Science.gov

Sample records for probing quadrupolar nuclei

  1. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    SciTech Connect

    De Paul, Susan M.

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  2. 14N and 81Br quadrupolar nuclei as sensitive NMR Probes of n-alkyltrimethylammonium bromide crystal structures. An experimental and theoretical study.

    PubMed

    Alonso, Bruno; Massiot, Dominique; Florian, Pierre; Paradies, Henrich H; Gaveau, Philippe; Mineva, Tzonka

    2009-09-03

    This is the first time a comprehensive study has been carried out on n-alkyltrimethylammonium bromide salts using (14)N and (81)Br solid state NMR, X-ray diffraction, and theoretical calculations. The investigation represents a necessary step toward further (14)N and (81)Br NMR characterization of the environment of cationic and anionic groups in materials, accounting for the amphiphilic properties of cationic surfactants. The NMR spectra of five C(x)H(2x+1)(CH(3))(3)N(+)Br(-) polycrystalline samples with different n-alkyl chain lengths (x = 1, 12, 14, 16, 18) were recorded and modeled. The (14)N and (81)Br quadrupolar coupling interaction parameters (C(Q), eta(Q)) were also estimated from spectrum modeling and from computer simulation. The obtained results were discussed in depth making use of the experimental and reoptimized crystal structures. In the study, both (14)N and (81)Br nuclei were found to be sensitive probes for small structural variations. The parameters which influence the NMR properties the most are mobility, deviation of C-N-C bond angles from T(d) angles, and variations in r(N-Br) distances.

  3. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    SciTech Connect

    Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  4. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  5. Population transfer HMQC for half-integer quadrupolar nuclei

    SciTech Connect

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr

    2015-03-07

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.

  6. High-resolution solid-state NMR of quadrupolar nuclei

    PubMed Central

    Meadows, Michael D.; Smith, Karen A.; Kinsey, Robert A.; Rothgeb, T. Michael; Skarjune, Robert P.; Oldfield, Eric

    1982-01-01

    We report the observation of high-resolution solid-state NMR spectra of 23Na (I = [unk]), 27Al (I = [unk]) and 51V (I = [unk]) in various inorganic systems. We show that, contrary to popular belief, relatively high-resolution (≈10 ppm linewidth) spectra may be obtained from quadrupolar systems, in which electric quadrupole coupling constants (e2qQ/h) are in the range ≈1-5 MHz, by means of observation of the (½, -½) spin transition. The (½, -½) transition for all nonintegral spin quadrupolar nuclei (I = [unk], [unk], [unk], or [unk]) is only normally broadened by dipolar, chemical shift (or Knight shift) anisotropy or second-order quadrupolar effects, all of which are to a greater or lesser extent averaged under fast magic-angle sample rotation. In the case of 23Na and 27Al, high-resolution spectra of 23NaNO3 (e2qQ/h ≈300 kHz) and α-27Al2O3 (e2qQ/h ≈2-3 MHz) are presented; in the case of 51V2O5 (e2qQ/h ≈800 kHz), rotational echo decays are observed due to the presence of a ≈103-ppm chemical shift anisotropy. The observation of high-resolution solid-state spectra of systems having spins I = [unk], [unk], and [unk] in asymmetric environments opens up the possibility of examining about two out of three nuclei by solid-state NMR that were previously thought of as “inaccessible” due to the presence of large (a few megahertz) quadrupole coupling constants. Preliminary results for an I = [unk] system, 93Nb, having e2qQ/h ≈19.5 MHz, are also reported. PMID:16593165

  7. Quinoline-Derived Two-Photon Sensitive Quadrupolar Probes.

    PubMed

    Tran, Christine; Berqouch, Nawel; Dhimane, Hamid; Clermont, Guillaume; Blanchard-Desce, Mireille; Ogden, David; Dalko, Peter I

    2017-02-03

    Quadrupolar probes derived from 8-dimethylamino-quinoline (8-DMAQ) having a pegylated fluorene core were prepared and studied under "one-photon" (λ=365 nm) and "two-photon" (TP) (λ=730 nm) irradiation conditions. Compound 1 a was identified as the most efficient probe by UV activation that showed sequential release of acetic acid as a model. Although the probe showed high two-photon absorption it stayed inert under femtosecond irradiation conditions. Fast and selective photolysis was observed, however, by using picosecond irradiation conditions with a remarkably high TP uncaging cross-section (δu =2.3 GM).

  8. High radio-frequency field strength nutation NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Franssen, W. M. J.; Rezus, Y. L. A.; Kentgens, A. P. M.

    2016-12-01

    Owing to the introduction of microcoils, high RF field strength nutation NMR is a viable candidate for the study of quadrupolar nuclei with strong quadrupolar couplings, not accessible using contemporary NMR techniques. We show powder 23 Na nutation spectra on sodium nitrite for RF field strengths of up to 1170 kHz, that conform to theoretical predictions. For lanthanum fluoride powder, 139 La nutation spectra taken at elevated RF field amplitudes show clear discrepancies when compared to the theory. These errors are shown to be mainly caused by pulse transients at the end of the pulse, which proved to be detrimental to the shape of the nutation spectra. Using a nutation pulse which ends in a sudden frequency jump, we show that these errors can be reduced, and nutation spectra that conform to theory can be readily acquired. This enables nutation NMR for the study of quadrupolar nuclei with a strong quadrupolar coupling, bridging the gap between NMR, which can only analyse nuclei with a weak to medium quadrupolar coupling, and NQR, were extensive searching for the right quadrupolar frequency is the limiting factor.

  9. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  10. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    SciTech Connect

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. This is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.

  11. A very sensitive high-resolution NMR method for quadrupolar nuclei: SPAM-DQF-STMAS.

    PubMed

    Amoureux, Jean-Paul; Flambard, Alexandrine; Delevoye, Laurent; Montagne, Lionel

    2005-07-21

    We show that by combining the intrinsically larger (with respect to MQMAS) efficiency of Double-Quantum Filtered Satellite-Transition MAS (DQF-STMAS), with the large S/N gain of the Soft-Pulse Added Mixing (SPAM) concept, a new very sensitive high-resolution solid-state NMR method can be obtained for semi-integer quadrupolar nuclei.

  12. Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Brown, Steven P.; Wimperis, Stephen

    1998-05-01

    Using 27Al ( I=5/2) NMR of aluminium acetylacetonate, we show that it is possible to cross-polarize from a spin I=1/2 nucleus ( 1H) directly to the central triple-quantum transition of a half-integer quadrupolar nucleus ( 27Al) in a powdered sample under MAS conditions. The optimum conditions for this multiple-quantum cross-polarization (MQCP) are investigated experimentally and compared with existing theoretical results. The new technique is applied to the recently introduced two-dimensional MQMAS experiment for recording high-resolution NMR spectra of half-integer quadrupolar nuclei.

  13. NMR of group 2 element quadrupolar nuclei and some applications in materials science and biology

    NASA Astrophysics Data System (ADS)

    Li, Xiaohua

    1999-11-01

    For many years, NMR has provided an easy access for chemists to perform structural and kinetic studies on a whole variety of systems. To a great extent, these investigations have been restricted to non-quadrupolar nuclei. The study of quadrupolar nuclei (I > 1/2) offers the potential to gain insight into important problems in material science and biology. In addition to the large quadrupole moment associated with the spin active nuclei of interest, several of the most interesting species also possess an extremely low natural abundance. My recent research focuses on 87Sr NMR, which has been cited by earlier workers as being limited to only ionic species. Several strontium-containing compounds have been synthesized and characterized by single crystal x-ray diffraction. 87Sr NMR signals were determined for these compounds in a series of aprotic polar solvents. The chemical shift variation was found to be consistent with linen free energy relationship, which can be very useful in helping to elucidate mechanism, in predicting reaction rates, and the extent of reaction at equilibrium, and in discovering under what conditions a change in mechanism occurs. Control over symmetry of the compound was found to be the key to obtain the good NMR signals. One application of the new technique that has been developed was in the area of material science. An observation relative to sol-gel derived ionic conductors (La0.8Sr0.2Co0.8Fe0.2O 3.2) was that films often formed cracks upon pyrolysis. By careful examination of the sol-gel process by 87Sr NMR, a model for the structure of the sol was developed. Through the relaxation rate study of the strontium sites, the polymerization mechanism was determined to be predominantly bimolecular within the concentration region studied. The kinetic study of the fast cation exchange between two strontium sites indicated that the inhomogeneity of the polymeric network lads to the film cracking during pyrolysis. As a consequence of understanding the

  14. QUEST-QUadrupolar Exact SofTware: a fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei.

    PubMed

    Perras, Frédéric A; Widdifield, Cory M; Bryce, David L

    2012-01-01

    We present a new program for the exact simulation of solid-state NMR spectra of quadrupolar nuclei in stationary powdered samples which employs diagonalization of the combined Zeeman-quadrupolar Hamiltonian. The program, which we call QUEST (QUadrupolar Exact SofTware), can simulate NMR spectra over the full regime of Larmor and quadrupolar frequency ratios, which encompasses scenarios ranging from high-field NMR to nuclear quadrupole resonance (NQR, where the Larmor frequency is zero) and does not make use of approximations when treating the quadrupolar interaction. With the use of the fast powder averaging scheme of Alderman, Solum, and Grant, exact NMR spectral simulations are only marginally slower than the second-order perturbation theory counterpart. The program, which uses a graphical user interface, also incorporates chemical shift anisotropy and non-coincident chemical shift and quadrupolar tensor frames. The program is validated against newly-acquired experimental data through several examples including: the low-field (79/81)Br NMR spectra of CaBr(2), the (14)N overtone NMR spectrum of glycine, the (187)Re NQR spectra of Re(2)(CO)(10), and lastly the (127)I overtone NQR spectrum of SrI(2), which, to the best of our knowledge, represents the first direct acquisition of an overtone NQR spectrum for a powdered sample.

  15. Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2017-01-18

    Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.

  16. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  17. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    SciTech Connect

    Gann, Sheryl Lee

    1995-11-01

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized π-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0° $\\parallel$ with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCP), is presented, along with experimental work on adamantane and polycarbonate.

  18. Pulsed field gradient multiple-quantum MAS NMR spectroscopy of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Fyfe, C. A.; Skibsted, J.; Grondey, H.; Meyer zu Altenschildesche, H.

    1997-12-01

    Pulsed field gradients (PFGs) have been applied to select coherence transfer pathways in multiple-quantum (MQ) MAS NMR spectra of half-integer spin quadrupolar nuclei in rigid solids. 27Al triple-quantum (3Q) MAS NMR spectra of the aluminophosphate molecular sieves VPI-5 and AlPO 4-18 have been used to demonstrate the selection of the (0)→(3)→(-1) coherence transfer pathway using PFGs and no phase cycling. Compared to MQMAS experiments that employ phase cycling schemes, the main advantage of the PFG-MQMAS technique is its simplicity, which should facilitate the combination of MQMAS with other pulse sequences.

  19. Implementing SPAM into STMAS: A net sensitivity improvement in high-resolution NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Delevoye, L.; Fink, G.; Taulelle, F.; Flambard, A.; Montagne, L.

    2005-08-01

    Gan and Kwak recently introduced two new tools for high-resolution 2D NMR methods applied to quadrupolar nuclei: double-quantum filtering in STMAS (DQF-STMAS) and the soft-pulse added mixing (SPAM) idea. Double-quantum filtering suppresses all undesired signals in the STMAS method with limited loss in sensitivity. With SPAM, all pathways are added constructively after the second hard-pulse instead of using a single pathway as previously. Here, the sensitivity, advantages and drawbacks of DQF-STMAS are compared to 3QMAS. Additionally, SPAM can be included into DQF-STMAS method, resulting in a net sensitivity gain with respect to 3QMAS of ca. 10-15.

  20. Implementing SPAM into STMAS: a net sensitivity improvement in high-resolution NMR of quadrupolar nuclei.

    PubMed

    Amoureux, J P; Delevoye, L; Fink, G; Taulelle, F; Flambard, A; Montagne, L

    2005-08-01

    Gan and Kwak recently introduced two new tools for high-resolution 2D NMR methods applied to quadrupolar nuclei: double-quantum filtering in STMAS (DQF-STMAS) and the soft-pulse added mixing (SPAM) idea. Double-quantum filtering suppresses all undesired signals in the STMAS method with limited loss in sensitivity. With SPAM, all pathways are added constructively after the second hard-pulse instead of using a single pathway as previously. Here, the sensitivity, advantages and drawbacks of DQF-STMAS are compared to 3QMAS. Additionally, SPAM can be included into DQF-STMAS method, resulting in a net sensitivity gain with respect to 3QMAS of ca. 10-15.

  1. Nuclear magnetic resonance of J-coupled quadrupolar nuclei: Use of the tensor operator product basis

    NASA Astrophysics Data System (ADS)

    Kemp-Harper, R.; Philp, D. J.; Kuchel, P. W.

    2001-08-01

    In nuclear magnetic resonance (NMR) of I=1/2 nuclei that are scalar coupled to quadrupolar spins, a tensor operator product (TOP) basis set provides a convenient description of the time evolution of the density operator. Expressions for the evolution of equivalent I=1/2 spins, coupled to an arbitrary spin S>1/2, were obtained by explicit algebraic density operator calculations in Mathematica, and specific examples are given for S=1 and S=3/2. Tensor operators are described by the convenient quantum numbers rank and order and this imparts to the TOP basis features that enable an intuitive understanding of NMR behavior of these spin systems. It is shown that evolution as a result of J coupling alone changes the rank of tensors for the coupling partner, generating higher-rank tensors, which allow efficient excitation of S-spin multiple-quantum coherences. Theoretical predictions obtained using the TOP formalism were confirmed using multiple-quantum filtered heteronuclear spin-echo experiments and were further employed to demonstrate polarization transfer directly to multiple-quantum transitions using the insensitive nucleus enhancement by polarization transfer pulse sequence. This latter experiment is the basis of two-dimensional heteronuclear correlation experiments and direct generation of multiple-quantum S-spin coherences can therefore be exploited to yield greater spectral resolution in such experiments. Simulated spectra and experimental results are presented.

  2. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Tang, Joel A.; O'Dell, Luke A.; Aguiar, Pedro M.; Lucier, Bryan E. G.; Sakellariou, Dimitris; Schurko, Robert W.

    2008-12-01

    The uses of microcoils and WURST pulses for acquiring ultra-wideline (UW) NMR spectra of half-integer quadrupolar nuclei are explored. Using large rf field strengths or frequency-swept pulses, UW spectra (breadth > 300 kHz) can be acquired without changing the transmitter frequency. The efficiency of UWNMR spectroscopy improves for both microcoil and WURST pulse experiments compared to rectangular-pulse experiments using a 4.0 mm coil. Microcoils are also used to acquire UW spectra of an unreceptive nucleus ( 91Zr) and a spectrum comprised of both central and satellite transitions ( 59Co).

  3. Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple quantum evolution

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Bailly, A.; Lang, D. P.; Amoureux, J.-P.; Fernandez, C.

    1999-06-01

    A new technique for measurements of dipolar interactions in rotating solids is presented that combines the capabilities of multiple quantum magic angle spinning (MQMAS) with the rotational echo double resonance (REDOR). It employs the dipolar recoupling between spin-1/2 ( I) and quadrupolar ( S) nuclei by applying a series of π pulses to the I spins. In contrast to the previously reported MQ-REDOR method, the recoupling sequence is applied during the triple quantum, rather than single quantum evolution. As the dipolar effect is enhanced by the MQ coherence order, this new technique exhibits improved sensitivity toward weak dipolar interactions.

  4. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    PubMed

    Odedra, Smita; Wimperis, Stephen

    2016-11-30

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking (23)Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites.

  5. SIMQUADNMR: a program for simulation and interpretation of multiple quantum-filtered NMR spectra of quadrupolar nuclei.

    PubMed

    D'Amelio, Nicola; Gaggelli, Elena; Molteni, Elena; Valensin, Gianni

    2005-01-01

    In this paper, we present a computer program which simulates NMR multiple quantum-filtered spectra of quadrupolar nuclei as a function of physical parameters, of the type of experiment and experimental conditions. The program works by solving relaxation theory equations for the given system, and it can be useful in order to plan the ideal conditions to set up specific experiments or to give a physical interpretation of experimental results. The program allows to independently follow the dependence of individual coherences and relaxation rates as a function of up to 50 parameters regarding the physical properties of the system under investigation, sample conditions and instrumental setup making it an helpful tool also for teaching purposes.

  6. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  7. SPAM-MQ-HETCOR: an improved method for heteronuclear correlation spectroscopy between quadrupolar and spin-1/2 nuclei in solid-state NMR.

    PubMed

    Wiench, Jerzy W; Tricot, Gregory; Delevoye, Laurent; Trebosc, Julien; Frye, James; Montagne, Lionel; Amoureux, Jean-Paul; Pruski, Marek

    2006-01-07

    The recently introduced concept of soft pulse added mixing (SPAM) is used in two-dimensional heteronuclear correlation (HETCOR) NMR experiments between half-integer quadrupolar and spin-1/2 nuclei. The experiments employ multiple quantum magic angle spinning (MQMAS) to remove the second order quadrupolar broadening and cross polarization (CP) or refocused INEPT for magnetization transfer. By using previously unexploited coherence pathways, the efficiency of SPAM-MQ-HETCOR NMR is increased by a factor of almost two without additional optimization. The sensitivity gain is demonstrated on a test sample, AlPO(4)-14, using CP and INEPT to correlate (27)Al and (31)P nuclei. SPAM-3Q-HETCOR is then applied to generate (27)Al-(31)P spectra of the devitrified 41Na(2)O-20.5Al(2)O(3)-38.5P(2)O(5) glass and the silicoaluminophosphate ECR-40. Finally, the method allowed the acquisition of the first high resolution solid-state correlation spectra between (27)Al and (29)Si.

  8. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces.

    PubMed

    Stupic, Karl F; Cleveland, Zackary I; Pavlovskaya, Galina E; Meersmann, Thomas

    2006-02-01

    This work reports the first systematic study of relaxation experienced by the hyperpolarized (hp) noble gas isotope (83)Kr (I=9/2) in contact with surfaces. The spin-lattice relaxation of (83)Kr is found to depend strongly on the chemical composition of the surfaces in the vicinity of the gas. This effect is caused by quadrupolar interactions during brief periods of surface adsorption that are the dominating source of longitudinal spin relaxation in the (83)Kr atoms. Simple model systems of closest packed glass beads with uniform but variable bead sizes are used for the relaxation measurements. The observed relaxation rates depend strongly on the chemical treatment of the glass surfaces and on the surface to volume ratio. Hp (83)Kr NMR relaxation measurements of porous polymers with pore sizes of 70-250 microm demonstrate the potential use of this new technique for material sciences applications.

  9. Properties of nuclei probed by laser light

    NASA Astrophysics Data System (ADS)

    Neugart, Rainer

    2017-03-01

    Viewing objects as small as atomic nuclei by visible light sounds quite unrealistic. However, nuclei usually appear as constituents of atoms whose excitations are indeed associated with the absorption and emission of light. Nuclei can thus interact with light via the atomic system as a whole.

  10. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  11. Rotational Spectroscopy of CF_2ClCCl_3 and Analysis of Hyperfine Structure from Four Quadrupolar Nuclei

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Bialkowska-Jaworska, Ewa; Uriarte, Iciar; Basterretxea, Francisco J.; Cocinero, Emilio J.

    2016-06-01

    CF_2ClCCl_3 has recently been identified among several new ozone- depleting substances in the atmosphere. There are no literature reports concerning rotational spectroscopy of this molecule, although we were recently able to report its first chirped pulse, supersonic expansion spectrum. CF_2ClCCl_3 has a rather small dipole moment so that the spectrum is weak and each transition displays very complex nuclear quadrupole hyperfine structure resulting from the presence of four chlorine nuclei. We have presently been able to carry out a complete analysis of the hyperfine structure by combining the information from chirped pulse spectra with dedicated higher resolution measurements made with a cavity supersonic expansion instrument. The hyperfine analysis was carried out with Pickett's SPFIT/SPCAT package and the sizes of Hamiltonian matrices are sufficiently large to require the use of 64-bit compilation of these programs (made available for both Windows and Linux systems on the PROSPE website). The resulting fit is to within experimental accuracy and is supported by ab initio calculations. The precise values of off-diagonal hyperfine constants for all nuclei lead to useful angular information that is complementary to direct structural information from moments of inertia. J.C.Laube, M.J.Newland, C.Hogan, et al., Nature Geoscience 7, 266 (2014). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, I.Uriarte, P.Ejica, F.J.Basterretxea, E.J.Cocinero, 70th ISMS, Champaign-Urbana, Illinois, RF-11 (2015). Z.Kisiel, E.Białkowska-Jaworska, L.Pszczółkowski, J.Chem.Phys. 109, 10263 (1998).

  12. Probing Chiral Interactions in Light Nuclei

    SciTech Connect

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  13. Deformed halo nuclei probed by breakup reactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2013-07-01

    Breakup reactions play important roles in elucidating the structures near the drip lines, such as nuclear halo. The recent experimental results using the Coulomb and nuclear breakup reactions for the neutron-drip-line nuclei at the new-generation RI beam facility, RIBF at RIKEN, are presented. Focuses are put on the results on the newly found halo nucleus 31Ne, which is intriguing also in that this nucleus is in the island-of-inversion and thus could be strongly deformed. The results on other Ne/Mg/Si neutron rich isotopes ranging from N=20 towards N=28 are also briefly reported. The first breakup experiments using SAMURAI facility at RIBF and future perspectives are also presented.

  14. Probing collectivity in the vicinity of neutron deficient Pb nuclei

    SciTech Connect

    Grahn, T.; Page, R. D.; Petts, A.; Dewald, A.; Jolie, J.; Melon, B.; Pissulla, Th.; Hornillos, M. B. Gomez; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.

    2008-05-12

    A series of recoil distance Doppler-shift lifetime measurements have been carried out to probe collectivity and configuration mixing of different shapes in the vicinity of neutron mid-shell Pb nuclei. Lifetime measurements of {sup 186}Pb and {sup 194}Po, the first ever utilizing the recoil-decay tagging method, probed the collectivity of coexisting prolate and oblate shapes in this region. Futher lifetime measurements of excited states in {sup 180}Hg, {sup 182}Hg and {sup 196}Po have been carried out.

  15. Probing the Evolution of the Shell Structures in Exotic Nuclei

    SciTech Connect

    De Angelis, Giacomo

    2008-11-11

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  16. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    PubMed

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    2016-12-10

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature (17)O NMR of solid NaNO3 in which the NO3(-) ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO3(-) ion jumps span eight orders of magnitude (10(2)-10(10)s(-1)) covering both transitions of the dynamic (17)O line shape.

  17. Probe of Triple Shape Coexistence In Neutron Deficient Polonium Nuclei

    SciTech Connect

    Wiseman, D. R.; Page, R. D.; Darby, I. G.; Andreyev, A. N.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Saren, J.; Scholey, C.; Uusitalo, J.; Sandzelius, M.

    2006-04-26

    {gamma}-ray transitions in the neutron deficient 190,197Po nuclei have been identified. The yrast band of 190Po has been extended up to a spin and parity of 14+ and is found to display similar systematic behaviour to isotones 186Hg and 188Pb above the 4+ level, thus confirming its prolate nature. In 197Po the band built upon the 13/2+ isomer has been extended up to a spin and parity of 33/2+, while the non-yrast side-band has been observed for the first time. The behaviour of 197Po is found to be similar to that of the nearby even-mass isotopes, which is consistent with the model in which the i13/2 neutron is weakly coupled to the states in the even-even core.

  18. Probing short-lived fluctuations in hadrons and nuclei

    SciTech Connect

    Munier, Stéphane

    2015-04-10

    We develop a picture of dipole-nucleus (namely dilute-dense) and dipole-dipole (dilute-dilute) scattering in the high-energy regime based on the analysis of the fluctuations in the quantum evolution. We emphasize the difference in the nature of the fluctuations probed in these two processes respectively, which, interestingly enough, leads to observable differences in the scattering amplitude profiles.

  19. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  20. Probing the Active Galactic Nuclei using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Vivek, M.

    Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.

  1. Resonant spectra of quadrupolar anions

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  2. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  3. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  4. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  5. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences.

  6. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    SciTech Connect

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  7. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  8. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    NASA Astrophysics Data System (ADS)

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-01

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as 7Li+, 23Na+, 25Mg2+, 35Cl-, 39K+, or 133Cs+. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  9. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.

    PubMed

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as (7)Li(+), (23)Na(+), (25)Mg(2+), (35)Cl(-), (39)K(+), or (133)Cs(+). Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  10. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  11. General quadrupolar statistical anisotropy: Planck limits

    NASA Astrophysics Data System (ADS)

    Ramazanov, S.; Rubtsov, G.; Thorsrud, M.; Urban, F. R.

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g*. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g*. This is the subject of the present work. In particular, we limit the amplitude g* for different shapes of the quadrupole by making use of Planck 2015 maps. We also constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.

  12. FISH analysis of the arrangement of chromosomes in interphase nuclei using telomeric, centromeric, and DNA painting probes

    NASA Astrophysics Data System (ADS)

    Monajembashi, Shamci; Schmitt, Eberhard; Dittmar, Heike; Greulich, Karl-Otto

    1999-01-01

    Fluorescence in situ hybridization is used to study the arrangement of chromosomes in interphase nuclei of unsynchronized human lymphocytes. DNA probes specific for telomeric DNA, centromeric (alpha) -satellite DNA and whole chromosomes 2, 7, 9 and X are employed. It is demonstrated that the shape of the chromosome territories is variable in cycling cells, for example, close to the metaphase chromosome homologues are arranged pairwise. Furthermore, the relative arrangement of chromosome homologues to each other is not spatially defined. Also, the relative orientation of centromeres and telomeres within a chromosome domain is variable.

  13. Eta bound states in nuclei: a probe of flavour-singlet dynamics

    SciTech Connect

    Steven D. Bass; Anthony W. Thomas

    2005-07-01

    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.

  14. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  15. Resonant Auger for the detection of quadrupolar transitions

    SciTech Connect

    Danger, J.; Le Fevre, P.; Chandesris, D.; Magnan, H.; Jupille, J.; Bourgeois, S.; Eickhoff, T.; Drube, W.

    2003-01-24

    Quadrupolar transitions can play an important role in X-ray absorption spectroscopy, especially when it is used for magnetic measurements, like in X-ray Magnetic Circular Dichroism or Resonant Magnetic Scattering. We show here that resonantly excited Ti KL2,3L2,3 Auger spectra of TiO2 (110) carry a clear signature of quadrupolar transitions from the 1s to localized eg and t2g d-like states. The quadrupolar nature of the observed additional spectator lines are clearly demonstrated by their angular dependence, and their intensity is used to locate and quantify the quadrupolar transitions in the absorption spectrum.

  16. Anti-proton annihilation in nuclei as a probe of QCD

    SciTech Connect

    Brodsky, S.J.

    1990-09-01

    Anti-proton annihilation in a nuclear target can test many novel aspects of quantum chromodynamics. In this talk I discuss a number of interesting features of such processes, including the formation of nuclear-bound quarkonium, tests of color transparency in hard, quasi-elastic nuclear reactions, higher-twist, coherent, and formation zone effects in hard inclusive nuclear reactions, reduced amplitude predictions for exclusive nuclear amplitudes, and color filter effects inclusive open and hidden charm production in nuclei. 43 refs., 6 figs., 2 tabs.

  17. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  18. Radii of neutron drops probed via the neutron skin thickness of nuclei

    SciTech Connect

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.

  19. Alpha-decay of deformed superheavy nuclei as a probe of shell closures

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Adel, A.; Abdurrahman, A.

    2017-02-01

    A systematic study on α-decay half-life time, Tα, of α-particle emission from a large number of deformed heavy and superheavy nuclei is presented. The calculations are employed in the framework of the density-dependent cluster model. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the double-folding model with the realistic effective Michigan-three-Yukawa Reid nucleon-nucleon interaction. We study the neutron number variation of log Tα and arranged different isotones at each neutron magic number according to their stability, in the sense that the more stable isotone corresponds to the lowest value of log Tα. We found that the half-life time becomes minimum when the neutron or proton numbers of the corresponding daughter nucleus are magic. Moreover, the half-life time is maximum for parent nucleus with magicity. The nuclear stability is assumed to be proportional with the depth of the minimum value in log Tα for the daughter nucleus or the height of its maximum value for the parent one. The neutron magic numbers predicted and confirmed from the present study are 126, 152, 162, 172, 184, 196, 202 and 212, most of them were deduced by other authors based on different methods.

  20. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  1. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  2. PROBING SPECTROSCOPIC VARIABILITY OF GALAXIES AND NARROW-LINE ACTIVE GALACTIC NUCLEI IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Yip, C. W.; Szalay, A. S.; Taghizadeh-Popp, M.; Budavari, T.; Wyse, R. F. G.; Connolly, A. J.; Krughoff, S.; Ivezic, Z.; Vanden Berk, D. E.; Scranton, R.; Dobos, L.; Csabai, I.; Tremonti, C.

    2009-06-15

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of {approx}700 days) covering a wavelength range of 3900-8900 A. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average-the spectroscopic variability of the continuum is 0.07 {+-} 0.26 mag in the g band and, for the emission-line ratios log{sub 10}([N II]/H{alpha}) and log{sub 10}([O III]/H{beta}), the variability is 0.02 {+-} 0.03 dex and 0.06 {+-} 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be {approx}30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  3. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Kim, Chul; Schurko, Robert; Frydman, Lucio

    2017-04-01

    The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels | 3 / 2 >, | 1 / 2 >, | - 1 / 2 >, | - 3 / 2 > that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.

  4. Quadrupolar Echo Spectra of the Tunneling CD 3Group

    NASA Astrophysics Data System (ADS)

    Olejniczak, Z.; Detken, A.; Manz, B.; Haeberlen, U.

    Deuteron NMR spectra of both single crystal and powder samples of acetylsalicylic acid-CD 3were measured using the quadrupolar-echo technique. The experiments were done in the temperature range 17-100 K, with a special emphasis on the range 20- 30 K, in which the observable tunneling frequency decreases rapidly from its low-temperature value of 2.7 down to 1.2 MHz. In the tunneling regime, modulations of the line intensities and phases as a function of the echo time τ are observed in the single-crystal spectra. The modulation frequency is equal to the orientation-dependent displacement of the inner satellite pairs (α lines) from the Larmor frequency. These effects were confirmed in numerical simulations and fully explain the phase-modulation effects observed previously in quadrupolar-echo spectra of methyl-deuterated methanol and para-xylene guest molecules in some inclusion compounds. By measuring the temperature and orientation dependence of the quadrupolar lineshapes, it was found that the echo spectra are more sensitive to the value of the tunneling frequency than the spectra obtained from the free induction decay. It is pointed out that, because of the modulation effects, special care must be taken when structural parameters are to be extracted from quadrupolar-echo spectra, in particular from spectra of powder samples.

  5. A continuum theory of solvation in quadrupolar solvents. I. Formulation

    NASA Astrophysics Data System (ADS)

    Jeon, Jonggu; Kim, Hyung J.

    2003-10-01

    A continuum theory to describe equilibrium and nonequilibrium solvation in polarizable, nondipolar, quadrupolar solvents is developed. By employing the densities of the solvent quadrupole and induced dipole moments as primary field variables, a reaction field theory formulation for quadrupolar solvents is constructed with account of their electronic polarizability. Nonequilibrium solvation aspects are effected via the solvent coordinate description for the quadrupole moment density. It is found that the theory is consistent with the macroscopic Maxwell equations and satisfies the continuity of the electric potential across the cavity boundaries. Solvation stabilization arising from the solvent quadrupoles is captured via novel reaction field factors analogous to those for dipolar solvents. Comparison is made with the dielectric continuum description of the polarizable, dipolar solvents as well as with previous theories of the quadrupolar solvents. Extensions and applications of the current theoretical formulation to study free energetics and dynamics of reactive and spectroscopic processes in the quadrupolar solvents are reported in the following paper [J. Jeon and H. J. Kim, J. Chem. Phys. 119, 8626 (2003)].

  6. Quadrupolar, Triple [Delta]-Function Potential in One Dimension

    ERIC Educational Resources Information Center

    Patil, S. H.

    2009-01-01

    The energy and parity eigenstates for quadrupolar, triple [delta]-function potential are analysed. Using the analytical solutions in specific domains, simple expressions are obtained for even- and odd-parity bound-state energies. The Heisenberg uncertainty product is observed to have a minimum for a specific strength of the potential. The…

  7. Rotation and shape changes in {sup 151}Tb and {sup 196}Pb: Probes of nuclear structure and tunneling process in warm nuclei. I. Experimental analysis

    SciTech Connect

    Leoni, S.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Montanari, D.; Pignanelli, M.; Benzoni, G.; Blasi, N.; Million, B.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.; Kmiecik, M.

    2009-06-15

    The {gamma} decay associated with the warm rotation of the superdeformed nuclei {sup 151}Tb and {sup 196}Pb has been measured with the Euroball IV array. Several experimental quantities are presented, putting strong constraints on the decay dynamics in the superdeformed well. The data are successfully reproduced using a Monte Carlo simulation of the {gamma} decay based on microscopically calculated energy levels, E2 decay probabilities, collective mass parameters, and potential energy barriers between the wells associated with normal and super deformation. This allows one to test the basic ingredients of the physical process, such as the strength of the two-body residual interaction and the potential barriers as a function of spin and excitation energy. We also show that the data probe the E1 strength function, indicating an enhancement around 1-2 MeV {gamma} rays, which might be related to octupole vibrations.

  8. 127I NMR study of quadrupolar echoes in KI

    NASA Astrophysics Data System (ADS)

    Lee, Nelson; Sanctuary, B. C.; Halstead, T. K.

    Potassium iodide (K 121I), like KBr and many other alkali halide solids, has cubic symmetry. Distortion of this cubic symmetry in single crystals of KI creates electric field gradients of sufficient strength for the quadrupolar interactions to dominate the dynamics of the system. Simple one-, two-, and three-pulse sequences applied to such crystals permit the observation, in the time domain, of the solid- or quadrupolar-echo phenomenon for spin I = {5}/{2}( 127I) . Using the multipole approach to interpret the experimental responses of three-pulse sequences, the characteristic relaxation behavior of the first-, second-, third-, and fifth-rank zero- and multiquantum polarizations are determined. The experimental determination of distinct relaxation times for the higher rank polarizations in both KI and KBr ( I = {3}/{2}) lends credibility to the concept of the multipoles as physical quantities.

  9. DFT-D study of 14N nuclear quadrupolar interactions in tetra-n-alkyl ammonium halide crystals.

    PubMed

    Dib, Eddy; Alonso, Bruno; Mineva, Tzonka

    2014-05-15

    The density functional theory-based method with periodic boundary conditions and addition of a pair-wised empirical correction for the London dispersion energy (DFT-D) was used to study the NMR quadrupolar interaction (coupling constant CQ and asymmetry parameter ηQ) of (14)N nuclei in a homologous series of tetra-n-alkylammonium halides (C(x)H(2x+1))4N(+)X(-) (x = 1-4), (X = Br, I). These (14)N quadrupolar properties are particularly challenging for the DFT-D computations because of their very high sensitivity to tiny geometrical changes, being negligible for other spectral property calculations as, for example, NMR (14)N chemical shift. In addition, the polarization effect of the halide anions in the considered crystal mesophases combines with interactions of van der Waals type between cations and anions. Comparing experimental and theoretical results, the performance of PBE-D functional is preferred over that of B3LYP-D. The results demonstrated a good transferability of the empirical parameters in the London dispersion formula for crystals with two or more carbons per alkyl group in the cations, whereas the empirical corrections in the tetramethylammonium halides appeared to be inappropriate for the quadrupolar interaction calculation. This is attributed to the enhanced cation-anion attraction, which causes a strong polarization at the nitrogen site. Our results demonstrated that the (14)N CQ and ηQ are predominantly affected by the molecular structures of the cations, adapted to the symmetry of the anion arrangements. The long-range polarization effect of the surrounding anions at the target nitrogen site becomes more important for cells with lower spatial symmetry.

  10. In vivo observation of quadrupolar splitting in (39)K magnetic resonance spectroscopy of human muscle tissue.

    PubMed

    Rösler, M B; Nagel, A M; Umathum, R; Bachert, P; Benkhedah, N

    2016-04-01

    The purpose of this work was to explore the origin of oscillations of the T(*)2 decay curve of (39)K observed in studies of (39)K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin-3/2 nuclei possess an electric quadrupole moment. Its interaction with non-vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole-body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer-built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian-shaped peaks is appropriate for (39)K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank-2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double-quantum filtration with magic-angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm(3) was acquired with this filtering technique in 1:17 h. From the line width of the resonances, (39)K transverse relaxation time constants T(*)2, fast  = (0.51 ± 0.01) ms and T(*)2, slow  = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T(*)2, fast  = (1.56 ± 0.03) ms and T(*)2, fast  = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T(*)2, slow  = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non-vanishing electrical field gradient interacting with (39)K nuclei in the intracellular space of

  11. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe.

    PubMed

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    (33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  12. Distinguishing magnetic vs. quadrupolar relaxation in b-NMR using 8Li and 9Li

    NASA Astrophysics Data System (ADS)

    Chatzichristos, A.; McFadden, R. M. L.; Karner, V. L.; Cortie, D. L.; Fang, A.; Levy, C. D. P.; Macfarlane, W. A.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Kiefl, R. F.

    2016-09-01

    Beta-detected NMR is a powerful technique in condensed matter physics. It uses the parity violation of beta decay to detect the NMR signal from a beam of highly polarized radionuclides implanted in a sample material. Spin-lattice relaxation (SLR) is studied by monitoring the rate with which the asymmetry between the beta counts in two opposing detectors is lost. Unlike classical NMR, b-NMR can study thin films and near-surface effects. The most common b-NMR isotope at TRIUMF is 8Li, which has a quadrupole moment, thus it is sensitive to both magnetic fields and electric field gradients. A challenge with 8Li b-NMR is identifying the predominant mechanism of SLR in a given sample. It is possible to distinguish between SLR mechanisms by varying the probe isotope. For two isotopes with different nuclear moments, the ratio of SLR rates should be different in the limits of either pure magnetic or quadrupolar relaxation. This method has been used in classical NMR and we report its first application to b-NMR. We measured the SLR rates for 8Li and 8Li in Pt foil and SrTiO3. Pt is a test case for pure magnetic relaxation. SrTiO3 is a non-magnetic insulator, but the source of its relaxation is not well understood. Here we show that its relaxation is mainly quadrupolar. We thank TRIUMF's CMMS for their technical support. This work was supported by: NSERC Discovery Grants to R.F.K. and W.A.M.; and IsoSiM fellowships to A.C. and R.M.L.M.

  13. X-ray decay lines from heavy nuclei in supernova remnants as a probe of the r-process origin and the birth periods of magnetars

    NASA Astrophysics Data System (ADS)

    Ripley, Justin L.; Metzger, Brian D.; Arcones, Almudena; Martínez-Pinedo, Gabriel

    2014-03-01

    The origin of rapid neutron capture (r-process) nuclei remains one of the longest standing mysteries in nuclear astrophysics. Core collapse supernovae (SNe) and neutron star binary mergers are likely r-process sites, but little evidence yet exists for their in situ formation in such environments. Motivated by the advent of sensitive new or planned X-ray telescopes such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Large Observatory for X-ray Timing (LOFT), we revisit the prospects for the detection of X-ray decay lines from r-process nuclei in young or nearby supernova remnants. For all remnants planned to be observed by NuSTAR (and several others), we conclude that r-process nuclei are detectable only if the remnant possesses a large overabundance O ≳ 10^3 relative to the average yield per SN. Prospects are better for the next Galactic SN (assumed age of 3 yr and distance of 10 kpc), for which an average r-process yield is detectable via the 10.7 (9.2) keV line complexes of 194Os by LOFT at 6σ (5σ) confidence; the 27.3 keV line complex of 125Sb is detectable by NuSTAR at 2σ for O ≳ 2. We also consider X-rays lines from the remnants of Galactic magnetars, motivated by the much higher r-process yields of the magnetorotationally driven SNe predicted to birth magnetars. The ˜3.6-3.9 keV lines of 126Sn are potentially detectable in the remnants of the magnetars 1E1547.0-5408 and 1E2259+586 by LOFT for an assumed r-process yield predicted by recent simulations. The (non-)detection of these lines can thus probe whether magnetars are indeed born with millisecond periods. Finally, we consider a blind survey of the Galactic plane with LOFT for r-process lines from the most recent binary neutron star merger remnant, concluding that a detection is unlikely without additional information on the merger location.

  14. On the relationship between quadrupolar magnetic field and collisionless reconnection

    SciTech Connect

    Smets, R. Belmont, G.; Aunai, N.; Boniface, C.

    2014-06-15

    Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed.

  15. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  16. Relaxation Effects in a System of a Spin-1solar2 Nucleus Coupled to a Quadrupolar Spin Subjected to RF Irradiation: Evaluation of Broadband Decoupling Schemes

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.; Murali, Nagarajan

    1999-01-01

    We have investigated the suitability and performance of various decoupling methods on systems in which an observed spin-1/2 nucleusI(13C or15N) is scalar-coupled to a quadrupolar spinS(2H). Simulations and experiments have been conducted by varying the strength of the irradiating radiofrequency (RF) field, RF offset, relaxation times, and decoupling schemes applied in the vicinity of theS-spin resonance. TheT1relaxation of the quadrupolar spin has previously been shown to influence the efficiency of continuous wave (CW) decoupling applied on resonance in such spin systems. Similarly, the performance of broadband decoupling sequences should also be affected by relaxation. However, virtually all of the more commonly used broadband decoupling schemes have been developed without consideration of relaxation effects. As a consequence, it is not obvious how one selects a suitable sequence for decoupling quadrupolar nuclei with exotic relaxation behavior. Herein we demonstrate that, despite its simplicity, WALTZ-16 decoupling is relatively robust under a wide range of conditions. In these systems it performs as well as the more recently developed decoupling schemes for wide bandwidth applications such as GARP-1 and CHIRP-95. It is suggested that in macromolecular motional regimes, broadband deuterium decoupling can be achieved with relatively low RF amplitudes (500-700 Hz) using WALTZ-16 multiple pulse decoupling.

  17. Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Edén, Mattias; Annersten, Hans; Zazzi, Åsa

    2005-07-01

    We demonstrate numerically and experimentally that zero-quantum homonuclear dipolar recoupling techniques employing rotor-synchronized 180° pulses, previously introduced for spin-1/2 applications, are useful also for magnetization transfers between half-integer quadrupolar nuclei in rotating solids. The recoupling sequences are incorporated as mixing periods in two-dimensional experimental protocols, that correlate either single-quantum coherences of coupled spins, or triple-quantum with single-quantum coherences for improving spectral resolution. We present 23Na and 27Al NMR experiments on powders of sodium sulphite [Na 2SO 3], YAG [Y 3Al 5O 12] and a synthetic chlorite mineral [Mg 4.5Al 3Si 2.5O 10(OH) 8].

  18. High-field QCPMG NMR of large quadrupolar patterns using resistive magnets.

    PubMed

    Hung, Ivan; Shetty, Kiran; Ellis, Paul D; Brey, William W; Gan, Zhehong

    2009-12-01

    Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets.

  19. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    SciTech Connect

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classical electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.

  20. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classicalmore » electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.« less

  1. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  2. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Delevoye, L.; Steuernagel, S.; Gan, Z.; Ganapathy, S.; Montagne, L.

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft π/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  3. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei.

    PubMed

    Ball, Thomas J; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using (87)Rb (spin I=3/2) and (27)Al (I=5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  4. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei.

    PubMed

    Amoureux, J P; Delevoye, L; Steuernagel, S; Gan, Z; Ganapathy, S; Montagne, L

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft pi/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  5. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ball, Thomas J.; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using 87Rb (spin I = 3/2) and 27Al ( I = 5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  6. Quantum state tomography for quadrupolar nuclei using global rotations of the spin system.

    PubMed

    Teles, J; deAzevedo, E R; Auccaise, R; Sarthour, R S; Oliveira, I S; Bonagamba, T J

    2007-04-21

    In this paper, we describe a quantum state tomography method based on global rotations of the spin system which, together with a coherence selection scheme, enables the complete density matrix reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple spatial rotations of the spin states, and its analytical description is conveniently given in the irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin 72 nucleus. As an experimental result, we exemplify the application of this method by tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was implemented in a (23)Na quadrupole nucleus using the strongly modulated pulses technique. We also extended the tomography method for a 3-coupled homonuclear spin 12 system, where an additional evolution under the internal Hamiltonian is necessary for zero order coherences evaluation.

  7. The interplay of the crystalline electric field and quadrupolar interactions in the spontaneous magnetic phases of DyIn3

    NASA Astrophysics Data System (ADS)

    Galéra, R. M.; Sole, E.; Amara, M.; Morin, P.; Burlet, P.; Murani, A. P.

    2003-09-01

    DyIn3 orders at TN = 20 K and undergoes a second spontaneous magnetic transition at 16.5 K. From bulk magnetization measurements, performed on a single crystal along the three main axes of the cubic AuCu3-type structure, the magnetic phase diagrams have been established. The crystalline electric field (CEF) scheme, in the paramagnetic phase, and the magnetic structures of the spontaneous and low field-induced phases have been probed by neutron techniques. All the magnetic phases studied are found to be multiple q with q belonging to the langle1/2, 1/2, 0rangle star. In the low temperature phase (T < 16.5 K) the structure is double q with moments along twofold axes, whereas above 16.5 K it becomes triple q with moments along threefold axes. The analysis of the experimental results within the periodic molecular field model leads to a coherent interpretation of the spontaneous magnetic transitions, mainly driven by bilinear exchange and CEF interactions. Though the existence of quadrupolar interactions is definitively proved by the stabilization of multiple q magnetic structures, quadrupolar coefficients are found to be one order of magnitude smaller than those previously reported for NdIn3 and TbIn3.

  8. Quadrupolar Effect on Two Layered Thin Film Antiferroelectric Smectic Liquid Crystal

    SciTech Connect

    Lum, Chia-Yuee; Ong, Lye-Hock; Cepic, Mojca

    2011-03-30

    Within the framework of the discrete Landau phenomenological model, the free energy of an antiferroelectric smectic liquid crystal is analyzed. This model considers the interactions between the liquid crystal molecules within the nearest and the next nearest layers. Electrostatic quadrupolar interaction up to the nearest layers is included. This quadrupolar term, b{sub q{xi}}???{sub i{center_dot}{xi}}???{sub i+1}{sup 2} is positive, thus favouring a perpendicular orientation in the adjacent layer respectively. We show how quadrupolar interaction can affects the planar regions of the phase diagram of a two layered thin antiferroelectric smectic liquid crystal film.

  9. Gravitational quadrupolar coupling and center of gravity: application for Drag-Free Satellites

    NASA Astrophysics Data System (ADS)

    Guilherme, M. S.; Theil, S.

    The motivation of this work is the refinement of modelling of a Drag-Free Satellite DFS for improvement of the disturbance reduction system a so called Drag-Free Control DFC and for the improvement of the data analysis Drag-Free Satellites are missions on fundamental physics as well as geodesy They measure accelerations on a very small scale Especially for the satellites planned for fundamental physics the level of acceleration to be measured is in the range of 10e-15 to 10e-18 m s 2 Because of that any disturbance and misalignment should be modelled Due to the gravity gradient for most extended bodies the center of gravity deviates from the center of mass This results in a gravity gradient torque on satellites as well as on the test masses which depends on the attitude with respect to the gravity gradient In addition the gravity force is also attitude dependent This paper describes this gravity gradient force acting on arbitrary bodies for higher orders of the inertia moments It shows also the influence of the quadrupolar gravitational coupling to the Earth gravity field An equation is developed that determines the center of gravity in the body frame It provides a visualization of the deviation of the center of gravity from the center of mass In order to evaluate the significance of this effects values are computed for several fundamental physicals missions e g GRAVITY PROBE B and STEP

  10. Quadrupolar Interactions in Praseodymium - SILVER(1 - Copper(x)

    NASA Astrophysics Data System (ADS)

    Gotaas, James Alan

    We have utilized magnetization, specific heat, resistivity and diffraction experiments (each as a function of applied magnetic field and temperature) to investigate the magnetic properties of the series of pseudo-binary rare earth-intermetallic compounds PrAg(,1-x)Cu(,x) (for x = 0, 0.15, 0.25, 0.35, 0.4, 0.5, 0.75 and 1.0). For 0 <= x <= 0.4, the samples possess a CsCl -type (cubic) crystal structure and exhibit antiferromagnetic ordering at low temperatures (T(,N) < 11K), as revealed by x-ray and neutron diffraction and magnetization measurements. For x = 0.75 and 1.0, the crystal structure is FeB-type (orthorhombic) and no magnetic ordering occurs for T > 2K. For x = 0.5, the sample undergoes a structural transition from CsCl - to FeB-type upon cooling below 160K. Analysis of magnetization measurements reveals that, in addition to the typical bilinear exchange interactions, the CsCl-type compounds also possess effective negative quadrupolar interactions which increase in magnitude by a factor of five as x increases from 0 to 0.4. Such negative (antiferroquadropolar) interactions favor quadrature alignment of neighboring quadrupoles. Specific heat and resistivity measurements indicate that the magnetic order-disorder transition for x = 0 is a typical antiferromagnetic-paramagnetic transition, displaying a sharp peak in C(,m) vs T and a well-defined spin-disorder contribution to the resistivity. As x increases, however, the peak in the magnetic specific heat broadens and decreases in magnitude, accompanied by a change in the rate of development of entropy and a change in the nature of the magnetic excitations in the ordered state. In addition, the change in the resistivity at the magnetic transition becomes more gradual, and the apparent spin-disorder terms becomes a factor of four smaller. The effective quadrupolar interactions in these systems linked to incipient structural instabilities in the CsCl-type structure which ultimately lead to the structural

  11. DFT calculations of quadrupolar solid-state NMR properties: Some examples in solid-state inorganic chemistry.

    PubMed

    Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent

    2008-10-01

    This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information.

  12. Rotation and shape changes in {sup 151}Tb and {sup 196}Pb: Probes of nuclear structure and tunneling process in warm nuclei. II. Microscopic Monte Carlo simulation

    SciTech Connect

    Leoni, S.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Montanari, D.; Pignanelli, M.; Benzoni, G.; Blasi, N.; Million, B.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.; Kmiecik, M.

    2009-06-15

    A Monte Carlo simulation of the {gamma} decay of superdeformed nuclei has been developed. It is based on microscopic calculations for the energy levels, E2 decay probabilities, collective mass parameters, and potential energy barriers. The use of microscopically calculated quantities largely reduces the parameters of the simulation, allowing one to focus on the basic ingredients of the physical processes. Calculations are performed for the warm rotating superdeformed nuclei {sup 151}Tb and {sup 196}Pb, for which high statistics Euroball IV data are available. The dependence on the simulation parameters is investigated, together with the basic features of the microscopic calculations.

  13. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  14. Effects of the quadrupolar interaction in Γ3-Γ4 systems observed through a reduced model

    NASA Astrophysics Data System (ADS)

    von Ranke, P. J.; Caldas, A.; de Oliveira, N. A.; Palermo, L.

    1997-07-01

    We study the magnetism of PrX2 intermetallic compounds (X = Rh, Al, Ru Mg) on the basis of a Hamiltonian which includes the quadrupolar interaction in addition to the magnetic and crystal field interactions. The calculations are carried out through a reduced model in which we neglect the highest energy levels of the ground state multiplet of the Pr ion. In this simplified picture, we obtain an analytic expression for the magnetic state equation. This equation is used to investigate how the quadrupolar interaction affects the nature of the magnetic phase transition. We also investigate the effects of the quadrupolar interaction on the behaviour of the gyromagnetic and dipolar exchange parameters in the present PrX2 compounds.

  15. Low energy γ- γ and e -- γ PAC measurements using APDs and the probe nuclei 83Rb(83Kr) and 83 m Kr(83Kr)

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Vianden, R.

    2016-12-01

    In the field of Perturbed Angular Correlation (PAC) measurements Avalanche Photo Diodes (APD) are rarely used, despite their favourable properties for fast counting purposes at low energies. This work demonstrates their application in combination with a simple and cheap custom build voltage sensitive preamplifier module. Using the PAC nuclei 83Rb(83Kr) and 83mKr(83Kr), the time resolution of the set-up is analysed and the feasibility of precise timing measurements is shown.

  16. What lurks in ULIRGs?—Probing the chemistry and excitation of molecular gas in the nuclei of Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nick

    2017-02-01

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO+, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H2 densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO+ in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H2 volume densities are ∼5 × 104 cm‑3 in the Arp 220 nuclei and ∼104 cm‑3 in NGC 6240.

  17. Superdeformed nuclei

    SciTech Connect

    Janssens, R.V.F.; Khoo, Teng Lek.

    1991-01-01

    This paper reviews the most recent advances in the understanding of the physics of superdeformed nuclei from the point of view of the experimentalists. It covers among other subjects the following topics: (1) the discovery of a new region of superdeformed nuclei near A=190, (2) the surprising result of the occurrence of bands with identical transition energies in neighboring superdeformed nuclei near A=150 and A=190, (3) the importance of octupole degrees of freedom at large deformation and (4) the properties associated with the feeding and the decay of superdeformed bands. The text presented hereafter will appear as a contribution to the Annual Review of Nuclear and Particle Science, Volume 41. 88 refs., 11 figs.

  18. Efficient polarization transfer between spin-1/2 and ¹⁴N nuclei in solid-state MAS NMR spectroscopy.

    PubMed

    Basse, Kristoffer; Jain, Sheetal Kumar; Bakharev, Oleg; Nielsen, Niels Chr

    2014-07-01

    Polarization transfer between spin-1/2 nuclei and quadrupolar spin-1 nuclei such as (14)N in solid-state NMR is severely challenged by the typical presence of large quadrupole coupling interactions. This has effectively prevented the use of the abundant (14)N spin as a probe to structural information and its use as an element in multi-dimensional solid-state NMR correlation experiments for assignment and structural characterization. In turn, this has been a contributing factor to the extensive use of isotope labeling in biological solid-state NMR, where (14)N is replaced with (15)N. The alternative strategy of using the abundant (14)N spins calls for methods enabling efficient polarization transfer between (14)N and its binding partners. This work demonstrates that the recently introduced (RESPIRATION)CP transfer method can be optimized to achieve efficient (1)H ↔(14)N polarization transfer under magic angle spinning conditions. The method is demonstrated numerically and experimentally on powder samples of NH4NO3 and L-alanine.

  19. Probing the Order-to-Chaos Region in Superdeformed {sup 151}Tb and {sup 196}Pb Nuclei with Continuum {gamma} Transitions

    SciTech Connect

    Leoni, S.; Benzoni, G.; Blasi, N.; Bracco, A.; Brambilla, S.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Million, B.; Montanari, D.; Pignanelli, M.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.

    2008-10-03

    The {gamma} decay associated with the warm rotation of the superdeformed nuclei {sup 151}Tb and {sup 196}Pb has been measured with the EUROBALL IV array. Several independent quantities provide a stringent test of the population and decay dynamics in the superdeformed well. A Monte Carlo simulation of the {gamma} decay based on microscopic calculations gives remarkable agreement with the data only assuming a large enhancement of the B(E1) strength for 1-2 MeV {gamma} rays, which may be related to the evidence for octupole vibrations in both mass regions.

  20. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  1. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  2. Hyperfine magnetic fields at the nuclei of probe 119Sn atoms and exchange interactions in the CaCu3Mn3.96Sn0.04O12 manganite

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Presnyakov, I. A.; Sobolev, A. V.; Demazeau, G.; Gubaidulina, T. V.; Matsnev, M. E.; Gapochka, A. M.; Volkova, O. S.; Vasil'ev, A. N.

    2011-04-01

    We have investigated the hyperfine magnetic interactions between the nuclei of probe 119Sn atoms in the CaCu3Mn3.96Sn0.04O12 double manganite by Mössbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu2+-O-Mn4+ ( J CuMn ≈ -51 ± 1 K) and Mn4+-O-Mn4+ ( J MnMn ≈ -0.6 ± 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J MnMn correspond to both the electronic configuration of the Mn4+ cations and the geometry of their local crystallographic environment in the compound under study.

  3. Semi-empirical refinements of crystal structures using (17)O quadrupolar-coupling tensors.

    PubMed

    Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2017-02-14

    We demonstrate a modification of Grimme's two-parameter empirical dispersion force field (referred to as the PW91-D2* method), in which the damping function has been optimized to yield geometries that result in predictions of the principal values of (17)O quadrupolar-coupling tensors that are systematically in close agreement with experiment. The predictions of (17)O quadrupolar-coupling tensors using PW91-D2*-refined structures yield a root-mean-square deviation (RMSD) (0.28 MHz) for twenty-two crystalline systems that is smaller than the RMSD for predictions based on X-ray diffraction structures (0.58 MHz) or on structures refined with PW91 (0.53 MHz). In addition, (13)C, (15)N, and (17)O chemical-shift tensors and (35)Cl quadrupolar-coupling tensors determined with PW91-D2*-refined structures are compared to the experiment. Errors in the prediction of chemical-shift tensors and quadrupolar-coupling tensors are, in these cases, substantially lowered, as compared to predictions based on PW91-refined structures. With this PW91-D2*-based method, analysis of 42 (17)O chemical-shift-tensor principal components gives a RMSD of only 18.3 ppm, whereas calculations on unrefined X-ray structures give a RMSD of 39.6 ppm and calculations of PW91-refined structures give an RMSD of 24.3 ppm. A similar analysis of (35)Cl quadrupolar-coupling tensor principal components gives a RMSD of 1.45 MHz for the unrefined X-ray structures, 1.62 MHz for PW91-refined structures, and 0.59 MHz for the PW91-D2*-refined structures.

  4. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    . -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.

  5. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  6. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  7. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  8. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  9. H_2 bipolar emission associated with the quadrupolar molecular outflow in L723

    NASA Astrophysics Data System (ADS)

    Palacios, Javier; Eiroa, Carlos

    1999-06-01

    We present near-infrared images of the quadrupolar CO outflow in L723, formed by two lobe pairs of different size. Bipolar molecular hydrogen line emission is detected, approximately centered on the Class 0 source L723 VLA2. One of the observed H_2 nebulosities coincides with the Herbig-Haro object HH 223. The H_2 bipolar outflow is projected against the large lobe pair of the quadrupolar CO outflow. Position angles of the H_2 and HH emissions, large CO lobe pair and the thermal radio jet VLA2 are similar and also close to the magnetic field direction in the region. All these phenomena are likely powered by the young protostellar object L723 VLA2. Our near-infrared images do not show any near-ir counterpart of the smaller CO pair, whose origin and driving source remain unclear.

  10. Perturbed chain-statistical associating fluid theory extended to dipolar and quadrupolar molecular fluids.

    PubMed

    Karakatsani, Eirini K; Economou, Ioannis G

    2006-05-11

    The perturbed chain statistical associating fluid theory (PC-SAFT) is extended to polar molecular fluids, namely dipolar and quadrupolar fluids. The extension is based on the perturbation theory for polar fluids by Stell and co-workers. Appropriate expressions are proposed for dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions. Furthermore, induced dipole interactions are calculated explicitly in the model. The new polar PC-SAFT model is relatively complex; for this purpose, a truncated polar PC-SAFT model is proposed using only the leading term in the polynomial expansion for polar interactions. The new model is used for the calculation of thermodynamic properties of various quadrupolar pure fluids. In all cases, the agreement between experimental data and model predictions is very good.

  11. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs

    PubMed Central

    Botzem, Tim; McNeil, Robert P. G.; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-01-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III–V nanowires. PMID:27079269

  12. Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin

    SciTech Connect

    Johnson, R.D.; La Mar, G.N.; Smith, K.M.; Parish, D.W.; Langry, K.C. )

    1989-01-18

    NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of {sup 2}H selectively incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfine shifts of the heme resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions to the observed line widths are shown to be insignificant. The {sup 2}H line widths for the skeletal positions of deuterohemin-reconstituted myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30{degree}C) and hence reflect an immobile heme group. The {sup 2}H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar line width can be used directly to determine the protein tumbling rate. The {sup 2}H NMR lines from heme vinyl groups were found narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp{sup 2} hybridized C-{sup 2}H bonds does not permit an unequivocal interpretation in terms of mobility. 48 refs., 4 figs.

  13. Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Lahrz, M.; Mathey, L.

    2014-01-01

    Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.

  14. SUBMILLIMETER H{sub 2}O MASER IN CIRCINUS GALAXY-A NEW PROBE FOR THE CIRCUMNUCLEAR REGION OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Hagiwara, Yoshiaki; Miyoshi, Makoto; Doi, Akihiro; Horiuchi, Shinji

    2013-05-10

    We present the first detection of extragalactic submillimeter H{sub 2}O maser in the 321 GHz transition toward the center of Circinus galaxy, the nearby Type 2 Seyfert using the Atacama Large Millimeter/Submillimeter Array. We find that Doppler features of the detected 321 GHz H{sub 2}O maser straddle the systemic velocity of the galaxy as seen in the spectrum of the known 22 GHz H{sub 2}O maser in the galaxy. By comparing the velocities of the maser features in both transitions, it can be deduced that the 321 GHz maser occurs in a region similar to that of the 22 GHz maser, where the sub-parsec-scale distribution of the 22 GHz maser was revealed by earlier very long baseline interferometry observations. The detected maser features remain unresolved at the synthesized beam of {approx}0.''66 ({approx}15 pc) and coincide with the 321 GHz continuum peak within small uncertainties. We also present a tentative detection of the highest velocity feature (redshifts up to {approx}635 km s{sup -1}) in the galaxy. If this high-velocity feature arises from a Keplerian rotating disk well established in this galaxy, it is located at a radius of {approx}0.018 pc ({approx}1.2 Multiplication-Sign 10{sup 5} Schwarzschild radii), which might probe molecular material closest to the central engine.

  15. The Effect of Magnetic Field Inhomogeneity on the Transverse Relaxation of Quadrupolar Nuclei Measured by Multiple Quantum Filtered NMR

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Kushnir, T.; Knubovets, T.; Itzchak, Y.; Navon, G.

    1997-09-01

    The effects of magnetic fieldsB0andB1inhomogeneities on techniques which are commonly used for the measurements of triple-quantum-filtered (TQF) NMR spectroscopy of23Na in biological tissues are analyzed. The results of measurements by pulse sequences with and without refocusing ofB0inhomogeneities are compared. It is shown that without refocusing the errors in the measurement of the transverse relaxation times by TQF NMR spectroscopy may be as large as 100%, and thus, refocusing of magnetic field inhomogeneity is mandatory. Theoretical calculations demonstrate that without refocusingB0inhomogeneities the spectral width and phase depend on the interpulse time intervals, thus, leading to errors in the measured relaxation times. It is shown that pulse sequences that were used for the refocusing of the magnetic field (B0) inhomogeneity also reduce the sensitivity of the experimental results to radiofrequency (B1) magnetic field inhomogeneity.

  16. Hyperfine magnetic fields at the nuclei of probe {sup 119}Sn atoms and exchange interactions in the CaCu{sub 3}Mn{sub 3.96}Sn{sub 0.04}O{sub 12} manganite

    SciTech Connect

    Rusakov, V. S. Presnyakov, I. A.; Sobolev, A. V.; Demazeau, G.; Gubaidulina, T. V.; Matsnev, M. E.; Gapochka, A. M.; Volkova, O. S.; Vasil'ev, A. N.

    2011-04-15

    We have investigated the hyperfine magnetic interactions between the nuclei of probe {sup 119}Sn atoms in the CaCu{sub 3}Mn{sub 3.96}Sn{sub 0.04}O{sub 12} double manganite by Moessbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu{sup 2+}-O-Mn{sup 4+} (J{sub CuMn} Almost-Equal-To -51 {+-} 1 K) and Mn{sup 4+}-O-Mn{sup 4+} (J{sub MnMn} Almost-Equal-To -0.6 {+-} 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J{sub MnMn} correspond to both the electronic configuration of the Mn{sup 4+} cations and the geometry of their local crystallographic environment in the compound under study.

  17. Quadrupolar benzobisthiazole-cored arylamines as highly efficient two-photon absorbing fluorophores.

    PubMed

    Hrobárik, Peter; Hrobáriková, Veronika; Semak, Vladislav; Kasák, Peter; Rakovský, Erik; Polyzos, Ioannis; Fakis, Mihalis; Persephonis, Peter

    2014-12-19

    A computer-aided design of novel D-π-A-π-D styrylamines containing five isomeric benzobisthiazole moieties as the electron-accepting core has revealed the linear centrosymmetric benzo[1,2-d:4,5-d']bisthiazole as the most promising building block for engineering chromophores displaying high two-photon absorption (TPA) in the near-IR region, as also confirmed experimentally. The ease of synthesis of quadrupolar derivatives thereof, combined with extraordinarly high TPA action cross sections (δTPAΦf > 1500 GM), makes these heteroaromatic systems particularly attractive as diagnostic agents in 3D fluorescence imaging.

  18. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  19. 5f delocalization-induced suppression of quadrupolar order in U(Pd1-xPtx)₃

    DOE PAGES

    Walker, H. C.; Le, M. D.; McEwen, K. A.; ...

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd1-xPtx)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Qxy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  20. Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB4

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta; Suzuki, Kazuya; Fukazawa, Hiroshi; Chi, Songxue; Fernandez-Baca, Jaime A.

    2017-04-01

    Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB4 showing the successive phase transitions at T0 = 17.2 K, TN1 = 7.0 K, and TN2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0 = (0,0,0), q0 and qs1 = (δ ,δ ,0.4) (δ ˜ 0.14), and q0 and qs2 = (0.2,0,0.4) in phase II (TN1 < T < T0), phase III (TN2 < T < TN1), and phase IV (T < TN2), respectively. The observed patterns in phase II are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic "all-in/all-out"-type (Γ4) and "vortex"-type (Γ2) structures, consisting of a Γ4 main component (77%) with a small amplitude of Γ2 (23%). We propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry-Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.

  1. Sensitivity enhancement of MQMAS NMR spectra of spin 3/2 nuclei using hyperbolic secant pulses

    NASA Astrophysics Data System (ADS)

    Siegel, Renée; Nakashima, Thomas T.; Wasylishen, Roderick E.

    2005-02-01

    The use of hyperbolic secant (HS) pulses to enhance the intensity of the central transition in MQMAS experiments for spin 3/2 quadrupolar nuclei is investigated by examining 87Rb NMR spectra of a powder sample of RbNO 3. The application of HS pulses prior to the triple-quantum (3Q) excitation provides sensitivity enhancements in MQMAS spectra that are superior to those previously reported. For the conversion of 3Q to single-quantum (1Q) observables, the HS pulses have an efficiency similar to that reported for double frequency sweeps (DFS) but greater than that of the fast amplitude modulation (FAM) technique.

  2. Static quadrupolar susceptibility for a Blume-Emery-Griffiths model based on the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Pawlak, A.; Gülpınar, G.; Erdem, R.; Ağartıoğlu, M.

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume-Emery-Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic-paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like.

  3. The Effect of Tidal Friction and Quadrupolar Distortion on Orbits of Stars or Planets in Hierarchical Triple systems

    NASA Astrophysics Data System (ADS)

    Kiseleva, L. G.; Eggleton, P. P.

    In hierarchical triple stars, such as lambda Tau and beta Per the combination of a) fluctuating eccentricity due to the third body and b) tidal friction, mainly within the close pair, which tries to remove such fluctuations, can lead to potentially large but slow secular changes in orbital parameters. We model the orbits of both the above systems using a force law which includes a combination of point-mass gravity, quadrupolar distortion of each star by the other two, and a dissipative tidal-friction term. For lambda Tau we find a preferred model where expansion of the inner orbit due to mass transfer on a nuclear timescale is balanced by contraction because tidal friction transfers angular momentum from the inner to the outer orbit. In beta Per, the two orbits are nearly orthogonal (i=100 deg), and the effect of the third star would periodically increase the inner eccentricity up to nearly unity if we neglect the effects of quadrupolar distortion and tidal friction. In fact, in beta Per quadrupolar distortion alone can almost completely suppress the inner eccenticity fluctuations. In a hypothetcal zero-age state of this system, when the inner binary can be supposed to be well-detached, we find large fluctuations in eccentricity which, on being damped by tidal friction, lead to shrinkage of the inner orbit on a surprisingly short timescale. However, the shrinkage is halted by the fact that as the inner pair becomes closer they become more distorted: this quadrupolar distortion leads to apsidal motion which prevents further large fluctuations in eccentricity. In hypothetical cases of nearly orthogonal triple systems with one component of the close pair being a Jupiter-like planet, the combined effect of quadrupolar distortion and tidal friction may reduce the fluctuations of the inner eccentricity, and in some cases the Jupiter orbit can in principle be shrunk quite drastically over a suitably long interval of time. This is potentially important for the long

  4. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  5. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  6. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  7. Pulmonary MRI contrast using Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized (83)Kr.

    PubMed

    Six, Joseph S; Hughes-Riley, Theodore; Lilburn, David M L; Dorkes, Alan C; Stupic, Karl F; Shaw, Dominick E; Morris, Peter G; Hall, Ian P; Pavlovskaya, Galina E; Meersmann, Thomas

    2014-01-01

    Hyperpolarized (83)Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the (83)Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched (83)Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized (83)Kr MRI after krypton inhalation. Different (83)Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized (83)Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast.

  8. Q.E.COSY: determining sign and size of small deuterium residual quadrupolar couplings using an extended E.COSY principle.

    PubMed

    Tzvetkova, Pavleta; Luy, Burkhard

    2016-05-01

    Residual quadrupolar couplings contain important structural information comparable with residual dipolar couplings. However, the measurement of sign and size of especially small residual quadrupolar couplings is difficult. Here, we present an extension of the E.COSY principle to spin systems consisting of a Spin 1 coupled to a spin ½ nucleus, which allows the determination of the sign of the quadrupolar coupling of the Spin 1 nucleus relative to the heteronuclear coupling between the spins. The so-called Q.E.COSY approach is demonstrated with its sign-sensitivity using variable angle NMR, stretched gels and liquid crystalline phases applied to various CD and CD3 groups. Especially the sign-sensitive measurement of residual quadrupolar couplings that remain unresolved in conventional deuterium 1D spectra is shown.

  9. Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127.

    PubMed

    Bryce, David L; Sward, Gregory D

    2006-04-01

    A thorough review of 35/37Cl, 79/81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) data is presented. Isotropic chemical shifts (CS), quadrupolar coupling constants, and other available information on the magnitude and orientation of the CS and electric field gradient (EFG) tensors for chlorine, bromine, and iodine in diverse chemical compounds is tabulated on the basis of over 200 references. Our coverage is through July 2005. Special emphasis is placed on the information available from the study of powdered diamagnetic solids in high magnetic fields. Our survey indicates a recent notable increase in the number of applications of solid-state quadrupolar halogen NMR, particularly 35Cl NMR, as high magnetic fields have become more widely available to solid-state NMR spectroscopists. We conclude with an assessment of possible future directions for research involving 35/37Cl, 79/81Br, and 127I solid-state NMR spectroscopy.

  10. Two-Photon Absorption and Fluorescence with Quadrupolar and Branched CHROMOPHORES—EFFECT of Structure and Branching

    NASA Astrophysics Data System (ADS)

    Porrès, Laurent; Mongin, Olivier; Katan, Claudine; Charlot, Marina; Bhatthula, Bharath Kumar Goud; Jouikov, Viatcheslav; Pons, Thomas; Mertz, Jerome; Blanchard-Desce, Mireille

    The photophysical and two-photon absorption (TPA) properties of three homologous quadrupolar and one related three-branched chromophores were investigated. Design of the quadrupoles is based on the symmetrical functionalization of a biphenyl core. Modulation of the nonlinear absorptivity/transparency/photostability trade-off can be achieved by playing with the twist angle of the core and on the spacers (phenylene-vinylene versus phenylene-ethynylene). The quadrupolar chromophores combine high TPA cross-sections, high fluorescence quantum yield and solvent sensitive photoluminescence properties. The branched structure exhibits spectrally broadened TPA in the NIR region (up to 3660 GM at 740 nm measured in the femtosecond regime) but reduced sensitivity to the environment.

  11. Resonant and static cubic hyperpolarizabilities of push-pull dipolar and quadrupolar chromophores: toward enhanced two-photon absorption

    NASA Astrophysics Data System (ADS)

    Barzoukas, Marguerite; Blanchard-Desce, Mireille H.

    2001-12-01

    Recent reports of push-pull dipolar and quadrupolar chromophores with enhanced two-photon absorption have generated considerable interest in these two molecular systems. Two photon absorption is related to the imaginary part of the two-photon resonant cubic hyperpolarizability Im[(gamma) ((omega) )]. In this work, we have described both push-pull dipolar and quadrupolar chromophores using multi valence-bond states models based on measurable parameters of the valence-bond forms. We have derived analytical expressions of their non-resonant static cubic hyperpolarizability (gamma) (0) and of Im[(gamma) ((omega) )]. Comparison between the transparency / Im[(gamma) ((omega) )] trade-off and Im[(gamma) ((omega) )] / (gamma) (0) correlation helps understand the advantages and drawbacks of each of these two push-pull systems. Furthermore by understanding how the valence-bond parameters are related to the molecular structure and its environment, it is possible to predict how Im[(gamma) ((omega) )] will be affected by changing either the conjugation size, the donor-acceptor pair or the solvent polarity for both of these push-pull systems. The results of this study suggest common guidelines for the molecular engineering of both the push-pull dipolar and quadrupolar chromophores.

  12. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  13. Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations

    NASA Astrophysics Data System (ADS)

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2016-09-01

    Using molecular simulations, we analyze the microscopic processes driving the Nuclear Magnetic Resonance (NMR) relaxation of quadrupolar cations in water. The fluctuations of the Electric Field Gradient (EFG) experienced by alkaline and magnesium cations, which determine the NMR relaxation time, are mainly due to the dynamics of water molecules in their solvation shell. The dynamics of the ion plays a less important role, with the exception of the short-time dynamics in the lighter Li+ case, for which rattling in the solvent cage results in oscillations of the EFG autocorrelation function (ACF). Several microscopic mechanisms that may a priori contribute to the decay of the EFG-ACF occur in fact over too long time scales: entrance/exit of individual water molecules into/from the solvation shell, rotation of a molecule around the ion, or reorientation of the molecule. In contrast, the fluctuations of the ion-water distance are clearly correlated to that of the EFG. Nevertheless, it is not sufficient to consider a single molecule due to the cancellations arising from the symmetry of the solvation shell. The decay of the EFG-ACF, hence NMR relaxation, is in fact governed by the collective symmetry-breaking fluctuations of water in the first solvation shell.

  14. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil.

    PubMed

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-07-21

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance.

  15. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    PubMed Central

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  16. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  17. Precision lifetime measurements in light exotic nuclei

    NASA Astrophysics Data System (ADS)

    McCutchan, Elizabeth

    2017-01-01

    A new generation of ab-initio calculations, based on realistic two- and three-body forces have had a profound impact on our understanding of nuclei. They have shed light on topics such as the origin of effective forces (like spin-orbit and tensor interactions) and the mechanisms behind cluster and pairing correlations. New precise data are required to both better parameterize the three body forces and to improve numerical methods. A sensitive probe of the structure of light nuclei comes from their electromagnetic transition rates. A refined Doppler Shift Attenuation Method (DSAM) will be outlined which is used to precisely measure lifetimes in light nuclei and helps to reduce and quantity systematic uncertainties in the measurement. Using this careful DSAM, we have made a series of precise measurements of electromagnetic transition strengths in Li isotopes, A =10 nuclei, and the exotic halo nucleus, 12Be. Various phenomena, such as alpha clustering and meson-exchange currents, can be investigated in these seemingly simple systems, while the collection of data spanning stable to neutron-rich, allows us to probe the influence of additional valence neutrons. This talk will report on what has been learned, and the challenges that lie in the future, both in experiment and theory, as we push to describing and measuring even more exotic systems. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under contract No. DE-AC02-98CH10886.

  18. Isolation of Nuclei.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.

  19. Proton emission from triaxial nuclei

    SciTech Connect

    Delion, D.S.; Wyss, R.; Karlgren, D.; Liotta, R.J.

    2004-12-01

    Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to the mother nucleus are determined microscopically and the calculated decay widths are used to probe the mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of {sup 161}Re and {sup 185}Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while the angular distribution is a universal function which does not depend upon details of the nuclear structure.

  20. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  1. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  2. Influence of sodium ion dynamics on the 23Na quadrupolar interaction in sodalite: a high-temperature 23Na MAS NMR study.

    PubMed

    Fechtelkord, M

    2000-01-01

    High-temperature 33Na MAS NMR experiments up to 873 K for a number of different sodalites (Na8[AlSiO4]6(NO3)2, Na8[AlSiO4]6(NO2)2, Na8[AlSiO4]6I2, Na7.9[AlSiO4]6(SCN)7.9 x 0.5H2O, Na8[AlGeO4]6(NO3)2, and Na7[AlSiO4]6(H3O2) x 4H2O) were carried out. The spectra of the first five sodalites consist of a quadrupolar MAS pattern with different quadrupolar coupling constants. The quadrupolar interaction for the thiocyanate sodalite, the nitrate aluminosilicate, and germanate sodalite decreases strongly passing a coalescence state on heating, while the quadrupolar interaction of the iodide and nitrite sample shows nearly no change. The basic hydrosodalite shows an asymmetric lineshape at room temperature and, between 350 and 370 K, a second line due to the evaporation of cage-water emerges. The linewidth increases with rising temperature. The temperature dependence of the quadrupolar interaction seems to be a function of the sodalite beta-cage expansion. Two conceivable jump mechanisms are proposed for a tetrahedral two-site jump between occupied and unoccupied tetrahedral sites.

  3. Two-photon absorption properties of proquinoidal D-A-D and A-D-A quadrupolar chromophores.

    PubMed

    Susumu, Kimihiro; Fisher, Jonathan A N; Zheng, Jieru; Beratan, David N; Yodh, Arjun G; Therien, Michael J

    2011-06-09

    We report the synthesis, one- and two-photon absorption spectroscopy, fluorescence, and electrochemical properties of a series of quadrupolar molecules that feature proquinoidal π-aromatic acceptors. These quadrupolar molecules possess either donor-acceptor-donor (D-A-D) or acceptor-donor-acceptor (A-D-A) electronic motifs, and feature 4-N,N-dihexylaminophenyl, 4-dodecyloxyphenyl, 4-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazolyl or 2,5-dioctyloxyphenyl electron donor moieties and benzo[c][1,2,5]thiadiazole (BTD) or 6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (TDQ) electron acceptor units. These conjugated structures are highly emissive in nonpolar solvents and exhibit large spectral red-shifts of their respective lowest energy absorption bands relative to analogous reference compounds that incorporate phenylene components in place of BTD and TDQ moieties. BTD-based D-A-D and A-D-A chromophores exhibit increasing fluorescence emission red-shifts, and a concomitant decrease of the fluorescence quantum yield (Φ(f)) with increasing solvent polarity; these data indicate that electronic excitation augments benzothiadiazole electron density via an internal charge transfer mechanism. The BTD- and TDQ-containing structures exhibit blue-shifted two-photon absorption (TPA) spectra relative to their corresponding one-photon absorption (OPA) spectra, and display high TPA cross sections (>100 GM) within these spectral windows. D-A-D and A-D-A structures that feature more extensive conjugation within this series of compounds exhibit larger TPA cross sections consistent with computational simulation. Factors governing TPA properties of these quadrupolar chromophores are discussed within the context of a three-state model.

  4. Two-Photon Absorption Properties of Proquinoidal D-A-D and A-D-A Quadrupolar Chromophores

    PubMed Central

    Susumu, Kimihiro; Fisher, Jonathan A. N.; Zheng, Jieru

    2011-01-01

    We report the synthesis, one- and two-photon absorption spectroscopy, fluorescence, and electrochemical properties of a series of quadrupolar molecules that feature proquinoidal π-aromatic acceptors. These quadrupolar molecules possess either donor-acceptor-donor (D–A–D) or acceptor-donor-acceptor (A–D–A) electronic motifs, and feature 4-N,N-dihexylaminophenyl, 4-dodecyloxyphenyl, 4-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazolyl or 2,5-dioctyloxyphenyl electron donor moieties and benzo[c][1,2,5]thiadiazole (BTD) or 6,7-bis(3’,7’-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (TDQ) electron acceptor units. These conjugated structures are highly emissive in nonpolar solvents and exhibit large spectral red-shifts of their respective lowest energy absorption bands relative to analogous reference compounds that incorporate phenylene components in place of BTD and TDQ moieties. BTD-based D-A-D and A-D-A chromophores exhibit increasing fluorescence emission red-shifts, and a concomitant decrease of the fluorescence quantum yield (Φf) with increasing solvent polarity; these data indicate that electronic excitation augments benzothiadiazole electron density via an internal charge transfer mechanism. The BTD- and TDQ-containing structures exhibit blue-shifted two-photon absorption (TPA) spectra relative to their corresponding one-photon absorption (OPA) spectra, and display high TPA cross-sections (>100 GM) within these spectral windows. D-A-D and A-D-A structures that feature more extensive conjugation within this series of compounds exhibit larger TPA cross-sections consistent with computational simulation. Factors governing TPA properties of these quadrupolar chromophores are discussed within the context of a three-state model. PMID:21568299

  5. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell

  6. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  7. 5f delocalization-induced suppression of quadrupolar order in U(Pd1-xPtx)₃

    SciTech Connect

    Walker, H. C.; Le, M. D.; McEwen, K. A.; Bleckmann, M.; Süllow, S.; Mazzoli, C.; Wilkins, S. B.; Fort, D.

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd1-xPtx)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Qxy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  8. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  9. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  10. The shapes of nuclei

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  11. Ultrahigh-field NMR spectroscopy of quadrupolar transition metals: 55Mn NMR of several solid manganese carbonyls.

    PubMed

    Ooms, Kristopher J; Feindel, Kirk W; Terskikh, Victor V; Wasylishen, Roderick E

    2006-10-16

    55Mn NMR spectra acquired at 21.14 T (nu(L)(55Mn) = 223.1 MHz) are presented and demonstrate the advantages of using ultrahigh magnetic fields for characterizing the chemical shift tensors of several manganese carbonyls: eta5-CpMn(CO)3, Mn2(CO)10, and (CO)5MnMPh3 (M = Ge, Sn, Pb). For the compounds investigated, the anisotropies of the manganese chemical shift tensors are less than 250 ppm except for eta5-CpMn(CO)3, which has an anisotropy of 920 ppm. At 21.14 T, one can excite the entire m(I) = 1/2 <--> m(I) = -1/2 central transition of eta5-CpMn(CO)3, which has a breadth of approximately 700 kHz. The breadth arises from second-order quadrupolar broadening due to the 55Mn quadrupolar coupling constant of 64.3 MHz, as well as the anisotropic shielding. Subtle variations in the electric field gradient tensors at the manganese are observed for crystallographically unique sites in two of the solid pentacarbonyls, resulting in measurably different C(Q) values. MQMAS experiments are able to distinguish four magnetically unique Mn sites in (CO)(5)MnPbPh3, each with slightly different values of delta(iso), C(Q), and eta(Q).

  12. Integrated Computational Protocol for Analyzing Quadrupolar Splittings from Natural Abundance Deuterium NMR Spectra in (Chiral) Oriented Media.

    PubMed

    Navarro-Vazquez, Armando; Berdagué, Philippe; Lesot, Philippe Georges Julien

    2017-03-03

    Despite its low natural abundance, deuterium NMR in weakly oriented (chiral) solvents gives easy access to deuterium residual quadrupolar couplings (2H-RQCs), which are formally equivalent to one-bond 1DCH (13C-1H)-RDCs for calculation of the Saupe order matrix, furnishing similar information to study molecular structure and orientational behavior. In addition, the quadrupolar interaction is one order of magnitude larger than the dipolar interaction, making 2H-RQC analysis much more sensitive tool for structural analysis. Subtle structural differences as well as tiny differences in the molecular alignment of different enantiomers in chiral aligning media can be detected. In order to promote this approach towards organic chemists interested in exploiting the analytical advantages of anisotropic, natural abundance deuterium NMR (NAD NMR), we describe a 2H-RQC/DFT-based integrated computational protocol for the evaluation of the order parameters of aligned solutes via singular value decomposition. Examples of 2H-RQC-assisted analysis of chiral and prochiral molecules dissolved in various polypeptide lyotropic chiral liquid crystals are reported. They illustrate the power of this hyphenated approach and in particular to understand the alignment processes and the role of molecular shape in the ordering mechanism through the determination of inter-tensor angles between alignment tensors and inertia tensors.

  13. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  14. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  15. [Selective localization of neptunium-237 in nuclei of mammalian cells].

    PubMed

    Galle, P; Boulahdour, H; Metivier, H

    1992-01-01

    After injection in the rat of soluble neptunium salt, the distribution of this element was studied at the subcellular level by electron microscopy and electron probe microanalysis. Abnormal structures have been observed by electron microscopy in the nuclei of hepatocytes, and the same structures have also been observed in the nuclei of the proximal tubules cells of the kidney. These structures are formed of clusters of very small and dense particles, several nanometers in diameter. The clusters are localized in the central part of the nuclei and they are separate from nucleoli and heterochromatin. Electron probe X-ray analysis of this cluster have shown that they contain neptunium associated with phosphorus. In the cell containing neptunium inclusions, other non specific lesions are also observed (nuclear pycnosis, mitochondrial depletion).

  16. Structure of Light Neutron-rich Nuclei Studied with Transfer Reactions

    SciTech Connect

    Wuosmaa, A. H.

    2015-01-01

    Transfer reactions have been used for many years to understand the shell structure of nuclei. Recent studies with rare-isotope beams extend this work and make it possible to probe the evolution of shell structure far beyond the valley of stability, requiring measurements in inverse kinematics. We present a novel technical approach to measurements in inverse kinematics, and apply this method to different transfer reactions, each of which probes different properties of light, neutron-rich nuclei.

  17. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  18. Philae Cometary Permittivity Probe model and operations with a reduced

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Simoes, F.; Schmidt, W.

    2009-04-01

    The Permittivity Probe (PP) is a subsystem of the SESAME instrument on the Philae lander of the Rosetta mission to comet Churyumov-Gerasimenko. The probe consists of a system of 2 receiving and 3 transmitting electrodes which can be operated in different quadrupolar probe configurations, involving only two receivers and two transmitters at any given time. However, the system of electrodes is strongly influenced by the vicinity of the lander body and other grounded elements that work as additional electrodes. During the operational phases of the mission only one of the transmitter electrodes will always be available, as the two others depend on the deployment status of the host instruments they are attached to. We have built an electrical model of Philae to study non conventional ways for measuring the cometary permittivity with a reduced set of electrodes and the distorting influence of the various lander structure elements.

  19. Short-Distance Structure of Nuclei

    SciTech Connect

    Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

    2011-06-01

    One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

  20. Simulation of nuclear quadrupole resonance for sensor probe optimization.

    PubMed

    Shinohara, Junichiro; Sato-Akaba, Hideo; Itozaki, Hideo

    2012-01-01

    A simulation method to estimate the detection efficiency of nuclear quadrupole resonance (NQR) was proposed for optimizing a sensing probe operating at radio frequencies (RFs). It first calculates the transmitted magnetic field from the probe coil to the target sample. The nuclei make quadrupole resonance by it. We considered this nonlinear reaction to estimate NQR emission by the nuclei. Then the received NQR signal intensity from the sample at the probe coil. We calculated the efficiency by testing two different probe types (solenoid and gradiometer) and by changing the relative positions of the probe and sample. The simulation results were in good agreement with the experimental results.

  1. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  2. Quadrupolar Metal Nuclides in Bioinorganic Chemistry: Solid-State NMR Studies

    SciTech Connect

    Lipton, Andrew S.; Ellis, Paul D.; Polenova, Tatyana E.

    2009-09-16

    Metal ions play an important role in bioinorganic chemistry, however, following their respective chemistries is often complicated because several relevant metal ions (such as V5+, Cu1+, Zn2+, and Mg2+) are not always amenable to conventional UV/Vis or EPR spectroscopy. Rather, what we know of these metal sites has come from the characterization of the various compounds and proteins via x-ray crystallographic methods or from using surrogate metal probes for conventional spectroscopy

  3. Chromatin associations in Arabidopsis interphase nuclei.

    PubMed

    Schubert, Veit; Rudnik, Radoslaw; Schubert, Ingo

    2014-01-01

    The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  4. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  5. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  6. Precision measurement of the mass difference between light nuclei and anti-nuclei

    SciTech Connect

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($-\\atop{d}$), and 3He and 3$-\\atop{He}$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  7. Skyrmions and Nuclei

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  8. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  9. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  10. Total photoabsorption in nuclei

    SciTech Connect

    Bianchi, N.

    1992-06-01

    The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.

  11. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  12. D mesic nuclei

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Nieves, J.; Tolos, L.

    2010-06-01

    The energies and widths of several D0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D0 bound states in all studied nuclei, from 12C up to 208Pb. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future P¯ANDA@FAIR physics program. We also find a D+ bound state in 12C, but it is too broad and will have a significant overlap with the energies of the continuum.

  13. Heavy and Superheavy Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2008-10-01

    The appearance and development of the concept of super-heavy atomic nuclei are described. The concept appeared during the studies of the limits of the nuclear chart and of the periodic table of the chemical elements. The article concentrates on theoretical studies of the properties of heaviest nuclei. Results of these studies are illustrated and discussed. Prospects for a nearest future of the research of heaviest nuclei are outlined.

  14. Sexing the human fetus and identification of polyploid nuclei by DNA-DNA in situ hybridisation in interphase nuclei.

    PubMed

    West, J D; Gosden, C M; Gosden, J R; West, K M; Davidson, Z; Davidson, C; Nicolaides, K H

    1989-01-01

    Samples of human adult lymphocytes, fetal lymphocytes, amniotic fluid cells, and chorionic villus cells were sexed independently by cytogenetics and DNA-DNA in situ hybridisation to a tritiated Y probe. For the in situ hybridisation analysis, the presence of Y bodies (hybridisation bodies) in 100 interphase nuclei were scored after autoradiography. In all, 82/83 samples were sexed in this way (one technical failure) and 78/82 were sexed by both in situ hybridisation and cytogenetics. There was complete agreement between the two methods. There was a considerable variation (40-100%) in the percentage of interphase nuclei with a hybridisation body among the male samples, but very few nuclei from female samples showed significant hybridisation. In situ hybridisation could be used to sex the conceptus when males but not females are at risk for various X-linked genetic disorders and may also be useful for detecting 45,X/46,XY mosaicism or polyploid/diploid mosaicism. This would be particularly useful for direct preparations of chorionic villus samples, which often prove difficult to analyse cytogenetically but offer the best means of avoiding maternal contamination. Some interphase nuclei had more than one hybridisation body, and this was most commonly found among amniotic fluid cells. Comparison of sizes of nuclei with one or two hybridisation bodies strongly suggested that most of the amniotic fluid cell nuclei with two hybridisation bodies were tetraploid.

  15. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  16. The Mutual Impedance Probe (RPC-MIP) onboard ROSETTA

    NASA Astrophysics Data System (ADS)

    Henri, Pierre; Lebreton, Jean-Pierre; Béghin, Christian; Décréau, Pierrette; Grard, Réjean; Hamelin, Michel; Mazelle, Christian; Randriamboarison, Orélien; Schmidt, Walter; Winterhalter, Daniel; Aouad, Youcef; Lagoutte, Dominique; Vallières, Xavier

    2014-05-01

    The ROSETTA mission will reach the comet 67P/Churyumov-Gerasimenko in August 2014 and enable, for the first time, the in situ survey of a comet activity during along orbit. On board the ROSETTA orbiter, the Mutual Impedance Probe (MIP) is one of the instruments of the Rosetta Plasma Consortium (RPC) that aims at monitoring the cometary plasma environment. MIP is a quadrupolar probe that measures the frequency response of the coupling impedance between two emitting and two receiving dipoles. The electron density and temperature are derived from the resonance peak and the interference pattern of the mutual impedance spectrum. We will describe this instrument and discuss the preliminary results obtained during the third ROSETTA Earth flyby to show its expected capabilities. The RPC switch ON for the post-hibernation recommissioning is planned at the end of March. The health status of the instrument will be discussed.

  17. Pulsars:. Gigantic Nuclei

    NASA Astrophysics Data System (ADS)

    Xu, Renxin

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  18. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  19. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  20. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  1. Quarks in Few Body Nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  2. Probing the Tautomerism of Histidine

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Cabezas, C.; Mata, S.; Alonso, J. L.

    2013-06-01

    The rotational spectrum of histidine, showing a complex nuclear quadrupole interactions arising from three ^{14}N nuclei in non-equivalent positions have been resolved and completely analyzed. Solid samples (m.p. 290°C) were vaporized by laser ablation and probed by Fourier transform microwave spectroscopy in a supersonic expansion. The experimental constants clearly lead to the unambiguous identification of the \\varepsilon tautomer in the gas phase.

  3. Distance Probes of Dark Energy

    DOE PAGES

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; ...

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  4. Magnetic dipolar and quadrupolar transitions in two-electron atoms under exponential-cosine-screened Coulomb potential

    SciTech Connect

    Modesto-Costa, Lucas; Canuto, Sylvio; Mukherjee, Prasanta K.

    2015-03-15

    A detailed investigation of the magnetic dipolar and quadrupolar excitation energies and transition probabilities of helium isoelectronic He, Be{sup 2+}, C{sup 4+}, and O{sup 6+} have been performed under exponential cosine screened Coulomb potential generated in a plasma environment. The low-lying excited states 1s{sup 2}:{sup 1}S{sup e} → 1sns:{sup 3}S{sup e}{sub 0}, and 1snp:{sup 3}P{sup o}{sub 2} (n = 2, 3, 4, and 5) are considered. The variational time-dependent coupled Hartree-Fock scheme has been used. The effect of the confinement produced by the potential on the structural properties is investigated for increasing coupling strength of the plasma. It is noted that there is a gradual destabilization of the energy of the system with the reduction of the ionization potential and the number of excited states. The effect of the screening enhancement on the excitation energies and transition probabilities has also been investigated and the results compared with those available for the free systems and under the simple screened Coulomb potential.

  5. A study of isotropic-nematic transition of quadrupolar Gay-Berne fluid using density-functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2011-11-01

    The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.

  6. Effect of strongly coupled plasma on the magnetic dipolar and quadrupolar transitions of two-electron ions

    SciTech Connect

    Saha, Jayanta K.; Mukherjee, T. K.; Mukherjee, P. K.; Fricke, B.

    2013-04-15

    Effect of strongly coupled plasma on the excitation energies and transition probabilities for the respective transitions 1s{sup 2}:{sup 1}S{sup e}{yields} 1sns:{sup 3}S{sup e} (n = 2, 3, 4) and 1s{sup 2}:{sup 1}S{sup e}{yields} 1snp:{sup 3}P{sup o} (n = 2, 3, 4) allowed by magnetic dipolar and quadrupolar excitations have been analyzed for the first time for the two-electron ions C{sup 4+}, O{sup 6+}, Ne{sup 8+}, Mg{sup 10+}, Si{sup 12+}, and S{sup 14+}. Time dependent Hatree-Fock theory within variational approach has been adopted for such a study. The effect of surrounding plasma has been treated through the standard Ion-Sphere (IS) model of the plasma where the plasma density is varied systematically from a low value to a pretty high value such that the respective excited states go over to continuum due to such a confinement. The effect of external pressure generated due to plasma confinement on the estimated spectral properties has been analyzed systematically.

  7. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation.

    PubMed

    Han, Song-I; Joo, Young-Don; Han, Ki-Ho

    2013-03-07

    This paper presents an effective electrorotation technique for measuring the dielectric properties of cells using a superposed electrical signal, which can simultaneously generate negative quadrupolar dielectrophoretic (nQDEP) force and electrorotational (ROT) torque. The proposed technique involves a three-dimensional (3D) octode, which includes four electrodes arranged in a crisscross pattern on the top and bottom of a microchannel, respectively. A single cell was trapped in the center of the 3D octode by the nQDEP force and simultaneously rotated by the ROT torque. Using the proposed electrorotation technique, ROT spectra of human leukocyte subpopulations (T and B lymphocytes, granulocytes, and monocytes) and metastatic human breast (SkBr3) and lung (A549) cancer cell lines were accurately measured without any disturbance. Torque on the cells generated by the ROT signal was analyzed theoretically based on the single-shell dielectric model for the cells. Furthermore, the dielectric properties of the cells, such as area-specific membrane capacitance and cytoplasm conductivity, were extracted using the measured ROT spectra and the analyzed torque.

  8. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae).

    PubMed

    Drosopoulou, Elena; Nakou, Ifigeneia; Síchová, Jindra; Kubíčková, Svatava; Marec, František; Mavragani-Tsipidou, Penelope

    2012-06-01

    The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.

  9. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  10. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of the disk must be <1000 K and the toroidal magnetic field component must be <250 mG. If the molecular mass density in the disk is 10(10) cm-3, then the disk mass is approximately 10(4) M[symbol: see text], and the disk is marginally stable as defined by the Toomre stability parameter Q (Q = 6 at the inner edge and 1 at the outer edge). The inward drift velocity is predicted to be <0.007 km.s-1, for a viscosity parameter of 0.1, and the accretion rate is <7 x 10(-5) M[symbol: see text].yr-1. At this value the accretion would be sufficient to power the nuclear x-ray source of 4 x 10(40) ergs-1 (1 erg = 0.1 microJ). The volume of individual maser components may be as large as 10(46) cm3, based on the velocity gradients, which is sufficient to supply the observed luminosity. The pump power undoubtedly comes from the nucleus, perhaps in the form of x-rays. The warp may allow the pump radiation to penetrate the disk obliquely [Neufeld, D. A. & Maloney, P. R. (1995) Astrophys. J. Lett. 447, L17-L19]. A total of 15 H2O megamasers have been identified out of >250 galaxies searched. Galaxy NGC4258 may be the only case where conditions are optimal to reveal a well-defined nuclear disk. Future measurement of proper motions and accelerations for NGC4258 will yield an accurate distance and a more precise definition of the dynamics of the disk Images Fig. 6 PMID:11607612

  11. Mechanical properties of interphase nuclei probed by cellular strain application.

    PubMed

    Lammerding, Jan; Lee, Richard T

    2009-01-01

    The mechanical properties of the interphase nucleus have important implications for cellular function and can reflect changes in nuclear envelope structure and/or chromatin organization. Mutations in the nuclear envelope proteins lamin A and C cause several human diseases, such as Emery-Dreifuss muscular dystrophy, and dramatic changes in nuclear stiffness have been reported in cells from lamin A/C-deficient mice. We have developed a cellular strain technique to measure nuclear stiffness in intact, adherent cells and have applied this experimental method to fibroblasts from mouse models of Emery-Dreifuss muscular dystrophy and to skin fibroblasts from laminopathy patients and healthy control subjects. The experimental protocol is based on measuring induced nuclear deformations in cells plated on a flexible silicone substrate; the nuclear stiffness can subsequently be inferred from the ratio of induced nuclear strain to the applied membrane strain. These experiments reveal that lamins A and C are important determinants of nuclear stiffness and that lamin mutations associated with muscular dystrophies and other laminopathies often result in disturbed nuclear stiffness that could contribute to the tissue-specific disease phenotypes.

  12. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  13. Theoretical studies of hadrons and nuclei

    SciTech Connect

    COTANCH, STEPHEN R

    2007-03-20

    This report details final research results obtained during the 9 year period from June 1, 1997 through July 15, 2006. The research project, entitled Theoretical Studies of Hadrons and Nuclei , was supported by grant DE-FG02-97ER41048 between North Carolina State University [NCSU] and the U. S. Department of Energy [DOE]. In compliance with grant requirements the Principal Investigator [PI], Professor Stephen R. Cotanch, conducted a theoretical research program investigating hadrons and nuclei and devoted to this program 50% of his time during the academic year and 100% of his time in the summer. Highlights of new, significant research results are briefly summarized in the following three sections corresponding to the respective sub-programs of this project (hadron structure, probing hadrons and hadron systems electromagnetically, and many-body studies). Recent progress is also discussed in a recent renewal/supplemental grant proposal submitted to DOE. Finally, full detailed descriptions of completed work can be found in the publications listed at the end of this report.

  14. Quartet excitations in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Cseh, J.

    2016-06-01

    The recently invented phenomenologic and semimicroscopic algebraic quartet models, as well as their relations to other approaches are discussed. The semimicroscopic model is applied to the 20Ne and 28Si nuclei.

  15. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  16. Exotic Orbital Modes in Nuclei

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.

    2003-06-01

    Experimental evidence for two types of collective excitations in nuclei generated by orbital motion is discussed, viz. a magnetic quadrupole twist mode observed in 180° electron scattering experiments and a toroidal electric dipole mode. The latter may be a source of low-energy pygmy dipole resonances observed in many nuclei. This is discussed in detail for the example of 208Pb based on the recent finding of a resonance at particle threshold in a high-resolution (γ, γ') experiment.

  17. Difluorenyl carbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores.

    PubMed

    Baglai, Iaroslav; de Anda-Villa, Manuel; Barba-Barba, Rodrigo M; Poidevin, Corentin; Ramos-Ortíz, Gabriel; Maraval, Valérie; Lepetit, Christine; Saffon-Merceron, Nathalie; Maldonado, José-Luis; Chauvin, Remi

    2015-09-28

    The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum-over-state estimations of σ2PA(λi), in which λi = 2 hc/Ei, h is Planck's constant, c is the speed of light, and Ei is the energy of the 2PA-allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z-scan results.

  18. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  19. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  20. Reflection asymmetric shapes in nuclei

    SciTech Connect

    Ahmad, I.; Carpenter, M.P.; Emling, H.; Holzmann, R.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Morss, L.R.; Durell, J.L.; Fitzgerald, J.B.; Mowbary, A.S.; Hotchkiss, M.A.; Phillips, W.R.; Drigert, M.W.; Ye, D.; Benet, P.; Manchester Univ. . Dept. of Physics; EG and G Idaho, Inc., Idaho Falls, ID; Notre Dame Univ., IN; Purdue Univ., Lafayette, IN )

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N{approximately}134, Z{approximately}88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin {approximately}8{Dirac h}. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin {approximately}7{Dirac h}. The nuclei which exhibit octupole deformation in this mass region are {sup 144}Ba, {sup 146}Ba and {sub 146}Ce; {sup 142}Ba, {sup 148}Ce, {sup 150}Ce and {sup 142}Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab.

  1. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-06

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes.

  2. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  3. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  4. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  5. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  6. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  7. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  8. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  9. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  10. Assigning {gamma} deformation from fine structure in exotic nuclei

    SciTech Connect

    Ferreira, L. S.; Maglione, E.; Arumugam, P.

    2011-10-28

    The nonadiabatic quasiparticle model for triaxial shapes is used to perform calculations for decay of {sup 141}Ho, the only known odd-Z even-N deformed nucleus for which fine structure in proton emission from both ground and isomeric states has been observed. All experimental data corresponding to this unique case namely, the rotational spectra of parent and daughter nuclei, decay widths and branching ratios for ground and isomeric states, could be well explained with a strong triaxial deformation {gamma}{approx}20. The recent experimental observation of fine structure decay from the isomeric state, can be explained only with an assignment of I{sup {pi}} = 3/2{sup +} as the decaying state, in contradiction with the previous assignment, of I{sup {pi}} 1/2{sup +}, based on adiabatic calculations. This study reveals that proton emission measurements could be a precise tool to probe triaxial deformations and other structural properties of exotic nuclei beyond the proton dripline.

  11. Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    SciTech Connect

    Fomin, N; Arrington, J; Gaskell, D; Daniel, A; Seely, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Boillat, B; Bosted, P; Bruell, A; Bukhari, M.H.S.; Christy, M E; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Dutta, D; Ent, R; El Fassi, L; Fenker, H; Filippone, B W; Garrow, K; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Miyoshi, T; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Okayasu, Y; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.

  12. Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction

    SciTech Connect

    Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.; Deininger, J.R.; Dolfini, S.M.; Mandeville, J.B.; Mueller, P.E.; Williamson, S.E.

    1988-11-20

    Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.

  13. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  14. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  15. Radio characteristics of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    1986-02-01

    Radio characteristics of galactic nuclei, providing such unique information as spectral data on source variability, and the long-term history of the central engine and its duration of activity and total energy, are reviewed. The compact radio source characteristics are complicated by orientation-dependent relativistic beaming and by refractive focusing in the interstellar medium. Incoherent synchrotron radiation is thought to be the emission mechanism, with the result that synchrotron self-absorption in compact sources hides the central engine from direct radio observation. However, the history revealed by the extended jets and lobes of radio galaxies and quasars favors a single massive object not supported by radiation pressure, either a spinar or a black hole, as the energy source in radio-galaxy nuclei.

  16. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  17. Direct Reactions with Exotic Nuclei

    SciTech Connect

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  18. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Hader, J.; Wright, T.; McMeeking, G. R.

    2013-12-01

    Primary biological aerosol particles (PBAP) contribute to the concentrations of ice nuclei (IN) in the atmosphere. Laboratory studies have shown that pollen grains, a subset of PBAP, can serve as immersion mode ice nuclei at temperatures ranging from -9 to -25 deg C. At the peak of the pollen season pollen concentrations can reach surface-level concentrations exceeding 1 per liter of air. Furthermore, previous studies have suggested that the ice nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules, which may become dispersed by the rupturing of the pollen sac during wetting and drying cycles. If true, this mechanism is expected to produce highly elevated IN concentrations at temperatures warmer than -25 deg C. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina. Raleigh is surrounded by a dense mixed hardwood forest composed primarily of oak, hickory, and pine species. Air samples were collected using a swirling aerosol collector twice per week and the solution was analyzed for ice nuclei activity using a droplet freezing assay setup. Rainwater samples were collected during rain events at the peak of the pollen season and analyzed with the drop freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Raw freezing spectra were used to probe the freezing activity of both abundant and rare IN contained in sample liquids by analysis of drops that had varying degrees of preconcentration and size (~50 to ~650 μm). Extreme value statistics is used to collapse the raw freezing data into a single ice nuclei spectrum, defined as number of ice nuclei per volume of air as a function of temperature, that spans ~6 orders of magnitude in IN concentration. For a selected number of samples, concentrations of biological and non-biological ambient aerosol and particles are

  19. Measuring the electric properties of planetary environments with Mutual Impedance (MI) Probes

    NASA Astrophysics Data System (ADS)

    Trautner, R.; Grard, R.

    2002-10-01

    Mutual Impedance Probes measure the complex permittivity of material by means of a quadrupolar array of electrodes and associated electronics for generating, recording and processing waveforms. MI instruments have been developed for a number of ongoing space missions. The HASI/PWA MI probe will determine the electric properties of the atmosphere of Titan, Saturn's largest moon, during the descent of the Huygens probe. After landing, the instrument will provide data on the properties of Titan's surface materials. The permittivity probe PP, as part of the SESAME instrument package for the Rosetta Lander, will determine the electrical properties of comet Wirtanen's surface. The main features of MI probes are first recapitulated. Instrument architectures for atmospheric, surface and subsurface investigations are described. Results from recent field test campaigns in harsh environments are presented. A new MI probe prototype employing a linear electrode array for application on mobile platforms or on penetrator devices is described. New application areas for future MI probes and relevant technology requirements are discussed.

  20. Iterative Lineshape Analysis of Quadrupolar Echo Spectra of a Damped CD 3 Quantum Rotor: Preliminary Evidence of a Novel Mechanism of Stochastic Spin Exchange

    NASA Astrophysics Data System (ADS)

    Szymański, S.; Olejniczak, Z.; Detken, A.; Haeberlen, U.

    2001-02-01

    It is demonstrated that the wealth of information about damped quantum rotation of CD3 groups, contained in quadrupolar echo spectra, can be fully explored in a broad temperature range using a method of iterative analysis of the spectral lineshapes. The recently reported lineshape equation which, apart from the quantum tunneling and the dissipative Alexander-Binsch terms, contains an additional dissipative term having no classical analog is shown to be capable of describing even subtle details of the spectra of a crystal of acetylsalicylic acid-CD3 oriented specifically in the magnetic field. Preliminary evidence of the occurrence of this novel dissipative mechanism in the system studied is reported. The results obtained seem to suggest that there is no "classical limit" in the dissipative behavior of this system.

  1. Space-fractional Schrödinger equation for a quadrupolar triple Dirac-δ potential: Central Dirac-δ well and barrier cases

    NASA Astrophysics Data System (ADS)

    Tare, Jeffrey D.; Esguerra, Jose Perico H.

    2015-01-01

    We solve the space-fractional Schrödinger equation for a quadrupolar triple Dirac-δ (QTD-δ) potential for all energies using the momentum-space approach. For the E < 0 solution, we consider two cases, i.e., when the strengths of the potential are V0 > 0 (QTD-δ potential with central Dirac-δ well) and V0 < 0 (QTD-δ potential with central Dirac-δ barrier) and derive expressions satisfied by the bound-state energy. For all fractional orders α considered, we find that there is one eigenenergy when V0 > 0, and there are two eigenenergies when V0 < 0. We also obtain both bound- and scattering-state (E > 0) wave functions and express them in terms of Fox's H-function.

  2. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils

    NASA Astrophysics Data System (ADS)

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.

  3. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils.

    PubMed

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.

  4. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  5. Breakup Densities of Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Natowitz, J. B.; Yennello, S. J.

    2004-09-01

    Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A≲2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜0.3 for E*/A≳5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  6. Superdeformation in the mercury nuclei

    SciTech Connect

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )

    1990-01-01

    We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.

  7. Ground states of larger nuclei

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wave functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.

  8. Transcription in Isolated Wheat Nuclei

    PubMed Central

    Luthe, Dawn Sywassink; Quatrano, Ralph S.

    1980-01-01

    Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [3H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl2 or 2 millimolar MnCl2; 15 and 75 millimolar (NH4)2SO4. At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by α-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by α-amanitin. PMID:16661179

  9. Selfconsistent calculations for hyperdeformed nuclei

    SciTech Connect

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  10. Physical Processing of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Stern, S. Alan

    1997-12-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  11. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  12. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  13. PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI

    PubMed Central

    Olins, Donald E.; Olins, Ada L.

    1972-01-01

    The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment. PMID:4554987

  14. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  15. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  16. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.

    PubMed

    Woessner, D E; Bansal, N

    1998-07-01

    Anisotropic nuclear quadrupole interactions can produce residual quadrupole splitting in the NMR spectra of rapidly moving quadrupolar nuclei in incompletely disordered aqueous heterogeneous systems. Such systems may include hydrated sodium nuclei in biological tissue and biopolymer gels. To describe the NMR signals from such samples, we use a domain model in which each domain is characterized by a quadrupole frequency and a residence time of the nucleus. We show that the signals from each domain after one pulse, the quadrupole echo sequence, and the various multiple quantum filters (MQFs) can be expressed as a linear combination of five different phase coherences. To simulate the effect of various distributions (Pake powder pattern, Gaussian, etc.) of quadrupole frequencies for different domains on the NMR signal, we have written the computer program CORVUS. CORVUS also includes the effects of exchange between different domains using diffusion and random jump models. The results of computer simulations show that the Gaussian and Pake powder pattern quadrupole frequency distributions produce very different phase coherences and observable NMR signals when the exchange rate (1/taue) between different domains is slow. When 1/taue is similar to the root mean square quadrupole frequency (final sigma), the signals from the two distributions are similar. When 1/taue is an order of magnitude greater than final sigma, there is no apparent evidence of quadrupole splitting in the shape of the signal following one pulse, but the residual effects of the quadrupole splitting make a significant contribution to the fast transverse relaxation rate. Therefore, in this case, it is inappropriate to use the observed biexponential relaxation rates to obtain a single correlation time. The quadrupole echo and the various MQF signals contain an echo from the satellite transitions in the presence of quadrupole splitting. The peak of this echo is very sensitive to 1/taue. The time domain

  17. Breakup Densities of Hot Nuclei.

    NASA Astrophysics Data System (ADS)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex<˜x 2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜ 3 for E*/A .3ex>˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  18. Quasifree kaon photoproduction on nuclei

    SciTech Connect

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  19. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  20. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  1. Towards the exact calculation of medium nuclei

    SciTech Connect

    Gandolfi, Stefano; Carlson, Joseph Allen; Lonardoni, Diego; Wang, Xiaobao

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  2. Sensitivity of p-Nuclei to (n,g) Reaction Rates

    NASA Astrophysics Data System (ADS)

    Scriven, Dustin; Naqvi, Farheen; Spyrou, Artemis; Simon, Anna; Mayer, Brad

    2015-10-01

    The astrophysical p-process, which is responsible for the creation of the proton-rich p-nuclei, is still not well understood. A sensitivity study of p-nuclei abundances to (n, γ) and (γ,n) reaction rates was conducted at the National Superconducting Cyclotron Laboratory using a nuclear reaction network created at Clemson University. This network simulates the explosive shock front of a Type II supernova passing through the oxygen/neon layer of a 25 M⊙ star. Reaction rates of many (n, γ) reactions and their inverses were increased and decreased by a factor of 3 and the effects were observed. Probing the sensitivity of p-nuclei abundances aids in pointing out reactions important to the p-process. In turn, this information can be used as a tool to drive experimental research, helping to decrease uncertainties and increase the robustness of p-process and other stellar models.

  3. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    NASA Astrophysics Data System (ADS)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  4. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    SciTech Connect

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.; Suetin, D. P.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV are presented.

  5. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated... that the organization known as Conspiracy of Fire Nuclei, also known as Conspiracy of the Nuclei...

  6. Fission fragment angular distributions in pre-actinide nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    measured σfis and predictions of SM indicated the presence of NCNF in at least four systems, when shell effects, both in the level density and the fission barrier, were included in the calculation. Conclusions: Systematic SM analysis of measured fission angular anisotropies and σfis confirmed the onset of NCNF in pre-actinide nuclei. Discrepancies between results about the degree of its influence on complete fusion, as deduced from various experimental probes, remain challenges to be solved. Complete measurement of all signatures of NCNF for many systems and preferably a dynamical description of the collisions between projectile and target nuclei are warranted for a deeper understanding.

  7. Synthesis of the lightest nuclei

    NASA Astrophysics Data System (ADS)

    Kneller, James Patrick

    The lightest nuclei are principally synthesized either during the first moments of the Universe or as fragments from the spallation of heavier nuclei when Cosmic Rays interact with the Interstellar Medium and this dissertation investigates each in turn. In the first half the predictions from Big Bang Nucleosynthesis are studied when the requirements of only three relativistic neutrino flavors and a small electron neutrino chemical potential are relaxed. The hope that a small, acceptable region for each can be identified is shown to be unfounded because of a degeneracy amongst the parameters. Additional information is required and this may be obtained from the anisotropies in the Cosmic Microwave Background. The estimates of the baryon to photon ratio are shown to be consistent and a relatively well identified value for the number of relativistic neutrino species can be found but with a variance that exhibits a dependency upon the prior assumptions. By imposing a constraint upon the age of the Universe the number of relativistic neutrino species is shown to be <=6 which then yields an limit to the electron neutrino chemical potential of <=0.3. The second is concerned with the kinetics and evolution of Galactic Cosmic Ray Nucleosynthesis. Two approximations are frequently employed in calculations of the production rates: the termination of the reaction expansion at the `One-Step' term and the Straight-Ahead Approximation for the fragment energies. Relaxing the Straight-Ahead Approximation produces minor differences of order 5% but changes of order 10-50% are found when the Two-Step terms in the reaction expansion are included. The two proposed solutions capable of reconciling the theoretical predictions of the evolution of the abundances of these elements with the observations: the possibility of an enriched cosmic ray composition and a modified Oxygen to Iron relation. From the analysis of a simple model it is found that an enriched component greater than >~ 70% is

  8. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  9. Coulomb energy differences in analog rotational bands of f7/2-shell nuclei

    NASA Astrophysics Data System (ADS)

    Lenzi, S. M.; Mǎrginean, N.; Napoli, D. R.; Ur, C. A.; Zuker, A. P.; Axiotis, M.; Brandolini, F.; de Angelis, G.; Farnea, E.; Gadea, A.; Martínez-Pinedo, G.; Poves, A.; Sánchez-Solano, J.

    2002-04-01

    Recent experimental and shell model studies of isospin symmetry along the ground state rotational bands in the mirror nuclei 50Fe and 50Cr are presented. This is the heaviest T=1 mirror pair studied so far at high spin. It is shown that the Coulomb energy differences provide a good tool to probe the alignment mechanism at the backbending and that they also give information about the evolution of yrast radii as a function of the angular momentum. .

  10. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-12-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disc with mid-plane density n0 ˜ 200-1000 cm-3 and scaleheight z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that an SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  11. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  12. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  13. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  14. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Zhang, Lei; Sun, Xin

    2014-01-10

    In this manuscript, we quantitatively calculated the thermodynamic properties of critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics (CSDD) method. It is found that Cr concentration distribution in the critical nuclei strongly depend on the overall Cr concentration as well as temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.

  15. Effective Interactions for Light Nuclei

    NASA Astrophysics Data System (ADS)

    Caldwell, Bryan R.

    The G-matrix technique in which one is able to easily calculate ground and excited states of many-body systems is used to calculate the ground state energies and some excited levels of ^3H and ^4He. Energy independent effective interactions are obtained for these nuclei using the technique of Suzuki and Lee which requires the G-matrix and its derivatives with respect to starting energy. It is found that accurate energy derivatives of the G-matrix are necessary to obtain energy independence and thus analytic expressions are presented for these derivatives in both center-of-mass/relative and shell model coordinate systems. Several rules of thumb are given pertaining to the convergence criteria in both coordinate systems. Further, since the G-matrix includes only intra -channel two-body correlations outside the active space, we explore the effect on the binding energies when the active space is enlarged to include several major shells. By enlarging the active space, we hope to include the most important many-body correlations explicitly. It is found that when the active space includes more than 2 major shells, the effective interaction is well approximated by the G-matrix. Our results essentially agree with exact Faddeev calculations for ^3 H but underbind by about.5 MeV in ^4 He as compared to exact Yabukovsky and Green function Monte Carlo calculations. A possible reason for this underbinding, the inclusion of unlinked diagrams in the energy expansion, is studied. The energy independent G-matrix technique is then applied to the p-shell (^5He, ^6Li and ^7Li) where the active space includes all excitations up to 2 hbaromega. Zero, one, two and three -body effective interactions are extracted and it is found that a schematic two-parameter three-body potential can be used to approximate the effective three-body potential that results from the truncation of the active space.

  16. Where Should the Nuclei Be Located?

    ERIC Educational Resources Information Center

    Ying Liu; Yue Liu; Drew, Michael G. B.

    2005-01-01

    The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.

  17. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  18. From nucleons to nuclei to fusion reactions

    NASA Astrophysics Data System (ADS)

    Quaglioni, S.; Navrátil, P.; Roth, R.; Horiuchi, W.

    2012-12-01

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  19. A focus on shape coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Heyde, K.

    2016-02-01

    The present collection of articles focuses on new directions and developments under the title of shape coexistence in nuclei, following our 2011 Reviews of Modern Physics article (K Heyde and J L Wood).

  20. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  1. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  2. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  3. Parton distributions in nuclei: Quagma or quagmire

    SciTech Connect

    Close, F.E.

    1988-01-01

    The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.

  4. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  5. The anatomy of the vestibular nuclei.

    PubMed

    Highstein, Stephen M; Holstein, Gay R

    2006-01-01

    The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.

  6. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  7. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  8. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  9. Chromosome-specific DNA Repeat Probes

    SciTech Connect

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  10. Characterization of biological ice nuclei from a lichen.

    PubMed Central

    Kieft, T L; Ruscetti, T

    1990-01-01

    Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei. PMID:2188965

  11. Mechanics in human fibroblasts and progeria: Lamin A mutation E145K results in stiffening of nuclei.

    PubMed

    Apte, Ketaki; Stick, Reimer; Radmacher, Manfred

    2017-02-01

    The lamina is a filamentous meshwork beneath the inner nuclear membrane that confers mechanical stability to nuclei. The E145K mutation in lamin A causes Hutchinson-Gilford progeria syndrome (HGPS). It affects lamin filament assembly and induces profound changes in the nuclear architecture. Expression of wild-type and E145K lamin A in Xenopus oocytes followed by atomic force microscopy (AFM) probing of isolated oocyte nuclei has shown significant changes in the mechanical properties of the lamina. Nuclei of oocytes expressing E145K lamin A are stiffer than those expressing wild-type lamin A. Here we present mechanical measurements by AFM on dermal fibroblasts obtained from a 4-year-old progeria patient bearing the E145K lamin A mutation and compared it to fibroblasts obtained from 2 healthy donors of 10 and 61 years of age, respectively. The abnormal shape of nuclei expressing E145K lamin A was analyzed by fluorescence microscopy. Lamina thickness was measured using electron micrographs. Fluorescence microscopy showed alterations in the actin network of progeria cells. AFM probing of whole dermal fibroblasts did not demonstrate significant differences in the elastic moduli of nuclear and cytoplasmic cell regions. In contrast, AFM measurements of isolated nuclei showed that nuclei of progeria and old person's cells are significantly stiffer than those of the young person, indicating that the process of aging, be it natural or abnormal, increases nuclear stiffness. Our results corroborate AFM data obtained using Xenopus oocyte nuclei and prove that the presence of E145K lamin A abnormally increases nuclear stiffness.

  12. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  13. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model

    SciTech Connect

    Engh, G. van den; Trask, B.J. ); Sachs, R. )

    1992-09-04

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  14. Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model

    NASA Astrophysics Data System (ADS)

    van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.

    1992-09-01

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  15. Nuclei act as independent and integrated units of replication in a Xenopus cell-free DNA replication system.

    PubMed Central

    Blow, J J; Watson, J V

    1987-01-01

    We have used a novel approach to investigate the control of initiation of replication of sperm nuclei in a Xenopus cell-free extract. Nascent DNA was labelled with biotin by supplementing the extract with biotin-11-dUTP, and isolated nuclei were then probed with fluorescein-conjugated streptavidin. Flow cytometry was used to measure the biotin content of individual nuclei and their total DNA content. This showed that incorporation of the biotinylated precursor increases linearly with DNA content. Haploid sperm nuclei replicate fully to reach the diploid DNA content over 2-6 h in the extract. Synthesis stops once the diploid DNA content is reached. Different nuclei enter S phase at different times over greater than 1.5 h, although they share the same cytoplasmic environment. Nuclei reach their maximum rates of synthesis soon after entry into S phase and some replicate fully in less than 0.5 h, resembling the rates of replication observed in the intact egg. These results indicate that initiations are coordinated within each nucleus such that the nucleus is the fundamental unit of replication in the cell-free system. Images Fig. 1. Fig. 2. PMID:3653079

  16. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  17. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  18. Structure and spectroscopy of transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    2001-11-09

    The stability of the superheavy elements depends on the shell corrections which are governed by the single-particle spectra. Ideally one would like to experimentally determine the single-particle levels in the superheavy nuclei but the production of only a few atoms of these nuclides precludes such measurements. One therefore has to identify single-particle levels in the heaviest nuclei which are available in at least nanoCurie amounts. They have studied the structure of such heavy nuclei in the Z=98 region and identified many single-particle states. In particular, they have studied the structure of {sup 251}Cf and {sup 249}Bk by measuring the radiations emitted in the {alpha} decay of {sup 255}Fm and {sup 253}Es. These single-particle spectra can be used to test theoretical models for superheavy elements.

  19. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  20. Constraining nucleon high momentum in nuclei

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2017-02-01

    Recent studies at Jefferson Lab show that there are a certain proportion of nucleons in nuclei have momenta greater than the so-called nuclear Fermi momentum pF. Based on the transport model of nucleus-nucleus collisions at intermediate energies, nucleon high momentum caused by the neutron-proton short-range correlations in nuclei is constrained by comparing with π and photon experimental data and considering some uncertainties. The high momentum cutoff value pmax ≤ 2pF is obtained.

  1. Structure of neutron-rich nuclei

    SciTech Connect

    Nazarewicz, W. ||

    1997-11-01

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective.

  2. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  3. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  4. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  5. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  6. Light nuclei from chiral EFT interactions

    NASA Astrophysics Data System (ADS)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  7. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.

    PubMed Central

    Spiker, S; Murray, M G; Thompson, W F

    1983-01-01

    We have investigated the DNase I sensitivity of transcriptionally active DNA sequences in intact nuclei and isolated chromatin from embryos of wheat (Triticum aestivum L.). Nuclei or isolated chromatin was incubated with DNase I, and the extent of DNA digestion was monitored as percentage acid solubility. The resistant DNA and DNA from sham-digested controls were used to drive reassociation reactions with cDNA populations corresponding to either total poly(A)+RNA from unimbibed wheat embryos or polysomal poly(A)+RNA from embryos that had imbibed for 3 hr. Sequences complementary to either probe were depleted in DNase I-resistant DNA from nuclei and from chromatin isolated under low-ionic-strength conditions. This indicates that transcriptionally active sequences are preferentially DNase I sensitive in plants. In chromatin isolated at higher ionic strength, cDNA complementary sequences were not preferentially depleted by DNase I treatment. Therefore, the chromatin structure that confers preferential DNase I sensitivity to transcriptionally active genes appears to be lost when the higher-ionic-strength method of preparation is used. Treatment of wheat nuclei with DNase I causes the release of four prominent nonhistone chromosomal proteins that comigrate with wheat high mobility group proteins on NaDodSO4 gels. Images PMID:6219388

  8. Hot-wire probe

    NASA Technical Reports Server (NTRS)

    Mikulla, V.

    1976-01-01

    High-temperature platinum probe measures turbulence and Reynolds shear stresses in high-temperature compressible flows. Probe does not vibrate at high velocities and does not react like strain gage on warmup.

  9. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  10. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  11. A Magnetoresistance Measuring Probe.

    DTIC Science & Technology

    The in line four point probe, commonly used for measuring the sheet resistance in a conductor, cannot measure the anisotropic ferromagnetic magnetoresistance. However, the addition of two contact points that are not collinear with the current contacts give the probe the ability to non-destructively measure the anistropic magnetoresistance. Keywords: Magnetoresistance; Anisotropic; Thin-Film; Permalloy; Four Point Probe; Anisotropic Resistance.

  12. [C ii] emission from galactic nuclei in the presence of X-rays

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Pineda, J. L.

    2015-08-01

    Context. The luminosity of [C ii] is used as a probe of the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C ii] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C ii] luminosity. Aims: We aim to determine the properties of the ionized carbon and its distribution among highly ionized states in the interstellar gas in galactic nuclei under the influence of X-ray sources. We calculate the [C ii] luminosity in galactic nuclei under the influence of bright sources of soft X-rays. Methods: We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [C ii] emission from the interstellar medium (ISM) in galactic nuclei representing conditions in the Galactic central molecular zone and a higher density AGN model. The behavior of the [C ii] luminosity is calculated as a function of the X-ray luminosity. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. Results: We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C ii] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C+ abundance in the WIM, converting some fraction to C2+ and higher ionization states and thus reducing its [C ii] luminosity. For an X-ray luminosity L(X-ray) ≳ 1043 erg s-1 the [C ii] luminosity can be suppressed by a factor of a few, and for very strong sources, L(X-ray) >1044 erg s-1 such as found for many AGNs, the [C ii] luminosity is significantly depressed. Comparison of the model with several extragalactic sources shows that the [C ii] to far-infrared ratio declines for L(X-ray) ≳ 1043 erg s-1, in reasonable agreement with our model. Conclusions: We conclude that X

  13. Neutron-antineutron oscillations in nuclei

    SciTech Connect

    Dover, C.B.; Gal, A.; Richard, J.M.; Hebrew Univ., Jerusalem . Racah Inst. of Physics; Grenoble-1 Univ., 38 . Inst. des Sciences Nucleaires)

    1989-01-01

    We briefly review the state of the art for extracting the period of neutron-antineutron oscillations from the lifetime of nuclei. The most recent data on nuclear stability provide a limit of 10{sup 8} s for the oscillation period. 13 refs.

  14. Four-Body Correlations in Nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-09-01

    Low-energy spectra of 4 n nuclei are described with high accuracy in terms of four-body correlated structures ("quartets"). The states of all N ≥Z nuclei belonging to the A =24 isobaric chain are represented as a superposition of two-quartet states, with quartets being characterized by isospin T and angular momentum J . These quartets are assumed to be those describing the lowest states in 20Ne (Tz=0 ), 20F (Tz=1 ), and 20O (Tz=2 ). We find that the spectrum of the self-conjugate nucleus 24Mg can be well reproduced in terms of T =0 quartets only and that, among these, the J =0 quartet plays by far the leading role in the structure of the ground state. The same conclusion is drawn in the case of the three-quartet N =Z nucleus 28Si. As an application of the quartet formalism to nuclei not confined to the s d shell, we provide a description of the low-lying spectrum of the proton-rich 92Pd. The results achieved indicate that, in 4 n nuclei, four-body degrees of freedom are more important and more general than usually expected.

  15. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  16. Form Factors and Radii of Light Nuclei

    SciTech Connect

    Sick, Ingo

    2015-09-15

    We discuss the determination of electromagnetic form factors from the world data on electron–nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.

  17. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  18. Nucleon compositeness and nucleon-nuclei scattering

    NASA Astrophysics Data System (ADS)

    Li, Ming

    1990-04-01

    Large N QCD arguments are used to distinguish phenomenology of nucleon-nuclei scattering based on the Dirac equation with point nucleons and on quark based models with composite nucleons. The Friedberg-Lee soliton model is used as an explicit example.

  19. Competition in rotation-alignment between high-j neutrons and protons in transfermium nuclei

    SciTech Connect

    Al-Khudair, Falih; Long Guilu; Sun Yang

    2009-03-15

    The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.

  20. Physics of Exotic Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2014-09-01

    ``Exotic nuclei'' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in the universe. Efforts have been made to produce and investigate such exotic nuclei at the accelerator facilities in the world. One of the facilities, the Radioactive Isotope Beam Factory (RIBF) facility at RIKEN, Japan has delivered intense radioactive isotope (RI) beams since 2007. In US, the Facility for Rare Isotope Beams is being constructed to start around 2020. To access nuclei far from the stability line, especially neutron-rich nuclei, the RIBF facility is highly optimized for inflight production of fission fragments via a U beam. The Super-conducting Ring Cyclotron delivers a 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. An inflight separator BigRIPS was designed to collect about 50% of fission fragments produced at the target and separate nuclei of interest. The RI beams produced at BigRIPS are then delivered to several experimental devices. Large-scale international collaborations have been formed at three spectrometers to conduct unique programs for the investigation of decay properties single particle orbits, collective motions, nucleon correlation, and the equation-of-state of asymmetric nuclear matter. Nuclear binding energy will be measured at a newly constructed ring for the r-process path, and charge distribution of exotic nuclei will be examined at a unique setup of an RI target section in an electron storage ring. Ultra slow RI beams available at a gas catcher system will be utilized for table-top and high precision measurements. In this talk, I would give a facility overview of RIBF, and introduce objectives at RIBF. Special emphasis would be given to selected recent highlights

  1. Hard probes of short-range nucleon-nucleon correlations

    SciTech Connect

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  2. RNA-sequencing from single nuclei

    PubMed Central

    Grindberg, Rashel V.; Yee-Greenbaum, Joyclyn L.; McConnell, Michael J.; Novotny, Mark; O’Shaughnessy, Andy L.; Lambert, Georgina M.; Araúzo-Bravo, Marcos J.; Lee, Jun; Fishman, Max; Robbins, Gillian E.; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H.; Galbraith, David W.; Gage, Fred H.; Lasken, Roger S.

    2013-01-01

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues. PMID:24248345

  3. RNA-sequencing from single nuclei.

    PubMed

    Grindberg, Rashel V; Yee-Greenbaum, Joyclyn L; McConnell, Michael J; Novotny, Mark; O'Shaughnessy, Andy L; Lambert, Georgina M; Araúzo-Bravo, Marcos J; Lee, Jun; Fishman, Max; Robbins, Gillian E; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H; Galbraith, David W; Gage, Fred H; Lasken, Roger S

    2013-12-03

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues.

  4. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  5. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  6. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  7. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  8. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  9. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  10. Few-nucleon transfer reactions on deformed nuclei

    SciTech Connect

    van den Berg, A.M.

    1985-01-01

    Recent developments discussed include: alpha-transfer reactions on deformed nuclei, quasi-elastic neutron transfer reactions induced by /sup 58/Ni beams on spherical and deformed samarium nuclei, and the population of low-lying states in neutron rich nuclei using (particle,..gamma..) or (particle,e) coincidence methods. 37 refs., 10 figs. (LEW)

  11. The History of Tidal Disruption Events in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Mastrobuono Battisti, Alessandra; Perets, Hagai B.

    2016-06-01

    The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs, and in probing the properties and dynamics of their nuclear stellar cluster (NSC) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been little explored. Here we consider TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker-Planck approach to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDE history based on N-body simulation data, and find them to be comparable. We consider NSCs that are built up from close-in star formation (SF) or from far-out SF/cluster-dispersal, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional SF/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g., LSST).

  12. Somatic S-phase pairing of homologous chromosome 3 in interphase nuclei of human peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Monajembashi, Shamci; Rapp, Alexander; Hausmann, Michael; Dittmar, Heike; Greulich, Karl-Otto

    2000-12-01

    Distances of homologous centromeres and telomeres of human chromosomes were interactively measure din relation to the nuclear diameter. In total about 2000 cell nuclei were acquired by fluorescence microscopy. Here the results are presented for two color fluorescence in situ hybridization (FISH) applied to lymphocyte cell nuclei using commercially available DNA probes for chromosome 3 centromere and 3p- telomere. In 89 cell nuclei (66%) of the homologous centromeres had a distance Dc smaller than 15 percent of the nuclear diameter (dn). For these per definition classified 'paired' centromeres an increased frequency of small distances of homologous telomeres (Dt) was found. Stimulated S-phase cell nuclei were identified by incorporation of bromodeoxyuridine and simultaneous fluorescence labeling by anti-BrdU antibodies. In this case only the centromeres were FISH labeled. Of 301 cell nuclei about 187 (62%) were stimulated and among them 77 (41%) were paired according to the above mentioned criterion (Dc<0,15 dn). These results indicate that proliferating blood lymphocytes show a considerable tendency to centromere pairing. Assuming that the chromosome arm is probably localized between centromere and telomere with a homologous chromatin density, it may be concluded from the data that somatic pairing of whole chromosomes occurs preferentially during S-phase of the cell nucleus.

  13. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  14. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  15. Collective properties of drip-line nuclei

    SciTech Connect

    Hamamoto, I.; Sagawa, H.

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  16. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  17. DAPI fluorescence in nuclei isolated from tumors.

    PubMed

    Krishan, Awtar; Dandekar, Payal D

    2005-08-01

    In DNA histograms of some human solid tumors stained with nuclear isolation medium--4,6-diamidino-2-phenylindole dihydrochloride (NIM-DAPI), the coefficient of variation (CV) of the G0/G1 peak was broad, and in nuclear volume vs DNA scattergrams, a prominent slope was seen. To determine the cause for this, nuclei from frozen breast tumors were stained with NIM-DAPI and analyzed after dilution or resuspension in PBS. In two-color (blue vs red) analysis, most of the slope and broad CV was due to red fluorescence of nuclei stained with NIM-DAPI, which was reduced on dilution or resuspension in PBS, resulting in elimination of the slope and tightening of the CV.

  18. Green's function calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  19. Intrinsic excitations in doubly odd nuclei

    SciTech Connect

    Sood, P.C.

    1985-01-15

    A procedure is outlined for predicting the bandhead energies of the two-particle (intrinsic) states of odd-odd deformed nuclei based on a quantitative evaluation of the zero range n-p residual interaction energy. We present our results for 250Bk, where many such levels are experimentally known, and for 236Np and 246Am, where the information is very scarce and that too uncertain, to illustrate the effectiveness of this approach.

  20. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  1. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  2. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  3. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  4. Deeply virtual Compton scattering off nuclei

    SciTech Connect

    Voutier, Eric

    2009-01-01

    Deeply virtual Compton scattering (DVCS) is the golden exclusive channel for the study of the partonic structure of hadrons, within the universal framework of generalized parton distributions (GPDs). This paper presents the aim and general ideas of the DVCS experimental program off nuclei at the Jefferson Laboratory. The benefits of the study of the coherent and incoherent channels to the understanding of the EMC (European Muon Collaboration) effect are discussed, along with the case of nuclear targets to access neutron GPDs.

  5. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  6. Multi-K¯ nuclei and kaon condensation

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  7. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  8. Transient internal probe

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas R.; Mattick, Arthur T.

    1993-12-01

    The Transient Internal Probe (TIP) diagnostic is a novel method for probing the interior of hot magnetic fusion plasmas that are inaccessible with ordinary stationary probes. A small probe of magneto-optic (Verdet) material is fired through a plasma at speeds of several km/sec, illuminated by a laser beam. The beam's polarization is rotated in the probe by the local magnetic field and retroreflection back to a polarimetry detector allows determination of the B-field profile across the diameter of a plasma at a spatial resolution of better than 1-cm and an absolute B-field resolution of a few tens of Gauss. The principal components of a TIP diagnostic system were developed and tested. A two-stage light gas gun was constructed that accelerates 30-caliber projectiles to 3 km/sec, and methods were examined for stripping a lexan sabot from a probe prior to entry into a plasma. Probes of CdMnTe and FR-5 Verdet glass were fabricated, and a polarimetry system was constructed for resolving polarization to within 0.25 deg. The diagnostic was validated by measuring a static B-field with a moving (dropped) TIP probe, and finding agreement with Hall-probe measurements to within experimental accuracy (40 Gauss).

  9. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  10. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  11. Probing Skills for Tutors.

    ERIC Educational Resources Information Center

    Brown, Beryl E.

    The Office of Academic Support and Instructional Services (OASIS) at the University of California at San Diego sponsors a workshop that teaches tutors to use five types of probing skills. The use of the skills is fundamental to the student learner's acquisition of complex relationships and problem solving skills. The five types of probes are:…

  12. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  13. Electron temperature probe

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Cheng, C. Z.

    2013-11-01

    The electron temperature probe (ETP) was invented in Japan in 1970's. The probe measures the electron temperature accurately and the measurement is not influenced by the electrode contamination. The instrument has low weight, low data transmission bit rate and low power consumption. The probe has been deployed in many sounding rockets, Earth orbiting scientific satellites, and Mars exploration spacecraft in Japan. The probe has also been deployed in sounding rockets in West Germany, India, Canada, USA, and Brazil. The probe has also been deployed in Brazilian satellites, Korean satellites, and recently as a Taiwan satellite payload. The manuscript describes the principle of the ETP instrument, the system configuration, the mechanical interface with respect to the sensor location, the control timing between data processing units; some useful information, the interference with other instruments, and future improvements and tasks. Some useful information for conducting performance check after the instrument fabrication and before the flight deployment is also presented in Appendix A.

  14. Inflatable traversing probe seal

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul A.

    1991-01-01

    An inflatable seal acts as a pressure-tight zipper to provide traversing capability for instrumentation rakes and probes. A specially designed probe segment with a teardrop cross-section in the vicinity of the inflatable seal minimizes leakage at the interface. The probe is able to travel through a lengthwise slot in a pressure vessel or wind tunnel section, while still maintaining pressure integrity. The design uses two commercially available inflatable seals, opposing each other, to cover the probe slot in a wind tunnel wall. Proof-of-concept tests were conducted at vessel pressures up to 30 psig, with seals inflated to 50 psig, showing no measurable leakage along the seal's length or around the probe teardrop cross-section. This seal concept can replace the existing technology of sliding face plate/O-ring systems in applications where lengthwise space is limited.

  15. Spin-orbit coupling in octamers in the spinel sulfide CuIr2S4: Competition between spin-singlet and quadrupolar states and its relevance to remnant paramagnetism

    NASA Astrophysics Data System (ADS)

    Nasu, Joji; Motome, Yukitoshi

    2014-07-01

    We theoretically investigate magnetic properties in the low-temperature phase with the formation of eight-site clusters, octamers, in the spinel compound CuIr2S4. The octamer state was considered to be a spin-singlet state induced by a Peierls instability through the strong anisotropy of d orbitals, the so-called orbital Peierls state. We reexamine this picture by taking into account the spin-orbit coupling, which was ignored in the previous study. We derive a low-energy effective model between jeff=1/2 quasispins on Ir4+ cations in an octamer from the multiorbital Hubbard model with the strong spin-orbit coupling by performing the perturbation expansion from the strong correlation limit. The effective Hamiltonian is in the form of the Kitaev-Heisenberg model but with an additional interaction, a symmetric off-diagonal exchange interaction originating from the perturbation process including both d-d and d-p-d hoppings. Analyzing the effective Hamiltonian on two sites and the octamer by the exact diagonalization, we find that there is competition between a spin-singlet state and a quadrupolar state. The former singlet state is a conventional one, adiabatically connected to the orbital Peierls state. On the other hand, the latter quadrupolar state is stabilized by the additional interaction, which consists of a linear combination of different total spin momenta along the spin quantization axis. In the competing region, the model exhibits paramagnetic behavior with a renormalized small effective moment at low temperature. This peculiar remnant paramagnetism is not obtained in the Kitaev-Heisenberg model without the additional interaction. Our results renew the picture of the octamer state and provide a scenario for the intrinsic paramagnetic behavior recently observed in a muon spin rotation experiment [K. M. Kojima et al., Phys. Rev. Lett. 112, 087203 (2014)]., 10.1103/PhysRevLett.112.087203

  16. The influence of s states near threshold on the structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem

    2015-10-01

    A recent work identified the role of neutron s states, and their proximity to the neutron separation threshold, on the ordering of the 1s1 / 2 and 0d5 / 2 single-particle levels in light nuclei. A simple Woods-Saxon potential was used to reproduce the systematic data available for these two levels with great success by accounting for the s state binding energy. This talk will explore other noticeable trends in light nuclei involving neutron s states and utilizing simple potential models determine the role binding energy plays. The trends and calculations will aim to provide descriptions of data and predictions of yet to be found two-particle two-hole excited states in N = 8 and 10 nuclei ranging from Z = 4-9, as well as the energies of mirror states in neutron deficient Al and Na isotopes. Results will be compared with state-of-the-art calculations. Possible future measurements capable of probing these predictions will be discussed as well. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  17. Analysis of bulk and surface contributions in the neutron skin of nuclei

    SciTech Connect

    Warda, M.; Vinas, X.; Roca-Maza, X.; Centelles, M.

    2010-05-15

    The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.

  18. Application of probe manipulator to repair probe cards

    NASA Astrophysics Data System (ADS)

    Konno, Takeshi; Kobayashi, Mikihiko; Egashira, Mitsuru; Machida, Kazumichi; Urata, Atsuo

    2006-03-01

    We fabricated an apparatus for manipulation and welding of fine metal objects using a probe. The apparatus is composed of a work probe of a tungsten alloy needle, stages, a DC power supply, and an observation system. The work probe is held vertically above a gold substrate placed on stages to control the relative position against the work probe. The DC power supply is equipped to apply voltage of 0-10kV between the work probe and the substrate. One application of the apparatus is to repair probe cards. Thousands of contact probes (needles) are mounted on the printed circuit board (PCB) in the probe card. The contact probes are mounted one by one by the hands. Recently, an array of the contact probe on the PCB is produced by the LIGA process in response to narrower semiconductor pitch length. The problem is that there are no methods to repair a wrong contact probe. Whole of the contact probes should be a waste owing to one wrong contact probe. We propose to replace a wrong contact probe with a good one using our apparatus. Experiments to remove a contact probe by the apparatus is carried out using the specimen of a mimic probe card, where a cantilever type contact probes are arranged with a pitch of 25 micrometers. Removal of the wrong contact probe is carried out by a non-contact discharge and a contact discharge using the apparatus. High voltage of about 1-2kV is applied after the work probe is moved to above the target contact probe for the non-contact discharge. While high voltage of about10kV is applied after the work probe is positioned in contact with the target contact probe for the contact discharge. The target contact probe is removed by both methods, though the neighboring contact probes are damaged. The latter method is hopeful for removal for repair of the probe card.

  19. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    Stability, Fission Barrier and Nuclear Structure of the Z = 102 Isotope 254No * Neutron Capture on Radioactive Targets: Probing the S-Process * Angular Momentum Generation in Spontaneous Fission Fragments Without Thermal Excitation of Collective Modes * First Excited States in Neutron-Rich Neon and Sodium Isotopes * Production and Identification of New Heavy Neutron-Rich Isotopes * The Munich Accelerator for Fission Fragments MAFF, the Recycling of Radioactive Beams and Superheavy Elements * SIRIUS: A UK Facility to Provide Parallel Radioactive Beams for Research * Spectroscopy of Halo Nuclei From Reaction Measurements * Possibilities for Experiments with Neutron-Rich Beams in Nuclear Astrophysics * Superheavy Nuclei Revisited * Prospects for the Production of Neutron-Rich Nuclei by Relativistic Beams * Coulomb Dissociation of 19C and its Halo Structure * New Results on the Role of Shell Effects in Nuclear Fission From Experiments with Secondary Beams * How to Interpret the Correlations Preceding Spontaneous Fission Events Observed in Reactions of 48Ca with the Heaviest Actinide Targets * Charge and Mass Distributions of Fission Fragments From Intermediate Energy Collisions of 238U Projectiles. Generation of Very Neutron-Rich Nuclei * Fission Modes in 238U + d Reaction at Intermediate Energy * SU(3) Dynamical Symmetry and Odd-Even (ΔL = 1) Staggering in Heavy Deformed Nuclei * Deformation of Fragments with A ≃ 130 in Two Mode Fission * List of Participants

  20. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  1. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  2. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  3. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  4. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  5. Exploring the Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Volya, Alexander

    In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.

  6. Signatures for quark clustering in nuclei

    SciTech Connect

    Carlson, C.E.; Lassila, K.E.

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  7. Effective field theory for deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  8. Naked megakaryocyte nuclei: a clue to malignancy.

    PubMed

    Lefkowitz, M; Lefkowitz, E

    1977-10-01

    Bone marrow smears from 63 patients with various malignancies and a series of 51 controls were examined for the presence and percentage of naked megakaryocyte nuclei (NMN). Patients with malignancy had more than 15% NMN, which, when compared with the incidence in controls, was statistically significant. The etiology of this artifact is unknown. It is a clue to the presence of malignancy, and might be useful in following treated cases of malignancy for evidence of relapse. NMN should not be confused with metastatic malignant cells.

  9. Self-Consistency Effects In Superheavy Nuclei

    SciTech Connect

    Afanasjev, A.V.; Frauendorf, S.

    2005-04-05

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z = 120 and neutron N = 172 numbers, while flatter density distribution favors N = 184 for neutrons and leads to the appearance of a Z 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.

  10. Experimental level densities of atomic nuclei

    SciTech Connect

    Guttormsen, M.; Aiche, M.; Bernstein, L. A.; Bleuel, D. L.; Byun, Y.; Ducasse, Q.; Giacoppo, F.; Gorgen, A.; Gunsing, F.; Hagen, T. W.; Jurado, B.; Larsen, A. C.; Lebois, L.; Leniau, B.; Nyhus, H. T.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A.; Wiedeking, M.; Wilson, J.

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold.

  11. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  12. Effective field theory for deformed atomic nuclei

    NASA Astrophysics Data System (ADS)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  13. The Structure of Nuclei Far from Stability

    SciTech Connect

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  14. Halo nuclei interactions using effective field theory

    NASA Astrophysics Data System (ADS)

    Fernando, Nippalage Lakma Kaushalya

    Effective field theory (EFT) provides a framework to exploit separation of scales in the physical system in order to perform systematic model-independent calculations. There has been significant interest in applying the methods of EFT to halo nuclei. Using halo effective field theory, I provide a model-independent calculation of the radiative neutron capture on lithium-7 over an energy range where the contribution from the 3+ resonance becomes important. This reaction initiate the sequence in the carbon-nitrogen-oxygen (CNO) cycle in the inhomogeneous BBN models, and determine the amount of heavy element production from its reaction rate. One finds that a satisfactory description of the capture reaction, in the present single-particle approximation, suggests the use of a resonance width about three times larger than the experimental value. Power counting arguments that establish a hierarchy for the electromagnetic one- and two-body currents is also presented. The neutron capture of Lithium7 calculation has direct impact on the proton capture on beryllium7 which plays an important role in the neutrino experiments studying physics beyond the Standard Model of particle physics. As a further study of halo nuclei interactions, the cross section of radiative capture of a neutron by carbon-14 is calculated by considering the dominant contribution from electric dipole transition. This is also a part of the CNO cycle and as the slowest reaction in the chain it limits the flow of the production of heavier nuclei A > 14. The cross section is expressed in terms of the elastic scattering parameters of an effective range expansion. Contributions from both the resonant and non-resonant interactions are calculated. Significant interferences between these leads to a capture contribution that deviates from a simple Breit-Wigner resonance form. Using EFT, I present electromagnetic form factors of several halo nuclei. The magnetic dipole moment and the charge radii of carbon-15

  15. Evaporation of particles from hot nuclei

    NASA Astrophysics Data System (ADS)

    Zejun, He; Jianshi, Wu; Wolfgang, Nörenberg

    1988-11-01

    For particle evaporation from hot nuclei a model is proposed which is applicable to high excitation energies where the mean free path of nucleons becomes comparable to or smaller than the size of the nucleus. The formalism allows to calculate the time evolution of the emitting system and the evaporation rates and spectra of the emitted particles. The nucleus 133Cs with an initial temperature of 18 MeV is studied as an example. Implications for intermediate-energy heavy-ion collisions are indicated.

  16. Active Galactic Nuclei and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Giebels, Berrie; Aharonian, Felix; Sol, Hélène

    The supermassive black holes harboured in active galactic nuclei are at the origin of powerful jets which can emit copious amounts of γ-rays. The exact interplay between the infalling matter, the black hole and the relativistic outflow is still poorly known, and this parallel session of the 12th Marcel Grossman meeting intended to offer the most up to date status of observational results with the latest generation of ground and space-based instruments, as well as the theoretical developments relevant for the field.

  17. Associated strangeness production on light nuclei

    NASA Astrophysics Data System (ADS)

    Ernst, J.; Kingler, J.; Lippert, C.

    1991-04-01

    The study of light hyper-nuclei via associated strangeness production in (p, K+) reactions is discussed. Though the process is characterized by a very large momentum transfer the presence of short range correlations is expected to rise the cross section up to the order of nb/sr. Two approved proposals for high resolution studies of this reaction are discussed and respective detection limits are presented. The first is scheduled for October 1990 at the SPES4 spectrometer at the SATURNE acclerator (LNS Saclay). The second deals with the planned upgrading of the BIG KARL magnetic spectrograph at the cooled beam facility COSY being bulit at Forschungsanlage Jülich.

  18. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1998-08-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  19. Reactions and structure of exotic nuclei

    SciTech Connect

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  20. Collectivity in Light Nuclei and the GDR

    NASA Astrophysics Data System (ADS)

    Maj, A.; Styczeń, J.; Kmiecik, M.; Bednarczyk, P.; Brekiesz, M.; GrȨBOSZ, J.; Lach, M.; MȨCZYŃSKI, W.; ZiȨBLIŃSKI, M.; Zuber, K.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Million, B.; Wieland, O.

    2005-03-01

    The results are presented from the experiments using the EUROBALL and RFD/HECTOR arrays, concerning various aspects of collectivity in light nuclei. A superdeformed band in 42Ca was found. A comparison of the GDR line shape data with the predictions of the thermal shape fluctuation model, based on the most recent rotating liquid drop LSD calculations, shows evidence for a Jacobi shape transition in hot, rapidly rotating 46Ti and strong Coriolis effects in the GDR strength function. The preferential feeding of the SD band in 42Ca by the GDR low energy component was observed

  1. Statistical (?) decay of light hot nuclei

    NASA Astrophysics Data System (ADS)

    Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.

    2012-07-01

    The reaction 12C+12C at 95 MeV beam energy has been measured using the GARFIELD+RCo apparatuses at Laboratori Nazionali di Legnaro LNL - INFN, Italy, in the framework of an experimental campaign proposed by the NUCL-EX collaboration. The aim is to progress in the understanding of statistical properties of light nuclei at excitation energies above particle emission thresholds, by measuring exclusive fusion-evaporation data. A theoretical study of the system, performed with a newly developed Monte Carlo Hauser-Feshbach code, is shown, together with preliminary results of the data analysis.

  2. Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo

    2005-01-01

    The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.

  3. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy.

    PubMed

    Krause, Marina; Te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m(-1), force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  4. Mirrored Fragmentation Reactions--A New Technique for Probing Isospin Symmetry in Exotic Nuclei

    SciTech Connect

    Brown, J. R.; Bentley, M. A.; Taylor, M. J.; Aldrich, P.; Bazin, D.; Cook, J. M.; Diget, C. A.; Gade, A.; Glasmacher, T.; McDaniel, S. M.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.; Pritychenko, B.

    2008-05-12

    Gamma decays have been observed for the first time in the T{sub z} = -3/2 nucleus {sup 53}Ni. This represents the first gamma-spectroscopy of a T{sub z} = -3/2 nucleus heavier than A = 33. The nucleus was produced via a two-step fragmentation process, along with its mirror {sup 53}Mn. Differences in excitation energy between isobaric analogue states have been calculated and a preliminary interpretation attempted; shell model calculations are required to further understand these results. This work represents the first study of isobaric analogue states via mirrored fragmentation reactions and demonstrates the power of this new technique.

  5. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  6. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  7. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  8. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  9. Distance probes of dark energy

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D'Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; Eisenstein, D. J.; Finley, D. A.; Freedman, W. L.; Ho, S.; Holz, D. E.; Kasen, D.; Kent, S. M.; Kessler, R.; Kuhlmann, S.; Linder, E. V.; Martini, P.; Nugent, P. E.; Perlmutter, S.; Peterson, B. M.; Riess, A. G.; Rubin, D.; Sako, M.; Suntzeff, N. V.; Suzuki, N.; Thomas, R. C.; Wood-Vasey, W. M.; Woosley, S. E.

    2015-03-01

    This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays. We note that these three elements together make a comprehensive DOE SN program, with a well- sequenced combination of R&D, construction, operations and analysis projects. The DOE SN researchers will be involved in several of these at any given time, since the precision SN cosmology measurement requires an in-depth understanding and use of SN data from all the redshift ranges simultaneously. A future Stage IV space-based SNe project would be the simplest way to match, at high redshift, these precision measurements of Type Ia supernovae at low redshift -measurements needed to provide the same systematics control over the entire redshift range from z ∼ 0.01 to z ∼ 2 . With modest investments in spectroscopic capabilities and a small fraction of mission time, WFIRST-AFTA could be upgraded [Editor's note: and has been upgraded in the current baseline; see Footnote2] to become this project, and would be complementary to the lensing programs of LSST/EUCLID. However, given the timescales and many difficulties of a space mission, there is now a need to explore vigorously a ground-based alternative to fill this important missing element in the DOE program. In particular, an R&D effort to explore the potential of novel ground-based techniques, combining near-IR technology with OH sky-line suppression, could make it possible to accomplish the precision measurements for SNe from SCP, DES, and LSST, complementing and strengthening these currently approved DOE projects.

  10. Jupiter probe heatshield configuration optimization

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Binder, J. D.

    1978-01-01

    The effect of initial probe heatshield shape on the total probe mass loss during Jovian entry is considered. Modification of the aerothermal environment and probe entry trajectory due to changing probe heatshield shape is included in a computerized technique designed for rapid assessment of the effect of probe initial shape on heatshield mass loss. Results obtained indicate the importance of trajectory and heating distribution coupling with probe shape and mass change.

  11. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  12. Spherical nuclei near the stability line and far from it

    NASA Astrophysics Data System (ADS)

    Isakov, V. I.

    2016-11-01

    Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin-orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.

  13. Numerical simulations of the cascades of the nuclei {sup 152,154,156}Dy with self-consistent collective strength functions

    SciTech Connect

    Khoo, T.L.; Lauritsen, T.; Martin, V.; Egido, J.L.

    1995-08-01

    Mean-field theories predict phase transitions in nuclei, such as a transition from collective to oblate shapes. However, fluctuations in the finite nucleus smear out the transition, and it is an interesting problem in mesoscopic physics to search for a remnant signature of the phase transition. Temperature-dependent Hartree-Fock theory predicts that the collective-to-oblate phase transition boundaries occur in a domain that can be favorably probed in experiments in {sup 152,154,156}Dy. These calculations were motivated by our past measurements of the quasicontinuum E2 spectra in these nuclei.

  14. Superheavy nuclei: from predictions to discovery

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu Ts; Sobiczewski, A.; Ter-Akopian, G. M.

    2017-02-01

    A fundamental outcome of modern nuclear microscopic theory is the prediction of the ‘islands of stability’ in the region of hypothetical superheavy elements (SHEs). In a heavy nucleus, going through the large-scale deformation on the way to fission, the motion of single nucleons is coupled with the collective degrees of freedom of the whole system. The most striking effect of this coupling is obtained for the case of fission of the heaviest nuclei, whose existence is defined entirely by the nuclear structure, i.e. by the shell effect. From this point of view, the synthesis and study of properties of superheavy nuclei (SHN) is a direct way for checking the basic statements of the microscopic nuclear theory. On the nuclide map, SHN outline the border of the heaviest nuclear masses. SHN set the limits of the periodic system of chemical elements. The study of possible existence of SHN in nature offers a way for testing different scenarios of astrophysical nucleosynthesis. The paper elucidates experimental approaches, used for testing the theory predictions made about the SHN, and presents the results of the discovery of the ‘stability island’ of SHEs.

  15. NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION

    PubMed Central

    Zhou, Yin; Chang, Hang; Barner, Kenneth E.; Parvin, Bahram

    2017-01-01

    Automated profiling of nuclear architecture, in histology sections, can potentially help predict the clinical outcomes. However, the task is challenging as a result of nuclear pleomorphism and cellular states (e.g., cell fate, cell cycle), which are compounded by the batch effect (e.g., variations in fixation and staining). Present methods, for nuclear segmentation, are based on human-designed features that may not effectively capture intrinsic nuclear architecture. In this paper, we propose a novel approach, called sparsity constrained convolutional regression (SCCR), for nuclei segmentation. Specifically, given raw image patches and the corresponding annotated binary masks, our algorithm jointly learns a bank of convolutional filters and a sparse linear regressor, where the former is used for feature extraction, and the latter aims to produce a likelihood for each pixel being nuclear region or background. During classification, the pixel label is simply determined by a thresholding operation applied on the likelihood map. The method has been evaluated using the benchmark dataset collected from The Cancer Genome Atlas (TCGA). Experimental results demonstrate that our method outperforms traditional nuclei segmentation algorithms and is able to achieve competitive performance compared to the state-of-the-art algorithm built upon human-designed features with biological prior knowledge. PMID:28101301

  16. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  17. Thalamic nuclei in the opossum Monodelphis domestica.

    PubMed

    Olkowicz, Seweryn; Turlejski, Kris; Bartkowska, Katarzyna; Wielkopolska, Ewa; Djavadian, Rouzanna L

    2008-10-01

    We investigated nuclear divisions of the thalamus in the gray short-tailed opossum (Monodelphis domestica) to gain detailed information for further developmental and comparative studies. Nissl and myelin staining, histochemistry for acetylcholinesterase and immunohistochemistry for calretinin and parvalbumin were performed on parallel series of sections. Many features of the Monodelphis opossum thalamus resemble those in Didelphis and small eutherians showing no particular sensory specializations, particularly in small murid rodents. However, several features of thalamic organization in Monodelphis were distinct from those in rodents. In the opossum the anterior and midline nuclear groups are more clearly separated from adjacent structures than in eutherians. The dorsal lateral geniculate nucleus (LGNd) starts more rostrally and occupies a large part of the lateral wall of the thalamus. As in other marsupials, two cytoarchitectonically different parts, alpha and beta are discernible in the LGNd of the opossum. Each of them may be subdivided into two additional bands in acetylcholinesterase staining, while in murid rodents the LGNd consists of a homogeneous mass of cells. Therefore, differentiation of the LGNd of the Monodelphis opossum is more advanced than in murid rodents. The medial geniculate body consists of three nuclei (medial, dorsal and ventral) that are cytoarchitectonically distinct and stain differentially for parvalbumin. The relatively large size of the MG and LGNd points to specialization of the visual and auditory systems in the Monodelphis opossum. In contrast to rodents, the lateral dorsal and lateral posterior nuclei in the opossum are poorly differentiated cytoarchitectonically.

  18. Off-center nuclei in galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.

    1992-01-01

    The nucleus of a galaxy orbits around the mass centroid. Orbital motions appear overstable in numerical experiments started with a galaxy's nucleus at rest atop its mass centroid. The amplitude doubles in 6-10 orbital periods. Orbits precess, nutate, and change their amplitudes, but they keep fairly constant periods. Orbital periods are in resonance with local particle motions, and amplitudes reach a core radius. This resonance suggests that center motions are a local, rather than a global, phenomenon. The overstability implies that a galaxy cannot be formed in nature with its nucleus at rest atop its mass centroid, and that nuclei orbit the mass centroid in real galaxies. These center motions should show up observationally as a shift of the nucleus away from the center defined by nearby isophotes. Off-center nuclei have been reported in many galaxies (e.g., M33, M101, NGC 3379, NGC 3384). Other kinds of observations confirmed the picture of nonsteady galactic centers as well. Gas trapped in moving nuclear regions of a galaxy should show strange flow patterns with possible shocks. The nuclear regions of galaxies including Milky Way and of globular clusters are not likely to be in a static steady state.

  19. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  20. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  1. Observations of anthropogenic cloud condensation nuclei

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) concentrations and spectral measurements obtained with the DRI instantaneous CCN spectrometer (Hudson, 1989) over the last few years are presented. The climatic importance of cloud microphysics has been pointed out. The particles which affect cloud microphysics are cloud condensation nuclei (CCN). The commonly-observed order of magnitude difference in cloud droplet concentrations between maritime and continental air masses (i.e., Squires, 1958) was determined to be caused by systematic differences in the concentrations of CCN between continental and maritime air masses (e.g., Twomey and Wojciechowski, 1969). Twomey (1977) first pointed out that cloud microphysics also affects the radiative properties of clouds. Thus continental and anthropogenic CCN could affect global temperature. Resolution of this Twomey effect requires answers to two questions - whether antropogenic CCN are a significant contribution to atmospheric CCN, and whether they are actually affecting cloud microphysics to an extent which is of climatic importance. The reasons for the contrast between continental and maritime CCN concentration are not understood. The question of the relative importance of anthropogenic CCN is addressed. These observations should shed light on this complex question although further research is being conducted in order to produce more quantitative answers. Accompanying CN measurements made with a TSI 3020 condensation nucleus (CN) counter are also presented.

  2. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  3. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed Central

    Price, P. B.; Askary, F.; Tarlé, G.

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 ≤ Z ≤ 28 at various depths in the earth's atmosphere, taking into account the initial charge distribution, ionization loss, and various modes of fragmentation. The flux of surviving heavy nuclei is too low by a factor ≈10-10 to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei. Images PMID:16592759

  4. Do energetic heavy nuclei penetrate deeply into Earth's atmosphere?

    PubMed

    Price, P B; Askary, F; Tarlé, G

    1980-01-01

    We calculate the expected fluxes of cosmic ray nuclei with charge 5 nuclei is too low by a factor approximately 10(-10) to account for the ultra-high-energy Centauro events. We describe an experiment to search for highly ionizing particles that may or may not be nuclei.

  5. Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging.

    PubMed

    Lipiec, Ewelina; Bambery, Keith R; Heraud, Philip; Kwiatek, Wojciech M; McNaughton, Don; Tobin, Mark J; Vogel, Christian; Wood, Bayden R

    2014-09-07

    SR-FTIR in combination with Principal Component Analysis (PCA) was applied to investigate macromolecular changes in a population of melanocytes and their extracted nuclei induced by environmentally relevant fluxes of UVR (Ultraviolet Radiation). Living cells and isolated cellular nuclei were investigated post-irradiation for three different irradiation dosages (130, 1505, 15,052 Jm(-2) UVR, weighted) after either 24 or 48 hours of incubation. DNA conformational changes were observed in cells exposed to an artificial UVR solar-simulator source as evidenced by a shift in the DNA asymmetric phosphodiester vibration from 1236 cm(-1) to 1242 cm(-1) in the case of the exposed cells and from 1225 cm(-1) to 1242 cm(-1) for irradiated nuclei. PCA Scores plots revealed distinct clustering of spectra from irradiated cells and nuclei from non-irradiated controls in response to the range of applied UVR radiation doses. 3D Raman confocal imaging in combination with k-means cluster analysis was applied to study the effect of the UVR radiation exposure on cellular nuclei. Chemical changes associated with apoptosis were detected and included intra-nuclear lipid deposition along with chromatin condensation. The results reported here demonstrate the utility of SR-FTIR and Raman spectroscopy to probe in situ DNA damage in cell nuclei resulting from UVR exposure. These results are in agreement with the increasing body of evidence that lipid accumulation is a characteristic of aggressive cancer cells, and are involved in the production of membranes for rapid cell proliferation.

  6. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  7. Geological assessment probe

    NASA Astrophysics Data System (ADS)

    Collins, E. R.

    1980-04-01

    A probe is described which can be installed in a side hole that extends from a bore hole in the Earth, to assess the permeability of the strata surrounding the borehole. The probe is elongated and has a plurality of seals spaced therealong and sealed to the walls of the side hole to form a plurality of chambers sealed from one another. A tracer fluid injector on the probe can inject a tracer fluid into one of the chambers, while a tracer fluid detector located in another chamber can detect the tracer fluid, to thereby sense the permeability of the strata surrounding the side hole. The probe can include a train of modules, with each module having an inflatable packer which is inflated by the difference between the borehole pressure and the strata pressure.

  8. Technology for Entry Probes

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Arnold, James; Venkatapathy, Ethiraj; Kolawa, Elizabeth; Munk, Michelle; Wercinski, Paul; Laub, Bernard

    2005-01-01

    A viewgraph describing technologies for entry probes is presented. The topics include: 1) Entry Phase; 2) Descent Phase; 3) Long duration atmospheric observations; 4) Survivability at high temperatures; and 5) Summary.

  9. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  10. Cryogenic Optoelectronic Probe Station

    DTIC Science & Technology

    2012-08-01

    capability is very important for a few on- going projects under DOD support. Selected Examples of Research Using COPS Example 1: sheet resistance measurement...donor concentration of this thin film contact material, we need to know the sheet resistance . As shown in Fig. 1, four electric probes are landed...voltage of 62.4 mV across probe 2 and 3. Therefore we can determine the sheet resistance by using Eq: = ( ) . This gives the sheet

  11. Adjustable Pitot Probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Robbins, W. Eugene; Horsley, Lewis A.

    1991-01-01

    Probe readily positionable in core of uniform flow in hypersonic wind tunnel. Formed of pair of mating cylindrical housings: transducer housing and pitot-tube housing. Pitot tube supported by adjustable wedge fairing attached to top of pitot-tube housing with semicircular foot. Probe adjusted both radially and circumferentially. In addition, pressure-sensing transducer cooled internally by water or other cooling fluid passing through annulus of cooling system.

  12. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  13. Massive accretion disks in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Scoville, N. Z.

    In the luminous infrared galaxies, very large masses of interstellar matter have been concentrated in the galactic nuclei at radii less than 300 pc as a result of galactic merging, while in lower luminosity systems, this material is probably concentrated by stellar bars and viscous accretion. In both cases, the nuclear region will be highly obscured by dust at visible wavelengths, forcing studies to longer wavelengths where the extinction is reduced. We review recent high resolution near infrared (HST-NICMOS) and mm-interferometric imaging of the dense gas and dust accretion disks in nearby luminous galactic nuclei. Since this nuclear ISM is the active ingredient for both starburst activity and a likely fuel for central AGNs, the nuclear accretion disks are critical to both the activity and the optical appearance of the nucleus. For a sample of 24 luminous galaxies imaged with NICMOS at 1-2μm, approximately 13 show nuclear point sources, indicating the existence of a central AGN or an intense starburst at <= 50 pc radius. Approximately 14 of the sample galaxies have apparent central dust disks. In the best studied ultraluminous IR galaxy, Arp 220, the 2μm imaging shows dust disks in both of the merging galactic nuclei and mm-CO line imaging indicates molecular gas masses ~ 109Msolar for each disk. The two gas disks in Arp 220 are counterrotating and their dynamical masses are ~ 2×109Msolar, that is, only slightly larger than the gas masses. These disks have radii ~ 100 pc and thickness 10-50 pc. The high brightness temperatures of the CO lines indicate that the gas in the disks has area filling factors ~25-50% and mean densities of >= 104 cm-3. Within these nuclear disks, the rate of massive star formation is undoubtedly prodigious and, given the high viscosity of the gas, there will also be high radial accretion rates, perhaps >= 10 Msolar yr-1. If this inflow persists to very small radii, it is enough to feed even the highest

  14. Huygens probe on target

    NASA Astrophysics Data System (ADS)

    1995-07-01

    In October 1997, a Titan/Centaur rocket lifting-off from Cape Canaveral will boost the spacecraft into a 6.7 year trajectory to reach Saturn. The trajectory will use two swing-bys of Venus in April 1998 and June 1999, followed by an Earth swing-by in August 1999 and a Jupiter swing-by in December 2000 to boost speed and reach Saturn in July 2004. A few months after going into orbit around Saturn, the Cassini spacecraft will release the Huygens probe for its descent through the atmosphere of Titan, the largest satellite of Saturn. The Huygens probe will measure the abundance of elements and compounds in Titan's atmosphere, the distribution of trace gases and aerosols, winds, temperature, pressure and surface state and its composition. A multi-spectral camera on the probe will provide images of the landscape of Titan. Titan is a unique planetary body in the solar system. It has an atmosphere which is primarily nitrogen. but is also rich in hydrocarbons. Due to the vast distance of the Saturnian system from the Sun, this atmosphere is at a very low temperature, thus greatly slowing down all the chemical processes. A study of this atmosphere will throw light on the development of our own atmosphere and contribute to our understanding of the origins of life on Earth. The Huygens probe is being developed by ESA with Aerospatiale (F) as the industrial prime contractor. Since the start of the programme in April 1990, very good progress has been made in design and hardware development. The entry into the Titan atmosphere will result in a very high surface temperature on the probe, generated as it decelerates due to the friction of the upper atmospheric layers. After the probe has slowed down sufficiently, a system of parachutes ensures a slow descent to the surface of Titan in approximately two and a half hours. The scientific measurements can only begin after the heat shield, which is needed to protect the probe during the high temperature entry phase, has been ejected

  15. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  16. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  17. Magic ultramagnetized nuclei in explosive nucleosynthesis

    SciTech Connect

    Kondratyev, V. N.

    2012-11-15

    Direct evidence of the presence of {sup 44}Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational {sup 44}Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly 'bound' nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of {sup 44}Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.

  18. Eta-mesic nuclei: Past, present, future

    DOE PAGES

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgηmore » and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.« less

  19. Nonaxial-octupole effect in superheavy nuclei

    SciTech Connect

    Chen, Y.-S.; Sun, Yang; Gao Zaochun

    2008-06-15

    The triaxial-octupole Y{sub 32} correlation in atomic nuclei has long been expected to exist but experimental evidence has not been clear. We find, in order to explain the very low-lying 2{sup -} bands in the transfermium mass region, that this exotic effect may manifest itself in superheavy elements. Favorable conditions for producing triaxial-octupole correlations are shown to be present in the deformed single-particle spectrum, which is further supported by quantitative Reflection Asymmetric Shell Model calculations. It is predicted that the strong nonaxial-octupole effect may persist up to the element 108. Our result thus represents the first concrete example of spontaneous breaking of both axial and reflection symmetries in the heaviest nuclear systems.

  20. Eta-mesic nuclei: Past, present, future

    SciTech Connect

    Haider, Q.; Liu, Lon -Chang

    2015-09-23

    Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η–nucleon interaction leading to the formation of an η–mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η–mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η–mesic nuclei is suggested.

  1. Clusters in neutron-rich light nuclei

    NASA Astrophysics Data System (ADS)

    Jelavić Malenica, D.; Milin, M.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Miljanić, D.; Musumarra, A.; Pellegriti, M. G.; Prepolec, L.; Scuderi, V.; Skukan, N.; Soić, N.; Torresi, D.; Uroić, M.

    2016-05-01

    Due to their high selectivity, transfer and sequential decay reactions are powerful tools for studies of both single particle (nucleon) and cluster states in light nuclei. Their use is particularly simple for investigations of α-particle clustering (because α-particle has Jπ=0+, which simplifies spin and parity assignments to observed cluster states), but they are also easily applicable to other types of clustering. Recent results on clustering in neutron-rich isotopes of beryllium, boron and carbon obtained measuring the 10B+10B reactions (at 50 and 72 MeV) are presented. The highly efficient and segmented detector systems used, built from 4 Double Sided Silicon Strip Detectors (DSSSD) allowed detection of double and multiple coincidences and, in that way, studies of states populated in transfer reactions, as well as their sequential decay.

  2. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  3. Structural features of protein folding nuclei.

    PubMed

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  4. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  5. Quarks and gluons in hadrons and nuclei

    SciTech Connect

    Close, F.E. Tennessee Univ., Knoxville, TN )

    1989-12-01

    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  6. EMC and polarized EMC effects in Nuclei

    SciTech Connect

    Ian Cloet; Wolfgang Bentz; Anthony Thomas

    2006-05-23

    We determine nuclear structure functions and quark distributions for {sup 7}Li, {sup 11}B, {sup 15}N and {sup 27}Al. For the nucleon bound state we solve the covariant quark-diquark equations in a confining Nambu--Jona-Lasinio model, which yields excellent results for the free nucleon structure functions. The nucleus is described using a relativistic shell model, including mean scalar and vector fields that couple to the quarks in the nucleon. The nuclear structure functions are then obtained as a convolution of the structure function of the bound nucleon with the light-cone nucleon distributions. We find that we are readily able to reproduce the EMC effect in finite nuclei and confirm earlier nuclear matter studies that found a large polarized EMC effect.

  7. Could life have evolved in cometary nuclei

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Lazcano-Araujo, A.; Oro, J.

    1981-01-01

    The suggestion by Hoyle and Wickramasinghe (1978) that life might have originated in cometary nuclei rather than directly on the earth is discussed. Factors in the cometary environment including the conditions at perihelion passage leading to the ablation of cometary ices, ice temperatures, the absence of an atmosphere and discrete liquid and solid surfaces, weak cometary structure incapable of supporting a liquid core, and radiation are presented as arguments against biopoesis in comets. It is concluded that although the contribution of cometary and meteoritic matter was significant in shaping the earth environment, the view that life on earth originally arose in comets is untenable, and the proposition that the process of interplanetary infection still occurs is unlikely in view of the high specificity of host-parasite relationships.

  8. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  9. On single nucleon wave functions in nuclei

    SciTech Connect

    Talmi, Igal

    2011-05-06

    The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.

  10. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  11. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  12. Mean field and collisions in hot nuclei

    SciTech Connect

    K /umlt o/hler, H.S.

    1989-06-01

    Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs.

  13. Cloud condensation nuclei near marine cumulus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1993-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.

  14. Transplantation of Nuclei in Drosophila melanogaster

    PubMed Central

    Zalokar, Marko

    1971-01-01

    Nuclei surrounded by ooplasm of the syncytial stage of developing eggs of wild-type Drosophila melanogaster were implanted into freshly laid fertilized eggs of females of a y w stock. More than half of the recipient eggs produced larvae, but few of the larvae hatched or developed further. The best sets of experiments gave about twelve percent of imagos, mostly y w in appearance. Several larvae were mosaics with yellow Malpighian tubes, and two flies had part of the abdominal segments of the wild type. Half of the flies were fertile, but they produced only y w offspring, except for two males that had y w appearance, but wild-type gonads. When crossed with y w females, they gave wild-type females and y w males. Images PMID:5283944

  15. Tilted foil polarization of radioactive beam nuclei

    NASA Astrophysics Data System (ADS)

    Goldring, Gvirol

    1992-11-01

    Tilted foil polarization has up to now been mostly applied to nuclear reaction products recoiling out of a target traversed by a primary particle beam. Being a universal phenomenon it can be applied equally well to beams of particles, primary or secondary, radioactive or other. There are however some technical considerations arising from the nature of the beam particles. Radioactive beams are associated with ground state nuclei. They usually have low nuclear spin and as a consequence-as will be shown later-low polarization. Secondary beams are usually low in intensity and do not impose any constraints on the foils they traverse; unlike intense primary heavy ion beams which, if they traverse the foils, essentially limit the foil material to carbon. We review here briefly the tilted foil polarization process and then discuss an experiment with an isomer beam. Finally we review experiments with radioactive beams, past, present and planned for the future.

  16. Microscopic analysis of pear-shaped nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.

    2015-10-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sd f interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  17. History of the Nuclei Important for Cosmochemistry

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    2004-01-01

    An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.

  18. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  19. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  20. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  1. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  2. Circumnuclear ionized gas in starburst nuclei

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki

    1990-01-01

    In order to study kinematical properties of starburst nuclei (SBNs), researchers made high-resolution spectroscopy of fifteen SBNs in the H alpha region using an intensified Reticon system attached to the coude focus of the 188-cm reflector at the Okayama Astrophysical Observatory. The instrumental resolution is 21 km s(-1) Full Width Half Maximum (FWHM) at lambda sub H alpha. As for the archetypical SBN, Mrk 538 (=NGC 7714), researchers present high-resolution emission line profiles of several species of ions such as (OIII), (NII), (SII), and (OII). Main results and conclusions are summarized. It has been known that emission-line profiles of SBNs are symmetrical and narrow. However, this high-resolution spectroscopy shows that the observed emission-line profiles of the SBNs have the following asymmetrical patterns; blueward, redward, and double-peaked. It is known that such features have been observed for narrow line regions (NLRs) of active galactic nuclei (AGNs). There is no remarkable correlation between the asymmetry index and the reddening indicator such as a Balmer decrement. Thus the line asymmetry is not attributed to inhomogeneous obscuration in the emitting regions. The observed FWHMs of the H alpha emission lines cover a range from 85 km s(-1) to 318 km s(-1) and are slightly larger than those of (NII) lambda 6584A emission except for the double-peaked SBNs. The FWHMs of H alpha emission show a good correlation with sin i (i is an inclination angle of galaxy). This correlation means that the FWHMs of the SBNs suffer significantly from rotational broadening. Mrk 52 is an anomalous SBN because it has narrow emission line widths for its high inclination angle (cf. Taniguchi 1987). From the above correlation, it is estimated that the intrinsic (i.e., rotation free) FWHMs of H alpha emission are about 50 km s(-1).

  3. Circumnuclear ionized gas in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki

    1990-07-01

    In order to study kinematical properties of starburst nuclei (SBNs), researchers made high-resolution spectroscopy of fifteen SBNs in the H alpha region using an intensified Reticon system attached to the coude focus of the 188-cm reflector at the Okayama Astrophysical Observatory. The instrumental resolution is 21 km s(-1) Full Width Half Maximum (FWHM) at lambdaH alpha. As for the archetypical SBN, Mrk 538 (=NGC 7714), researchers present high-resolution emission line profiles of several species of ions such as (OIII), (NII), (SII), and (OII). Main results and conclusions are summarized. It has been known that emission-line profiles of SBNs are symmetrical and narrow. However, this high-resolution spectroscopy shows that the observed emission-line profiles of the SBNs have the following asymmetrical patterns; blueward, redward, and double-peaked. It is known that such features have been observed for narrow line regions (NLRs) of active galactic nuclei (AGNs). There is no remarkable correlation between the asymmetry index and the reddening indicator such as a Balmer decrement. Thus the line asymmetry is not attributed to inhomogeneous obscuration in the emitting regions. The observed FWHMs of the H alpha emission lines cover a range from 85 km s(-1) to 318 km s(-1) and are slightly larger than those of (NII) lambda 6584A emission except for the double-peaked SBNs. The FWHMs of H alpha emission show a good correlation with sin i (i is an inclination angle of galaxy). This correlation means that the FWHMs of the SBNs suffer significantly from rotational broadening. Mrk 52 is an anomalous SBN because it has narrow emission line widths for its high inclination angle (cf. Taniguchi 1987). From the above correlation, it is estimated that the intrinsic (i.e., rotation free) FWHMs of H alpha emission are about 50 km s(-1).

  4. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Simpson, J.

    2002-05-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1989) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude far exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan dust may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from less than 5 per cubic cm to more than 1000 per cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging. Clarke, A.D. and V.N. Kapustin, J. Atmos. Sci., 59, 363-382, 2002. Hudson, J.G., J. Atmos. & Ocean. Tech., 6, 1055-1065, 1989.

  5. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hudson, J. G.; Simpson, J.

    2002-01-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.

  6. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease

    PubMed Central

    Griffis, Anna H. N.; Groves, Norman R.; Zhou, Xiao; Meier, Iris

    2014-01-01

    While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant–microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon. PMID:24772115

  7. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  8. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  9. Ice nuclei measurements from solid rocket motor effluents

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II

    1980-01-01

    The ice crystal forming nuclei (IN) measured in solid rocket motor (SRM) exhaust products is discussed in relation to space shuttle exhaust. Preliminary results from laboratory investigations and flight preparations for March 1978 Titan launch are discussed. The work necessary to provide adequate measurements of IN and cloud condensation nuclei (CCN) in the stabilized ground clouds from SRM's is studied.

  10. Microscopic investigations on the fragmentation of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Jung, Chr.; Cassing, W.; Mosel, U.; Cusson, R. Y.

    1988-02-01

    Model calculations of fragmentation reactions in the TDH F approximation provide quantitative information about the stability of heavy nuclei in a mean-field description. A comparison of these results to proton-induced fragmentation reactions shows that mean-field nuclei are much too stable against local fluctuations caused, e.g., by residual nucleon-nucleon collisions.

  11. Order-to-chaos transition in rotational nuclei

    SciTech Connect

    Stephens, F.S.; Deleplanque, M.A.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Fallon, P.; Cromaz, M.; Clark, R.M.; Descovich, M.; Diamond, R.M.; Rodriguez-Vieitez, E.

    2004-05-13

    The authors have studied the narrow (valley-ridge) structure in the {gamma}-ray spectrum following a heavy-ion fusion reaction that produces several ytterbium nuclei. The intensity of this structure can be quantitatively related to the average chaotic behavior in these nuclei and they have traced this behavior from nearly fully ordered to nearly fully chaotic.

  12. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  13. Intermediate energy semileptonic probes of the hadronic neutral current

    SciTech Connect

    Musolf, M.J. ||; Donnelly, T.W.; Dubach, J.; Pollock, S.J. |; Kowalski, S.; Beise, E.J. |

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.

  14. Interaction of the intermediate energy neutrino with nuclei

    NASA Technical Reports Server (NTRS)

    Bugayev, E. V.; Rudzskiy, M. A.; Bisnovatyy-Kogan, G. S.; Seidov, Z. F.

    1980-01-01

    The interaction of the electronic neutrino with nuclei C-12, O-16, Ci-37, Fe-56, Ga-71, and Br81 is considered for neutrino energy up to 300 MeV. The nuclei are described by single-particle shell-model with Woods-Saxon potential. The parameters of the potential are specially chosen for each nuclei in order to describe correctly the upper occupied single particle levels of the nuclei. The cross sections for inelastic and elastic interactions of neutrino with nuclei are calculated within this model, taking into account charged and neutral current of weak interaction. The neutral currents are described by Weinberg theory. The results of the cross section calculations are presented and the comparisons with the results of the other authors are given. The possibilities of improvement of the exactness of obtained results are discussed. Some details of the calculations are included.

  15. Analysis of isomeric ratios for medium-mass nuclei

    NASA Astrophysics Data System (ADS)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Kerobyan, I. A.

    2016-09-01

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the 86,87Y, 94,95,96,99Tc, and 44Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.

  16. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  17. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  18. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  19. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  20. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  1. Local magnetism in palladium bionanomaterials probed by muon spectroscopy.

    PubMed

    Creamer, Neil J; Mikheenko, Iryna P; Johnson, Clive; Cottrell, Stephen P; Macaskie, Lynne E

    2011-05-01

    Palladium bionanomaterial was manufactured using the sulfate-reducing bacterium, Desulfovibrio desulfuricansm, to reduce soluble Pd(II) ions to cell-bound Pd(0) in the presence of hydrogen. The biomaterial was examined using a Superconducting Quantum Interference Device (SQUID) to measure bulk magnetisation and by Muon Spin Rotation Spectroscopy (µSR) which is uniquely able to probe the local magnetic environment inside the sample. Results showed behaviour attributable to interaction of muons both with palladium electrons and the nuclei of hydrogen trapped in the particles during manufacture. Electronic magnetism, also suggested by SQUID, is not characteristic of bulk palladium and is consistent with the presence of nanoparticles previously seen in electron micrographs. We show the first use of μSR as a tool to probe the internal magnetic environment of a biologically-derived nanocatalyst material.

  2. A high-pressure NMR probe for aqueous geochemistry.

    PubMed

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-08

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry.

  3. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  4. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  5. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  6. Cervical Neoplasia Probe Control

    SciTech Connect

    Vargo, Timothy D.

    1997-01-24

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  7. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  8. Endocavity Ultrasound Probe Manipulators.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure.

  9. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  10. Behavior of nuclei during zoosporogenesis in Bryopsis plumosa (Bryopsidales, Chlorophyta).

    PubMed

    Minamikawa, Bunji; Yamagishi, Takahiro; Hishinuma, Tasuku; Ogawa, Shigeru

    2005-02-01

    The behavior of nuclei during zoosporogenesis in Bryopsis plumosa (Bryopsidales, Chlorophyta) was examined by fluorescence and electron microscopy. Each mature filamentous sporophyte had a single lenticular nucleus, which was about 25 microm in diameter and embedded in a thick cytoplasmic layer. At the commencement of multinucleation, giant nuclei with large vacuolated nucleoli, giant nuclei containing chromosomes, and dumbbell-shaped nuclei were observed. Sometimes, two small nuclei also appeared in the thick cytoplasm where the giant nucleus had presumably been present. Electron microscopy revealed the existence of ribbon-like structures resembling synaptonemal complexes within the nucleus having a large vacuolated nucleolus. Nuclei extended their distribution by repetitive divisions. A pair of centrioles was adjacent to the interphase nucleus. When the nuclei were distributed throughout the cell, they became localized nearly equidistantly from one another, each being surrounded by several chloroplasts. At this stage, many centrioles lay along the nuclear surface. The bulk of cytoplasm was then divided into many masses of protoplasm, each of which developed into a uninucleate, stephanokontic zoospore with a whorl of flagella.

  11. Are there X(5) Nuclei in the A ~80 Region?

    NASA Astrophysics Data System (ADS)

    Brenner, Daeg

    2002-04-01

    Recently, a new class of symmetries, based on solutions of differential equations, has been introduced to model phase transition and critical point behavior in nuclei. For the shape transition region between a spherical vibrator and an axial rotor the dynamical symmetry for the critical point is designated X(5) and levels are assigned quantum numbers, s, that determine their energies and transition rates. Signatures of X(5) nuclei include the energy ratios E(4_1^+)/E(2_1^+) for a given s sequence of levels, E(0_2^+)/E(2_1^+) between the s=2 and s=1 sequences, E(J)/E(2^+) as a function of J for the s=1 sequence, and intra- and inter-sequence B(E2) values. Examples that fit the X(5) description have been found for rare earth nuclei in the N=90 region. Data for the A ~80 region has been searched for evidence of the X(5) dynamical symmetry. A comparison of the available data to those in the N=90 nuclei provides tantalizing hints of nuclei with X(5) character. Confirmation will require additional data, especially B(E2) values. Since the nuclei involved are far from stability, such measurements will require accelerated beams of radioactive nuclei that will be available at the proposed RIA facility.

  12. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  13. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  14. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  15. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  16. Strangeness production in antiproton annihilation on nuclei

    NASA Astrophysics Data System (ADS)

    Cugnon, J.; Deneye, P.; Vandermeulen, J.

    1990-04-01

    The strangeness production in antiproton annihilation on nuclei is investigated by means of a cascade-type model, within the frame of the conventional picture of the annihilation on a single nucleon followed by subsequent rescattering proceeding in the hadronic phase. The following hadrons are introduced: N, Λ, Σ, Λ¯, π, η, ω, K, and K¯ and, as far as possible, the experimental reaction cross sections are used in our simulation. The numerical results are compared with experimental data up to 4 GeV/c. The Λ¯ yield is correctly reproduced, while the Λ and Ks yields are overestimated in the p¯Ta and p¯Ne cases. On the other hand, the rapidity and perpendicular momentum distributions are well reproduced. It is shown that total strange yield is not very much affected by the associated production taking place during the rescattering process. It is also shown that the Λ/Ks ratio is largely due to the strangeness exchange reactions induced by antikaons. In particular, values of the order of 1 to 3 are expected in the energy range investigated here, independently of the detail of the hadronic phase dynamics. Finally, it is stressed that rapidity distributions are consistent with the rescattering process. Comparison with other works and implications of our results are examined.

  17. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  18. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Müller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  19. {delta}-mediated pion production in nuclei

    SciTech Connect

    Praet, C.; Lalakulich, O.; Jachowicz, N.; Ryckebusch, J.

    2009-04-15

    We present a fully relativistic formalism for describing neutrino-induced {delta}-mediated single-pion production in nuclei. We assess the ambiguities stemming from the {delta} interactions and quantify the uncertainties in the axial form-factor parameters by comparing with the available bubble-chamber neutrino-scattering data. To include nuclear effects, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the {sigma}-{omega} Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces results that are comparable to the RPWIA that naturally includes Fermi motion, nuclear-binding effects, and the Pauli exclusion principle. Including {delta} medium modifications roughly halves the RPWIA cross section. Calculations for primary (prior to undergoing final-state interactions) pion production are presented for both electron- and neutrino-induced processes, and a comparison with electron-scattering data and other theoretical approaches is included. We infer that the total {delta}-production strength is underestimated by about 20 to 25%, a fraction that is due to the pionless decay modes of the {delta} in a medium. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way.

  20. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  1. Photodisintegration of Light Nuclei with CLAS

    SciTech Connect

    Ilieva, Yordanka Yordanova; Zachariou, Nicholas

    2013-08-01

    We report preliminary results of photodisintegration of deuteron and {sup 3}He measured with CLAS at Jefferson Lab. We have extracted the beam-spin asymmetry for the {vector {gamma}}d {yields} pn reaction at photon energies from 1.1 GeV to 2.3 GeV and proton center-of-mass (c.m.) angles between 35{degrees} and 135{degrees} . Our data show interesting evolution of the angular dependence of the observable as the photon energy increases. The energy dependence of the beam-spin asymmetry at 90 shows a change of slope at photon energy of 1.6 GeV. A comparison of our data with model calculations suggests that a fully non-perturbative treatment of the underlying dynamics may be able to describe the data better than a model based on hard scattering. We have observed onset of dimensional scaling in the cross section of two-body photodisintegration of {sup 3}He at remarkably low energy and momentum transfer, which suggests that partonic degrees of freedom may be relevant for the description of nuclei at energies lower than previously considered.

  2. High spins in gamma-soft nuclei

    SciTech Connect

    Leander, G.A.; Frauendorf, S.; May, F.R.

    1982-01-01

    Nuclei which are soft with respect to the ..gamma.. shape degree of freedom are expected to have many different structures coexisting in the near-yrast regime. In particular, the lowest rotational quasi-particle in a high-j shell exerts a strong polarizing effect on ..gamma... The ..gamma.. to which it drives is found to vary smoothly over a 180/sup 0/ range as the position of the Fermi level varies. This simple rule is seen to have a direct connection with the energy staggering of alternate spin states in rotational bands. A diagram is presented which provides a general theoretical reference for experimental tests of the relation between ..gamma.., spin staggering, configuration, and nucleon number. In a quasicontinuum spectrum, the coexistence of different structures are expected to make several unrelated features appear within any one slice of sum energy and multiplicity. However, it is also seen that the in-band moment of inertia may be similar for many bands of different ..gamma...

  3. A chiral effective lagrangian for nuclei

    NASA Astrophysics Data System (ADS)

    Furnstahl, R. J.; Serot, Brian D.; Tang, Hua-Bin

    1997-02-01

    An effective hadronic lagrangian consistent with the symmetries of quantum chromodynamics and intended for applications to finite-density systems is constructed. The degrees of freedom are (valence) nucleons, pions and the low-lying non-Goldstone bosons, which account for the intermediate-range nucleon-nucleon interactions and conveniently describe the nonvanishing expectation values of nucleon bilinears. Chiral symmetry is realized nonlinearly, with a light scalar meson included as a chiral singlet to describe the mid-range nucleon-nucleon attraction. The low-energy electromagnetic structure of the nucleon is described within the theory using vector-meson dominance, so that external form factors are not needed. The effective lagrangian is expanded in powers of the fields and their derivatives, with the terms organized using Georgi's "naive dimensional analysis". Results are presented for finite nuclei and nuclear matter at one-baryon-loop order, using the single-nucleon structure determined within the model. Parameters obtained from fits to nuclear properties show that naive dimensional analysis is a useful principle and that a truncation of the effective lagrangian at the first few powers of the fields and their derivatives is justified.

  4. Cloud Condensation Nuclei in FIRE III

    NASA Technical Reports Server (NTRS)

    Hudson, James G.; Delnore, Victor E. (Technical Monitor)

    2002-01-01

    Yum and Hudson showed that the springtime Arctic aerosol is probably a result of long-range transport at high altitudes. Scavenging of particles by clouds reduces the low level concentrations by a factor of 3. This produces a vertical gradient in particle concentrations when low-level clouds are present. Concentrations are uniform with height when clouds are not present. Low-level CCN (cloud condensation nuclei) spectra are similar to those in other maritime areas as found by previous projects including FIRE 1 and ASTEX, which were also supported on earlier NASA-FIRE grants. Wylie and Hudson carried this work much further by comparing the CCN spectra observed during ACE with back trajectories of air masses and satellite photographs. This showed that cloud scavenging reduces CCN concentrations at all altitudes over the springtime Arctic, with liquid clouds being more efficient scavengers than frozen clouds. The small size of the Arctic Ocean seems to make it more susceptible to continental and thus anthropogenic aerosol influences than any of the other larger oceans.

  5. Hybrid configuration mixing model for odd nuclei

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.; Bocchi, G.

    2017-03-01

    In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for 49Ca and 133Sb and discuss future perspectives.

  6. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  7. Nuclear structure/nuclei far from stability

    SciTech Connect

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new.

  8. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  9. Helium nuclei in quenched lattice QCD

    SciTech Connect

    Yamazaki, T.; Ukawa, A.; Kuramashi, Y.

    2010-06-01

    We present results for the binding energies for {sup 4}He and {sup 3}He nuclei calculated in quenched lattice QCD at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m{sub {pi}=}0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the nucleus and the free multinucleon states by changing the spatial extent of the lattice from 3.1 to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.

  10. Cloud Condensation Nuclei in Fire-3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The centerpiece of this research was the cloud condensation nuclei (CCN) measurements of the Desert Research Institute (DRI) CCN spectrometers on board the NCAR C-130 aircraft during the Arctic Cloud Experiment (ACE) in May, 1998. These instruments operated successfully throughout all eight 10-hour research flights based in Fairbanks and the two ferry flights between Colorado and Fairbanks. Within a few months of completion of ACE the CCN data was edited and put into the archives. A paper was completed and published on the CCN climatology during the previous two FIRE field projects-FIRE 1 based in San Diego in June and July, 1987 and ASTEX based in the Azores Islands in June, 1992. This showed distinct contrasts in concentrations and spectra between continental and maritime CCN concentrations, which depended on air mass trajectories. Pollution episodes from Europe had distinct influences on particle concentrations at low altitudes especially within the boundary layer. At higher altitudes concentrations were similar in the two air mass regimes. Cloudier atmospheres showed lower concentrations especially below the clouds, which were a result mostly of coalescence scavenging.

  11. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  12. Parameterizing cloud condensation nuclei concentrations during HOPE

    NASA Astrophysics Data System (ADS)

    Hande, Luke B.; Engler, Christa; Hoose, Corinna; Tegen, Ina

    2016-09-01

    An aerosol model was used to simulate the generation and transport of aerosols over Germany during the HD(CP)2 Observational Prototype Experiment (HOPE) field campaign of 2013. The aerosol number concentrations and size distributions were evaluated against observations, which shows satisfactory agreement in the magnitude and temporal variability of the main aerosol contributors to cloud condensation nuclei (CCN) concentrations. From the modelled aerosol number concentrations, number concentrations of CCN were calculated as a function of vertical velocity using a comprehensive aerosol activation scheme which takes into account the influence of aerosol chemical and physical properties on CCN formation. There is a large amount of spatial variability in aerosol concentrations; however the resulting CCN concentrations vary significantly less over the domain. Temporal variability is large in both aerosols and CCN. A parameterization of the CCN number concentrations is developed for use in models. The technique involves defining a number of best fit functions to capture the dependence of CCN on vertical velocity at different pressure levels. In this way, aerosol chemical and physical properties as well as thermodynamic conditions are taken into account in the new CCN parameterization. A comparison between the parameterization and the CCN estimates from the model data shows excellent agreement. This parameterization may be used in other regions and time periods with a similar aerosol load; furthermore, the technique demonstrated here may be employed in regions dominated by different aerosol species.

  13. Characterization of brain cell nuclei with decondensed chromatin.

    PubMed

    Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti M; Albert, Alexandria L; Meagher, Richard B

    2015-07-01

    Although multipotent cell types have enlarged nuclei with decondensed chromatin, this property has not been exploited to enhance the characterization of neural progenitor cell (NPC) populations in the brain. We found that mouse brain cell nuclei that expressed exceptionally high levels of the pan neuronal marker NeuN/FOX3 (NeuN-High) had decondensed chromatin relative to most NeuN-Low or NeuN-Neg (negative) nuclei. Purified NeuN-High nuclei expressed significantly higher levels of transcripts encoding markers of neurogenesis, neuroplasticity, and learning and memory (ARC, BDNF, ERG1, HOMER1, NFL/NEF1, SYT1), subunits of chromatin modifying machinery (SIRT1, HDAC1, HDAC2, HDAC11, KAT2B, KAT3A, KAT3B, KAT5, DMNT1, DNMT3A, Gadd45a, Gadd45b) and markers of NPC and cell cycle activity (BRN2, FOXG1, KLF4, c-MYC, OCT4, PCNA, SHH, SOX2) relative to neuronal NeuN-Low or to mostly non-neuronal NeuN-Neg nuclei. NeuN-High nuclei expressed higher levels of HDAC1, 2, 4, and 5 proteins. The cortex, hippocampus, hypothalamus, thalamus, and nucleus accumbens contained high percentages of large decondensed NeuN-High nuclei, while the cerebellum, and pons contained very few. NeuN-High nuclei have the properties consistent with their being derived from extremely active neurons with elevated rates of chromatin modification and/or NPC-like cells with multilineage developmental potential. The further analysis of decondensed neural cell nuclei should provide novel insights into neurobiology and neurodegenerative disease.

  14. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Suhara, T.; Kanada-En'yo, Y.

    2016-12-01

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this "molecular-orbit picture" reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3 α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering.

  15. Relativistic Brueckner—Hartree—Fock Theory for Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Hang; Hu, Jin-Niu; Liang, Hao-Zhao; Meng, Jie; Ring, Peter; Zhang, Shuang-Quan

    2016-10-01

    Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner-Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for \\emph{ab initio} covariant investigations of heavy nuclei.

  16. New measurements of the EMC effect in light nuclei

    SciTech Connect

    A. Daniel

    2009-12-01

    Modifications of structure functions in nuclei (EMC effect) suggest that the nuclear quark distribution function is not just the incoherent sum of the proton and neutron distributions, and made clear the importance of nuclear effects even in high energy measurements. Jefferson Lab experiment E03-103 made precise measurements of the EMC effect in few-body and heavy nuclei with emphasis on the large x region. Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect.

  17. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect

    Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  18. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  19. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  20. Cluster radioactivity in very heavy nuclei: a new perspective

    NASA Astrophysics Data System (ADS)

    Routray, T. R.; Nayak, Jagajjaya; Basu, D. N.

    2009-08-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the emitted cluster.

  1. Single particle versus collectivity, shapes of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Jungclaus, Andrea

    2016-03-01

    In this article some selected topics of nuclear structure research will be discussed as illustration of the progress reached in this field during the last thirty years. These examples evidence the improvement of our understanding of the atomic nucleus reached on the basis of countless experiments, performed to study both exotic nuclei (nuclei far-off the valley of stability) as well as nuclei under exotic conditions (high excitation energy/temperature or large angular momentum/rotational frequency), using stable and radioactive ion beams. The experimental progress, in parallel to the advancement of modern theoretical descriptions, led us to a much richer view of this fundamental many-body system.

  2. New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

    SciTech Connect

    Abrahamyan, S; Afanasev, A; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Arrington, J; Averett, T; Babineau, B; Bailey, S L; Barber, J; Barbieri, A; Beck, A; Bellini, V; Beminiwattha, R; Benaoum, H; Benesch, J; Benmokhtar, F; Bertin, P; Bielarski, T; Boeglin, W; Bosted, P; Butaru, F; Burtin, E; Cahoon, J; Camsonne, A; Canan, M; Carter, P; Chang, C C; Cates, G D; Chao, Y -C; Chen, C; Chen, J -P; Choi, Seonho; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deepa, D; Deng, X; Dutta, D; Etile, A; Ferdi, C; Feuerbach, J; Finn, J M; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Fuchs, S A; Fuoti, K; Garibaldi, F; Gasser, E; Gilman, R; Guisa, A; Glamazdin, A; Glesener, L E; Gomez, J; Gorchtein, M; Grames, J; Grimm, K; Gu, C; Hansen, O; Hansknecht, J; Hen, O; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Humensky, T B; Hyde, C E; Ibrahim, H; Itard, F; Jen, C -M; Jensen, E; Jiang, X; Jin, G; Johnston, S; Katich, J; Kaufman, L J; Kelleher, A; Kliakhandler, K; King, P M; Kolarkar, A; Kowalski, S; Kuchina, E; Kumar, K S; Lagamba, L; Lambert, D; LaViolette, P; Leacock, J; Leckey IV, J; Lee, J H; LeRose, J J; Lhuillier, D; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; Mazouz, M; McCormick, K; McCreary, A; McNulty, D; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R W; Mihovilovic, M; Moffit, B; Monaghan, P; Muangma, N; Munoz-Camacho, C; Nanda, S; Nelyubin, V; Neyret, D; Nuruzzaman,; Oh, Y; Otis, K; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, M; Pomatsalyuk, R; Posik, M; Potokar, M; Prok, K; Puckett, A.J.R.; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Reitz, B; Riordan, S; Roche, J; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Singh, J; Sirca, S; Slifer, K; Snyder, R; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Stutzman, M L; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Ulmer, P; Vacheret, A; Voutier, A; Waidyawansa, B; Wang, D; Wang, K; Wexler, J; Whitbeck, A; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Ziskin, V; Zhu, P

    2012-11-05

    Here we have measured the beam-normal single-spin asymmetry A{sub n} in the elastic scattering of 1-3 GeV transversely polarized electrons from 1H and for the first time from 4He, 12C, and 208Pb. For 1H, 4He and 12C, the measurements are in agreement with calculations that relate An to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the 208Pb result is significantly smaller than the corresponding prediction using the same formalism. Our results suggest that a systematic set of new An measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

  3. Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Zaitsev, A. A.; Zarubin, P. I.

    2017-01-01

    A role of the unstable nuclei 6Be, 8Be and 9B in the dissociation of relativistic nuclei 7,9Be, 10B and 10,11C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration 6Be + n to the 7Be nucleus structure is 8 ± 1% which is near the value for the configuration 6Li + p. Distributions over the opening angle of α-particle pairs indicate to a simultaneous presence of virtual 8Beg.s. and 8Be2+ states in the ground states of the 9Be and 10C nuclei. The core 9B is manifested in the 10C nucleus with a probability of 30 ± 4%. Selection of the 10C "white" stars accompanied by 8Beg.s. (9B) leads to appearance in the excitation energy distribution of 2α2 p "quartets" of the distinct peak with a maximum at 4.1 ± 0.3 MeV. 8Beg.s. decays are presented in 24 ± 7% of 2He + 2H events of the 11C coherent dissociation and 27 ± 11% of the 3He ones. The channel 9B + H amounts 14 ± 3%. The 8Bg.s. nucleus is manifested in the coherent dissociation 10B → 2He + H with a probability of 25 ± 5% including 13 ± 3% of 9B decays. A probability ratio of the mirror channels 9B + n and 9Be + p is estimated to be 10 ± 1.

  4. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  5. On the Anisotropy of Nuclei Mid-Infrared Radiation in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Wang, JunXian; Liu, Teng

    2015-01-01

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  6. Electric Quadrupole and Magnetic Dipole Moments of Mirror Nuclei and Self-Conjugate Nuclei

    NASA Astrophysics Data System (ADS)

    Zickendraht, W.

    A transformation, which brings about the unification of the nuclear collective and single particle models, yields sumrules for the magnetic dipole moments and for the electric quadrupole moments of mirror nuclei. These sumrules are applied to cases, for which the numerical values of these moments are known.Translated AbstractElektrische Qadrupol- und Magnetische Dipolmomente von Spiegelkernen und Kernen mit N = ZMit Hilfe einer Transformation, die die Vereinigung von Kollektiv- und Schalenmodell liefert, lassen sich Summenregeln für die magnetischen Dipol- und die elektrischen Quadrupolmomente von Spiegelkernen ableiten. Diese Summenregeln werden auf Spiegelkerne angewandt, für die die numerischen Werte der Momente bekannt sind.

  7. Enabling interstellar probe

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Wimmer-Schweingruber, Robert F.; International Interstellar Probe Team

    2011-04-01

    The scientific community has advocated a scientific probe to the interstellar medium for over 30 years. While the Voyager spacecraft have passed through the termination shock of the solar wind, they have limited lifetimes as their radioisotope power supplies decay. It remains unclear whether they can reach the heliopause, the boundary between shocked solar wind and interstellar plasmas, and, in any case, they will not reach the undisturbed interstellar medium. As with most exploratory space missions, their ongoing observations continue to raise even more questions about the nature of the interaction of our heliosphere and the interstellar medium. Scientific questions including: What is the nature of the nearby interstellar medium? How do the Sun and galaxy affect the dynamics of the heliosphere? What is the structure of the heliosphere? How did matter in the solar system and interstellar medium originate and evolve? can only be answered by an "interstellar precursor" probe. Such a mission is required to make in situ measurements in the interaction region and interstellar medium itself at distances far from the Sun, but in a finite mission lifetime. By launching a probe toward the incoming "interstellar wind," whose direction is known, the distance to be traveled can be minimized but is still large. The current consensus is that a scientifically compelling mission must function to at least a distance of 200 astronomical units (AU) from the Sun and return a reasonable stream of data during the voyage. The central problem is that of providing a means of propulsion to accelerate a probe from the Solar System. Even with a low-mass payload and spacecraft, achieving the high speeds needed, even with gravity assists, have remained problematic. Voyager 1, the fastest object ever to leave the system is now traveling ˜3.6 AU/yr, and a credible probe must reach at least 2-3 times this speed. The use of an Ares V is an approach for enabling a fast interstellar precursor

  8. Calibration Fixture For Anemometer Probes

    NASA Technical Reports Server (NTRS)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  9. 14N solid-state NMR: a sensitive probe of the local order in zeolites.

    PubMed

    Dib, Eddy; Mineva, Tzonka; Gaveau, Philippe; Alonso, Bruno

    2013-11-14

    Local order in as-synthesised zeolites templated by tetraalkylammonium cations is proven from solid-state (14)N NMR and related quadrupolar parameters, opening new perspectives in the study of porous materials.

  10. Strangeness in nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  11. Experiments with probe masses

    PubMed Central

    Braginsky, V. B.

    2007-01-01

    It is reasonable to regard the experiments performed by C. Coulomb and H. Cavendish in the end of the 18th century as the beginning of laboratory experimental physics. These outstanding scientists have measured forces (accelerations) produced by electric charges and by gravitational “charges” on probe masses that were attached to torque balance. Among the variety of different research programs and projects existing today, experiments with probe masses are still playing an important role. In this short review, the achieved and planned sensitivities of very challenging LIGO (Laser Interferometer Gravitational wave Observatory) and LISA (Laser Interferometer Space Antennae) projects are described, and a list of nonsolved problems is discussed as well. The role of quantum fluctuations in high precision measurements is also outlined. Apart from these main topics, the limitations of sensitivity caused by cosmic rays and the prospects of clock frequency stability are presented. PMID:17296944

  12. Temperature averaging thermal probe

    NASA Technical Reports Server (NTRS)

    Kalil, L. F.; Reinhardt, V. (Inventor)

    1985-01-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  13. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  14. Temperature averaging thermal probe

    NASA Astrophysics Data System (ADS)

    Kalil, L. F.; Reinhardt, V.

    1985-12-01

    A thermal probe to average temperature fluctuations over a prolonged period was formed with a temperature sensor embedded inside a solid object of a thermally conducting material. The solid object is held in a position equidistantly spaced apart from the interior surfaces of a closed housing by a mount made of a thermally insulating material. The housing is sealed to trap a vacuum or mass of air inside and thereby prevent transfer of heat directly between the environment outside of the housing and the solid object. Electrical leads couple the temperature sensor with a connector on the outside of the housing. Other solid objects of different sizes and materials may be substituted for the cylindrically-shaped object to vary the time constant of the probe.

  15. GT Strength in Odd-A Nuclei^*

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Du, Q. Q.

    1998-04-01

    We measured the complete set of polarization-transfer observables (D_ij) for the ^13C(p,n)^13N and ^15N(p,n)^15O reactions at 135 MeV. From the D_ijs we constructed the spin-independent, spin-longitudinal, and spin-transverse responses [1] D_0, D_q, Dn and D_p. From these responses we extracted, in a model-independent way, the Δ J=0 and Δ J=1 (``F'' and ``GT'') fractions of the J^π=1/2^-arrow1/2^- g.s. to g.s. transitions for these reactions. The ``F'' fraction, f_F=D_0(0^circ); the ``GT'' fraction, f_GT=D_q(0^circ)+D_n(0^circ)+D_p(0^circ)= 1- D_0(0^circ). The extracted GT fractions, f_GT, are substantially larger than one would predict from β-decay matrix elements and the systematics of the (p,n) reaction on even-A nuclei. These results confirm earlier, model-dependent determinations of f_GT obtained from the (p,n) reaction on ^13C, ^15N and ^39K at other energies [2], [3], [4], indicating that considerable caution must be used when extracting B(GT) matrix elements from odd-A (p,n) data. * Research supported in part by the U.S. NSF. [1] M. Ichimura, K. Kawahigashi, Phys. Rev. C 45 1822 (1992). [2] T. N. Taddeucci, C. A. Goulding, T. A. Carey, R. C. Byrd, C. D. Goodman, C. Gaarde, J. Larsen, D. Horen, J. Rapaport, and E. Sugarbaker, Nucl. Phys. A469 125 (1987). [3] H. Sakai, H. Okamura, N. Matsuoka, A. Shimizu, T. Suda, M. Ieiri and H. M. Shimizu, Nuclear Physics A579 45-61 (1994). [4] W. Huang, Ph.D. dissertation, Indiana U., 1991, (unpublished).

  16. Bimodal Active Nuclei in Bimodal Galaxies

    NASA Astrophysics Data System (ADS)

    Cavaliere, A.; Menci, N.

    2007-07-01

    By their star content, the galaxies split out into a red and a blue population; their color index peaked around u-r~2.5 or u-r~1, respectively, quantifies the ratio of the blue stars newly formed from cold galactic gas, to the redder ones left over by past generations. On the other hand, on accreting substantial gas amounts the central massive black holes energize active galactic nuclei (AGNs); here we investigate whether these show a similar, and possibly related, bimodal partition as for current accretion activity relative to the past. To this aim we use an updated semianalytic model; based on Monte Carlo simulations, this follows with a large statistics the galaxy assemblage, the star generations, and the black hole accretions in the cosmological framework over the redshift span from z=10 to z=0. We test our simulations for yielding in close detail the observed split of galaxies into a red, early and a blue, late population. We find that the black hole accretion activities likewise give rise to two source populations: early, bright quasars and later, dimmer AGNs. We predict for their Eddington parameter λE-the ratio of the current to the past black hole accretions-a bimodal distribution; the two branches sit now under λE~0.01 (mainly contributed by low-luminosity AGNs) and around λE~0.3-1. These not only mark out the two populations of AGNs, but also will turn out to correlate strongly with the red or blue color of their host galaxies.

  17. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  18. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  19. Supermassive black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Gebhardt, Karl

    2001-10-01

    We review the motivation and search for supermassive black holes (BHs) in galaxies. Energetic nuclear activity provides indirect but compelling evidence for BH engines. Ground-based dynamical searches for central dark objects are reviewed in Kormendy & Richstone (1995, ARA&A, 33, 581). Here we provide an update of results from the Hubble Space Telescope (HST). This has greatly accelerated the detection rate. As of 2001 March, dynamical BH detections are available for at least 37 galaxies. The demographics of these objects lead to the following conclusions: (1) BH mass correlates with the luminosity of the bulge component of the host galaxy, albeit with considerable scatter. The median BH mass fraction is 0.13% of the mass of the bulge. (2) BH mass correlates with the mean velocity dispersion of the bulge inside its effective radius, i.e., with how strongly the bulge stars are gravitationally bound to each other. For the best mass determinations, the scatter is consistent with the measurement errors. (3) BH mass correlates with the luminosity of the high-density central component in disk galaxies independent of whether this is a real bulge (a mini-elliptical, believed to form via a merger-induced dissipative collapse and starburst) or a ``pseudobulge'' (believed to form by inward transport of disk material). (4) BH mass does not correlate with the luminosity of galaxy disks. If pure disks contain BHs (and active nuclei imply that some do), then their masses are much smaller than 0.13% of the mass of the disk. We conclude that present observations show no dependence of BH mass on the details of whether BH feeding happens rapidly during a collapse or slowly via secular evolution of the disk. The above results increasingly support the hypothesis that the major events that form a bulge or elliptical galaxy and the main growth phases of its BH-when it shone like a quasar-were the same events. .

  20. Rates of assembly and degradation of bacterial ice nuclei.

    PubMed

    Watanabe, N M; Southworth, M W; Warren, G J; Wolber, P K

    1990-11-01

    The kinetics of ice-nucleus assembly from newly synthesized nucleation protein were observed following induction of nucleation gene expression in the heterologous host Escherichia coli. Assembly was significantly slower for the small proportion of ice nuclei active above -4.4 degrees C; this was consistent with the belief that these nuclei comprise the largest aggregates of nucleation protein. The kinetics of nucleus degradation were followed after inhibiting protein synthesis. Nucleation activity and protein showed a concerted decay, indicating that most of the functional ice nuclei are in equilibrium with a single cellular pool of nucleation protein. A minority of the ice nuclei decayed much more slowly than the majority; presumably their nucleation protein was distinct either by virtue of different structure or different subcellular compartmentalization, or because of its presence in a metabolically distinct subpopulation of cells.