural products, triclisine and rufescine which are extracted from the Amazonian wines but ubiquitous in nature. The quantum chemical density functional method at B3PW91/6-311+G(d,p) level is used to obtain the equilibrium geometries of these molecules. The quantum theory of atoms-in-molecule approach is employed to study various intra-molecular C-H⋯O interactions within these molecules. We have also performed vibrational analyses of triclisine and rufescine at their equilibrium geometries and presented the complete assignments of the significant vibrational modes. The calculated vibrational frequencies are shown to be in perfect agreement with the experimentally observed FTIR spectra of molecules under study. In addition, the electronic properties of these molecules are also discussed with the help of HOMO-LUMO and MESP surfaces and a number of electronic as well as thermodynamic parameters are calculated which are closely related to their chemical reactivity and reaction paths. The biological activities of both molecules have also been predicted which highlight their pharmacological importance.

  16. FT-IR spectroscopy, intra-molecular C-H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches.

    PubMed

    Srivastava, Ambrish Kumar; Pandey, Anoop Kumar; Jain, Sudha; Misra, Neeraj

    2015-02-01

    The present study deals with two natural products, triclisine and rufescine which are extracted from the Amazonian wines but ubiquitous in nature. The quantum chemical density functional method at B3PW91/6-311+G(d,p) level is used to obtain the equilibrium geometries of these molecules. The quantum theory of atoms-in-molecule approach is employed to study various intra-molecular C-H⋯O interactions within these molecules. We have also performed vibrational analyses of triclisine and rufescine at their equilibrium geometries and presented the complete assignments of the significant vibrational modes. The calculated vibrational frequencies are shown to be in perfect agreement with the experimentally observed FTIR spectra of molecules under study. In addition, the electronic properties of these molecules are also discussed with the help of HOMO-LUMO and MESP surfaces and a number of electronic as well as thermodynamic parameters are calculated which are closely related to their chemical reactivity and reaction paths. The biological activities of both molecules have also been predicted which highlight their pharmacological importance.

  17. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation

    PubMed Central

    Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli

    2016-01-01

    Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382

  18. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.

    PubMed

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J; Liu, Xuan

    2016-02-01

    We developed a miniature quantitative optical coherence elastography (qOCE) instrument with an integrated Fabry-Perot force sensor, for in situ elasticity measurement of biological tissue. The technique has great potential for biomechanics modeling and clinical diagnosis. We designed the fiber-optic qOCE probe that was used to exert a compressive force to deform tissue at the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation corresponding to the external stimulus. Simultaneous measurement of force and displacement allowed us to extract Young's modulus of biological tissue. We experimentally calibrated our qOCE instrument, and validated its effectiveness on tissue mimicking phantoms and biological tissues.

  19. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.

    PubMed

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J; Liu, Xuan

    2016-02-01

    We developed a miniature quantitative optical coherence elastography (qOCE) instrument with an integrated Fabry-Perot force sensor, for in situ elasticity measurement of biological tissue. The technique has great potential for biomechanics modeling and clinical diagnosis. We designed the fiber-optic qOCE probe that was used to exert a compressive force to deform tissue at the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation corresponding to the external stimulus. Simultaneous measurement of force and displacement allowed us to extract Young's modulus of biological tissue. We experimentally calibrated our qOCE instrument, and validated its effectiveness on tissue mimicking phantoms and biological tissues. PMID:26977372

  20. Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties

    PubMed Central

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J.; Liu, Xuan

    2016-01-01

    We developed a miniature quantitative optical coherence elastography (qOCE) instrument with an integrated Fabry-Perot force sensor, for in situ elasticity measurement of biological tissue. The technique has great potential for biomechanics modeling and clinical diagnosis. We designed the fiber-optic qOCE probe that was used to exert a compressive force to deform tissue at the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation corresponding to the external stimulus. Simultaneous measurement of force and displacement allowed us to extract Young’s modulus of biological tissue. We experimentally calibrated our qOCE instrument, and validated its effectiveness on tissue mimicking phantoms and biological tissues. PMID:26977372

  1. Fluorescence characteristics of some flavones probes in different micellar media.

    PubMed

    Voicescu, Mariana; Ionescu, Sorana

    2014-05-01

    The fluorescence characteristics of five hydroxiflavones (HFs) (some typical models of flavonols), (3 - HF, 6 - HF, 7-HF, 3, 6 - diHF and 3, 7-diHF) in the micellar media of non-ionic surfactant (Triton X-100), anionic surfactant (SDS) and the block copolymer Pluronic F127, have been investigated by means of UV-Vis and steady-state and time resolved fluorescence spectroscopies. Attention is paid to both excited-state intra-molecular proton transfer (ESIPT) as well as ground-state intermolecular proton transfer. The influence of the -OH groups as well as the effect of temperature on the dual fluorescence emission, the Normal and Tautomer emissions, are also investigated. The fluorescence quantum yield of the HFs in mentioned micellar media has been also determined. The results are discussed with relevance to the local environment of HFs as sensitive fluorescence probe in biological membrane systems.

  2. Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging.

    PubMed

    Hickman, Steven A; Moore, Eric W; Lee, SangGap; Longenecker, Jonilyn G; Wright, Sarah J; Harrell, Lee E; Marohn, John A

    2010-12-28

    We have batch-fabricated cantilevers with ∼100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 K. The magnetic nanorods were engineered to overhang the leading edge of the cantilever, and consequently the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch-fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a nonuniform tip magnetization at an applied field near 0.6 T.

  3. A novel near-infrared fluorescent probe for H2O2 in alkaline environment and the application for H2O2 imaging in vitro and in vivo.

    PubMed

    Liu, Keyin; Shang, Huiming; Kong, Xiuqi; Ren, Mingguang; Wang, Jian-Yong; Liu, Yong; Lin, Weiying

    2016-09-01

    H2O2 as one of the most important ROS (Reactive Oxygen Species) has more attack activity to biomolecules such as DNA, RNA, protein and enzyme in alkaline environment and leads to a series of disease. However, no attention has been paid to the fluorescent detection of H2O2 in alkaline environment in the past. Herein, we reported the first ratiometric near-infrared fluorescent probe based on a boric acid derivative of Changsha near-infrared dye (CSBOH) for H2O2 detection in alkaline condition and the application for H2O2 imaging in vivo. ICT (intra-molecular charge transfer) mechanism was used in CSBOH to modulate the fluorescence change. The photophysical change of CSBOH was investigated by comparison with a phenol derivative of Changsha near-infrared dye (CSOH), a structural analogue bearing phenol group. In the presence of H2O2, CSBOH exhibited remarkably different fluorescence change at 650 nm and 720 nm when excited by 560 nm and 670 nm light respectively in alkaline buffer and showed high selectivity toward H2O2. Cellular experiments demonstrate that CSBOH can image endogenously generated H2O2 in macrophages and A431 cells. In vivo experiment demonstrates that both CSOH and CSBOH can be used for bio-imaging, and CSBOH can image H2O2 in living animal successfully. PMID:27258486

  4. A novel near-infrared fluorescent probe for H2O2 in alkaline environment and the application for H2O2 imaging in vitro and in vivo.

    PubMed

    Liu, Keyin; Shang, Huiming; Kong, Xiuqi; Ren, Mingguang; Wang, Jian-Yong; Liu, Yong; Lin, Weiying

    2016-09-01

    H2O2 as one of the most important ROS (Reactive Oxygen Species) has more attack activity to biomolecules such as DNA, RNA, protein and enzyme in alkaline environment and leads to a series of disease. However, no attention has been paid to the fluorescent detection of H2O2 in alkaline environment in the past. Herein, we reported the first ratiometric near-infrared fluorescent probe based on a boric acid derivative of Changsha near-infrared dye (CSBOH) for H2O2 detection in alkaline condition and the application for H2O2 imaging in vivo. ICT (intra-molecular charge transfer) mechanism was used in CSBOH to modulate the fluorescence change. The photophysical change of CSBOH was investigated by comparison with a phenol derivative of Changsha near-infrared dye (CSOH), a structural analogue bearing phenol group. In the presence of H2O2, CSBOH exhibited remarkably different fluorescence change at 650 nm and 720 nm when excited by 560 nm and 670 nm light respectively in alkaline buffer and showed high selectivity toward H2O2. Cellular experiments demonstrate that CSBOH can image endogenously generated H2O2 in macrophages and A431 cells. In vivo experiment demonstrates that both CSOH and CSBOH can be used for bio-imaging, and CSBOH can image H2O2 in living animal successfully.

  5. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  6. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  7. Mechanism of allosteric modulation of Escherichia coli carbamoyl phosphate synthetase probed by site-directed mutagenesis of ornithine site residues.

    PubMed

    Rochera, Lourdes; Fresquet, Vicente; Rubio, Vicente; Cervera, Javier

    2002-03-13

    The role of residues of the ornithine activator site is probed by mutagenesis in Escherichia coli carbamoyl phosphate synthetase (CPS). Mutations E783A, E783L, E892A and E892L abolish ornithine binding, E783D and T1042V decrease 2-3 orders of magnitude and E892D decreased 10-fold apparent affinity for ornithine. None of the mutations inactivates CPS. E783 mutations hamper carbamate phosphorylation and increase K(+) and MgATP requirements, possibly by perturbing the K(+)-loop near the carbamate phosphorylation site. Mutation E892A activates the enzyme similarly to ornithine, possibly by altering the position of K891 at the opening of the tunnel that delivers the carbamate to its phosphorylation site. T1042V also influences modulation by IMP and UMP, supporting signal transmission from the nucleotide effector to the ornithine site mediated by a hydrogen bond network involving T1042. Ornithine activation of CPS may be mediated by K(+)-loop and tunnel gating changes. PMID:11943174

  8. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials. PMID:27352041

  9. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  10. Effect of sequence variation on the mechanical response of amyloid fibrils probed by steered molecular dynamics simulation.

    PubMed

    Ndlovu, Hlengisizwe; Ashcroft, Alison E; Radford, Sheena E; Harris, Sarah A

    2012-02-01

    The mechanical failure of mature amyloid fibers produces fragments that act as seeds for the growth of new fibrils. Fragmentation may also be correlated with cytotoxicity. We have used steered atomistic molecular dynamics simulations to study the mechanical failure of fibrils formed by the amyloidogenic fragment of human amylin hIAPP20-29 subjected to force applied in a variety of directions. By introducing systematic variations to this peptide sequence in silico, we have also investigated the role of the amino-acid sequence in determining the mechanical stability of amyloid fibrils. Our calculations show that the force required to induce mechanical failure depends on the direction of the applied stress and upon the degree of structural order present in the β-sheet assemblies, which in turn depends on the peptide sequence. The results have implications for the importance of sequence-dependent mechanical properties on seeding the growth of new fibrils and the role of breakage events in cytotoxicity.

  11. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    PubMed

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  12. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  13. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2.

    PubMed

    Dempsey, Daniel R; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J

    2015-11-01

    Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.

  14. Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

    SciTech Connect

    Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

    2014-02-21

    One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

  15. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Yoon, Gwonchan; Lee, Myeongsang; Kim, Kyungwoo; In Kim, Jae; Chang, Hyun Joon; Baek, Inchul; Eom, Kilho; Na, Sungsoo

    2015-12-01

    Amyloid fibrils are responsible for pathogenesis of various diseases and exhibit the structural feature of an ordered, hierarchical structure such as multi-stranded helical structure. As the multi-strandedness of amyloid fibrils has recently been found to be highly correlated with their toxicity and infectivity, it is necessary to study how the hierarchical (i.e. multi-stranded) structure of amyloid fibril is formed. Moreover, although it has recently been reported that the nanomechanics of amyloid proteins plays a key role on the amyloid-induced pathogenesis, a critical role that the multi-stranded helical structure of the fibrils plays in their nanomechanical properties has not fully characterized. In this work, we characterize the morphology and mechanical properties of multi-stranded amyloid fibrils by using equilibrium molecular dynamics simulation and elastic network model. It is shown that the helical pitch of multi-stranded amyloid fibril is linearly proportional to the number of filaments comprising the amyloid fibril, and that multi-strandedness gives rise to improving the bending rigidity of the fibril. Moreover, we have also studied the morphology and mechanical properties of a single protofilament (filament) in order to understand the effect of cross-β structure and mutation on the structures and mechanical properties of amyloid fibrils. Our study sheds light on the underlying design principles showing how the multi-stranded amyloid fibril is formed and how the structure of amyloid fibrils governs their nanomechanical properties.

  16. Probing the mechanical properties of high-k dielectric nano-films by Brillouin light scattering study

    NASA Astrophysics Data System (ADS)

    Zizka, Jonathan; Bielefeld, Jeffrey; King, Sean; Sooryakumar, R.

    2014-03-01

    As microelectronic transistors scale to smaller dimensions, device functionality suffers from current leakage. This problem can be overcome by using thicker gate materials with a high dielectric constant. SiO2 has been the material of choice, but becomes unsuitable due to its relatively low dielectric constant (k = 3.9). Alternate materials, such as BN:H (k = 5.7) and HfO2 (k = 25) are promising choices to replace SiO2 to achieve the desired performance while preserving ultra-thin thickness (<10 nm). Despite these promising features, one concern of including these materials, are their mechanical and thermal properties that could degrade device functionality. There is thus a growing need for non-destructive techniques to evaluate the mechanical properties of such laminar structures since traditional methods like nano-indentation are not effective at these dimensions. We report on Brillioun light scattering studies to determine the individual elastic constants and, thus the mechanical properties of BN:H and HfO2 high-k films with thicknesses as low as 24 nm. Young's modulus (E) and Poisson's ratio (ν) were determined by measuring the frequency dispersion of confined and traveling transverse and longitudinal acoustic waves as well as their associated light scattering intensities.

  17. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model

    PubMed Central

    Li, Xuejin; Peng, Zhangli; Lei, Huan; Dao, Ming; Karniadakis, George Em

    2014-01-01

    This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer–cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model. PMID:24982252

  18. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model.

    PubMed

    Li, Xuejin; Peng, Zhangli; Lei, Huan; Dao, Ming; Karniadakis, George Em

    2014-08-01

    This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer-cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model.

  19. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy.

    PubMed

    Long, Xi; Parks, Joseph W; Bagshaw, Clive R; Stone, Michael D

    2013-02-01

    Single-molecule techniques facilitate analysis of mechanical transitions within nucleic acids and proteins. Here, we describe an integrated fluorescence and magnetic tweezers instrument that permits detection of nanometer-scale DNA structural rearrangements together with the application of a wide range of stretching forces to individual DNA molecules. We have analyzed the force-dependent equilibrium and rate constants for telomere DNA G-quadruplex (GQ) folding and unfolding, and have determined the location of the transition state barrier along the well-defined DNA-stretching reaction coordinate. Our results reveal the mechanical unfolding pathway of the telomere DNA GQ is characterized by a short distance (<1 nm) to the transition state for the unfolding reaction. This mechanical unfolding response reflects a critical contribution of long-range interactions to the global stability of the GQ fold, and suggests that telomere-associated proteins need only disrupt a few base pairs to destabilize GQ structures. Comparison of the GQ unfolded state with a single-stranded polyT DNA revealed the unfolded GQ exhibits a compacted non-native conformation reminiscent of the protein molten globule. We expect the capacity to interrogate macromolecular structural transitions with high spatial resolution under conditions of low forces will have broad application in analyses of nucleic acid and protein folding. PMID:23303789

  20. Structures and properties of sulfonated ionomers probed by transport and mechanical measurements: The role of solute activity

    NASA Astrophysics Data System (ADS)

    Zhao, Qiao

    This work is focused on advancing the understanding of the structures and properties of sulfonated ionomer membranes in the context of Polymer Electrolyte Membrane Fuel Cell applications by transport and mechanical measurements. Transport and mechanical properties are two critical elements of ionomer membranes that govern the performance and longevity of fuel cells. Additionally, transport and mechanical property measurements can also provide valuable information about the structure of the ionomer membranes. It is essential to develop a comprehensive understanding of them under well controlled environmental conditions. The mechanism of water transport through Nafion membranes was found to be governed by water diffusivity, swelling of the hydrophilic phase and the interfacial transport across membrane/vapor interface. A transport model incorporating these parameters was developed and successfully employed to resolve water activity profiles in the membrane and make quantitative predictions under steady state and dynamic conditions. Experimental results of diffusivity, volume of mixing and tortuosity also provided hints about the hydration shell structure around in the hydrophilic domains of Nafion. The alcohol sorption and transport was found to be qualitatively similar to the behavior of water and the quantitative differences were attributed to the difference in molecular size. The transport of alcohol water mixtures through Nafion displayed significant non-ideality which was connected to the abnormal swelling and incomplete mixing within the hydrophilic domains. The mechanical properties of several perfluoro-sulfonated ionomer (PFSI) membranes were studied as functions of temperature and solute activity. The thermal transition found between 60-100°C was described as an order-disorder transition of the ionic clusters. Water and other polar solutes were found to plasticize PFSI below the transition but stiffen PFSI above the transition. The stiffening effect was

  1. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation.

    PubMed

    Lombardi, Maria L; Zwerger, Monika; Lammerding, Jan

    2011-09-14

    In most eukaryotic cells, the nucleus is the largest organelle and is typically 2 to 10 times stiffer than the surrounding cytoskeleton; consequently, the physical properties of the nucleus contribute significantly to the overall biomechanical behavior of cells under physiological and pathological conditions. For example, in migrating neutrophils and invading cancer cells, nuclear stiffness can pose a major obstacle during extravasation or passage through narrow spaces within tissues.(1) On the other hand, the nucleus of cells in mechanically active tissue such as muscle requires sufficient structural support to withstand repetitive mechanical stress. Importantly, the nucleus is tightly integrated into the cellular architecture; it is physically connected to the surrounding cytoskeleton, which is a critical requirement for the intracellular movement and positioning of the nucleus, for example, in polarized cells, synaptic nuclei at neuromuscular junctions, or in migrating cells.(2) Not surprisingly, mutations in nuclear envelope proteins such as lamins and nesprins, which play a critical role in determining nuclear stiffness and nucleo-cytoskeletal coupling, have been shown recently to result in a number of human diseases, including Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, and dilated cardiomyopathy.(3) To investigate the biophysical function of diverse nuclear envelope proteins and the effect of specific mutations, we have developed experimental methods to study the physical properties of the nucleus in single, living cells subjected to global or localized mechanical perturbation. Measuring induced nuclear deformations in response to precisely applied substrate strain application yields important information on the deformability of the nucleus and allows quantitative comparison between different mutations or cell lines deficient for specific nuclear envelope proteins. Localized cytoskeletal strain application with a microneedle is used to

  2. Quantifying Energy-Time Dispersion of Relativistic Electron Microbursts to Constrain Their Generation Mechanism: Coordinated Studies Using FIREBIRD, Van Allen Probes, and BARREL

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Blake, J. B.; Crew, A. B.; Fennell, J. F.; Klumpar, D. M.; Larsen, B.; Millan, R. M.; Miyoshi, Y.; O'Brien, T. P., III; Reeves, G. D.; Smith, S. S.

    2015-12-01

    In this paper, we quantify properties of relativistic electron precipitation at low altitudes in order to constrain the mechanism(s) for microburst loss occurring in Earth's radiation belt. Though studied for decades, the physical mechanism(s) responsible for the loss of radiation belt particles through microburst precipitation to the atmosphere remains uncertain, and, unquantified in a global sense. Accordingly, we appeal to new measurements from the NSF FIREBIRD (Focused Investigation of Relativistic Electron Burst Intensity Range and Dynamics) mission. FIREBIRD comprises two 1.5U CubeSats launched in early 2015 into identical coplanar polar low altitude orbits; a small spring imparted a slow separation between the two spacecraft upon orbit insertion. Over the course of the mission, the orbits of the two identically-instrumented spacecraft slowly evolve, sampling spatial scales of electron precipitation measured simultaneously at separations of 10's to 1000's of kilometers. FIREBIRD provides electron energy spectra from ~250 keV to > 1MeV, with both high spectral resolution (6 to 12 energy channels) and high temporal resolution (principally operated at ~18 millisecond sampling). To do so, FIREBIRD employs two solid-state detectors on each CubeSat, one an uncollimated detector with a large geometric factor (optimized for weak events) and the other a collimated detector (optimized for intense events). While the primary goal of FIREBIRD is to establish the spatial/temporal coherence of microburst precipitation, it also provides the capability of quantifying on each spacecraft the dispersive properties of microbursts. In this work, we report on the energy-time dispersive qualities of individual bursts, which in turn provide a means for testing models and constraining where and how the bursts are generated. To test these models, we use measurements made near the magnetic equator by the Van Allen Probes mission during times when the two FIREBIRD and two Van Allen

  3. A study of the feasibility of mechanical pumps for use with the Pioneer-Venus probe mass spectrometer inlet system

    NASA Technical Reports Server (NTRS)

    Thomas, N. C.; Crosmer, W. E.; Nowak, D.

    1973-01-01

    A survey of mechanical vacuum pumps was completed. A small Roots blower for flight mass spectrometer applications was evaluated with respect to system operating parameters in a number of different modes of operation. The survey indicated that a metal bellows pump might be a viable alternative for the systems requirements. The results of the study are given, including current status of possible flight-type pumps, a systems analysis using available pumps, and recommendations for fabrication and tests of a potential flight-type pump.

  4. Susceptibility to distraction in autism spectrum disorder: probing the integrity of oscillatory alpha-band suppression mechanisms.

    PubMed

    Murphy, Jeremy W; Foxe, John J; Peters, Joanna B; Molholm, Sophie

    2014-08-01

    When attention is directed to one information stream over another, the brain can be configured in advance to selectively process the relevant stream and suppress potentially distracting inputs. One key mechanism of suppression is through the deployment of anticipatory alpha-band (~10 Hz) oscillatory activity, with greater alpha-band power observed in cortical regions that will ultimately process the distracting stream. Atypical attention has been implicated in autism spectrum disorder (ASD), including greater interference by distracting task-irrelevant inputs. Here we tested the integrity of these alpha-band mechanisms in ASD using an intersensory attention task. Electroencephalography (EEG) was recorded while participants were cued on a trial-by-trial basis to selectively deploy attention to the visual or auditory modality in anticipation of a target within the cued modality. Whereas typically developing (TD) children showed the predicted alpha-band modulation, with increased alpha-band power over parieto-occipital scalp when attention was deployed to the auditory compared with the visual modality, this differential pattern was entirely absent at the group level in the ASD cohort. Further, only the ASD group showed impaired performance due to the presence of task-irrelevant sensory information. These data suggest that impaired modulation of alpha-band activity plays a role in increased distraction from extraneous sensory inputs in ASD.

  5. Ambient-temperature Conditioning as a Probe of Double-C Transformation Mechanisms in Pu-2.0 at. % Ga

    SciTech Connect

    Jeffries, J R; Blobaum, K M; Wall, M A; Schwartz, A J

    2008-04-02

    The gallium-stabilized Pu-2.0 at. % Ga alloy undergoes a partial or incomplete low-temperature martensitic transformation from the metastable {delta} phase to the gallium-containing, monoclinic {alpha}{prime} phase near -100 C. This transformation has been shown to occur isothermally and it displays anomalous double-C kinetics in a time-temperature-transformation (TTT) diagram, where two nose temperatures anchoring an upper- and lower-C describe minima in the time for the initiation of transformation. The underlying mechanisms responsible for the double-C behavior are currently unresolved, although recent experiments suggest that a conditioning treatment--wherein, following an anneal at 375 C, the sample is held at a sub-anneal temperature for a period of time--significantly influences the upper-C of the TTT diagram. As such, elucidating the effects of the conditioning treatment upon the {delta} {yields} {alpha}{prime} transformation can provide valuable insights into the fundamental mechanisms governing the double-C kinetics of the transition. Following a high-temperature anneal, a differential scanning calorimeter (DSC) was used to establish an optimal conditioning curve that depicts the amount of {alpha}{prime} formed during the transformation as a function of conditioning temperature for a specified time. With the optimal conditioning curve as a baseline, the DSC was used to explore the circumstances under which the effects of the conditioning treatment were destroyed, resulting in little or no transformation.

  6. Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Ren-Hui; Wang, Li-Ping; Lu, Zhi-Bin

    2015-03-01

    Fluorinated amorphous carbon films exhibit superlow friction under vacuum, but are prone to catastrophic failure. Thus far, the intrinsic failure mechanism remains unclear. A prevailing view is that the failure of amorphous carbon film results from the plastic deformation of substrates or strong adhesion between two contacted surfaces. In this paper, using first-principles and molecular dynamics methodology, combining with compressive stress-strain relation, we firstly demonstrate that the plastic deformation induces graphitization resulting in strong adhesion between two contacted surfaces under vacuum, which directly corresponds to the cause of the failure of the films. In addition, sliding contact experiments are conducted to study tribological properties of iron and fluorinated amorphous carbon surfaces under vacuum. The results show that the failure of the film is directly attributed to strong adhesion resulting from high degree of graphitization of the film, which are consistent with the calculated results.

  7. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  8. {upsilon} decay to two charm-quark jets as a probe of the color-octet mechanism

    SciTech Connect

    Zhang Yujie; Chao Kuangta

    2008-11-01

    We calculate the decay rate of bottomonium to two charm-quark jets {upsilon}{yields}cc at the tree level and one-loop level including color-singlet and color-octet bb annihilations. We find that the short-distance coefficient of the color-octet piece is much larger than the color-singlet piece, and that the QCD correction will change the end point behavior of the charm quark jet. The color-singlet piece is strongly affected by the one-loop QCD correction. In contrast, the QCD correction to the color-octet piece is weak. Once the experiment can measure the branching ratio and energy distribution of the two charm-quark jets in the {upsilon} decay, the result can be used to test the color-octet mechanism or give a strong constraint on the color-octet matrix elements.

  9. Catalytic Mechanism of Rhomboid Protease GlpG Probed by 3,4-Dichloroisocoumarin and Diisopropyl Fluorophosphonate*

    PubMed Central

    Xue, Yi; Ha, Ya

    2012-01-01

    Rhomboid proteases have many important biological functions. Unlike soluble serine proteases such as chymotrypsin, the active site of rhomboid protease, which contains a Ser-His catalytic dyad, is submerged in the membrane and surrounded by membrane-spanning helices. Previous crystallographic analyses of GlpG, a bacterial rhomboid protease, and its complex with isocoumarin have provided insights into the mechanism of the membrane protease. Here, we studied the interaction of GlpG with 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate, both mechanism-based inhibitors for the serine protease, and describe the crystal structure of the covalent adduct between GlpG and diisopropyl fluorophosphonate, which mimics the oxyanion-containing tetrahedral intermediate of the hydrolytic reaction. The crystal structure confirms that the oxyanion is stabilized by the main chain amide of Ser-201 and by the side chains of His-150 and Asn-154. The phosphorylation of the catalytic Ser-201 weakens its interaction with His-254, causing the catalytic histidine to rotate away from the serine. The rotation of His-254 is accompanied by further rearrangement of the side chains of Tyr-205 and Trp-236 within the substrate-binding groove. The formation of the tetrahedral adduct is also accompanied by opening of the L5 cap and movement of transmembrane helix S5 toward S6 in a direction different from that predicted by the lateral gating model. Combining the new structural data with those on the isocoumarin complex sheds further light on the plasticity of the active site of rhomboid membrane protease. PMID:22130671

  10. Probing the in vitro mechanism of action of cationic lipid/DNA lipoplexes at a nanometric scale

    PubMed Central

    Le Bihan, Olivier; Chèvre, Raphaël; Mornet, Stéphane; Garnier, Boris; Pitard, Bruno; Lambert, Olivier

    2011-01-01

    Cationic lipids are used for delivering nucleic acids (lipoplexes) into cells for both therapeutic and biological applications. A better understanding of the identified key-steps, including endocytosis, endosomal escape and nuclear delivery is required for further developments to improve their efficacy. Here, we developed a labelling protocol using aminated nanoparticles as markers for plasmid DNA to examine the intracellular route of lipoplexes in cell lines using transmission electron microscopy. Morphological changes of lipoplexes, membrane reorganizations and endosomal membrane ruptures were observed allowing the understanding of the lipoplex mechanism until the endosomal escape mediated by cationic lipids. The study carried out on two cationic lipids, bis(guanidinium)-tris(2-aminoethyl)amine-cholesterol (BGTC) and dioleyl succinyl paramomycin (DOSP), showed two pathways of endosomal escape that could explain their different transfection efficiencies. For BGTC, a partial or complete dissociation of DNA from cationic lipids occurred before endosomal escape while for DOSP, lipoplexes remained visible within ruptured vesicles suggesting a more direct pathway for DNA release and endosome escape. In addition, the formation of new multilamellar lipid assemblies was noted, which could result from the interaction between cationic lipids and cellular compounds. These results provide new insights into DNA transfer pathways and possible implications of cationic lipids in lipid metabolism. PMID:21078679

  11. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers.

    PubMed

    Pal, Krishnendu; Gangopadhyay, Gautam

    2015-01-01

    The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states. PMID:26274618

  12. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers

    PubMed Central

    Pal, Krishnendu; Gangopadhyay, Gautam

    2015-01-01

    The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states. PMID:26274618

  13. Probe Mössbauer spectroscopy of mechanical alloying in binary Cr‐{sup 57}Fe(1 at%) system

    SciTech Connect

    Elsukov, Evgeny P. Kolodkin, Denis A. Ul'yanov, Alexander L. Porsev, Vitaly E.

    2014-10-27

    Solid state reactions during mechanical alloying (MA) in a binary mixture of powdered Cr and {sup 57}Fe in atomic ratio of 99:1 have been studied using {sup 57}Fe Mössbauer spectroscopy, X-ray diffraction and Auger spectrometry. The proposed model of MA includes formation of Cr(Fe){sub x}O{sub y} oxides at the contact places of Cr and Fe particles, formation of nanostructure with simultaneous dissolution of the oxides, penetration of Fe atoms along grain boundaries in close-to-boundary distorted zones of interfaces in a substitutional position, formation of the substitutional solid solution of Fe in Cr in the body of grains. It was shown that the increase in the BCC lattice parameter on increasing the milling time is due to the dissolution of oxides and formation of interstitial solid solution of O in Cr. There were established substantial differences in consumption of BCC Fe in a Mg → Al → Si → Cr sequence due to the major role of chemical interaction of Mg(Al,Si,Cr) with Fe.

  14. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    SciTech Connect

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua

    2009-05-12

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a {beta}-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  15. (S)-Styryl-α-alanine used to probe the intermolecular mechanism of an intramolecular MIO-aminomutase.

    PubMed

    Wanninayake, Udayanga; Deporre, Yvonne; Ondari, Mark; Walker, Kevin D

    2011-11-22

    A Taxus canadensis phenylalanine aminomutase (TcPAM) catalyzes the isomerization of (S)-α- to (R)-β-phenylalanine, making (E)-cinnamate (~10%) as a byproduct at steady state. A currently accepted mechanism for TcPAM suggests that the amino group is transferred from the substrate to a prosthetic group comprised of an amino acid triad in the active site and then principally rebinds to the carbon skeleton of the cinnamate intermediate to complete the α-β isomerization. In contrast, when (S)-styryl-α-alanine is used as a substrate, TcPAM produces (2E,4E)-styrylacrylate as the major product (>99%) and (R)-styryl-β-alanine (<1%). Comparison of the rates of conversion of the natural substrate (S)-α-phenylalanine and (S)-styryl-α-alanine to their corresponding products (k(cat) values of 0.053 ± 0.001 and 0.082 ± 0.002 s(-1), respectively) catalyzed by TcPAM suggests that the amino group resides in the active site longer than styrylacrylate. To demonstrate this principle, inhibition constants (K(I)) for selected acrylates ranging from 0.6 to 106 μM were obtained, and each had a lower K(I) compared to that of (2E,4E)-styrylacrylate (337 ± 12 μM). Evaluation of the inhibition constants and the rates at which both the α/β-amino acids (between 7 and 80% yield) and styrylacrylate were made from a corresponding arylacrylate and styryl-α-alanine, respectively, by TcPAM catalysis revealed that the reaction progress was largely dependent on the K(I) of the acrylate. Bicyclic amino donor substrates also transferred their amino groups to an arylacrylate, demonstrating for the first time that ring-fused amino acids are productive substrates in the TcPAM-catalyzed reaction.

  16. Fluoroaluminum and fluoroberyllium nucleoside diphosphate complexes as probes of the enzymatic mechanism of the mitochondrial F1-ATPase.

    PubMed

    Issartel, J P; Dupuis, A; Lunardi, J; Vignais, P V

    1991-05-14

    The mechanism by which fluoride and aluminum or beryllium in combination with ADP inhibit beef heart mitochondrial F1-ATPase was investigated. The kinetics of inhibition depended on the nature of the anion present in the F1-ATPase assay medium. Inhibition required the presence of Mg2+ and developed more rapidly with sulfite and sulfate than with chloride, i.e., with anions which activate F1-ATPase activity. The ADP-fluorometal complexes were bound quasi-irreversibly to F1, and each mole of the inhibitory nucleotide-fluorometal complex was tightly associated with 1 mol of Mg2+. One mole of nucleotide-fluorometal complex was able to inhibit the activity of 1 mol of catalytic site in F1. Direct measurements of bound fluoride, aluminum, beryllium, and ADP indicated that the F1-bound ADP-fluorometal complexes are of the following types: ADP1A11F4, ADP1Be1F1, ADP1Be1F2, or ADP1Be1F3. Fluoroaluminates or fluoroberyllates are isomorphous to Pi, and the inhibitory nucleotide-fluorometal complexes mimicked transient intermediates of nucleotides that appeared in the course of ATP hydrolysis. On the other hand, each mole of fully inhibited F1, retained 2 mol of inhibitory complexes. The same stoichiometry was observed when ADP was replaced by GDP, a nucleotide which, unlike ADP, binds only to the catalytic sites of F1. These results are discussed in terms of a stochastic model in which the three cooperative catalytic sites of F1 function in interactive pairs.

  17. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2013-10-01

    Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with appreciably less symmetry, including those in which the particles have different local structural environments. These challenging target configurations demanded that we modify previous inverse optimization techniques. In particular, we first find local minima of a candidate enthalpy surface and determine the enthalpy difference ΔH between such inherent structures and the target structure. Then we determine the lowest positive eigenvalue λ(0) of the Hessian matrix of the enthalpy surface at the target configuration. Finally, we maximize λ(0)ΔH so that the target structure is both locally stable and globally stable with respect to the inherent structures. Using this modified optimization technique, we have designed short-range radial pair potentials that stabilize the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-dimensional structure of the CaF(2) crystal inhabited by a single-particle species. We verify our results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component systems with short-range radial pair potentials can counterintuitively self-assemble into crystal ground states with low symmetry and different local structural environments. Finally, we present general principles that offer

  18. Early Holocene volcanism in CKD (Kamchatka) as a mechanical probe of the stress level in the crust.

    NASA Astrophysics Data System (ADS)

    Simakin, Alexander; Shaposhnikova, Olga

    2016-04-01

    The last (late Pleistocene) glaciation in Kluychevskaya group of volcanoes (KGV) can be considered as a large scale mechanical experiment allowing evaluation of the level of the global geodynamic stresses in the crust of North Kamchatka. KGV is located in the Central Kamchatka depression (CKD). Formation of the CKD can be connected with accretion of Kronotsky paleoarc to the Kamchatka edge c.a. 5 Mys ago. At the compression stage zone of the contact was thickened so that lower part can reach PT parameters of basalt-eclogite transition. Suggested carbonates contamination of the mantle wedge during accretion (Simakin et al., 2015) can became a source of CO2 facilitating eclogite formation. Dense eclogitic keel and trench retreat following accretion can be the driving forces of the CKD rift formation. Extension is partially accommodated (several mm/yr eastward motion) on the eastern border of CKD in the zone of the normal faulting (Kozhurin et al., 2006). And partially extension is accommodated by the formation of the series of dykes of submeridional direction marked by monogenic cones on the surface. At the last phase of the Pleistocene glaciation KGV was covered by the ice cap with 80 km diameter and above 1000 m maximum thickness on the slopes. After the fast deglaciation surface uplift has produced horizontal compression (Simakin and Muravyev, 2015; Pagli and Sigmundsson, 2008). Addition of the deglacial compression to the geodynamic extension turns s1 direction to the horizontal latitudinal one. Due to the horizontal compression areal of eruptions was expanded towards edges of the former glacier. Numerical modeling demonstrates that maximum level of the glacial stress is proportional to the ice gravity load and is estimated to be 5.8-7.5 MPa. Initially principle compressive stress due to the deglaciation was higher than geodynamic one abs(s1,glac) > abs(s1,geod). Time of the volcanism return to the basic submeridional direction marked the moment of viscous

  19. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  20. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  2. Mechanism of the reaction, CH4+O(1D2)→CH3+OH, studied by ultrafast and state-resolved photolysis/probe spectroscopy of the CH4ṡO3 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Miller, C. Cameron; van Zee, Roger D.; Stephenson, John C.

    2001-01-01

    The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4ṡO3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast≈0.2 ps, τinter≈0.5 ps and τslow≈5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the

  3. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  4. Convective heat flow probe

    DOEpatents

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  5. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  6. A study of the properties of beryllium doped silicon with particular emphasis on diffusion mechanisms: Profiles of depth dependent conductivity as determined by electrical surface probes

    NASA Technical Reports Server (NTRS)

    Franks, R. K.; Robertson, J. B.

    1972-01-01

    Very large diffusion coefficients were encountered and required the determination of impurity profiles for samples approximately 1 cm thick. Since conductivity values are readily converted into concentrations of electrically active impurities, the major problem became that of accurately determining the conductivity profiles of beryllium diffused silicon samples. Four-point probe measurements on samples having depth conductivities are interpreted in terms of conductivity profiles, based on an exact solution of the problem of exponentially depth dependent conductivity. Applications include surface conductivity determination where the form of the conductivity profile is known, and conductivity profile determination from probe measurements taken as the sample surface is progressively lapped away. The application is limited to samples having conductivity monotonically decreasing with depth from the probed surface.

  7. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    SciTech Connect

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution

  8. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    DOE PAGES

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution

  9. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  10. Thiol Reactive Probes and Chemosensors

    PubMed Central

    Peng, Hanjing; Chen, Weixuan; Cheng, Yunfeng; Hakuna, Lovemore; Strongin, Robert; Wang, Binghe

    2012-01-01

    Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses on the design of fluorescent and colorimetric probes and sensors for thiol detection. Thiol detection methods include probes and labeling agents based on nucleophilic addition and substitution, Michael addition, disulfide bond or Se-N bond cleavage, metal-sulfur interactions and more. Probes for H2S are based on nucleophilic cyclization, reduction and metal sulfide formation. Thiol probe and chemosensor design strategies and mechanism of action are discussed in this review. PMID:23202239

  11. A New Method of Photothermal Displacement Measurement by Laser Interferometric Probe —Its Mechanism and Applications to Evaluation of Lattice Damage in Semiconductors—

    NASA Astrophysics Data System (ADS)

    Sumie, Shingo; Takamatsu, Hiroyuki; Nishimoto, Yoshiro; Horiuchi, Takefumi; Nakayama, Hiroshi; Kanata, Takashi; Nishino, Taneo

    1992-11-01

    A new, highly sensitive technique for measuring photothermal displacement using a laser heterodyne interferometric probe has been developed. This technique is based on the detection of phase changes in the probe beam and is very sensitive to the presence of lattice damage in semiconductors. It has been found that the phase change is caused by the thermal expansion of a sample surface induced by absorption of a modulated pump beam. The displacements of metals and semiconductors measured by this technique coincided with the results predicted by a thermal diffusion model. These displacements simply depended upon the ratio of the thermal expansion coefficient to the thermal conductlvity of a sample.

  12. Multiple-measurement beam probe

    SciTech Connect

    Gilpatrick, J.D.; Grant, D.L.

    1986-01-01

    Particle accelerators are becoming smaller and are producing more intense beams; therefore, it is critical that beam-diagnostic instrumentation provide accelerator operators and automated control systems with a complete set of beam information. Traditionally, these beam data were collected and processed using limited-bandwidth interceptive techniques. For the new-generation accelerators, we are developing a multiple-measurement microstrip probe to obtain broadband beam data from inside a drift tube without perturbing the beam. The cylindrical probe's dimensions are 6-cm OD by 1.0 m long, and the probe is mounted inside a drift tube. The probe (and its associated electronics) monitors bunched-beam current, energy, and transverse position by sensing the beam's electromagnetic fields through the annular opening in the drift tube. The electrical impedance is tightly controlled through the full length of the probe and transmission lines to maintain beam-induced signal fidelity. The probe's small, cylindrical structure is matched to beam-bunch characteristics at specific beamline locations so that signal-to-noise ratios are optimized. Surrounding the probe, a mechanical structure attaches to the drift-tube interior and the quadrupole magnets; thus, the entire assembly's mechanical and electrical centers can be aligned and calibrated with respect to the rest of the linac.

  13. The navigation of space probes

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Ohandley, D. A.; Zielenbach, J. W.

    1974-01-01

    A new navigational method combining electronic measurement procedures and celestial mechanics makes it possible to conduct a space probe very close to a desired point in the neighborhood of a remote planet. Approaches for the determination of the position of the space probe in space are discussed, giving attention to the effects of errors in the employed data. The application of the navigational methods in a number of space missions is also considered.

  14. Overview of Probe-based Storage Technologies.

    PubMed

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-12-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices. PMID:27456500

  15. Overview of Probe-based Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Ci Hui; Wen, Jing; Gong, Si Di; Peng, Yuan Xiu

    2016-07-01

    The current world is in the age of big data where the total amount of global digital data is growing up at an incredible rate. This indeed necessitates a drastic enhancement on the capacity of conventional data storage devices that are, however, suffering from their respective physical drawbacks. Under this circumstance, it is essential to aggressively explore and develop alternative promising mass storage devices, leading to the presence of probe-based storage devices. In this paper, the physical principles and the current status of several different probe storage devices, including thermo-mechanical probe memory, magnetic probe memory, ferroelectric probe memory, and phase-change probe memory, are reviewed in details, as well as their respective merits and weakness. This paper provides an overview of the emerging probe memories potentially for next generation storage device so as to motivate the exploration of more innovative technologies to push forward the development of the probe storage devices.

  16. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    SciTech Connect

    Liu, J.; Strzalka, J; Tronin, A; Johansson, J; Blasie, J

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the

  17. Determination of the structure and heating mechanisms of coronal loops from soft X-ray observations with the solar probe. [grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.

    1978-01-01

    High resolution soft X-ray imaging from the solar probe is justified in terms of the expected scientific returns which include the determination of the temperature and density structure of a coronal loop. The advantages of the grazing incidence telescope over the multiple pinhole camera are discussed. An instrument package is described which includes a grazing incidence mirror, a thermal prefilter, a three position filter wheel and a focal plane detector baselined as an 800 by 800 back-illuminated charge coupled device. The structural assembly together with the data processing equipment would draw heavily on the designs being developed for the Solar Polar Mission.

  18. Structural modifications in a Mn54Al43C3 melt-spun alloy induced by mechanical milling and subsequent annealing investigated by atom probe tomography

    SciTech Connect

    Le Breton, JM; Bran, J; Folcke, E; Lucis, M; Larde, R; Jean, M; Shield, JE

    2013-12-25

    The structural changes upon milling and subsequent annealing of a Mn54Al43C3 alloy containing the intermetallic tetragonal L1(0) MnAl phase (tau phase) as the major phase were investigated by X-ray diffraction and atom probe tomography. The analyses show that milling the starting powder for 10 h leads to the nanostructuration of the sample. The milled sample is partly oxidised and contains both non oxidised Mn60 +/- 5Al40 +/- 5 regions and oxidised regions. Annealing the powder for 1 h at 500 degrees C leads to enrichment in Al of the oxidised regions, and to the phase transformation of the non-oxidised regions into a nano-structured beta-Mn-like phase with a composition close to Mn3Al2. (C) 2013 Elsevier B. V. All rights reserved.

  19. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjun; Glenn, Paul

    2015-01-01

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  20. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    SciTech Connect

    Zheng, Wenjun Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  1. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed. PMID:26103632

  2. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.

  3. Oxygen as a site specific structural probe in neutron diffraction

    SciTech Connect

    Neuefeind, Joerg C; Simonson, J Michael {Mike}; Salmon, Phil; Zeidler, Anita; Fischer, Henry E; Rauch, Helmut; Markland, Thomas; Lemmel, Hartmut

    2011-01-01

    Oxygen is a ubiquitous element, playing an essential role in most scientific and technological disciplines, and is often incorporated within a structurally disordered material where examples include molten silicates in planetary science, glasses used for lasers and optical communication, and water in biological processes. Establishing the structure of a liquid or glassy oxide and thereby its relation to the functional properties of a material is not, however, a trivial task owing to the complexity associated with atomic disorder. Here we approach this challenge by measuring the bound coherent neutron scattering lengths of the oxygen isotopes with the sensitive technique of neutron interferometry. We find that there is a small but finite contrast of 0.204(6) fm between the scattering lengths of the isotope 18O and oxygen of natural isotopic abundance natO, contrary to tables of recommended values. This has enabled us to investigate the structure of both light and heavy water by exploiting, for the first time, the method of oxygen isotope substitution in neutron diffraction, thus circumventing many of the significant problems associated with more traditional methods in which hydrogen is substituted by deuterium. We find a difference of ~0.5% between the O-H and O-D intra-molecular bond distances which is much smaller than recent estimates based on diffraction data and is found to be in excellent agreement with path integral molecular dynamics simulations made with a flexible polarisable water model. Our results demonstrate the potential for using oxygen isotope substitution as a powerful and effective site specific probe in a plethora of materials, of pertinence as instrumentation at next generation neutron sources comes online

  4. Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst

    NASA Astrophysics Data System (ADS)

    Poater, Albert; Cavallo, Luigi

    A theoretical study of a double C—H activation mechanism that deactivates a family of second generation Ru-based catalysts is presented. DFT calculations are used to rationalize the complex mechanistic pathway from the starting precatalyst to the experimentally characterized decomposition products. In particular, we show that all the intermediates proposed by Grubbs and coworkers are indeed possible intermediates in the deactivation pathway, although the sequence of steps is somewhat different

  5. Probing the reaction mechanism of the D-ala-D-ala dipeptidase, VanX, by using stopped-flow kinetic and rapid-freeze quench EPR studies on the Co(II)-substituted enzyme.

    PubMed

    Matthews, Megan L; Periyannan, Gopalraj; Hajdin, Christine; Sidgel, Tara K; Bennett, Brian; Crowder, Michael W

    2006-10-11

    In an effort to probe the reaction mechanism of VanX, the d-ala-d-ala dipeptidase required for high-level vancomycin resistance in bacteria, stopped-flow kinetic and rapid-freeze quench EPR studies were conducted on the Co(II)-substituted enzyme when reacted with d-ala-d-ala. The intensity of the Co(II) ligand field band at 550 nm decreased (epsilon550 = 140 to 18 M-1 cm-1) when VanX was reacted with substrate, suggesting that the coordination number of the metal increases from 5 to 6 upon substrate binding. The stopped-flow trace was fitted to a kinetic mechanism that suggests the presence of an intermediate whose breakdown is rate-limiting. Rapid-freeze quench EPR studies verified the presence of a reaction intermediate that exhibits an unusually low hyperfine constant (33 G), which suggests a bidentate coordination of the intermediate to the metal center. The EPR studies also identified a distinct enzyme product complex. The results were used to offer a detailed reaction mechanism for VanX that can be used to guide future inhibitor design efforts.

  6. Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model.

    PubMed

    Baruah, Kartik; Huy, Tran T; Norouzitallab, Parisa; Niu, Yufeng; Gupta, Sanjay K; De Schryver, Peter; Bossier, Peter

    2015-01-01

    The compound poly-ß-hydroxybutyrate (PHB), a polymer of the short chain fatty acid ß-hydroxybutyrate, was shown to protect experimental animals against a variety of bacterial diseases, (including vibriosis in farmed aquatic animals), albeit through undefined mechanisms. Here we aimed at unraveling the underlying mechanism behind the protective effect of PHB against bacterial disease using gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic Vibrio campbellii as host-pathogen model. The gnotobiotic model system is crucial for such studies because it eliminates any possible microbial interference (naturally present in any type of aquatic environment) in these mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We showed clear evidences indicating that PHB conferred protection to Artemia host against V. campbellii by a mechanism of inducing heat shock protein (Hsp) 70. Additionally, our results also showed that this salutary effect of PHB was associated with the generation of protective innate immune responses, especially the prophenoloxidase and transglutaminase immune systems - phenomena possibly mediated by PHB-induced Hsp70. From overall results, we conclude that PHB induces Hsp70 and this induced Hsp70 might contribute in part to the protection of Artemia against pathogenic V. campbellii. PMID:25822312

  7. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods.

    PubMed

    Li, Xiangrong; Ni, Tianjun

    2016-06-01

    α-Tocopherol is a required nutrient for a variety of biological functions. In this study, the binding of α-tocopherol to trypsin and pepsin was investigated using isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements, circular dichroism (CD) spectroscopy, and molecular modeling methods. Thermodynamic investigations reveal that α-tocopherol binds to trypsin/pepsin is synergistically driven by enthalpy and entropy. The fluorescence experimental results indicate that α-tocopherol can quench the fluorescence of trypsin/pepsin through a static quenching mechanism. The binding ability of α-tocopherol with trypsin/pepsin is in the intermediate range, and one molecule of α-tocopherol combines with one molecule of trypsin/pepsin. As shown by circular dichroism (CD) spectroscopy, α-tocopherol may induce conformational changes of trypsin/pepsin. Molecular modeling displays the specific binding site and gives information about binding forces and α-tocopherol-tryptophan (Trp)/tyrosine (Tyr) distances. In addition, the inhibition rate of α-tocopherol on trypsin and pepsin was studied. The study provides a basic data set for clarifying the binding mechanisms of α-tocopherol with trypsin and pepsin and is helpful for understanding its biological activity in vivo.

  8. Probing the mechanism of purine nucleoside phosphorylase by steady-state kinetic studies and ligand binding characterization determined by fluorimetric titrations.

    PubMed

    Wielgus-Kutrowska, Beata; Bzowska, Agnieszka

    2006-05-01

    Reversible reaction catalyzed by trimeric purine nucleoside phosphorylase (PNP) from Cellulomonas sp. with typical and non-typical substrates, including product inhibition patterns of both reaction directions, and interactions of the enzyme with bisubstrate analogue inhibitors, were investigated by the steady-state kinetic methods and fluorimetric titrations. The ligand chromophores exist most probably as neutral species, and not N(1)-H monoanions, in the complex with PNP, as shown by determination of inhibition constants vs. pH. This supports the mechanism in which hydrogen bond interaction of N(1)-H with Glu204 is crucial in the catalytic process. Stoichiometry of ligand binding, with possible exception of hypoxanthine, is three molecules per enzyme trimer. Kinetic experiments show that in principle the Michaelis-Menten model could not properly describe the reaction. However, this model seems to hold for certain experimental conditions. Data presented here are supported by earlier findings obtained by means of fluorimetric titrations and protective effects of ligands on thermal inactivation of the enzyme. All results are consistent with the following mechanism for trimeric PNPs: (i) random binding of substrates, (ii) potent binding and slow release of some reaction products leading to the circumstances that the chemical step is not the slowest one and that rapid-equilibrium assumptions do not hold, (iii) a dual role of phosphate--a substrate and also a reaction modifier.

  9. Probing the Effects and Mechanisms of Electroacupuncture at Ipsilateral or Contralateral ST36–ST37 Acupoints on CFA-induced Inflammatory Pain

    PubMed Central

    Lu, Kung-Wen; Hsu, Chao-Kuei; Hsieh, Ching-Liang; Yang, Jun; Lin, Yi-Wen

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund’s adjuvant (CFA), (2.14 ± 0.1, p < 0.05, n = 8) can be alleviated after EA treatment at either ipsilateral (3.91 ± 0.21, p < 0.05, n = 8) or contralateral acupoints (3.79 ± 0.25, p < 0.05, n = 8). EA may also reduce nociceptive Nav sodium currents in dorsal root ganglion (DRG) neurons. The expression of TRPV1 and associated signaling pathways notably increased after the CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain. PMID:26906464

  10. Probing Cellular and Molecular Mechanisms of Cigarette Smoke-Induced Immune Response in the Progression of Chronic Obstructive Pulmonary Disease Using Multiscale Network Modeling

    PubMed Central

    Pan, Zhichao; Yu, Haishan; Liao, Jie-Lou

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder characterized by progressive destruction of lung tissues and airway obstruction. COPD is currently the third leading cause of death worldwide and there is no curative treatment available so far. Cigarette smoke (CS) is the major risk factor for COPD. Yet, only a relatively small percentage of smokers develop the disease, showing that disease susceptibility varies significantly among smokers. As smoking cessation can prevent the disease in some smokers, quitting smoking cannot halt the progression of COPD in others. Despite extensive research efforts, cellular and molecular mechanisms of COPD remain elusive. In particular, the disease susceptibility and smoking cessation effects are poorly understood. To address these issues in this work, we develop a multiscale network model that consists of nodes, which represent molecular mediators, immune cells and lung tissues, and edges describing the interactions between the nodes. Our model study identifies several positive feedback loops and network elements playing a determinant role in the CS-induced immune response and COPD progression. The results are in agreement with clinic and laboratory measurements, offering novel insight into the cellular and molecular mechanisms of COPD. The study in this work also provides a rationale for targeted therapy and personalized medicine for the disease in future. PMID:27669518

  11. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  12. Test probe for surface mounted leadless chip carrier

    DOEpatents

    Meyer, Kerry L.; Topolewski, John

    1989-05-23

    A test probe for a surface mounted leadless chip carrier is disclosed. The probed includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe.

  13. Probe Mössbauer spectroscopy of the evolution of mechanically alloyed Mo92O8(57Fe) system upon heat treatment

    NASA Astrophysics Data System (ADS)

    Yelsukov, E. P.; Protasov, A. V.; Voronina, E. V.; Dobysheva, L. V.; Arzhnikov, A. K.

    2012-07-01

    X-ray diffraction and Mögsbauer spectroscopy have been used to study the multistage character of the process of recovery to equilibrium in the course of isochronous (1 h) annealings (300-1300°C) of a mechanically alloyed nanocrystalline Mo92O8 system with 1 at % Mögsbauer isotope 57Fe. Three stages of the recovery to the equilibrium state have been established: at 300-700°C, the stage of structural relaxation; at 700-1100°C, the stage of normal grain growth and formation of a dislocation structure; and at 1100-1300°C, the stage of the formation of a composite Mo99 57Fe1/MoO2.

  14. Probing the wild-type HRas activation mechanism using steered molecular dynamics, understanding the energy barrier and role of water in the activation.

    PubMed

    Sharma, Neeru; Sonavane, Uddhavesh; Joshi, Rajendra

    2014-03-01

    Ras is one of the most common oncogenes in human cancers. It belongs to a family of GTPases that functions as binary conformational switches by timely switching of their conformations from GDP to GTP and vice versa. It attains the final active state structure via an intermediate GTP-bound state. The transition between these states is a millisecond-time-scale event. This makes studying this mechanism beyond the scope of classical molecular dynamics. In the present study, we describe the activation pathway of the HRas protein complex along the distance-based reaction coordinate using steered molecular dynamics. Approximately ~720 ns of MD simulations using CMD and SMD was performed. We demonstrated the change in orientation and arrangement of the two switch regions and the role of various hydrogen bonds during the activation process. The weighted histogram analysis method was also performed, and the potential of mean force was calculated between the inactive and active via the intermediate state (state 1) of HRas. The study indicates that water seems to play a crucial role in the activation process and to transfer the HRas protein from its intermediate state to the fully active state. The implications of our study hereby suggest that the HRas activation mechanism is a multistep process. It starts from the inactive state to an intermediate state 1 followed by trapping of water molecules and flipping of the Thr35 residue to form a fully active state (state 2). This state 2 also comprises Gly60, Thr35, GTP, Mg(2+) and water-forming stable interactions.

  15. Contact mechanics modeling of pull-off measurements: effect of solvent, probe radius, and chemical binding probability on the detection of single-bond rupture forces by atomic force microscopy.

    PubMed

    Skulason, Hjalti; Frisbie, C Daniel

    2002-07-01

    Pull-off forces for chemically modified atomic force microscopy tips in contact with flat substrates coated with receptor molecules are calculated using a Johnson, Kendall, and Roberts contact mechanics model. The expression for the work of adhesion is modified to account for the formation of discrete numbers of chemical bonds (nBonds) between the tip and substrate. The model predicts that the pull-off force scales as nBonds(1/2), which differs from a common assumption that the pull-off force scales linearly with nBonds. Periodic peak progressions are observed in histograms generated from hundreds of computed pull-off forces. The histogram periodicity is the signature of discrete chemical interactions between the tip and substrate and allows estimation of single-bond rupture forces. The effects of solvent, probe tip radius, and chemical binding probability on the detection of single-bond forces are examined systematically. A dimensionless parameter, the effective force resolution, is introduced that serves as a quantitative predictor for determining when periodicity in force histograms can occur. The output of model is compared to recent experimental results involving tips and substrates modified with self-assembled monolayers. An advantage of this contact mechanics approach is that it allows straightforward estimation of solvent effects on pull-off forces.

  16. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  17. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  18. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  19. Rationally designed anti-HIV peptides containing multifunctional domains as molecule probes for studying the mechanisms of action of the first and second generation HIV fusion inhibitors.

    PubMed

    Qi, Zhi; Shi, Weiguo; Xue, Na; Pan, Chungen; Jing, Weiguo; Liu, Keliang; Jiang, Shibo

    2008-10-31

    We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the

  20. The unique probe selector: a comprehensive web service for probe design and oligonucleotide arrays

    PubMed Central

    Chen, Shu-Hwa; Lo, Chen-Zen; Tsai, Ming-Chi; Hsiung, Chao A; Lin, Chung-Yen

    2008-01-01

    Background Nucleic acid hybridization, a fundamental technique in molecular biology, can be modified into very effective and sensitive methods for detecting particular targets mixed with millions of non-target sequences. Therefore, avoiding cross-hybridization is the most crucial issue for developing diagnostic methods based on hybridization. Results To develop a probe with a high discriminating power, this study constructed a web service, the Unique Probe Selector (UPS), for customized probe design. The UPS service integrates a probe design mechanism and a scoring system for evaluating the performance of probe annealing and the uniqueness of a probe in a user-defined genetic background. Starting from an intuitive web interface, the UPS accepts a query with single or multiple sequences in fasta format. The best probe(s) for each sequence can be downloaded from result pages in a fasta or .csv format with a summary of probe characteristics. The option "Unique probe within group" selects the most unique probe for each target sequence with low probability to hybridize to the other sequences in the same submitted query. The option "Unique probe in the specific organism" devises probes for each submitted sequence to identify its target among selected genetic backgrounds based on Unigene. Conclusion The UPS evaluates probe-to-target hybridization under a user-defined condition in silico to ensure high-performance hybridization and minimizes the possibility of non-specific reactions. UPS has been applied to design human arrays for gene expression studies and to develop several small arrays of gene families that were inferred as molecular signatures of cancer typing/staging or pathogen signatures. Notably, UPS is freely accessible at . PMID:18315861

  1. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  2. Utilising DualEELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 °C pressurised water

    NASA Astrophysics Data System (ADS)

    Annand, Kirsty J.; MacLaren, Ian; Gass, Mhairi

    2015-10-01

    Characterisation of materials utilised for fuel cladding in nuclear reactors prior to service is integral in order to understand corrosion mechanisms which would take place in reactor. Zircaloy-4 is one such material of choice for nuclear fuel containment in Pressurised Water Reactors (PWRs). In particular, the metal-oxide interface has been a predominant focus of previous research, however, due to the complex oxidation process of zirconium cladding, there is still no clear understanding of what is present at the interface. Using Scanning Transmission Electron Microscopy (STEM) and Dual Electron Energy Loss Spectroscopy (DualEELS), we have studied the corrosion of this material under conditions similar to those that could be encountered in service. It is shown that under all conditions, whether during faster oxidation in the early stages, slow growth just prior to the transition to a new growth regime, or in the faster growth that happens after this transition, the surface of the metal below the scale is loaded with oxygen up to around 33 at%. Approaching transition, in conditions of slow growth and slow oxygen supply, an additional metastable suboxide is apparent with a thickness of tens of nm. By studying changes in both chemical composition and dielectric function of the material at the oxide scale - metal interface with nanometre resolution, quantitative mapping could be achieved, clearly showing that this is a suboxide composition of ZrO and a Zr oxidation state close to +2.

  3. Probing ligand-binding modes and binding mechanisms of benzoxazole-based amide inhibitors with soluble epoxide hydrolase by molecular docking and molecular dynamics simulation.

    PubMed

    Chen, Hang; Zhang, Ying; Li, Liang; Han, Ju-Guang

    2012-08-30

    Soluble epoxide hydrolase (sEH) has become a new therapeutic target for treating a variety of human diseases. The inhibition of human sEH hydrolase activity was studied by molecular docking and molecular dynamics (MD) simulation techniques. A set of six benzoxazole-based amide inhibitors binding to sEH has been studied through molecular docking, MD simulation, free energy calculations, and energy decomposition analysis. On the basis of molecular mechanics-generalized Born/surface area (MM-GB/SA) computation and normal-mode analysis (NMA), the obtained results indicate that the rank of calculated binding free energies (ΔΔGTOT) of these inhibitors is in excellent agreement with that of experimental bioactivity data (IC50). The correlation coefficient (r(2)) between the predicted ΔΔGTOT and IC50 is 0.88. van der Waals energies are the largest component of the total energies, and the entropy changes play an indispensable role in determining the ΔΔGTOT. Rational binding modes were discussed and determined by the docking results and binding free energies. The free energy decomposition of each residue reveals that the residue Trp334 dominates the most binding free energies among all residues and that the activities for these molecules to the sEH are not decided by hydrogen bonds or a certain residue but by the common effect of multiple side chains in the active site.

  4. Immobilized Multifunctional Polymersomes on Solid Surfaces: Infrared Light-Induced Selective Photochemical Reactions, pH Responsive Behavior, and Probing Mechanical Properties under Liquid Phase.

    PubMed

    Iyisan, Banu; Janke, Andreas; Reichenbach, Philipp; Eng, Lukas M; Appelhans, Dietmar; Voit, Brigitte

    2016-06-22

    Fixing polymersomes onto surfaces is in high demand not only for the characterization with advanced microscopy techniques but also for designing specific compartments in microsystem devices in the scope of nanobiotechnology. For this purpose, this study reports the immobilization of multifunctional, responsive, and photo-cross-linked polymersomes on solid substrates by utilizing strong adamantane-β-cyclodextrin host-guest interactions. To reduce nonspecific binding and retain better spherical shape, the level of attractive forces acting on the immobilized polymersomes was tuned through poly(ethylene glycol) passivation as well as decreased β-cyclodextrin content on the corresponding substrates. One significant feature of this system is the pH responsivity of the polymersomes which has been demonstrated by swelling of the immobilized vesicles at acidic condition through in situ AFM measurements. Also, light responsivity has been provided by introducing nitroveratryloxycarbonyl (NVOC) protected amine molecules as photocleavable groups to the polymersome surface before immobilization. The subsequent low-energy femtosecond pulsed laser irradiation resulted in the cleavage of NVOC groups on immobilized polymersomes which in turn led to free amino groups as an additional functionality. The freed amines were further conjugated with a fluorescent dye having an activated ester that illustrates the concept of bio/chemo recognition for a potential binding of biological compounds. In addition to the responsive nature, the mechanical stability of the analyzed polymersomes was supported by computing Young's modulus and bending modulus of the membrane through force curves obtained by atomic force microscopy measurements. Overall, polymersomes with a robust and pH-swellable membrane combined with effective light responsive behavior are promising tools to design smart and stable compartments on surfaces for the development of microsystem devices such as chemo/biosensors.

  5. Fast scanning probe for ophthalmic echography using an ultrasound motor.

    PubMed

    Carotenuto, Riccardo; Caliano, Giosuè; Caronti, Alessandro; Savoia, Alessandro; Pappalardo, Massimo

    2005-11-01

    High-frequency transducers, up to 35-50 MHz, are widely used in ophthalmic echography to image fine eye structures. Phased-array techniques are not practically applicable at such a high frequency, due to the too small size required for the single transducer element, and mechanical scanning is the only practical alternative. At present, all ophthalmic ultrasound systems use focused single-element, mechanically scanned probes. A good probe positioning and image evaluation feedback requires an image refresh-rate of about 15-30 frames per second, which is achieved in commercial mechanical scanning probes by using electromagnetic motors. In this work, we report the design, construction, and experimental characterization of the first mechanical scanning probe for ophthalmic echography based on a small piezoelectric ultrasound motor. The prototype probe reaches a scanning rate of 15 sectors per second, with very silent operation and little weight. The first high-frequency echographic images obtained with the prototype probe are presented.

  6. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes.

    PubMed

    Michaud, Veronique; Turgeon, Jacques

    2010-04-01

    Clarithromycin is involved in a large number of clinically relevant drug-drug interactions. Discrepancies are observed between the magnitude of drug interactions predicted from in vitro competitive inhibition studies and changes observed clinically in the plasma levels of affected CYP3A substrates. The formation of metabolic-intermediate complexes has been proposed to explain these differences. The objectives of our study were: 1) to determine the competitive inhibition potency of clarithromycin on the metabolism of domperidone as a CYP3A probe drug using human recombinant CYP3A4 and CYP3A5 isoenzymes, human liver microsomes and cultured human hepatocytes; 2) to establish the modulatory role of cytochrome b5 on the competitive inhibition potency of clarithromycin; 3) to demonstrate the clarithromycin-induced formation of CYP450 metabolic-intermediate complexes in human liver microsomes; and 4) to determine the extent of CYP3A inhibition due to metabolic-intermediate complex formation using human liver microsomes and cultured human hepatocytes. At high concentrations (100 µM), clarithromycin had weak competitive inhibition potency towards CYP3A4 and CYP3A5. Inhibition potency was further decreased by the addition of cytochrome b5 (9-19%). Clarithromycin-induced metabolic-intermediate complexes were revealed by spectrophotometry analysis using human liver microsomes while time- and concentration-dependent mechanism-based inhibitions were quantified using isolated hepatocytes. These results indicate that mechanism-based but not competitive inhibition of CYP3As is the major underlying mechanism of drug-drug interactions observed clinically with clarithromycin. Drug interactions between clarithromycin and several CYP3A substrates are predicted to be insidious; the risk of severe adverse events should increase over time and persist for a few days after cessation of the drug.

  7. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    NASA Astrophysics Data System (ADS)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  8. Advanced ultrasound probes for medical imaging

    NASA Astrophysics Data System (ADS)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  9. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  10. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  12. An ultrafast reciprocating probe

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Tan, Yi; Wang, Wenhao; Gao, Zhe

    2016-11-01

    For tokamak plasma diagnostics, an ultrafast reciprocating probe system driven by magnetic field coils, achieving a maximum velocity of 21 m/s, is introduced. The probes are attached with a driving hoop made of carbon steel and accelerated by three acceleration coils in series, then decelerated by two deceleration coils and buffer springs and return slowly. The coils with a current of about 1 kA generate a magnetic field of about 1 T. This probe system has been tested on the SUNIST (Sino-UNIted Spherical Tokamak) spherical tokamak. Radial profiles of the floating potential and other plasma parameters measured by this probe system are given.

  13. Atom probe tomography

    SciTech Connect

    Miller, M.K.; Forbes, R.G.

    2009-06-15

    This introductory tutorial describes the technique of atom probe tomography for materials characterization at the atomic level. The evolution of the technique from the initial atom probe field ion microscope to today's state-of-the-art three dimensional atom probe is outlined. An introduction is presented on the basic physics behind the technique, the operation of the instrument, and the reconstruction of the three-dimensional data. The common methods for analyzing the three-dimensional atom probe data, including atom maps, isoconcentration surfaces, proximity histograms, maximum separation methods, and concentration frequency distributions, are described.

  14. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    PubMed Central

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-01-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2′ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2′ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time. PMID:26911657

  15. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-02-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.

  16. Design of a high positioning contact probe for plasmonic lithography

    NASA Astrophysics Data System (ADS)

    Jang, Jinhee; Kim, Yongwoo; Kim, Seok; Jung, Howon; Hahn, Jae W.

    2012-03-01

    We suggest a geometrically modified probe to achieve high positioning accuracy for plasmonic lithography which can record nanometer scale features and has high throughput. Instead of a cantilever probe, we propose a circular probe which has arc-shaped arms that hold the tip at the center. The modified probe is based on the fixed-fixed beam in material mechanics. To calculate the tip displacement, we used a finite element method (FEM) for a circular probe and compared the results with cantilever probe. We considered a silicon-based micro-fabrication process to design the probe. The probe has a square outline boundary with a length of 50μm, four arms, and a pyramidal tip with a height of 5μm. The ratio of the lateral tip displacement to the vertical deflection was evaluated to indicate the positioning accuracy. The probe has higher accuracy by a factor of 103 and 10 in approach mode and scan mode, respectively, compared to a cantilever probe. We expect that a circular probe is appropriate for the applications that require high positioning accuracy, such as nanolithography with a contact probe and multiple-probe arrays.

  17. Metalloprotein-based MRI probes

    PubMed Central

    Matsumoto, Yuri; Jasanoff, Alan

    2013-01-01

    Metalloproteins have long been recognized as key determinants of endogenous contrast in magnetic resonance imaging (MRI) of biological subjects. More recently, both natural and engineered metalloproteins have been harnessed as biotechnological tools to probe gene expression, enzyme activity, and analyte concentrations by MRI. Metalloprotein MRI probes are paramagnetic and function by analogous mechanisms to conventional gadolinium or iron oxide-based MRI contrast agents. Compared with synthetic agents, metalloproteins typically offer worse sensitivity, but the possibilities of using protein engineering and targeted gene expression approaches in conjunction with metalloprotein contrast agents are powerful and sometimes definitive strengths. This review summarizes theoretical and practical aspects of metalloprotein-based contrast agents, and discusses progress in the exploitation of these proteins for molecular imaging applications. PMID:23376346

  18. Metalloprotein-based MRI probes.

    PubMed

    Matsumoto, Yuri; Jasanoff, Alan

    2013-04-17

    Metalloproteins have long been recognized as key determinants of endogenous contrast in magnetic resonance imaging (MRI) of biological subjects. More recently, both natural and engineered metalloproteins have been harnessed as biotechnological tools to probe gene expression, enzyme activity, and analyte concentrations by MRI. Metalloprotein MRI probes are paramagnetic and function by analogous mechanisms to conventional gadolinium or iron oxide-based MRI contrast agents. Compared with synthetic agents, metalloproteins typically offer worse sensitivity, but the possibilities of using protein engineering and targeted gene expression approaches in conjunction with metalloprotein contrast agents are powerful and sometimes definitive strengths. This review summarizes theoretical and practical aspects of metalloprotein-based contrast agents, and discusses progress in the exploitation of these proteins for molecular imaging applications.

  19. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  20. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  1. Probe-rotating atomic force microscopy for determining material properties

    SciTech Connect

    Lee, Sang Heon

    2014-03-15

    In this paper, we propose a probe-rotating atomic force microscope that enables scan in an arbitrary direction in the contact imaging mode, which is difficult to achieve using a conventional atomic force microscope owing to the orientation-dependent probe and the inability to rotate the probe head. To enable rotation of the probe about its vertical axis, we employed a compact and light probe head, the sensor of which is made of an optical disk drive pickup unit. Our proposed mechanical configuration, operating principle, and control system enables axial and lateral scan in various directions.

  2. Lessons learned from planetary entry probe missions

    NASA Astrophysics Data System (ADS)

    Niemann, Hasso; Atreya, Sushil K.; Kasprzak, Wayne

    technology will also play an important role. The emergence over the past twenty years of Micro-electro-mechanical Systems (MEMS), utilizing lithographic semiconductor fabrication techniques to produce instrument systems in miniature, holds great promise for application to spaceflight. For example, a highly miniaturized, high performance and low-power gas chromatograph mass spectrometer would enormously benefit entry probe missions, allowing, for example, parallel measurements (e.g., multiple simultaneous gas chromatographic and direct atmospheric measurements). Such an instrument would also enable mass spectrometry on board small multiple entry probes. The challenge facing us in the development of MEMS based instruments is to move beyond the proof-of-concept, where research dollars tend to focus, and carry out the detailed work of developing high performance flight instrument systems on a chip which reach the required high technical readiness level for space flight.

  3. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  4. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  5. Inflatable traversing probe seal

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul A.

    1991-01-01

    An inflatable seal acts as a pressure-tight zipper to provide traversing capability for instrumentation rakes and probes. A specially designed probe segment with a teardrop cross-section in the vicinity of the inflatable seal minimizes leakage at the interface. The probe is able to travel through a lengthwise slot in a pressure vessel or wind tunnel section, while still maintaining pressure integrity. The design uses two commercially available inflatable seals, opposing each other, to cover the probe slot in a wind tunnel wall. Proof-of-concept tests were conducted at vessel pressures up to 30 psig, with seals inflated to 50 psig, showing no measurable leakage along the seal's length or around the probe teardrop cross-section. This seal concept can replace the existing technology of sliding face plate/O-ring systems in applications where lengthwise space is limited.

  6. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  7. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.

  8. Rapid enhancement of low energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms

    DOE PAGES

    Yue, Chao; Li, Wen; Reeves, Geoffrey D.; Nishimura, Yukitoshi; Zong, Qiugang; Ma, Qianli; Bortnik, Jacob; Thorne, Richard M.; Spence, Harlan E.; Kletzing, Craig A.; et al

    2016-07-15

    Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2more » October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less

  9. Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Li, Wen; Nishimura, Yukitoshi; Zong, Qiugang; Ma, Qianli; Bortnik, Jacob; Thorne, Richard M.; Reeves, Geoffrey D.; Spence, Harlan E.; Kletzing, Craig A.; Wygant, John R.; Nicolls, Michael J.

    2016-07-01

    Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. However, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.

  10. Modeling an optical micromachine probe

    SciTech Connect

    Mittas, A.; Dickey, F.M.; Holswade, S.C.

    1997-08-01

    Silicon micromachines are fabricated using Surface Micro-Machining (SMM) techniques. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small a 50-{micro}m in diameter and can be driven at rotation rates exceeding 300,000-rpm. Measuring and analyzing microengine performance is basic to micromachine development and system applications. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. The authors describe the modeling of an optical probe developed at Sandia National Laboratories. Experimental data will be compared with output from the model.

  11. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  12. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  13. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  14. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  15. Transient enthalpy probe development

    NASA Astrophysics Data System (ADS)

    Bennett, Brian K.

    A reliable diagnostic probe has been developed to measure the local enthalpy in high-pressure, arc heated test streams that simulate atmospheric reentry conditions. The probe employs the double sonic-throat technique and is designed for the sweep (transient) mode to survive the severe heating environment. Tests in the high-pressure arc heater facilities show that, under certain conditions, the enthalpy probe measurements are in good agreement with enthalpy profiles inferred from heat flux measurements using the theory of Fay and Riddell (1958).

  16. Chemical sensing flow probe

    DOEpatents

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  17. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  18. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  19. Parylene insulated probes for scanning electrochemical-atomic force microscopy.

    PubMed

    Derylo, Maksymilian A; Morton, Kirstin C; Baker, Lane A

    2011-11-15

    Scanning electrochemical-atomic force microscopy (SECM-AFM) is a powerful technique that can be used to obtain in situ information related to electrochemical phenomena at interfaces. Fabrication of probes to perform SECM-AFM experiments remains a challenge. Herein, we describe a method for formation of microelectrodes at the tip of commercial conductive AFM probes and demonstrate application of these probes to SECM-AFM. Probes were first insulated with a thin parylene layer, followed by subsequent exposure of active electrodes at the probe tips by mechanical abrasion of the insulating layer. Characterization of probes was performed by electron microscopy and cyclic voltammetry. In situ measurement of localized electrochemical activity with parylene-coated probes was demonstrated through measurement of the diffusion of Ru(NH)(6)(3+) across a porous membrane.

  20. Technology for Entry Probes

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Arnold, James; Venkatapathy, Ethiraj; Kolawa, Elizabeth; Munk, Michelle; Wercinski, Paul; Laub, Bernard

    2005-01-01

    A viewgraph describing technologies for entry probes is presented. The topics include: 1) Entry Phase; 2) Descent Phase; 3) Long duration atmospheric observations; 4) Survivability at high temperatures; and 5) Summary.

  1. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  2. Computer simulations of local anesthetic mechanisms: Quantum chemical investigation of procaine

    SciTech Connect

    Smith, Jeremy C; Bondar, A.N.; Suhai, Sandor; Frangopol, P.T.

    2007-02-01

    A description at the atomic level of detail of the interaction between local anesthetics, lipid membranes and membrane proteins, is essential for understanding the mechanism of local anesthesia. The importance of performing computer simulations to decipher the mechanism of local anesthesia is discussed here in the context of the current status of understanding of the local anesthetics action. As a first step towards accurate simulations of the interaction between local anesthetics, proteins, lipid and water molecules, here we use quantum mechanical methods to assess the charge distribution and structural properties of procaine in the presence and in the absence of water molecules. The calculations indicate that, in the absence of hydrogen-bonding water molecules, protonated procaine strongly prefers a compact structure enabled by intramolecular hydrogen bonding. In the presence of water molecules the torsional energy pro?le of procaine is modified, and hydrogen bonding to water molecules is favored relative to intra-molecular hydrogen bonding.

  3. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  4. Probe And Drogue For Quick Attachment And Detachment

    NASA Technical Reports Server (NTRS)

    Thomson, Mark; Gralewski, Mark; Young, Grant

    1992-01-01

    Prototype probe-and-drogue attachment mechanism connects and disconnects parts quickly and locks them together positively. Probe intended to be capturing stud, and drogue is mating recess in panel to be captured, as described in "Easy Attachment Of Panels To A Truss" (LAR-14478). Accommodates large alignment error when parts brought together.

  5. Test probe for surface mounted leadless chip carrier

    DOEpatents

    Meyer, K.L.; Topolewski, J.

    1987-10-02

    A test probe for a surface mounted leadless chip carrier is disclosed. The probe includes specially designed connector pins which allow size reductions in the probe. A thermoplastic housing provides spring action to ensure good mechanical and electrical contact between the pins and the contact strips of a leadless chip carrier. Other features include flexible wires molded into the housing and two different types of pins alternately placed in the housing. These features allow fabrication of a smaller and simpler test probe. 1 fig.

  6. Preparation and Characterization of Fluorescence Probe from Assembly Hydroxyapatite Nanocomposite

    PubMed Central

    2010-01-01

    A new nanocomposite fluorescence probe with thioglycolic acid (TA) functional layers embedded inside the hydroxyapatite nanoribbon spherulites has been synthesized. The fluorescence intensity of the novel probe is about 1.5–3.3-fold increase compared with the probe containing no TA. When used to detect cadmium ion, the most of original assembly nanoribbon spherulites structure in the novel probe is found to have been damaged to new flake structures. The mechanism of determining cadmium ion in alcohol solution has been studied. The present systematic study provides significant information on the effect of assembly nanostructure on the metal-enhanced fluorescence phenomenon. PMID:20672031

  7. Ultrafast pump-probe force microscopy with nanoscale resolution

    NASA Astrophysics Data System (ADS)

    Jahng, Junghoon; Brocious, Jordan; Fishman, Dmitry A.; Yampolsky, Steven; Nowak, Derek; Huang, Fei; Apkarian, Vartkess A.; Wickramasinghe, H. Kumar; Potma, Eric Olaf

    2015-02-01

    We perform time-resolved pump-probe microscopy measurements by recording the local force between a sharp tip and the photo-excited sample as a readout mechanism for the material's nonlinear polarization. We show that the photo-induced force is sensitive to the same excited state dynamics as measured in an optical pump-probe experiment. Ultrafast pump-probe force microscopy constitutes a non-optical detection technique with nanoscale resolution that pushes pump-probe sensitivities close to the realm of single molecule studies.

  8. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  9. Multispectral imaging probe

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  10. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  11. Modeling Atom Probe Tomography: A review.

    PubMed

    Vurpillot, F; Oberdorfer, C

    2015-12-01

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method.

  12. A curved vitrectomy probe.

    PubMed

    Chalam, K V; Shah, Vinay A; Tripathi, Ramesh C

    2004-01-01

    A curved vitrectomy probe for better accessibility of the peripheral retina in phakic eyes is described. The specially designed curved vitrectomy probe has a 20-gauge pneumatic cutter. The radius of curvature at the shaft is 19.4 mm and it is 25 mm long. The ora serrata is accessed through a 3.0- or 4.0-mm sclerotomy in phakic eyes without touching the crystalline lens. Use of this instrument avoids inadvertent trauma to the clear lens in phakic eyes requiring vitreous base excision. This curved vitrectomy instrument complements wide-angle viewing systems and endoscopes for safe surgical treatment of peripheral retinal pathology in phakic eyes. PMID:15185799

  13. Development, physiochemical characterization and forming mechanism of Flammulina velutipes polysaccharide-based edible films.

    PubMed

    Du, Hengjun; Hu, Qiuhui; Yang, Wenjian; Pei, Fei; Kimatu, Benard Muinde; Ma, Ning; Fang, Yong; Cao, Chongjiang; Zhao, Liyan

    2016-11-01

    Edible films of Flammulina velutipes polysaccharide were prepared and characterized in terms of rheological, optical, morphologic, mechanical and barrier properties to evaluate their potential application in food packaging. Results suggested that FVP film prepared by the solution of 1:150 (w/v) had the optimal mechanical property, smooth and uniform surface, and good barrier property to water (37.92±2.00gmm/m(2)hkPa) and oxygen (37.92±2.01meq/kg). The capacity of film-formation might be related to inter-molecular and intra-molecular hydrogen bonds of FVP and formation of β-glycosidic bonds during the process of film-formation. These findings will contribute to a theoretical basis for the development of FVP film in food packaging. PMID:27516267

  14. Remote adjustable focus Raman spectroscopy probe

    SciTech Connect

    Schmucker, J.E.; Blasi, R.J.; Archer, W.B.

    1999-12-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  15. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.

  16. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  17. Neurochemistry and electroanalytical probes.

    PubMed

    Troyer, Kevin P; Heien, Michael L A V; Venton, B Jill; Wightman, R Mark

    2002-10-01

    Electroanalytical techniques have been applied to monitoring chemical events including neurotransmitter release during rodent behaviour and the release of zeptomoles of molecules from single cells. Transgenic mice models have been developed and studied to identify specific cell types in vitro. Characterization and surface modification of electroanalytical probes has enhanced the selectivity and sensitivity of measurements.

  18. Cervical Neoplasia Probe Control

    1997-01-24

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  19. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  20. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  1. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  2. Experimenting with Temperature Probes.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1989-01-01

    Presented are four activities which are designed to familiarize children with the multiple uses of computers and help them learn about heat and temperature using temperature probes. Included are the tempering effect of water, heat capacity, caloric content of foods, and weather. Hardware and software are discussed. (CW)

  3. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  4. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  5. Pneumatic Proboscis Heat-Flow Probe

    NASA Technical Reports Server (NTRS)

    Zacny, Kris; Hedlund, Magnus; Mumm, Eric; Shasho, Jeffrey; Chu, Philip; Kumar, Nishant

    2013-01-01

    Heat flow is a fundamental property of a planet, and provides significant constraints on the abundance of radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the lithosphere. Heat-flow measurements are also essential in achieving at least four of the goals set out by the National Research Council for future lunar exploration. The heat-flow probe therefore directly addresses the goal of the Lunar Geophysical Network, which is to understand the interior structure and composition of the Moon. A key challenge for heat flow measurement is to install thermal sensors to the depths approximately equal to 3 m that are not influenced by the diurnal, annual, and longer-term fluctuations of the surface thermal environment. In addition, once deployed, the heat flow probe should cause little disturbance to the thermal regime of the surrounding regolith. A heat-flow probe system was developed that has two novel features: (1) it utilizes a pneumatic (gas) approach, excavates a hole by lofting the lunar soil out of the hole, and (2) deploys the heat flow probe, which utilizes a coiled up tape as a thermal probe to reach greater than 3-meter depth. The system is a game-changer for small lunar landers as it exhibits extremely low mass, volume, and simple deployment. The pneumatic system takes advantage of the helium gas used for pressurizing liquid propellant of the lander. Normally, helium is vented once the lander is on the surface, but it can be utilized for powering pneumatic systems. Should sufficient helium not be available, a simple gas delivery system may be taken specifically for the heat flow probe. Either way, the pneumatic heat flow probe system would be much lighter than other systems that entirely rely on the electrical power of the lander.

  6. Gravity Probe B spacecraft description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-11-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

  7. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  8. Calibration Fixture For Anemometer Probes

    NASA Technical Reports Server (NTRS)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  9. Modular Rake of Pitot Probes

    NASA Technical Reports Server (NTRS)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  10. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  11. Probing properties of cold radiofrequency plasma with polymer probe

    NASA Astrophysics Data System (ADS)

    Bormashenko, E.; Chaniel, G.; Multanen, V.

    2015-01-01

    The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

  12. Novel rotating field probe for inspection of tubes

    SciTech Connect

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

    2012-05-17

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  13. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  14. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  15. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  16. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  17. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  18. Nine New Fluorescent Probes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  19. Comparative evaluation of probing depth and clinical attachment level using a manual probe and Florida probe

    PubMed Central

    Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti

    2016-01-01

    Background: To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Materials and Methods: Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Results: Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Conclusion: Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe. PMID:27563204

  20. An optical probe for micromachine performance analysis

    SciTech Connect

    Dickey, F.M.; Holswade, S.C.; Smith, N.F.; Miller, S.L.

    1997-01-01

    Understanding the mechanisms that impact the performance of Microelectromechanical Systems (MEMS) is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {mu}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. We describe the development of Micromachine Optical Probe (MOP) technology for the evaluation of micromachine performance. The MOP approach is based on the detection of optical signals scattered by the gear teeth or other physical structures. We present experimental results obtained with a prototype optical probe and micromachines developed at Sandia National Laboratories.

  1. Nanostar probes for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Woong; Kim, Nara; Park, Joon Won; Kim, Zee Hwan

    2015-12-01

    To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited the necessary enhancement for TEF, and the tip-on and tip-off ratios varied between 5 and 100. This large tip-to-tip variability may arise from the uncontrolled orientation of the apexes of the spike with respect to the sample surface, which calls for further fabrication improvement. The result overall supports a new fabrication approach for the probe that is effective for tip-enhanced spectroscopy.To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited

  2. Probing the Higgs vacuum with general relativity

    NASA Technical Reports Server (NTRS)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1991-01-01

    It is shown that the structure of the Higgs vacuum can be revealed in gravitational experiments which probe the Schwarzschild geometry to only one order in MG/r beyond that needed for the classical tests of general relativity. The possibility that deviations from the conventional geometry are at least theoretically conceivable is explored. The deviations obtained provide a diagnostic test for searching for the existence of macroscopic scalar fields and open up the possiblity for further exploring the Higgs mechanism.

  3. Geometric Effects When Measuring Small Holes With Micro Contact Probes

    PubMed Central

    Stone, Jack; Muralikrishnan, Bala; Sahay, Chittaranjan

    2011-01-01

    A coordinate measuring machine with a suitably small probe can be used to measure micro-features such as the diameter and form of small holes (often about 100 μm in diameter). When measuring small holes, the clearance between the probe tip and the part is sometimes nearly as small as other characteristic lengths (such as probe deflection or form errors) associated with the measurement. Under these circumstances, the basic geometry of the measurement is much different than it is for the measurement of a macroscopic object. Various geometric errors are greatly magnified, and consequently sources of error that are totally irrelevant when measuring macroscopic artifacts can become important. In this article we discuss errors associated with misalignment or non-orthogonality of the probe axes, probe-tip radius compensation, and mechanical filtering. PMID:26989585

  4. Parylene flexible neural probes integrated with microfluidic channels.

    PubMed

    Takeuchi, Shoji; Ziegler, D; Yoshida, Y; Mabuchi, K; Suzuki, T

    2005-05-01

    The fluidic channel in the flexible probe has three functions: (i) to inject chemicals into the tissues, (ii) to measure the neural activities from the tissues, and (iii) to improve the mechanical stiffness of the probe by filling the channel with a solid material. A 10-microm-thick microfluidic channel was embedded into the probe by using sacrificial photoresist patterns. Polyethylene glycol (PEG), which is solid at room temperature and dissolves when in contact with water, was used to fill the channel and increase the stiffness of the probe before insertion into the tissue. The impedance of the electrode inside the fluidic channel was around 100 kOmega at 1 kHz when the channel was filled with saline solution. We were able to insert the probe into a rat's brain and measure the neural signals with the electrode.

  5. Metrological scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Dorozhovets, N.; Hausotte, T.; Manske, E.; Jäger, G.; Hofmann, N.

    2006-04-01

    Today's technological progress calls for metrologically accurate object measurement, positioning and scanning with nanometre precision and over large measuring ranges. In order to meet that requirement a nanopositioning and nanomeasuring machine (NPM machine) was developed at the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau. This device is capable of highly exact long-range positioning and measurement of objects with a resolution of less than 0.1 nm. Due to the structure of the machine many different probe systems can be installed, including scanning probe microscopes (SPMs). A few SPMs have outstanding metrological characteristics and many commercial microscopes only perform as image acquisition tools. Commercial SPMs use piezoelectric actuators in order to move either the sample or the probe. The position measurement sometimes results from the applied voltage to the piezoelectric actuators or from the strain gauge or capacitive displacement sensor data. This means that they suffer from hysteresis, creep, nonlinear characteristics and Abbe offsets. For an accurate measurement the position of the cantilever must be measured in addition to the torsion and bending. The best solution is a combined detection system with a single laser beam. This system has been realized with a special interferometer system, in which the measuring beam is focused on the cantilever backside using a lens. The reflected beam is split with a part being detected by a quadrant photo-diode and the other part being fed back into the interferometer for position measurement. The quadrant photo-diode is used to detect the cantilever torsion and bending.

  6. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  7. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  8. Atom Probe Tomography 2012

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas F.; Larson, David J.

    2012-08-01

    In the world of tomographic imaging, atom probe tomography (APT) occupies the high-spatial-resolution end of the spectrum. It is highly complementary to electron tomography and is applicable to a wide range of materials. The current state of APT is reviewed. Emphasis is placed on applications and data analysis as they apply to many fields of research and development including metals, semiconductors, ceramics, and organic materials. We also provide a brief review of the history and the instrumentation associated with APT and an assessment of the existing challenges in the field.

  9. Collective electronic effects in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Passian, Ali

    The surface plasmon dispersion relations are calculated for a metal coated dielectric probe above a dielectric half space with and without metal coating. Employing prolate spheroidal coordinate system this configuration was modeled as confocal single-sheeted hyperboloids of revolution superimposed on planar domains. The involved media are characterized by frequency dependent, spatially local dielectric functions. Due to subwavelength dimensions of the region of interest, nonretarded electrodynamics is utilized to derive exact analytical expressions describing the resonant surface modes. The dispersion relations are studied as functions of the parameter that defines the hyperboloidal boundaries of the tip and the corresponding coating, and as functions of the involved coating thicknesses. Both parallel and perpendicular polarizations are considered. The results are simulated numerically and limiting cases are discussed with comparison to the Cartesian thin foil case. Using this new type of probe-substrate configuration, the surface plasmon coupling mechanism is investigated experimentally utilizing a scanning probe microscope, and the signal strength acquired by the probe is measured as a function of the distance between the probe and the sample. This is repeated at three different wavelengths of the incident p-polarized photons used to stimulate surface plasmons in the thin metal foil. The results are compared with the theory. Utilizing the prolate spheroidal coordinate system, the related and relevant problem of the Coulomb interaction of a dielectric probe tip with a uniform field existing above a semiinfinite, homogeneous dielectric substrate was studied. This is of interest in atomic force microscopy when the sample surface is electrically charged. The induced polarization surface charge density and the field distribution at the bounding surface of the dielectric medium with the geometry of a single-sheeted hyperboloid of revolution located above the dielectric

  10. Laser probes of natural gas ignition chemistry

    NASA Astrophysics Data System (ADS)

    Crosley, David R.; Golden, David M.; Smith, Gregory

    1992-03-01

    The research, funded by the Physical Sciences Department of the Gas Research Institute, is aimed at developing and using laser-induced fluorescence of various hydrocarbon species as a probe in natural gas combustion research and at developing an understanding of the chemical mechanisms of ignition and burning of natural gas. Studies were made of infrared degenerate four-wave mixing, flow patterns in a low-pressure burner, and the OH + CO and OH + CH3 reactions. Thermodynamic data and the pressure dependence of rate constants important in the PSST natural gas mechanism collaboration were evaluated.

  11. Fiber optic current probe

    NASA Astrophysics Data System (ADS)

    Wyntjes, G.; Fox, R.

    1984-02-01

    This report documents the results of Phase 1 research into a new type of Fiber Optic Current probe, suitable for high voltage, high current applications. The probe uses a stabilized two frequency HeNe laser to read the magnitude and sign of magnetic field induced circular birefringence in an optical fiber wound around a conductor. Measurements of both alternating and direct currents were demonstrated with a breadboard system. The system was tested at low voltages with currents of up to 4500 amperes peak and with up to 28 turns of optical fiber around the conductor. The response was found to increase linearly with the number of fiber turns. Experimental determinations of the system's frequency response and dynamic range were not possible due to our inability to generate large, fast current transients. The predicted frequency response is 100 kHz with an ability to read transient amplitudes of 300 times the nominal line current. Several single-mode fibers were used to form transducers, and the optimum fiber for further development was identified. The 2-frequency interrogation technique described worked entirely as predicted, and should be applicable to magnetic field measurements in general (i.e., charged particle beams, Tokamaks, antenna patterns, EMP testing, etc.).

  12. Methods of and apparatus for levitating an eddy current probe

    DOEpatents

    Stone, William J.

    1988-05-03

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  13. Fixture For Calibrating Pressure Probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Vasquez, Peter; Horsley, Lewis A.; Bowman, John T.; Zumbrun, Henry N.; Eves, John W.

    1994-01-01

    Fixture in form of specially designed clamshell housing enables in situ calibration of pressure transducer mounted in body of pressure probe in wind tunnel. Includes two metal half shells machined with necks and matching cavities, when put together, define larger neck and cavity accommodating probe. Probe secured to bottom half shell by use of clamp before installing top half shell: necessary to follow sequence to protect probe during assembly. Clamshell calibration fixture attached to pressure probe in few minutes, making it possible to calibrate pressure transducer at convenient times. Calibrations performed before and after wind-tunnel runs each day, between runs in event of delays or suspected malfunctions, and essentially any other time, without having to remove probe from wind tunnel.

  14. Langmuir probe system for dusty plasmas under microgravity

    SciTech Connect

    Klindworth, M.; Arp, O.; Piel, A.

    2007-03-15

    This article describes a fully automated 2D-scanning Langmuir probe system for dusty plasmas under microgravity. The design combines necessary features such as random sampling, radio frequency compensation, and a compact mechanical design. The various aspects of the probe implementation and the contamination problem in the dusty plasma environment are discussed and the functionality of the system is demonstrated by measurements performed on parabolic flights.

  15. Development and application of multiple-probe scanning probe microscopes.

    PubMed

    Nakayama, Tomonobu; Kubo, Osamu; Shingaya, Yoshitaka; Higuchi, Seiji; Hasegawa, Tsuyoshi; Jiang, Chun-Sheng; Okuda, Taichi; Kuwahara, Yuji; Takami, Kazuhiro; Aono, Masakazu

    2012-04-01

    In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  16. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  17. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  18. New probe of naturalness.

    PubMed

    Craig, Nathaniel; Englert, Christoph; McCullough, Matthew

    2013-09-20

    Any new scalar fields that perturbatively solve the hierarchy problem by stabilizing the Higgs boson mass also generate new contributions to the Higgs boson field-strength renormalization, irrespective of their gauge representation. These new contributions are physical, and in explicit models their magnitude can be inferred from the requirement of quadratic divergence cancellation; hence, they are directly related to the resolution of the hierarchy problem. Upon canonically normalizing the Higgs field, these new contributions lead to modifications of Higgs couplings that are typically great enough that the hierarchy problem and the concept of electroweak naturalness can be probed thoroughly within a precision Higgs boson program. Specifically, at a lepton collider this can be achieved through precision measurements of the Higgs boson associated production cross section. This would lead to indirect constraints on perturbative solutions to the hierarchy problem in the broadest sense, even if the relevant new fields are gauge singlets.

  19. Heat transfer probe

    DOEpatents

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  20. Advanced Langmuir Probe (LP)

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1991-01-01

    The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product.

  1. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  2. Small rocket tornado probe

    SciTech Connect

    Colgate, S.A.

    1982-01-01

    A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

  3. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  4. Dynamic selective etching: a facile route to parabolic optical fiber nano-probe.

    PubMed

    Zhu, Wei; Shi, Tielin; Tang, Zirong; Gong, Bo; Liao, Guanglan; Tully, John

    2013-03-25

    A dynamic etching approach is proposed through the appropriate variation of etchant composition ratio during the etching process, resulting in the parabolic shape of optical fiber nano-probe with a favorable changing of cone angle. The probe formation mechanism is thoroughly analyzed to illustrate the controllability and simplicity of this method. Optical properties of as-made probes are simulated and experimentally characterized and compared with the linear shape probes of different cone angles. It shows that the parabolic shape probes are superior to the linear shape ones with respect to the transmission efficiency and light focusing capability.

  5. Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors

    PubMed Central

    Staudinger, Christoph; Borisov, Sergey M

    2016-01-01

    Long-wavelength luminescent probes and sensors become increasingly popular. They offer the advantage of lower levels of autofluorescence in most biological probes. Due to high penetration depth and low scattering of red and NIR light such probes potentially enable in vivo measurements in tissues and some of them have already reached a high level of reliability required for such applications. This review focuses on the recent progress in development and application of long-wavelength analyte-sensitive probes which can operate both reversibly and irreversibly. Photophysical properties, sensing mechanisms, advantages and limitations of individual probes are discussed. PMID:27134748

  6. The Gravity Probe B gyroscope

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Lipa, J. A.; Keiser, G. M.; Muhlfelder, B.; Turneaure, J. P.

    2015-11-01

    The Gravity Probe B (GP-B) gyroscope, a unique cryogenically operated mechanical sensor, was used on-orbit to independently test two predictions of general relativity (GR). Here, we describe the development and performance of the GP-B gyroscope, its geometry and fabrication, spin-up and vacuum approach, magnetic considerations, and static charge management. The history of electrically suspended gyroscopes puts the current work in context. Fabrication and ground testing of the GP-B gyroscope are detailed, followed by a review of on-orbit initialization, calibration, operation, and performance. We find that the performance was degraded relative to the mission goals, but was still sufficient to provide excellent new tests of GR. The degradation is partially due to the existence of gyroscope torques due to an unanticipated interaction between patch potentials on the rotor and the housing. We discuss these patch potentials and describe the effect of related torques on gyro drift. It was essential to include models for the effects due to the patch potentials in the complete data analysis model to yield determinations of the two GR effects.

  7. Redox-Responsive Fluorescent Probes with Different Design Strategies.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-05-19

    In an aerobic organism, reactive oxygen species (ROS) are an inevitable metabolic byproduct. Endogenously produced ROS have a significant role in physiological processes, but excess ROS can cause oxidative stress and can damage tissue. Cells possess elaborate mechanisms to regulate their internal redox status. The intracellular redox homeostasis plays an essential role in maintaining cellular function. However, moderate alterations in redox balance can accompany major transitions in a cell's life cycle. Because of the role of ROS in physiology and in pathology, researchers need new tools to study redox chemistry in biological systems.In recent years, researchers have made remarkable progress in developing new, highly sensitive and selective fluorescent probes that respond to redox changes, and in this Account we highlight related research, primarily from our own group. We present an overview of the design, photophysical properties, and fluorescence transduction mechanisms of reported molecules that probe redox changes. We have designed and synthesized a series of fluorescent probes for redox cycles in biological systems relying on the active center of glutathione peroxidase (GPx). We have also constructed probes based on the oxidation and reduction of hydroquinone and of 2,2,6,6-tetramethylpiperidinooxy (TEMPO). Most of these probes exhibit high sensitivity and good selectivity, absorb in the near-infrared, and respond rapidly. Such probes are useful for confocal fluorescence microscopy, a dynamic imaging technique that could allow researchers to observe biologically important ROS and antioxidants in real time. This technique and these probes provide potentially useful tools for exploring the generation, transport, physiological function, and pathogenic mechanisms of ROS and antioxidants.We also describe features that could improve the properties of redox-responsive fluorescent probes: greater photostability; rapid, dynamic, cyclic and ratiometric responses; and

  8. Improved dewpoint-probe calibration

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Theodore, E. A.

    1978-01-01

    Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.

  9. Bacteraemia caused by periodontal probing.

    PubMed

    Daly, C; Mitchell, D; Grossberg, D; Highfield, J; Stewart, D

    1997-04-01

    Bacteraemia of oral origin may result in infective endocarditis in susceptible individuals. The aim of this pilot study was to investigate the occurrence of bacteraemia due to periodontal probing. Thirty patients (15 male, 15 female; mean age 42.7 years) with untreated periodontitis were investigated. All were free of significant medical disorders and none had taken antibiotics in the previous month. Prior to and immediately following periodontal probing, 20 mL of venous blood were obtained from each patient and inoculated into aerobic and anaerobic blood culture bottles and incubated. Negative bottles were monitored continuously for three weeks before being discarded. Periodontal probing consisted of measuring pockets at six points around each tooth and recording the presence or absence of bleeding. A positive bacteraemia was recorded for three of the patients prior to probing. One patient exhibited Prevotella species whilst two exhibited skin commensals. Following probing, 13 patients (43 per cent) exhibited bacteraemia of oral origin. Viridans streptococci were the most common isolates (45 per cent). No significant correlations were found between bacteraemia and the severity of periodontitis or extent of bleeding on probing. The results indicate that periodontal probing can cause bacteraemia in patients with periodontitis. It would be advisable for patients considered at risk of developing infective endocarditis to receive antibiotic prophylaxis for periodontal probing if they have radiographic evidence of periodontitis.

  10. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  11. Rotating concave eddy current probe

    DOEpatents

    Roach, Dennis P.; Walkington, Phil; Rackow, Kirk A.; Hohman, Ed

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  12. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  13. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  14. Fluorogenic Probe for the Human Ether-a-Go-Go-Related Gene Potassium Channel Imaging

    PubMed Central

    2016-01-01

    The first small-molecule fluorogenic probe A1 for imaging the human Ether-a-go-go-Related Gene (hERG) potassium channel based on the photoinduced electron transfer (PET) off–on mechanism was described herein. After careful biological evaluation, this probe had the potential of detecting and imaging the hERG channel at the molecular and cellular level. Moreover, the competitive binding mechanism of this probe would presumably minimize the effects on the electrophysiological properties of the hERG channel. Therefore, this probe may serve as a powerful toolkit to the hERG-associated study. PMID:25665091

  15. Fast reciprocating Langmuir probe for the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R. D.; Moyer, R. A.; Cuthbertson, J. W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D. N.; Mascaro, M.; Robinson, J. I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented.

  16. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  17. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  18. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  19. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  20. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  1. Long duration ash probe

    DOEpatents

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  2. Probing interfaces involving liquids.

    PubMed

    Robinson, A L

    1987-04-10

    Last month in Washington, D.C., the National Academy of Sciences held the first of what it hopes will be a series of seminars in forefront fields of science, technology, and medicine. The idea is to bring the academy closer to the frontlines of research and to help spread the word to federal science policy-makers. The subject of the 23 and 24 March seminar was interfaces and thin films, and the talks, though tutorial in nature, contained a pleasantly large number of still unpublished results. Interfaces, such as the surface of a solid exposed to a liquid or gas, and thin films, whose properties are heavily influenced by interfaces, have long been of considerable technological importance and have always been so in biological processes, but researchers are now getting access to the experimental and theoretical tools needed to explore these complex physical systems that are neither ideally two-dimensional nor fully three-dimensional. The briefings that follow give a peek at three ways to probe interfaces involving liquids.

  3. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  4. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe

    PubMed Central

    Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha

    2016-01-01

    When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814

  5. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.

    PubMed

    Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha

    2016-01-01

    When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814

  6. Extremely sharp carbon nanocone probes for atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Chen, I.-Chen; Chen, Li-Han; Ye, Xiang-Rong; Daraio, Chiara; Jin, Sungho; Orme, Christine A.; Quist, Arjan; Lal, Ratnesh

    2006-04-01

    A simple and reliable catalyst patterning technique combined with electric-field-guided growth is utilized to synthesize a sharp and high-aspect-ratio carbon nanocone probe on a tipless cantilever for atomic force microscopy. A single carbon nanodot produced by an electron-beam-induced deposition serves as a convenient chemical etch mask for catalyst patterning, thus eliminating the need for complicated, resist-based, electron-beam lithography for a nanoprobe fabrication. A gradual, sputtering-induced size reduction and eventual removal of the catalyst particle at the probe tip during electric-field-guided growth creates a sharp probe with a tip radius of only a few nanometers. These fabrication processes are amenable for the wafer-scale synthesis of multiple probes. High resolution imaging of three-dimensional features and deep trenches, and mechanical durability enabling continuous operation for many hours without noticeable image deterioration have been demonstrated.

  7. Probing lepton number violation on three frontiers

    SciTech Connect

    Deppisch, Frank F.

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  8. Ways of probing situated concepts.

    PubMed

    Morais, Ana Sofia; Olsson, Henrik; Schooler, Lael J

    2010-02-01

    Two ways of eliciting conceptual content have been to instruct participants to list the intrinsic properties that concept exemplars possess or to report any thoughts that come to mind about the concept. It has been argued that the open, unconstrained probe is better able to elicit the situational information that concepts contain. We evaluated this proposal in two experiments comparing the two probes with regard to the content that they yield for object concepts at the superordinate and basic levels. The results showed that the open probe was better able to elicit situated conceptual knowledge and point out differences in the representations of superordinate and basic concepts.

  9. A subcutaneous Raman needle probe.

    PubMed

    Day, John C C; Stone, Nicholas

    2013-03-01

    Raman spectroscopy is a powerful tool for studying the biochemical composition of tissues and cells in the human body. We describe the initial results of a feasibility study to design and build a miniature, fiber optic probe incorporated into a standard hypodermic needle. This probe is intended for use in optical biopsies of solid tissues to provide valuable information of disease type, such as in the lymphatic system, breast, or prostate, or of such tissue types as muscle, fat, or spinal, when identifying a critical injection site. The optical design and fabrication of this probe is described, and example spectra of various ex vivo samples are shown. PMID:23452501

  10. Saturn orbiter dual probe mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.

    1978-01-01

    The described Saturn orbiter dual probe mission and spacecraft combines three systems into a multi-purpose Saturn exploration package. The spacecraft consists of: (1) Saturn orbiter; (2) Saturn probe; and (3) Titan probe or lander. This single spacecraft provides the capability to conduct in situ measurements of the Saturn and Titan atmospheres, and, possibly the Titan surface, as well as a variety of remote sensing measurements. The remote sensing capabilities will be used to study the surfaces, interiors and environments of Saturn's satellites, the rings of Saturn, Saturn's magnetosphere, and synoptic properties of Saturn's atmosphere.

  11. ESA Venus Entry Probe Study

    NASA Technical Reports Server (NTRS)

    vandenBerg, M. L.; Falkner, P.; Phipps, A.; Underwood, J. C.; Lingard, J. S.; Moorhouse, J.; Kraft, S.; Peacock, A.

    2005-01-01

    The Venus Entry Probe is one of ESA s Technology Reference Studies (TRS). The purpose of the Technology Reference Studies is to provide a focus for the development of strategically important technologies that are of likely relevance for future scientific missions. The aim of the Venus Entry Probe TRS is to study approaches for low cost in-situ exploration of Venus and other planetary bodies with a significant atmosphere. In this paper, the mission objectives and an outline of the mission concept of the Venus Entry Probe TRS are presented.

  12. The Huygens Probe System Design

    NASA Astrophysics Data System (ADS)

    Clausen, K. C.; Hassan, H.; Verdant, M.; Couzin, P.; Huttin, G.; Brisson, M.; Sollazzo, C.; Lebreton, J.-P.

    2002-07-01

    The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter Titan's atmosphere and descend under parachute down to the surface. The Probe is carried to Titan on board the Cassini Saturn Orbiter. Huygens is dormant for 7.2 years, during the interplanetary journey and during the first 6 months around Saturn. It is activated about every 6 months for an in-flight checkout to verify and monitor its health and to perform a periodic maintenance and calibration of the payload instruments. The Probe will be targeted to Titan and released from the Orbiter about 3 weeks before the Titan encounter on the third Orbit around Saturn. During the 3-week coast phase the Probe is ‘OFF’, except a timer unit that has the task to awaken Huygens before it enters Titan's atmosphere. The Probe's aeroshell will decelerate it in less than 2 minutes from the entry speed of about 6 km s-1 to 400 m s-1 (Mach 1.5) at an altitude of 150 180 km. From that point onwards, a pre-programmed sequence will trigger the parachute deployment and the heat-shield ejection. The main part of the scientific mission will then start, lasting for a descent of 2 21/2 hours. The Orbiter will listen to the Probe for a total duration of at least 3 hours, which includes time to receive data from the surface, should the Probe continue to transmit data after touchdown. Huygens' transmissions are received and stored aboard the Orbiter for later retransmission to the Earth. This paper presents a technical description of the elements of the Huygens Probe System. The reader is invited to refer to the companion paper (Lebreton and Matson, 2002) for further background information about the Huygens mission, and the payload. The early in-flight performance of the Probe is briefly discussed. During in-flight testing in 2000, a technical anomaly was found with the Probe-to-Orbiter telecommunication system that

  13. Floating Potential Probe Langmuir Probe Data Reduction Results

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Minow, Joseph I.

    2002-01-01

    During its first five months of operations, the Langmuir Probe on the Floating Potential Probe (FPP) obtained data on ionospheric electron densities and temperatures in the ISS orbit. In this paper, the algorithms for data reduction are presented, and comparisons are made of FPP data with ground-based ionosonde and Incoherent Scattering Radar (ISR) results. Implications for ISS operations are detailed, and the need for a permanent FPP on ISS is examined.

  14. Gravity Probe B Assembled

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  15. Integrated microfluidic probe station

    NASA Astrophysics Data System (ADS)

    Perrault, C. M.; Qasaimeh, M. A.; Brastaviceanu, T.; Anderson, K.; Kabakibo, Y.; Juncker, D.

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution—thus hydrodynamically confining the microjet—and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  16. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  17. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  18. Design of a contact probe with high positioning accuracy for plasmonic lithography.

    PubMed

    Jang, Jinhee; Kim, Yongwoo; Kim, Seok; Jung, Howon; Hahn, Jae Won

    2011-01-01

    Plasmonic lithography with a contact probe records nano-meter scale features and has high-throughput owing to its capability to scan in contact mode. The probe is commonly based on a micrometer-scale cantilever, which leads to the tip-positioning problem due to force-deflection that induces lateral tip displacement. We propose a geometrically modified probe to achieve high positioning accuracy. Contrary to a conventional cantilever-tip probe, we designed a "circular probe" with arc-shaped arms that hold the tip in the center. The mechanism is based on the "fixed-fixed beam" concept in material mechanics. To confirm its positioning accuracy, we used a finite element method (FEM) to calculate the tip displacement for a circular probe and compared the results with those using a conventional cantilever-tip probe. The probe was designed considering a silicon-based micro-fabrication process. The designed probe has a square outline boundary with a length of 50 µm, four arms, and a pyramidal tip with a height of 5 µm. The ratio of the lateral tip displacement to the vertical deflection was evaluated to indicate the accuracy of the probe. The probe has higher positioning accuracy by a factor of 10(3) and 10 in its approach mode and scan mode, respectively, compared with a cantilever-tip probe. We expect that the probe is suitable for the applications that require high positioning accuracy, such as nanolithography in contact mode and applications based on multiple-probe arrays. PMID:21445985

  19. The Radiation Belt Storm Probes

    NASA Video Gallery

    The Radiation Belt Storm Probe mission (RBSP) will explore the Van Allen Radiation Belts in the Earth's magnetosphere. The charge particles in these regions can be hazardous to both spacecraft and ...

  20. A three dimensional probe positionera)

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sun, X.; Dorf, L.; Furno, I.; Lapenta, G.

    2008-10-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  1. A three dimensional probe positioner.

    PubMed

    Intrator, T; Sun, X; Dorf, L; Furno, I; Lapenta, G

    2008-10-01

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a "wobbly" probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  2. Micromachined probes for laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Chiang, Franklin Changta

    As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.

  3. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  4. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  5. A three dimensional probe positioner

    SciTech Connect

    Intrator, T.; Sun, X.; Furno, I.; Dorf, L.; Lapenta, G.

    2008-10-15

    In order to sort out the physics that is important in many plasma experiments, data in three dimensions (3D) are becoming necessary. Access to the usual cylindrical vacuum vessel is typically restricted to radially or axially insertable probes that can pivot. The space that can be explored usually has significant restrictions either because probe travel must be along a travel path, or a 'wobbly' probe positioner requires one to map between a moveable coordinate system and a preferred laboratory coordinate system. This could for example introduce errors in measurements of vector quantities such as magnetic field or flow. We describe the design and implementation of a 3D probe positioner that slides in two dimensions on a double O-ring seal and radially inserts along the third dimension. The net result is that a 3D space can be explored in a laboratory Cartesian reference frame.

  6. Study of alternative probe technologies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.

  7. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  8. A new turn on coumarin-based fluorescence probe for Ga3 + detection in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yan, Liqiang; Zhou, Yan; Du, Wenqi; Kong, Zhineng; Qi, Zhengjian

    2016-02-01

    The probe CT was synthesized and investigated as a novel label-free chemosensor for Ga3 + detection in water. Probe CT showed remarkable selectivity and sensitivity for Ga3 + in Tris-HCl aqueous buffer solution (pH 7.0). The chemosensor responded rapidly to Ga3 + with a 1:1 stoichiometry. Meanwhile, the unapparent changes of fluorescence lifetime decays suggest the turn-on process of probe CT by Ga3 + which appears to be a static mechanism.

  9. Activatable Optical Probes for the Detection of Enzymes

    PubMed Central

    Drake, Christopher R.; Miller, David C.; Jones, Ella F.

    2013-01-01

    The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed. PMID:23519774

  10. Temperature Correction in Probe Measurements

    NASA Astrophysics Data System (ADS)

    Gutsev, S. A.

    2015-09-01

    This work is devoted to experimental investigations of a decaying plasma using Langmuir probes. The gas pressure, the discharge current, and the moment of afterglow were selected to obtain probe characteristics in collisionless, intermediate, and drifting regimes of motion of charged particles. The manner in which the shape of the volt- ampere characteristics changes on passage from the collisionless motion to diffusion motion has been shown. A detailed analysis has been made of the source of errors arising when orbital-motion formulas or the logarithmic-operation method are applied to processing of the probe curves. It has been shown that neglect of collisions of charged particles in the probe layer leads to an ion-density value overstated more than three times, an electron-temperature value overstated two times, and an ion temperature overstated three to nine times. A model of interaction of charged particles in the probe layer has been proposed for correction of the procedure of determining temperature. Such an approach makes it possible to determine the space-charge layer in the probe, and also the value of the self-consistent field. The use of the developed procedures gives good agreement between experimental and theoretical results.

  11. A theoretical investigation of two typical two-photon pH fluorescent probes.

    PubMed

    Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang

    2013-01-01

    Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation.

  12. Field measuring probe for SSC (Superconducting Super Collider) magnets

    SciTech Connect

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length.

  13. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  14. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  15. Probing the Probes: Fitness Factors For Small Molecule Tools

    PubMed Central

    Workman, Paul; Collins, Ian

    2010-01-01

    Chemical probes for interrogating biological processes are of considerable current interest. Cell permeable small molecule tools have a major role in facilitating the functional annotation of the human genome, understanding both physiological and pathological processes, and validating new molecular targets. To be valuable, chemical tools must satisfy necessary criteria and recent publications have suggested objective guidelines for what makes a useful chemical probe. Although recognizing that such guidelines may be valuable, we caution against overly restrictive rules that may stifle innovation in favor of a “fit-for-purpose” approach. Reviewing the literature and providing examples from the cancer field, we recommend a series of “fitness factors” to be considered when assessing chemical probes. We hope this will encourage innovative chemical biology research while minimizing the generation of poor quality and misleading biological data, thus increasing understanding of the particular biological area, to the benefit of basic research and drug discovery. PMID:20609406

  16. Multiple-probe scanning probe microscopes for nanoarchitectonic materials science

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomonobu; Shingaya, Yoshitaka; Aono, Masakazu

    2016-11-01

    Nanoarchitectonic systems are of interest for utilizing a vast range of nanoscale materials for future applications requiring a huge number of elemental nanocomponents. To explore the science and technology of nanoarchitectonics, advanced characterization tools that can deal with both nanoscale objects and macroscopically extended nanosystems are demanded. Multiple-probe scanning probe microscopes (MP-SPMs) are powerful tools that meet this demand because they take the advantages of conventional scanning probe microscopes and realize atomically precise electrical measurements, which cannot be done with conventional microprobing systems widely used in characterizing materials and devices. Furthermore, an MP-SPM can be used to operate some nanoarchitectonic systems. In this review, we overview the indispensable features of MP-SPMs together with the past, present and future of MP-SPM technology.

  17. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  18. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    at least as deep as the probe made measurements, 22 bars. Models of hot spot dynamics raise the possibility that the variation with depth of the probe measured zonal winds between 0.4 and 4 bars reflect the dynamics of the hot spot rather than the global wind pattern. Galileo upper atmosphere measurements established that there is a sharp temperature rise with altitude between about 350 and 800 km above the 1 bar pressure level, with the upper atmosphere reaching temperatures near 900 K. The energy sources for this upper atmosphere heating are not clearly established, but various mechanisms have been proposed. These and other aspects of the Galileo probe data will be discussed.

  19. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    at least as deep as the probe made measurements, 22 bars. Models of hot spot dynamics raise the possibility that the variation with depth of the probe measured zonal winds between 0.4 and 4 bars reflect the dynamics of the hot spot rather than the global wind pattern. Galileo upper atmosphere measurements established that there is a sharp temperature rise with altitude between about 350 and 800 km above the 1 bar pressure level, with the upper atmosphere reaching, temperatures near 900 K. The energy sources for this upper atmosphere heating are not clearly established, but various mechanisms have been proposed. These and other aspects of the Galileo probe data will be discussed.

  20. Foldback intercoil DNA and the mechanism of DNA transposition.

    PubMed

    Kim, Byung-Dong

    2014-09-01

    Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

  1. Foldback intercoil DNA and the mechanism of DNA transposition.

    PubMed

    Kim, Byung-Dong

    2014-09-01

    Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed. PMID:25317106

  2. Hand-held survey probe

    DOEpatents

    Young, Kevin L [Idaho Falls, ID; Hungate, Kevin E [Idaho Falls, ID

    2010-02-23

    A system for providing operational feedback to a user of a detection probe may include an optical sensor to generate data corresponding to a position of the detection probe with respect to a surface; a microprocessor to receive the data; a software medium having code to process the data with the microprocessor and pre-programmed parameters, and making a comparison of the data to the parameters; and an indicator device to indicate results of the comparison. A method of providing operational feedback to a user of a detection probe may include generating output data with an optical sensor corresponding to the relative position with respect to a surface; processing the output data, including comparing the output data to pre-programmed parameters; and indicating results of the comparison.

  3. Limits on the Natural Oxygen-18 Abundance of Cellulose: Intra-molecular Patterns

    NASA Astrophysics Data System (ADS)

    Sternberg, L.; Jahren, H.; Anderson, W.; Pinzon, M. C.

    2005-12-01

    The oxygen isotope composition of tree-ring cellulose is an often-invoked quantitative proxy for multiple environmental factors, including paleotemperature, paleohumidity and paleoprecipitation patterns. A broad survey of aerial and aquatic plants reveals an upper limit to the 18O enrichment of cellulose relative to water at the site of cellulose synthesis, which we explain via the comparison of individual oxygen atoms within the cellulose molecule. We collected stems from various geographical regions, extracted stem water and cellulose and determined the oxygen isotope ratios of these two components. The cellulose was hydrolyzed to its glucose moieties and derivatized to determine the oxygen isotope ratios of the oxygens attached to carbon 3, 4, 5, 6 of the glucose moieties, which allowed us to calculate the oxygen isotope ratios of the oxygen attached to the carbon 2 of the glucose moieties. A compilation of results from our collection and from previous publications shows that δ18O values of cellulose increase with δ18O values of stem water only for samples having stem water with δ18O values below -10‰ (SMOW). However, the δ18O values of stem cellulose levels off and remains constant for stems having water with δ18O values greater than -10‰. This pattern suggests a limit on the enrichment of stem (and by inference tree ring) cellulose. This limitation had previously been ascribed to environmental factors affecting leaf water (e.g., humidity, stomatal conductance, solute potential). A compilation of the δ18O values of cellulose from aquatic plants versus that of their ambient water, however, shows the same general pattern which has been previously explained on the basis of evaporation rates and heterogeneities of lake water. We disprove the previous explanations by demonstrating differential isotopic effects on the oxygen atoms of the cellulose molecule. Our observation on the δ18O values of oxygen attached to carbon 2 versus those attached to carbon 3, 4, 5, 6 indicates that the more isotopically enriched are the oxygens attached to carbon 3, 4, 5, 6 -- the more isotopically depleted is the oxygen attached to carbon 2. From these patterns we suggest a biochemical basis for the observed limit in 18O enrichment of cellulose, in contrast to the previously posited environmental influences.

  4. Intra-molecular Carrier Pathway Analysis in One-Dimensional Fused Furan Polymer

    NASA Astrophysics Data System (ADS)

    Ohmori, Shigekazu; Kawabata, Hiroshi; Tokunaga, Ken; Tachikawa, Hiroto

    2010-01-01

    The electronic structure and density distribution in the poly-fused furans were investigated using density functional theory (DFT) calculations. Differential electron density (DED) distribution analysis of the neutral and charged states of oligomer species were calculated to visualize spatial charge modulation in the molecular. Polymers of fused furans [p-F(n)] were also investigated using one-dimensional periodic boundary conditions (PBC) for comparison. A difference in the electronic structure and density distribution of p-F(n) was found between electron and hole transport processes. The electronic states of F(n) and p-F(n) were discussed on the basis of the differential electron density distribution, density of states (DOS) around the frontier states, and crystal orbital overlap population (COOP) analysis.

  5. Quantum Dots as Cellular Probes

    SciTech Connect

    Alivisatos, A. Paul; Gu, Weiwei; Larabell, Carolyn

    2004-09-16

    Robust and bright light emitters, semiconductor nanocrystals[quantum dots (QDs)] have been adopted as a new class of fluorescent labels. Six years after the first experiments of their uses in biological applications, there have been dramatic improvements in understanding surface chemistry, biocompatibility, and targeting specificity. Many studies have shown the great potential of using quantum dots as new probes in vitro and in vivo. This review summarizes the recent advances of quantum dot usage at the cellular level, including immunolabeling, cell tracking, in situ hybridization, FRET, in vivo imaging, and other related technologies. Limitations and potential future uses of quantum dot probes are also discussed.

  6. Probe Project Status and Accomplishments

    SciTech Connect

    Burris, RD

    2001-05-07

    The Probe project has completed its first full year of operation. In this document we will describe the status of the project as of December 31, 2000. We will describe the equipment configuration, then give brief descriptions of the various projects undertaken to date. We will mention first those projects performed for outside entities and then those performed for the benefit of one of the Probe sites. We will then describe projects that are under consideration, including some for which initial actions have been taken and others which are somewhat longer-term.

  7. A simple levulinate-based ratiometric fluorescent probe for sulfite with a large emission shift.

    PubMed

    Liu, Caiyun; Wu, Huifang; Yang, Wen; Zhang, Xiaoling

    2014-01-01

    A simple 4-hydroxynaphthalimide-derived colorimetric and ratiometric fluorescent probe (1) containing a receptor of levulinate moiety was designed and synthesized to monitor sulfite. Probe 1 could quantificationally detect sulfite by a ratiometric fluorescence spectroscopy method with high selectivity and sensitivity. Specially, probe 1 exhibited a 100 nm red-shifted absorption spectrum along with the color changes from colorless to yellow, and 103 nm red-shifted emission spectra upon the addition of sulfite. Thus, 1 can serve as a "naked-eye" probe for sulfite. Further, the recognition mechanism of probe 1 for sulfite was confirmed using nuclear magnetic resonance and electrospray ionization mass spectrometry. Also, the preliminary practical application demonstrated that our proposed probe provided a promising method for the determination of sulfite. PMID:24813958

  8. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  9. Carbon studies by scanning probe microscopy

    SciTech Connect

    Hendricks, S.A.

    1992-01-01

    Applications of in situ and ex situ scanning probe microscopy (SPM) are described. Scanning probe microscopic methods are based on monitoring the interaction between a tip and substrate. SPM has been used to study various aspects of carbon behavior, including modification of the highly-oriented pyrolytic graphite (HOPG) surface and its users as an electrode. The surface morphology of other forms of carbon, such as carbon black, carbon fibrils, and coal are also studied. Pit formation by thermal gasification of HOPG occurs by a nucleation and lateral growth mechanism. Effects of different surface treatments on pit nucleation are studied by SPM and other methods for reproducible pit production. Characterization of surface properties on the basal and edge planes show effects of thermal treatment. Measurements of the monolayer pit depth show variation with experimental conditions. The electrodeposition and stripping of lead on pitted HOPG has been studied by in situ and ex situ scanning tunneling microscopy (STM) and in situ atomic force microscopy (AFM). Pb deposits preferentially formed at step and pit edges and resembles crystallite growth on a microelectrode disk. The author discusses effects of tip potential on deposition during in situ STM. After stripping, scanning microscopy and XPS indicated that residual Pb species remained on the surface. The selective etching of recessed features of various shapes in HOPG in air was accomplished using STM. Etching of the surface was restricted to the scan area and only occurred with positive biases. Lines with widths as small as 10 nm and squares 25 [times] 25 nm could be formed with monolayer depth (0.34 nm) in the HOPG. Electrochemical STM was used to study in situ the early stages of polyaniline film growth on pitted HOPG. The mechanism of polymerization was studied using three different potential schemes. A growth mechanism for polyaniline on an HOPG electrode is proposed.

  10. Development of a fiber based Raman probe compatible with interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Rube, Martin; Cox, Benjamin; Melzer, Andreas; Dholakia, Kishan

    2014-02-01

    Raman spectroscopy has proven to be a powerful tool for discriminating between normal and abnormal tissue types. Fiber based Raman probes have demonstrated its potential for in vivo disease diagnostics. Combining Raman spectroscopy with Magnetic Resonance Imaging (MRI) opens up new avenues for MR guided minimally invasive optical biopsy. Although Raman probes are commercially available, they are not compatible with a MRI environment due to the metallic components which are used to align the micro-optic components such as filters and lenses at the probe head. Additionally they are not mechanically compatible with a typical surgical environment as factors such as sterility and length of the probe are not addressed in those designs. We have developed an MRI compatible fiber Raman probe with a disposable probe head hence maintaining sterility. The probe head was specially designed to avoid any material that would cause MR imaging artefacts. The probe head that goes into patient's body had a diameter <1.5 mm so that it is compatible with biopsy needles and catheters. The probe has been tested in MR environment and has been proven to be capable of obtaining Raman signal while the probe is under real-time MR guidance.

  11. Development of a high-speed, reciprocating electrostatic probe system for Hall thruster interrogation

    NASA Astrophysics Data System (ADS)

    Haas, James M.; Gallimore, Alec D.; McFall, Keith; Spanjers, Greg

    2000-11-01

    The use of electrostatic probes to measure local plasma parameters inside the discharge chamber of a Hall thruster presents significant difficulties. The high-temperature, dense plasma, and Hall current in the accelerating channel heat the probe rapidly causing ablation of probe material, which perturbs thruster operation and reduces probe lifetime. Results are presented which show the extent of perturbation to discharge current, cathode potential, and thrust for the case where probe material is ablated. A simple thermal model of probe material heating is developed and ablation times for a typical probe configuration are presented. Using the results of the thermal model, a high-speed axial reciprocating probe (HARP) system was developed to enable probe survival and reduce thruster perturbations during interrogation of the discharge chamber of a Hall thruster. Results using the HARP system are presented showing a significant reduction in thruster perturbation. The results also indicate that a mechanism other than material ablation is contributing to perturbation of the thruster. Based on emissive probe data, the tungsten conductor appears to provide a low impedance path between magnetic field lines, enhancing electron transport to the anode.

  12. Local collective motion analysis for multi-probe dynamic imaging and microrheology.

    PubMed

    Khan, Manas; Mason, Thomas G

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches. PMID:27269299

  13. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  14. Rubidium pump-probe spectroscopy: Comparison between ab initio theory and experiment

    SciTech Connect

    Himsworth, M.; Freegarde, T.

    2010-02-15

    We present a simple, analytic model for pump-probe spectroscopy in dilute atomic gases. Our model treats multilevel atoms, takes several broadening mechanisms into account and, with no free parameters, shows excellent agreement with experimentally observed spectra.

  15. Electron Tunneling, a Quantum Probe for the Quantum World of Nanotechnology

    ERIC Educational Resources Information Center

    Hipps, K. W.; Scudiero, L.

    2005-01-01

    A quantum-mechanical probe is essential to study the quantum world, which is provided by electron tunneling. A spectroscopic mapping to image the electron-transport pathways on a sub-molecular scale is used.

  16. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  17. Probing interactions between collagen proteins via microrheology

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Forde, Nancy R.

    2012-10-01

    Collagen is the major structural protein of our connective tissues. It provides integrity and mechanical strength through its hierarchical organization. Defects in collagen can lead to serious connective tissue diseases. Collagen is also widely used as a biomaterial. Given that mechanical properties are related to the structure of materials, the main goal of our research is to understand how molecular structure correlates with microscale mechanical properties of collagen solutions and networks. We use optical tweezers to trap and monitor thermal fluctuations of an embedded probe particle, from which viscoelastic properties of the solution are extracted. We find that elasticity becomes comparable to viscous behavior at collagen concentrations of 5mg/ml. Furthermore, by simultaneously neutralizing pH and adding salt, we observe changes in viscosity and elasticity of the solution over time. We attribute this to the self-assembly process of collagen molecules into fibrils with different mechanical properties. Self-assembly of collagen under these conditions is verified by turbidity measurements as well as electron microscopy. By comparing results from these local studies of viscoelasticity, we can detect spatial heterogeneity of fibril formation throughout the solution.

  18. Assessment of masseter spasm complicated by a faulty temperature probe.

    PubMed

    Cohen, J A; Winston, R S

    1994-01-01

    During palatoplasty on a 9-year-old girl with no personal or familial history of malignant hyperthermia, the temperature monitor reported an increase in temperature. Additionally, the surgeon thought the patient's jaw muscle was in spasm. While preparations were made for treatment of malignant hyperthermia, the temperature probe was tested and found to be defective. When it was replaced, the patient's temperature was within normal range. When the temperature probe was tested 6 days later, it was working properly. The cause of the problem may have been moisture in the connection between the probe and the exterior cable, which eventually evaporated. Decision algorithms can assist in such situations to distinguish between a medical problem and a mechanical problem with the monitor. PMID:7880518

  19. Lipid-Targeting Peptide Probes for Extracellular Vesicles.

    PubMed

    Flynn, Aaron D; Yin, Hang

    2016-11-01

    Extracellular vesicles released from cells are under intense investigation for their roles in cell-cell communication and cancer progression. However, individual vesicles have been difficult to probe as their small size renders them invisible by conventional light microscopy. However, as a consequence of their small size these vesicles possess highly curved lipid membranes that offer an unconventional target for curvature-sensing probes. In this article, we present a strategy for using peptide-based biosensors to detect highly curved membranes and the negatively charged membrane lipid phosphatidylserine, we delineate several assays used to validate curvature- and lipid-targeting mechanisms, and we explore potential applications in probing extracellular vesicles released from sources such as apoptotic cells, cancer cells, or activated platelets. J. Cell. Physiol. 231: 2327-2332, 2016. © 2016 Wiley Periodicals, Inc.

  20. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  1. [Development and biological applications of various bioimaging probes].

    PubMed

    Nagano, Tetsuo

    2006-10-01

    Fluorescence imaging is the most powerful technique currently available for continuous observation of dynamic intracellular processes in living cells. However, only a very limited range of biomolecules can be visualized because of the lack of flexible design strategies for fluorescence probes. In our laboratory, it was elucidated that fluorescein which has been widely employed as a core of fluorescence probes could be understood as a directly linked electron donor/fluorophore acceptor system. Fluorescence properties of fluorescein derivatives could be easily anticipated and modulated by controlling the rate of photoinduced electron transfer (PeT) from the donor moiety to the xanthene fluorophore. Further, we found that the opposite direction of PeT from the singlet excited fluorophore to the electron acceptor moiety could be occurred. More than twenty probes for imaging of nitric oxide, beta-galactosidase, highly reactive oxygen species, zinc ion et al. have been developed according to precise and rational design strategies based on PeT mechanism.

  2. A fluorescent probe for ecstasy.

    PubMed

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.

  3. Samara Probe For Remote Imaging

    NASA Technical Reports Server (NTRS)

    Burke, James D.

    1989-01-01

    Imaging probe descends through atmosphere of planet, obtaining images of ground surface as it travels. Released from aircraft over Earth or from spacecraft over another planet. Body and single wing shaped like samara - winged seed like those of maple trees. Rotates as descends, providing panoramic view of terrain below. Radio image obtained by video camera to aircraft or spacecraft overhead.

  4. SUB-SLAB PROBE INSTALLATION

    EPA Science Inventory

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  5. Health. CEM Probe, January 1977.

    ERIC Educational Resources Information Center

    Billington, Roy

    The importance of health and its relationship to personal and community life are explored in this issue of PROBE. Designed to acquaint British secondary school youth with topical problems, the series contains discussion and case studies of national and world issues, followed by questions for student discussion and research. Nine chapters comprise…

  6. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 3 of a press conference from Ames Research Center (ARC) regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. The press conference question and answer period is continued from Part 2. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. The question and answer period is followed by a presentation in which all of the visuals that are shown during the press conference are reviewed. The video ends with several animations depicting the entry of the probe, descent, and the first measurements of the Jovian atmosphere, historical footage of the building of the probe, and a short interview with Dr. Richard Young (Galileo Probe Scientist, ARC). Parts 1 and 2 of the press conference can be found in document numbers NONP-NASA-VT-2000001073, and NONP-NASA-VT-2000001074.

  7. OCR Pace on Probes Quickens

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2011-01-01

    In the 21 months since U.S. Secretary of Education Arne Duncan stood on an iconic bridge in Selma, Alabama, and pledged to aggressively combat discrimination in the nation's schools, federal education officials have launched dozens of new probes in school districts and states that reach into civil rights issues that previously received little, if…

  8. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  9. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  10. A quirky probe of neutral naturalness

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Curtin, David; Verhaaren, Christopher B.

    2016-07-01

    We consider the signals arising from top partner pair production at the LHC as a probe of theories of neutral naturalness. We focus on scenarios in which top partners carry electroweak charges, such as folded supersymmetry or the quirky little Higgs. In this class of theories the top partners are pair produced as quirky bound states, since they are charged under a mirror color group whose lightest states are hidden glueballs. The quirks promptly de-excite and annihilate into glueballs, which decay back to Standard Model fermions via Higgs mixing. This can give rise to spectacular signatures at the LHC, such displaced decays, or high-multiplicity prompt production of many hard b ¯b or τ+τ- pairs. We show that signals arising from top partner pair production constitute the primary discovery channel for this class of theories in most regions of parameter space, and might provide the only experimental probe of scenarios with sub-cm glueball decay lengths. The measurement of top partner masses and couplings, which could be used to test the neutral naturalness mechanism directly, is also a tantalizing possibility.

  11. Single optical fiber probe for optogenetics

    NASA Astrophysics Data System (ADS)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  12. Probing Dark Energy models with neutrons

    NASA Astrophysics Data System (ADS)

    Pignol, Guillaume

    2015-07-01

    There is a deep connection between cosmology — the science of the infinitely large — and particle physics — the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron — its Electric Dipole Moment and its lifetime — are intertwined with baryogenesis and nucleosynthesis in the early Universe. I will cover this topic in the first part, that will also serve as an introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then, the rest of the paper will be devoted to a new idea: using neutrons to probe models of Dark Energy. In the second part, I will present the chameleon theory: a light scalar field accounting for the late accelerated expansion of the Universe, which interacts with matter in such a way that it does not mediate a fifth force between macroscopic bodies. However, neutrons can alleviate the chameleon mechanism and reveal the presence of the scalar field with properly designed experiments. In the third part, I will describe a recent experiment performed with a neutron interferometer at the Institut Laue Langevin that sets already interesting constraints on the chameleon theory. Last, the chameleon field can be probed by measuring the quantum states of neutrons bouncing over a mirror. In the fourth part, I will present the status and prospects of the GRANIT experiment at the ILL.

  13. Invited Review Article: Pump-probe microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  14. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  15. Possible concepts for an in situ Saturn probe mission

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Lebreton, Jean-Pierre; Mousis, Olivier; Atkinson, David H.; Lunine, Jonathan I.; Reh, Kim R.; Fletcher, Leigh N.; Simon-Miller, Amy A.; Atreya, Sushil; Brinckerhoff, William B.; Cavalie, Thibault; Colaprete, Anthony; Gautier, Daniel; Guillot, Tristan; Mahaffy, Paul R.; Marty, Bernard; Morse, Andy; Sims, Jon; Spilker, Tom; Spilker, Linda

    2014-05-01

    In situ exploration of Saturn's atmosphere would bring insights in two broad themes: the formation history of our solar system and the processes at play in planetary atmospheres. The science case for in situ measurements at Saturn are developed in [1] and two companion abstracts (see Mousis et al., and Atkinson et al.). They are summarized here. Measurements of Saturn's bulk chemical and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula and hence on the formation mechanisms. An in situ probe, penetrating from the upper atmosphere (μbar level) into the convective weather layer to a minimum depth of 10 bar, would also contribute to our knowledge of Saturn's atmospheric structure, dynamics, composition, chemistry and cloud-forming processes. Different mission architectures are envisaged, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars [1]. Future studies will focus on the trade-offs between science return and the added design complexity of a probe that could operate at pressures larger than 10 bars. Accelerometry measurements may also be performed during the entry phase in the higher part of the stratosphere prior to starting measurements under parachute. A carrier system would be required to deliver the probe along its interplanetary trajectory to the desired atmospheric entry point at Saturn. The entry site would be carefully selected. Three possible mission configurations are currently under study (with different risk/cost trades): • Configuration 1: Probe + Carrier. After probe delivery, the carrier would follow its path and be destroyed during atmospheric entry, but could perform pre-entry science. The carrier would not be used as a radio relay, but the probe would transmit its data to the ground system via a direct-to-Earth (DTE) RF link; • Configuration 2: Probe + Carrier/Relay. The probe would detach from the

  16. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  17. High pressure optical combustion probe

    SciTech Connect

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  18. Impact of probe compound in MRP2 vesicular transport assays.

    PubMed

    Kidron, Heidi; Wissel, Gloria; Manevski, Nenad; Häkli, Marika; Ketola, Raimo A; Finel, Moshe; Yliperttula, Marjo; Xhaard, Henri; Urtti, Arto

    2012-05-12

    MRP2 is an efflux transporter that is expressed mainly in the canalicular membrane of hepatocytes, where it expels polar and ionic compounds into the bile. MRP2 is also present in the apical membrane of enterocytes and epithelial cells of proximal tubules of the kidney. Inhibition of MRP2 transport can lead to the accumulation of metabolites and other MRP2 substrates up to toxic levels in these cells. The transport properties of MRP2 are frequently studied with the vesicular transport assay. The assay identifies compounds that interact with MRP2 by measuring the effect of a compound on the transport of a radioactively labeled or fluorescent probe. We have compared the effect of eight selected test compounds (quercetin, disopyramide, paracetamol, indomethacin, diclofenac, estrone-3-sulfate, budesonide, and thioridazine) on the MRP2-mediated transport of three commonly used probes: 5(6)-carboxy-2,7-dichlorofluorescein, leukotriene C4 and estradiol-17-β-d-glucuronide (E217βG). Five of the test compounds had different probe-dependent effects on the MRP2-mediated transport, suggesting differences in the transport mechanism of the probes. Our results underline the complexity of substrate recognition by these efflux transporters and the difficulties in directly comparing results obtained with different assays, especially when different probes are used.

  19. An evaluation of cleaning methods for micro-CMM probes

    NASA Astrophysics Data System (ADS)

    Kinnell, P. K.; Habeb, R. R.

    2013-08-01

    To support the manufacture of complex products made of multiple micro-parts, a traceable and accurate 3D-measurement system with sub-micron accuracy is required. This paper investigates the use of a micro electro mechanical system (MEMS) tactile-micro-probe for 3D-coordinate metrology on the micro-scale. It will show that probe-tip contamination may be a significant source of error for such tactile-probing systems. Even in a clean-room environment, there are many types of contaminants that may affect dimensional measurement accuracy. These mainly come from repeated contact between probe tip and artefact material. To address this issue a number of cleaning methods were utilized to remove contaminants from the MEMS tactile-micro-probe sensor. Scanning electron microscopy was used to assess the efficacy of each cleaning method. Initial findings on different cleaning methods including ultrasonic, plasma, micro-beam melting, electron beam melting and cryogenic cleaning have shown that the latter is a feasible process.

  20. Synergy Between Entry Probes and Orbiters

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    We identify two catagories of probe-orbiter interactions which benefit the science return from a particular mission. The first category is termed "Mission Design Aspects". This category is meant to describe those aspects of the mission design involving the orbiter that affect the science return from the probe(s). The second category of probe-orbiter interaction is termed "Orbiter-Probe Science Interactions", and is meant to include interactions between oribter and probe(s) that directly involve science measurements made from each platform. Two mission related aspects of probe-orbiter interactions are delivery of a probe(s) to the entry site(s) by an orbiter, and communication between each probe and the orbiter. We consider four general probe-orbiter science interactions that greatly enhance, or in certain cases are essential for, the mission science return. The four topics are, global context of the probe entry site(s), ground truth for remote sensing observations of an orbiter, atmospheric composition measurements, and wind measurements.

  1. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.

    PubMed

    Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa

    2013-07-16

    Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of

  2. Voice coil-based scanning probe microscopy

    PubMed Central

    2012-01-01

    We present a novel system for large-area scanning probe microscopy (SPM) measurements based on minimum counter-force linear guidance mechanisms, voice coils, interferometers and fuzzy logic-based feedback loop electronics. It is shown that voice coil-based actuation combined with interferometry can be a good alternative to piezoceramic positioning systems, providing fast and still sufficient, precise displacements which range from nanometers to millimeters. Using fuzzy logic feedback control, it can be actuated even with only a few low-cost components, like a cheap single-chip microcontroller. As the final positioning resolution can be made independent on the electronics output resolution, the system can reach high positioning resolution even on very large scan sizes. This is a key prerequisite for developing novel generations of SPMs that would combine, in a very large range, with high-speed imaging. PMID:22720756

  3. Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes

    NASA Astrophysics Data System (ADS)

    Ingrosso, Chiara; Martin-Olmos, Cristina; Llobera, Andreu; Innocenti, Claudia; Sangregorio, Claudio; Striccoli, Marinella; Agostiano, Angela; Voigt, Anja; Gruetzner, Gabi; Brugger, Jürgen; Perez-Murano, Francesc; Curri, Maria Lucia

    2011-11-01

    We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe2O3 nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe2O3 NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the final material extremely interesting for manufacturing miniaturized polymer based mechanical devices and systems. In particular, the nanocomposite has been used as structural material for fabricating photoplastic Atomic Force Microscopy (AFM) probes with integrated tips showing outstanding mechanical response and high resolution imaging performance. The fabricated probes consist of straight cantilevers with low stress-gradient and high quality factors, incorporating sharp polymeric tips. They present considerably improved performance compared to pure epoxy based photoresist AFM probes, and to commercial silicon AFM probes.We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe2O3 nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe2O3 NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the

  4. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; Frampton, Robert; Sichi, Steve; Peltz, Leora; Masciarelli, James; VanCleve, Jeffey

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  5. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  6. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  7. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  8. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  9. Further capacitive imaging experiments using modified probes

    NASA Astrophysics Data System (ADS)

    Yin, Xiaokang; Li, Zhen; Yan, An; Li, Wei; Chen, Guoming; Hutchins, David A.

    2016-02-01

    In recent years, capacitive imaging (CI) is growing in popularity within the NDE communities, as it has the potential to test materials and structures for defects that are not easily tested by other techniques. In previous work, The CI technique has been successfully used on a various types of materials, including concrete, glass/carbon fibre composite, steel, etc. In such CI experiments, the probes are normally with symmetric or concentric electrodes etched onto PCBs. In addition to these conventional coplanar PCB probes, modified geometries can be made and they can lead to different applications. A brief overview of these modified probes, including high resolution surface imaging probe, combined CI/eddy current probe, and CI probe using an oscilloscope probe as the sensing electrode, is presented in this work. The potential applications brought by these probes are also discussed.

  10. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  11. Integration of probe systems in a nanopositioning and nanomeasuring machine

    NASA Astrophysics Data System (ADS)

    Jaeger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Buechner, Hans-Joachim; Gruenwald, Rainer; Fussl, Roland

    2005-02-01

    The paper describes the design of a high-precision three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine). The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universität Ilmenau and manufactured by the SIOS Mežtechnik GmbH Ilmenau. The machine was successfully tested and continually improved in the last few years. The NPM-Machine has a resolution of less than 0,1 nm over the entire positioning and measuring range of 25 mm x 25 mm x 5 mm. An Abbe offset-free design and the application of a new concept for compensating systematic errors resulting from mechanical bearings provide extraordinary accuracy. An important part of the NPM-Machine is constituted by a mirror corner. The integration of several probe systems and Nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology as well as measuring mechanical precision workpieces a.s.o. Various probe systems have been integrated into the NPM-Machines. The machines are operating successfully in several German and foreign institutes including the Physikalisch-Technische Bundesanstalt (PTB). The article gives basic information on the NPM-Machine and describes the mode of operation and the measurements by means of probe systems.

  12. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  13. The reference-probe model in avian magnetoreception

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2015-03-01

    The sensory mechanism that allows magneto-sensitive organisms to detect the direction of the geomagnetic field for navigation purposes is still largely unclear. One of the two leading hypothesis stipulates that photoindused radical-pair reactions in photoreceptor proteins act as the primary magnetic sensor in migratory birds. In recent years the radical-pair mechanism has been receiving considerable support, qualifying the avian compass for a place in the emerging field of quantum biology. Investigations on such a spin-based sensor have focussed on uncovering the design features for bioinspired technology. The reference-probe model has been suggested as an optimal radical-pair design. Radical-pairs with probe character have been shown to achieve not only optimal but also robust directional sensitivity to weak magnetic fields. However, the relevance of the reference character has not been studied yet. Here we introduce a method to investigate the contribution of the reference character to optimality and robustness. By analytical and computational studies, we find that the probe character is crucial for optimality, while the reference character captures robust features. Our results suggest the reference-probe model to contain both optimal and robust design features.

  14. Multifunctional hydrogel nano-probes for atomic force microscopy.

    PubMed

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-20

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe-the key actuating element-has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  15. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Akselrod, Gleb M.; Argyropoulos, Christos; Hoang, Thang B.; Ciracì, Cristian; Fang, Chao; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2014-11-01

    To move nanophotonic devices such as lasers and single-photon sources into the practical realm, a challenging list of requirements must be met, including directional emission, room-temperature and broadband operation, high radiative quantum efficiency and a large spontaneous emission rate. To achieve these features simultaneously, a platform is needed for which the various decay channels of embedded emitters can be fully understood and controlled. Here, we show that all these device requirements can be satisfied by a film-coupled metal nanocube system with emitters embedded in the dielectric gap region. Fluorescence lifetime measurements on ensembles of emitters reveal spontaneous emission rate enhancements exceeding 1,000 while maintaining high quantum efficiency (>0.5) and directional emission (84% collection efficiency). Using angle-resolved fluorescence measurements, we independently determine the orientations of emission dipoles in the nanoscale gap. Incorporating this information with the three-dimensional spatial distribution of dipoles into full-wave simulations predicts time-resolved emission in excellent agreement with experiments.

  16. Probing the mechanisms underlying human diseases in making ribosomes.

    PubMed

    Farley, Katherine I; Baserga, Susan J

    2016-08-15

    Ribosomes are essential, highly complex machines responsible for protein synthesis in all growing cells. Because of their importance, the process of building these machines is intricately regulated. Although the proteins involved in regulating ribosome biogenesis are just beginning to be understood, especially in human cells, the consequences for dysregulating this process have been even less studied. Such interruptions in ribosome synthesis result in a collection of human disorders known as ribosomopathies. Ribosomopathies, which occur due to mutations in proteins involved in the global process of ribosome biogenesis, result in tissue-specific defects. The questions posed by this dichotomy and the steps taken to address these questions are therefore the focus of this review: How can tissue-specific disorders result from alterations in global processes? Could ribosome specialization account for this difference? PMID:27528749

  17. Probing the Mechanism of Oscillations in Newborn Motor Activity.

    ERIC Educational Resources Information Center

    Robertson, Steven S.

    1993-01-01

    Cyclical fluctuation in spontaneous motor activity (CM) emerges in fetus and persists in newborn. This "resetting" experiment perturbed CM by noise stimulus during infants' active sleep. Pre- and postperturbation CM were measured and compared. Subjects were 33 infants between 1 and 3 days of age. The stimulus induced a relative slowing of CM…

  18. Inflationary cosmology as a probe of primordial quantum mechanics

    SciTech Connect

    Valentini, Antony

    2010-09-15

    We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with nonstandard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with nonrandom phases and intermode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early Universe.

  19. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  20. Where do pulse oximeter probes break?

    PubMed

    Crede, S; Van der Merwe, G; Hutchinson, J; Woods, D; Karlen, W; Lawn, J

    2014-06-01

    Pulse oximetry, a non-invasive method for accurate assessment of blood oxygen saturation (SPO2), is an important monitoring tool in health care facilities. However, it is often not available in many low-resource settings, due to expense, overly sophisticated design, a lack of organised procurement systems and inadequate medical device management and maintenance structures. Furthermore medical devices are often fragile and not designed to withstand the conditions of low-resource settings. In order to design a probe, better suited to the needs of health care facilities in low-resource settings this study aimed to document the site and nature of pulse oximeter probe breakages in a range of different probe designs in a low to middle income country. A retrospective review of job cards relating to the assessment and repair of damaged or faulty pulse oximeter probes was conducted at a medical device repair company based in Cape Town, South Africa, specializing in pulse oximeter probe repairs. 1,840 job cards relating to the assessment and repair of pulse oximeter probes were reviewed. 60.2 % of probes sent for assessment were finger-clip probes. For all probes, excluding the neonatal wrap probes, the most common point of failure was the probe wiring (>50 %). The neonatal wrap most commonly failed at the strap (51.5 %). The total cost for quoting on the broken pulse oximeter probes and for the subsequent repair of devices, excluding replacement components, amounted to an estimated ZAR 738,810 (USD $98,508). Improving the probe wiring would increase the life span of pulse oximeter probes. Increasing the life span of probes will make pulse oximetry more affordable and accessible. This is of high priority in low-resource settings where frequent repair or replacement of probes is unaffordable or impossible.

  1. Probing zeolites by vibrational spectroscopies.

    PubMed

    Bordiga, Silvia; Lamberti, Carlo; Bonino, Francesca; Travert, Arnaud; Thibault-Starzyk, Frédéric

    2015-10-21

    This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.

  2. Fibre Optic Probes For Ophthalmology

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    1986-09-01

    One of the most interesting fields of application of optical fibre technology is the medicine. Among other medical disciplines the field of ophthalmology is very interesting for these applications because of optical character of the organ of vision. After some remarks of a general nature, and concerning the needs of modern ophthalmology, we will review here our trials to apply optical fibre devices for the optical surgery, therapy and diagnosis in the ophthalmology. The devices include: optical fibre illuminators for the applications with operational probes (crioprobes, termal probes, a vitrotom etc.) and some of the diagnostic equipment (like Goldman lens etc.), optical fibre gradient microoptics for delivering of a laser beam to the appropriate internal structures of the eyeglobe, optical fibre lacrimaloscope for the screening of the lacrimal ducts and another one for the orbit. A general conception of the multitask fibre optic microprobe fcr ophthalmological applications - operations and diagnosis/1/ - concludes the work.

  3. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  4. Fabrication of molecular tension probes.

    PubMed

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: •Molecular tension appended by protein-protein interactions (PPI) is visualized with a luciferase.•Estrogen activities are quantitatively illuminated with the molecular tension probes.•Full-length Renilla luciferase enhances the optical intensities after bending by PPI.

  5. Fabrication of molecular tension probes

    PubMed Central

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein–protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: • Molecular tension appended by protein–protein interactions (PPI) is visualized with a luciferase. • Estrogen activities are quantitatively illuminated with the molecular tension probes. • Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  6. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  7. Optical probe with reference fiber

    DOEpatents

    Da Silva, Luiz B.; Chase, Charles L.

    2006-03-14

    A system for characterizing tissue includes the steps of generating an emission signal, generating a reference signal, directing the emission signal to and from the tissue, directing the reference signal in a predetermined manner relative to the emission signal, and using the reference signal to compensate the emission signal. In one embodiment compensation is provided for fluctuations in light delivery to the tip of the probe due to cable motion.

  8. Distance Probes of Dark Energy

    SciTech Connect

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D' Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; Eisenstein, D. J.; Finley, D. A.; Freedman, W. L.; Ho, S.; Holz, D. E.; Kasen, D.; Kent, S. M.; Kessler, R.; Kuhlmann, S.; Linder, E. V.; Martini, P.; Nugent, P. E.; Perlmutter, S.; Peterson, B. M.; Riess, A. G.; Rubin, D.; Sako, M.; Suntzeff, N. V.; Suzuki, N.; Thomas, R. C.; Wood-Vasey, W. M.; Woosely, S. E.

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  9. Conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer

    SciTech Connect

    Kyle, K.R.

    1994-09-30

    Currently, tank wastes are to be characterized by drilling and physically removing core samples. The cores are analyzed in laboratories in a hot cell environment. The purpose of the cone penetrometer is to bring the interrogative methods to the sample in its native environment, providing faster, safer, and more cost effective tank characterization, both in terms of time and effort. Probes currently exist for the physical characterization of tank wastes in terms of porosity, density, temperature, and electrical conductivity. The main tool for chemical analysis in the in-tank cone penetrometer will be a fiber optic Raman spectroscopy probe, which will be used to collect information about the molecular chemical constituents of the tank wastes. This report addresses the design and implementation of a Raman probe with the in-tank cone penetrometer. The scope of this document includes design specifications and recommendations for the following aspects of the in-tank Raman cone penetrometer probe: cone penetrometer probe interface--an unit for the inclusion of a Raman probe in the in-tank cone penetrometer will be described; window materials--chemically resistant and mechanically stable materials for the cone penetrometer probe interface window will be considered; Raman probes--Raman probes for inclusion in the penetrometer will be discussed.

  10. Mass Spectrometry for Planetary Probes: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.; Harpold, Dan N.; Jamieson, Brian G.; Mahaffy, Paul R.

    2005-01-01

    Atmospheric entry probes present a unique opportunity for performing quantitative analysis of extra-terrestrial atmospheres in cases where remote sensing alone may not be sufficient and measurements with balloons or aircraft is not practical. An entry probe can provide a complete vertical profile of atmospheric parameters including chemical composition, which cannot be obtained with most other techniques. There are, however, unique challenges associated with building instruments for an entry probe, as compared to orbiters, landers, or rovers. Conditions during atmospheric entry are extreme, there are inherent time constraints due to the short duration of the experiment, and the instrument experiences rapid environmental changes in temperature and pressure as it descends. In addition, there are resource limitations, i.e. mass, power, size and bandwidth. Finally, the demands on the instrument design are determined in large part by conditions (pressure, temperature, composition) unique to the particular body under study, and as a result there is no one-size-fits-all instrument for an atmospheric probe. Many of these requirements can be more easily met by miniaturizing the probe instrument. Our experience building mass spectrometers for atmospheric entry probes leads us to believe that the time is right for a fundamental change in the way spaceflight mass spectrometers are built. The emergence over the past twenty years of Micro-electro- mechanical Systems (MEMS), utilizing lithographic semiconductor fabrication techniques to produce instrument systems in miniature, holds great promise for application to spaceflight mass spectrometry. A highly miniaturized, high performance and low-power mass spectrometer would be an enormous benefit to future entry probe missions, allowing, for example, parallel measurements (e.g., multiple simultaneous gas chromatographic analyses and direct atmospheric leaks.) Such an instrument would also enable mass spectrometry on board small

  11. Intron-Specific Neuropeptide Probes

    PubMed Central

    Gainer, Harold; Ponzio, Todd A.; Yue, Chunmei; Kawasaki, Makoto

    2016-01-01

    Measurements of changes in pre-mRNA levels by intron-specific probes are generally accepted as more closely reflecting changes in gene transcription rates than are measurements of mRNA levels by exonic probes. This is, in part, because the pre-mRNAs, which include the primary transcript and various splicing intermediates located in the nucleus (also referred to as heteronuclear RNAs, or hnRNAs), are processed rapidly (with half-lives <60 min) as compared to neuropeptide mRNAs, which are then transferred to the cytoplasm and which have much longer half-lives (often over days). In this chapter, we describe the use of exon-and intron-specific probes to evaluate oxytocin (OT) and vasopressin (VP) neuropeptide gene expression by analyses of their mRNAs and hnRNAs by quantitative in situ hybridization (qISH) and also by using specific PCR primers in quantitative, real-time PCR (qPCR) procedures. PMID:21922402

  12. Galileo Space Probe News Conference

    NASA Astrophysics Data System (ADS)

    1996-01-01

    This NASA Kennedy Space Center (KSC) video release presents Part 1 of a press conference regarding the successful entry of the Galileo Space Probe into Jupiter's atmosphere. The press conference panel is comprised of twelve principal investigators and project scientists that oversee the Galileo mission. Among these panelists, William J. O'Neil (Jet Propulsion Lab.) begins the video praising all of the scientists that worked on the orbiter mission. He then presents a visual overview of Galileo's overall mission trajectory and schedule. Marcie Smith (NASA Ames Research Center) then describes the Galileo Probe mission and the overall engineering and data acquisition aspects of the Probe's Jupiter atmospheric entry. Dr. Richard Young (NASA Ames Research Center) follows with a brief scientific overview, describing the measurements of the atmospheric composition as well as the instruments that were used to gather the data. Atmospheric pressure, temperature, density, and radiation levels of Jupiter were among the most important parameters measured. It is explained that these measurements would be helpful in determining among other things, the overall dynamic meteorology of Jupiter. A question and answer period follows the individual presentations. Atmospheric thermal structure, water abundances, wind profiles, radiation, cloud structure, chemical composition, and electricity are among the topics discussed. Parts 2 and 3 of the press conference can be found in document numbers NONP-NASA-VT-2000001074, and NONP-NASA-VT-2000001075.

  13. A comparative study of lysosome-targetable pH probes based on phenoxazinium attached with aliphatic and aromatic amines.

    PubMed

    Wang, Xiu-Li; Li, Xiao-Jun; Sun, Ru; Xu, Yu-Jie; Ge, Jian-Feng

    2016-05-10

    In this paper, phenoxazinium was used as a fluorophore for the design of pH probes by the photoinduced electron transfer (PET) mechanism. Phenoxazinium with an aliphatic morpholinyl group (probe ) gave increased emission at 665 nm with pH ranging from 7.4 to 4.4; meanwhile, the other one with an aromatic diethylaminophenyl group (probe ) gave nearly OFF-ON emission at 679 nm with pH ranging from 7.4 to 4.2. They both were reversible pH probes with good selectivity. Their optical properties, especially the PET mechanism, were illustrated by (TD)DFT theory. Fluorescence confocal imaging of probes and a typical phenoxazinium dye (Oxazine 1) was also performed, and the results indicated that probes are lysosome-targetable biomarkers.

  14. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  15. QD-Based FRET Probes at a Glance

    PubMed Central

    Shamirian, Armen; Ghai, Aashima; Snee, Preston T.

    2015-01-01

    The unique optoelectronic properties of quantum dots (QDs) give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET) are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided. PMID:26053750

  16. Project Prometheus and Future Entry Probe Missions

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    2005-01-01

    A viewgraph presentation on project Prometheus and future entry probe missions is shown. The topics include: 1) What Is Project Prometheus?; 2) What Capabilities Can Project Prometheus Offer? What Mission Types Are Being Considered?; 3) Jupiter Icy Moons Orbiter (JIMO); 4) How Are Mission Opportunities Changing?; 5) Missions Of Interest a Year Ago; 6) Missions Now Being Considered For Further Study; 7) Galileo-Style (Conventional) Probe Delivery; 8) Galileo-Style Probe Support; 9) Conventional Delivery and Support of Multiple Probes; 10) How Entry Probe Delivery From an NEP Vehicle Is Different; and 11) Concluding Remarks.

  17. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  18. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  19. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  20. Current to a moving cylindrical electrostatic probe

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wharton, L. E.

    1972-01-01

    The current collection characteristics of a moving cylindrical Langmuir probe are evaluated for a range of probe speeds and potentials which are applicable to earth and planetary measurements. The current expressions derived include the cases of the general accelerated current, sheath area limited current, orbital motion limited current, and retarded current. For the orbital motion limited current, a simple algebraic expression is obtained which includes and generalizes the Mott-Smith and Langmuir expressions for both a stationary probe and a rapidly moving probe. For a rapidly moving probe a single formula adequately represents both the accelerated and the retarded current.