Sample records for probing quadrupolar nuclei

  1. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  2. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  3. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffry Todd

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  4. On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.

    PubMed

    Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S

    2007-03-01

    Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.

  5. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and

  6. Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei.

    PubMed

    Charpentier; Fermon; Virlet

    1998-06-01

    The quantum mechanical Floquet theory is investigated in order to derive an efficient way of performing numerical calculations of the dynamics of nuclear spin systems in MAS NMR experiments. Here, we take advantage of time domain integration of the quantum evolution over one period as proposed by Eden et al. (1). But a full investigation of the propagator U(t, t0), and especially its dependence with respect to t and t0 within a formalized approach, leads to further simplifications and to a substantial reduction in computation time when performing powder averaging for any complex sequence. Such an approximation is suitable for quadrupolar nuclei (I > 1/2) and can be applied to the simulation of the RIACT (rotational induced adiabatic coherence transfer) phenomenon that occurs under special experimental conditions in spin locking experiments (2-4). The present method is also compared to the usual infinite dimensional Floquet space approach (5, 6), which is shown to be rather inefficient. As far as we know, it has never been reported for quadrupolar nuclei with I >/= 3/2 in spin locking experiments. The method can also be easily extended to other areas of spectroscopy. Copyright 1998 Academic Press.

  7. Quadrupolar transfer pathways

    NASA Astrophysics Data System (ADS)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  8. Quadrupolar transfer pathways.

    PubMed

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I=1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2I < or = p< or = +2I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence order p=m(I)(r)-m(I)(s) but can be distinguished by a satellite order q=(m(I)(r))(2)-(m(I)(s))(2).

  9. Ensemble of single quadrupolar nuclei in rotating solids: sidebands in NMR spectrum.

    PubMed

    Kundla, Enn

    2006-07-01

    A novel way is proposed to describe the evolution of nuclear magnetic polarization and the induced NMR spectrum. In this method, the effect of a high-intensity external static magnetic field and the effects of proper Hamiltonian left over interaction components, which commute with the first, are taken into account simultaneously and equivalently. The method suits any concrete NMR problem. This brings forth the really existing details in the registered spectra, evoked by Hamiltonian secular terms, which may be otherwise smoothed due to approximate treatment of the effects of the secular terms. Complete analytical expressions are obtained describing the NMR spectra including the rotational sideband sets of single quadrupolar nuclei in rotating solids.

  10. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    PubMed

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17 O NMR of solid NaNO 3 in which the NO 3 - ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO 3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO 3 - ion jumps span eight orders of magnitude (10 2 -10 10 s -1 ) covering both transitions of the dynamic 17 O line shape. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    PubMed

    Odedra, Smita; Wimperis, Stephen

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking 23 Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    NASA Astrophysics Data System (ADS)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  13. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-05-01

    The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuanhu

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combiningmore » the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.« less

  16. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2004-02-08

    Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.

  17. Determination of nuclear quadrupolar parameters using singularities in field-swept NMR patterns.

    PubMed

    Ichijo, Naoki; Takeda, Kazuyuki; Yamada, Kazuhiko; Takegoshi, K

    2016-10-07

    We propose a simple data-analysis scheme to determine the coupling constant and the asymmetry parameter of nuclear quadrupolar interactions in field-swept nuclear magnetic resonance (NMR) for static powder samples. This approach correlates the quadrupolar parameters to the positions of the singularities, which can readily be found out as sharp peaks in the field-swept pattern. Moreover, the parameters can be determined without quantitative acquisition and elaborate calculation of the overall profile of the pattern. Since both experimental and computational efforts are significantly reduced, the approach presented in this work will enhance the power of the field-swept NMR for yet unexplored quadrupolar nuclei. We demonstrate this approach in 33 S in α-S 8 and 35 Cl in chloranil. The accuracy of the obtained quadrupolar parameters is also discussed.

  18. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies.

    PubMed

    Makrinich, M; Nimerovsky, E; Goldbourt, A

    2018-04-14

    Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Fundamental Physics with Electroweak Probes of Nuclei

    NASA Astrophysics Data System (ADS)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  20. A system for NMR stark spectroscopy of quadrupolar nuclei.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2010-05-13

    Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (quadrupolar multiplet with splitting proportional to E(0). The POWER sequence converts the 2omega(0) interaction from off-diagonal/nonsecular to the familiar diagonal form (I(z)(2)) of static quadrupole interactions. Meanwhile, background contributions to line width are averaged to zero, providing orders-of-magnitude resolution enhancement for correspondingly high sensitivity to the Stark effect. Using GaAs as a test case with well-defined Stark response, we provide the first demonstration of the 2omega(0) effect at high-field (14.1 T) and room temperature. This, along with the simplicity of our apparatus and spectral approach, may facilitate extensions to a wider array of material and molecular systems. The

  1. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  2. Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei.

    PubMed

    Makrinich, Maria; Gupta, Rupal; Polenova, Tatyana; Goldbourt, Amir

    The ability of various pulse types, which are commonly applied for distance measurements, to saturate or invert quadrupolar spin polarization has been compared by observing their effect on magnetization recovery curves under magic-angle spinning. A selective central transition inversion pulse yields a bi-exponential recovery for a diamagnetic sample with a spin-3/2, consistent with the existence of two processes: the fluctuations of the electric field gradients with identical single (W 1 ) and double (W 2 ) quantum quadrupolar-driven relaxation rates, and spin exchange between the central transition of one spin and satellite transitions of a dipolar-coupled similar spin. Using a phase modulated pulse, developed for distance measurements in quadrupolar spins (Nimerovsky et al., JMR 244, 2014, 107-113) and suggested for achieving the complete saturation of all quadrupolar spin energy levels, a mono-exponential relaxation model fits the data, compatible with elimination of the spin exchange processes. Other pulses such as an adiabatic pulse lasting one-third of a rotor period, and a two-rotor-period long continuous-wave pulse, both used for distance measurements under special experimental conditions, yield good fits to bi-exponential functions with varying coefficients and time constants due to variations in initial conditions. Those values are a measure of the extent of saturation obtained from these pulses. An empirical fit of the recovery curves to a stretched exponential function can provide general recovery times. A stretching parameter very close to unity, as obtained for a phase modulated pulse but not for other cases, suggests that in this case recovery times and longitudinal relaxation times are similar. The results are experimentally demonstrated for compounds containing 11 B (spin-3/2) and 51 V (spin-7/2). We propose that accurate spin lattice relaxation rates can be measured by a short phase modulated pulse (<1-2ms), similarly to the "true T 1 " measured

  3. Towards homonuclear J solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 11B MAS spin-echo dephasing and calculated 2J(BB) coupling constants for lithium diborate.

    PubMed

    Barrow, Nathan S; Yates, Jonathan R; Feller, Steven A; Holland, Diane; Ashbrook, Sharon E; Hodgkinson, Paul; Brown, Steven P

    2011-04-07

    Magic-angle spinning (MAS) NMR spin-echo dephasing is systematically investigated for the spin I = 3/2 (11)B nucleus in lithium diborate, Li(2)O·2B(2)O(3). A clear dependence on the quadrupolar frequency (ω(Q)(PAS)/2π = 3C(Q)/[4I(2I- 1)]) is observed: the B3 (larger C(Q)) site dephases more slowly than the B4 site at all investigated MAS frequencies (5 to 20 kHz) at 14.1 T. Increasing the MAS frequency leads to markedly slower dephasing for the B3 site, while there is a much less evident effect for the B4 site. Considering samples at 5, 25, 80 (natural abundance) and 100% (11)B isotopic abundance, dephasing becomes faster for both sites as the (11)B isotopic abundance increases. The experimental behaviour is rationalised using density matrix simulations for two and three dipolar-coupled (11)B nuclei. The experimentally observed slower dephasing for the larger C(Q) (B3) site is reproduced in all simulations and is explained by the reintroduction of the dipolar coupling by the so-called "spontaneous quadrupolar-driven recoupling mechanism" having a different dependence on the MAS frequency for different quadrupolar frequencies. Specifically, isolated spin-pair simulations show that the spontaneous quadrupolar-driven recoupling mechanism is most efficient when the quadrupolar frequency is equal to twice the MAS frequency. While for isolated spin-pair simulations, increasing the MAS frequency leads to faster dephasing, agreement with experiment is observed for three-spin simulations which additionally include the homogeneous nature of the homonuclear dipolar coupling network. First-principles calculations, using the GIPAW approach, of the (2)J(11B-11B) couplings in lithium diborate, metaborate and triborate are presented: a clear trend is revealed whereby the (2)J(11B-11B) couplings increase with increasing B-O-B bond angle and B-B distance. However, the calculated (2)J(11B-11B) couplings are small (0.95, 1.20 and 2.65 Hz in lithium diborate), thus explaining why no

  4. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Saito, Yuta; Sato, Naoki; Takao, Tomoaki; Koshiba, Seizo; Maeda, Hideaki

    2010-05-01

    S33 nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the S33 nucleus. We have developed a 10 mm S33 cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The S33 NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The S33 cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO42- anions and -SO3- groups using the S33 cryogenic probe, as the S33 nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the S33 cryogenic probe, as the S33 nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.

  5. Crystallographic structure refinement with quadrupolar nuclei: a combined solid-state NMR and GIPAW DFT example using MgBr(2).

    PubMed

    Widdifield, Cory M; Bryce, David L

    2009-09-07

    Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.

  6. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classicalmore » electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.« less

  7. Resolution enhancement using a new multiple-pulse decoupling sequence for quadrupolar nuclei.

    PubMed

    Delevoye, L; Trébosc, J; Gan, Z; Montagne, L; Amoureux, J-P

    2007-05-01

    A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.

  8. General quadrupolar statistical anisotropy: Planck limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramazanov, S.; Rubtsov, G.; Thorsrud, M.

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g {sub *}. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g {sub *}. This is the subject of the present work. In particular, we limit the amplitude g {sub *} for different shapes of the quadrupole by making use of Planck 2015 maps. We alsomore » constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.« less

  9. Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines.

    PubMed

    Wang, Yaling; Cui, Yanyan; Liu, Ru; Wei, Yueteng; Jiang, Xinglu; Zhu, Huarui; Gao, Liang; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun

    2013-11-25

    A bifunctional peptide was designed to in situ reduce Cu ions and anchor a Cu cluster. The peptide-Cu cluster probe, mainly composed of Cu14, emitted blue two-photon fluorescence under femtosecond laser excitation. Most important, the probe can specifically mark the nuclei of HeLa and A549 cells, respectively.

  10. Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Ji, Xiao; Bodenhausen, Geoffrey

    2017-11-01

    Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.

  11. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  12. NMR Studies of Low-Gamma Nuclei in Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee

    2006-07-24

    Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less

  13. Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Mehrotra, Nitin

    2018-04-01

    Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.

  14. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  15. Spin cat state generation for quadrupolar nuclei in semiconductor quantum dots or defect centers

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun

    Implementing spin-based quantum information encoding schemes in semiconductors has a high priority. The so-called cat codes offer a paradigm that enables hardware-efficient error correction. Their inauguration to semiconductor-based nuclear magnetic resonance framework hinges upon the realization of coherent spin states (CSS). In this work, we show how the crucial superpositions of CSS can be generated for the nuclear spins. This is through the intrinsic electric quadrupole interaction involving a critical role by the biaxiality term that is readily available, as in strained heterostructures of semiconductors, or defect centers having nearby quadrupolar spins. The persistence of the cat states is achieved using a rotation pulse so as to harness the underlying fixed points of the classical Hamiltonian. We classify the two distinct types as polar- and equator-bound over the Bloch sphere with respect to principal axes. Their optimal performance as well as sensitivity under numerous parameter deviations are analyzed. Finally, we present how these modulo-2 cat states can be extended to modulo-4 by a three-pulse scheme. This work was supported by TUBITAK, The Scientific and Technological Research Council of Turkey through the project No. 114F409.

  16. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin, E-mail: benjamin.rotenberg@upmc.fr

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFGmore » tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.« less

  17. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Storek, Michael; Böhmer, Roland

    2017-05-01

    Previous deuteron nuclear magnetic resonance studies revealed conflicting evidence regarding the possible motional heterogeneity of the water dynamics on the hydrate lattice of an ice-like crystal. Using oxygen-17 nuclei as a sensitive quadrupolar probe, the reorientational two-time correlation function displays a clear nonexponentiality. To check whether this dispersive behavior is a consequence of dynamic heterogeneity or rather of an intrinsic nonexponentiality, a multidimensional, four-time magnetic resonance experiment was devised that is generally applicable to strongly quadrupolarly perturbed half-integer nuclei such as oxygen-17. Measurements of an appropriate four-time function demonstrate that it is possible to select a subensemble of slow water molecules. Its mean time scale is compared to theoretical predictions and evidence for significant motional heterogeneity is found.

  18. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  19. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  20. Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions.

    PubMed

    Peng, Ying; Hansen, Brett J; Quist, Hannah; Zhang, Zhiping; Wang, Miao; Hawkins, Aaron R; Austin, Daniel E

    2011-07-15

    We present the design and results for a new radio-frequency ion trap mass analyzer, the coaxial ion trap, in which both toroidal and quadrupolar trapping regions are created simultaneously. The device is composed of two parallel ceramic plates, the facing surfaces of which are lithographically patterned with concentric metal rings and covered with a thin film of germanium. Experiments demonstrate that ions can be trapped in either region, transferred from the toroidal to the quadrupolar region, and mass-selectively ejected from the quadrupolar region to a detector. Ions trapped in the toroidal region can be transferred to the quadrupole region using an applied ac signal in the radial direction, although it appears that the mechanism of this transfer does not involve resonance with the ion secular frequency, and the process is not mass selective. Ions in the quadrupole trapping region are mass analyzed using dipole resonant ejection. Multiple transfer steps and mass analysis scans are possible on a single population of ions, as from a single ionization/trapping event. The device demonstrates better mass resolving power than the radially ejecting halo ion trap and better sensitivity than the planar quadrupole ion trap.

  1. Quadrupolar, Triple [Delta]-Function Potential in One Dimension

    ERIC Educational Resources Information Center

    Patil, S. H.

    2009-01-01

    The energy and parity eigenstates for quadrupolar, triple [delta]-function potential are analysed. Using the analytical solutions in specific domains, simple expressions are obtained for even- and odd-parity bound-state energies. The Heisenberg uncertainty product is observed to have a minimum for a specific strength of the potential. The…

  2. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    PubMed

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  4. Static quadrupolar susceptibility for a Blume-Emery-Griffiths model based on the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Pawlak, A.; Gülpınar, G.; Erdem, R.; Ağartıoğlu, M.

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume-Emery-Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic-paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like.

  5. 5f delocalization-induced suppression of quadrupolar order in U(Pd 1-xPt x)₃

    DOE PAGES

    Walker, H. C.; Le, M. D.; McEwen, K. A.; ...

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd 1-xPt x)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Q xy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  6. Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Lahrz, M.; Mathey, L.

    2014-01-01

    Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.

  7. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    NASA Astrophysics Data System (ADS)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  8. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and

  9. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  10. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  11. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE PAGES

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...

    2017-09-22

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  12. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  13. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with atmore » least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.« less

  14. Weak interaction probes of light nuclei

    NASA Astrophysics Data System (ADS)

    Towner, I. S.

    1986-03-01

    Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.

  15. Effective Floquet Hamiltonian theory of multiple-quantum NMR in anisotropic solids involving quadrupolar spins: Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Ganapathy, Vinay; Ramachandran, Ramesh

    2017-10-01

    The response of a quadrupolar nucleus (nuclear spin with I > 1/2) to an oscillating radio-frequency pulse/field is delicately dependent on the ratio of the quadrupolar coupling constant to the amplitude of the pulse in addition to its duration and oscillating frequency. Consequently, analytic description of the excitation process in the density operator formalism has remained less transparent within existing theoretical frameworks. As an alternative, the utility of the "concept of effective Floquet Hamiltonians" is explored in the present study to explicate the nuances of the excitation process in multilevel systems. Employing spin I = 3/2 as a case study, a unified theoretical framework for describing the excitation of multiple-quantum transitions in static isotropic and anisotropic solids is proposed within the framework of perturbation theory. The challenges resulting from the anisotropic nature of the quadrupolar interactions are addressed within the effective Hamiltonian framework. The possible role of the various interaction frames on the convergence of the perturbation corrections is discussed along with a proposal for a "hybrid method" for describing the excitation process in anisotropic solids. Employing suitable model systems, the validity of the proposed hybrid method is substantiated through a rigorous comparison between simulations emerging from exact numerical and analytic methods.

  16. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell

  17. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. Mohisin; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, Mimae.; Kim, Minwoo; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  18. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  19. Precision measurement of the mass difference between light nuclei and anti-nuclei

    DOE PAGES

    Adam, J.

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. Also, this force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (more » $$-\\atop{d}$$), and 3He and 3$$-\\atop{He}$$nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).« less

  20. Indirect detection of 10B (I = 3) overtone NMR at very fast magic angle spinning

    NASA Astrophysics Data System (ADS)

    Duong, Nghia Tuan; Kuprov, Ilya; Nishiyama, Yusuke

    2018-06-01

    The application of overtone nuclear magnetic resonance (OT NMR) to symmetric spin transitions of integer quadrupolar nuclei is of considerable interest since this transition is immune to the first-order quadrupolar interaction, thus resulting in narrow NMR lines. Owing to its roles in nature and its high natural abundance, 14N (I = 1) OT NMR has been explored, in which the indirect and/or direct acquisitions of 14N OT were experimentally demonstrated. However, other than 14N nucleus, no OT NMR observation of other integer quadrupolar nuclei has been reported in the literature. In this work, we extend the application of OT NMR to another integer quadrupolar nucleus, namely 10B (I = 3). However, this is not straightforward owing to the unfavorable characteristics of 10B isotope. Here, for the first time, we present the selective acquisition of 10B central (-1 ↔ +1) OT NMR via detection of 1H nuclei on perborate monohydrate sample. Numerical calculations are in a good agreement with the experimental results. Both show that the optimal sensitivity is achieved when the carrier frequency is applied at the second OT spinning sideband, i.e. an offset of twice of the spinning frequency from the center band.

  1. Maris polarization in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  2. Monte Carlo simulations of dipolar and quadrupolar linear Kihara fluids. A test of thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Garzon, B.

    Several simulations of dipolar and quadrupolar linear Kihara fluids using the Monte Carlo method in the canonical ensemble have been performed. Pressure and internal energy have been directly determined from simulations and Helmholtz free energy using thermodynamic integration. Simulations were carried out for fluids of fixed elongation at two different densities and several values of temperature and dipolar or quadrupolar moment for each density. Results are compared with the perturbation theory developed by Boublik for this same type of fluid and good agreement between simulated and theoretical values was obtained especially for quadrupole fluids. Simulations are also used to obtain the liquid structure giving the first few coefficients of the expansion of pair correlation functions in terms of spherical harmonics. Estimations of the triple point temperature to critical temperature ratio are given for some dipole and quadrupole linear fluids. The stability range of the liquid phase of these substances is shortly discussed and an analysis about the opposite roles of the dipole moment and the molecular elongation on this stability is also given.

  3. Probing r-Process Production of Nuclei Beyond 209Bi with Gamma Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Y.-Z.; Vogel, P.; Wasserburg, G. J.

    We estimate gamma-ray fluxes due to the decay of nuclei beyond 209Bi from a supernova or a supernova remnant assuming that the r-process occurs in supernovae. We find that a detector with a sensitivity of {approx}10-7 {gamma} cm-2 s-1 at energies from {approx}40 keV to {approx}3 MeV may detect fluxes due to the decay of 226Ra, 229Th, 241Am, 243Am, 249Cf, and 251Cf in the newly discovered supernova remnant near Vela. In addition, such a detector may detect fluxes due to the decay of 227Ac and 228Ra produced in a future supernova at a distance of {approx}1 kpc. Because nuclei withmore » mass numbers A>209 are produced solely by the r-process, such detections are the best proof for a supernova r-process site. Further, they provide the most direct information on yields of progenitor nuclei with A>209 at r-process freeze-out. Finally, detection of fluxes due to the decay of r-process nuclei over a range of masses from a supernova or a supernova remnant provides the opportunity to compare yields in a single supernova event with the solar r-process abundance pattern. (c) (c) 1999. The American Astronomical Society.« less

  4. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  5. On the possibility to detect multipolar order in URu 2 Si 2 by the electric quadrupolar transition of resonant elastic x-ray scattering

    DOE PAGES

    Wang, Y. L.; Fabbris, G.; Meyers, D.; ...

    2017-08-30

    Resonant elastic x-ray scattering is a powerful technique for measuring multipolar order parameters. In this paper, we theoretically and experimentally study the possibility of using this technique to detect the proposed multipolar order parameters in URu 2 Si 2 at the U- L 3 edge with the electric quadrupolar transition. Based on an atomic model, we calculate the azimuthal dependence of the quadrupolar transition at the U- L 3 edge. Our results illustrate the potential of this technique for distinguishing different multipolar order parameters. We then perform experiments on ultraclean single crystals of URu 2 Si 2 at the U-more » L 3 edge to search for the predicted signal, but do not detect any indications of multipolar moments within the experimental uncertainty. We also theoretically estimate the orders of magnitude of the cross section and the expected count rate of the quadrupolar transition and compare them to the dipolar transitions at the U- M 4 and U- L 3 edges, clarifying the difficulty in detecting higher order multipolar order parameters in URu 2 Si 2 in the current experimental setup.« less

  6. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  7. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE PAGES

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-12

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q 2 where higher-twist effects are negligible.« less

  8. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-01

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q2 where higher-twist effects are negligible.« less

  9. Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB4

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta; Suzuki, Kazuya; Fukazawa, Hiroshi; Chi, Songxue; Fernandez-Baca, Jaime A.

    2017-04-01

    Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB4 showing the successive phase transitions at T0 = 17.2 K, TN1 = 7.0 K, and TN2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0 = (0,0,0), q0 and qs1 = (δ ,δ ,0.4) (δ ˜ 0.14), and q0 and qs2 = (0.2,0,0.4) in phase II (TN1 < T < T0), phase III (TN2 < T < TN1), and phase IV (T < TN2), respectively. The observed patterns in phase II are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic "all-in/all-out"-type (Γ4) and "vortex"-type (Γ2) structures, consisting of a Γ4 main component (77%) with a small amplitude of Γ2 (23%). We propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry-Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.

  10. Ultrahigh-field NMR spectroscopy of quadrupolar transition metals: 55Mn NMR of several solid manganese carbonyls.

    PubMed

    Ooms, Kristopher J; Feindel, Kirk W; Terskikh, Victor V; Wasylishen, Roderick E

    2006-10-16

    55Mn NMR spectra acquired at 21.14 T (nu(L)(55Mn) = 223.1 MHz) are presented and demonstrate the advantages of using ultrahigh magnetic fields for characterizing the chemical shift tensors of several manganese carbonyls: eta5-CpMn(CO)3, Mn2(CO)10, and (CO)5MnMPh3 (M = Ge, Sn, Pb). For the compounds investigated, the anisotropies of the manganese chemical shift tensors are less than 250 ppm except for eta5-CpMn(CO)3, which has an anisotropy of 920 ppm. At 21.14 T, one can excite the entire m(I) = 1/2 <--> m(I) = -1/2 central transition of eta5-CpMn(CO)3, which has a breadth of approximately 700 kHz. The breadth arises from second-order quadrupolar broadening due to the 55Mn quadrupolar coupling constant of 64.3 MHz, as well as the anisotropic shielding. Subtle variations in the electric field gradient tensors at the manganese are observed for crystallographically unique sites in two of the solid pentacarbonyls, resulting in measurably different C(Q) values. MQMAS experiments are able to distinguish four magnetically unique Mn sites in (CO)(5)MnPbPh3, each with slightly different values of delta(iso), C(Q), and eta(Q).

  11. Direct observation of spin-quadrupolar excitations in Sr2CoGe2O7 by high-field electron spin resonance

    NASA Astrophysics Data System (ADS)

    Akaki, Mitsuru; Yoshizawa, Daichi; Okutani, Akira; Kida, Takanori; Romhányi, Judit; Penc, Karlo; Hagiwara, Masayuki

    2017-12-01

    Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be manipulated with the use of light or electric field and can be captured by means of conventional experimental techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light, but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly isotropic nature of Sr2CoGe2O7 , we identify this excitation as a purely spin-quadrupolar two-magnon mode.

  12. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    PubMed

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  13. Light scattering properties of kidney epithelial cells and nuclei

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2006-02-01

    Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.

  14. Coulomb Excitation of Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Augusto O.

    2017-09-01

    The structure of nuclei far from the stability line is a central theme of research in nuclear physics. Key to this program has been the worldwide development of radioactive beam facilities and novel detector systems, which provide the tools needed to produce and study these exotic nuclei. Coulomb Excitation provides a unique probe to characterize the interplay of collective and single-particle degrees of freedom of the atomic nucleus. In particular, the combination of state-of-the-art charged particle detectors and gamma-ray spectroscopy plays a vital and ubiquitous role in these studies. As an introduction to this Mini-Symposium, I will present a short overview of this powerful technique and selected examples of recent experiments. Future opportunities with a 4 π gamma-ray tracking array like GRETA will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

  15. Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta

    2017-04-15

    Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB 4 showing the successive phase transitions at T 0 = 17.2 K, T N1 = 7.0 K, and T N2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0=(0,0,0), q0 and qs1=(δ,δ,0.4) (δ ~ 0.14), and q 0 and q s2=(0.2,0,0.4) in phase II (T N1 < T < T 0), phase III (T N2 < T < T N1), and phase IV (T < T N2), respectively. The observed patterns in phase IImore » are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic “all-in/all-out”-type (Γ 4) and “vortex”-type (Γ 2) structures, consisting of a Γ 4 main component (77%) with a small amplitude of Γ 2 (23%). Finally, we propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry–Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.« less

  16. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari

    2009-07-01

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less

  17. Understanding the quadrupolar structures of UPd3

    NASA Astrophysics Data System (ADS)

    McEwen, K. A.; Walker, H. C.; Le, M. D.; McMorrow, D. F.; Colineau, E.; Wastin, F.; Wilkins, S. B.; Park, J.-G.; Bewley, R. I.; Fort, D.

    2007-03-01

    UPd3 exhibits four phase transitions below T0=7.8 K, attributed to a succession of antiferroquadrupolar (AFQ) orderings of the 5f2 uranium ions localised on the quasi-cubic sites of the dhcp crystal structure. From earlier polarised neutron diffraction measurements in a magnetic field, we proposed that the order parameter of the phase below T0 is Q and a model for the order parameters of the four phases was subsequently developed. This model has now been tested experimentally with measurements of the azimuthal dependence of the intensities of the quadrupolar reflections in the different phases, by means of X-ray resonant scattering (XRS) studies at ESRF. The results indicate that the order parameter, in zero field, of the phase below T0 is Qzx. Our model provides an explanation for these apparently contradictory results. New measurements of the heat capacity of UPd3 at low temperatures have revealed the entropy changes at each of the four transitions. We find that the entropy changes ( ΔS) at T0 and T+1=6.9 K are minimal, whereas ΔS is large at T-1=6.7 K. From this information together with the new XRS results, we have extended our model to provide an explanation of the AFQ structures of UPd3.

  18. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  19. Natural Abundance 15 N and 13 C Solid-State NMR Chemical Shifts: High Sensitivity Probes of the Halogen Bond Geometry.

    PubMed

    Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo

    2016-11-14

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  1. Search for three-nucleon short-range correlations in light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Solvignon, P.; Nguyen, D.

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  2. Search for three-nucleon short-range correlations in light nuclei

    DOE PAGES

    Ye, Z.; Solvignon, P.; Nguyen, D.; ...

    2018-06-18

    Here, we present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/ 3He cross section ratio is observed to be both x and Q 2 independent for 1.5 < x < 2, confirming the dominance of two- nucleon (2N) short-range correlations (SRCs). For x > 2, our data do not support a previous claim of three-nucleon (3N) correlation dominance. While contributions beyond those from stationary 2N- SRCs are observed, our data show that isolating 3N-SRCs is more complicated than for 2N-SRCs.

  3. Isospin-symmetry-breaking effects in A˜70 nuclei within beyond-mean-field approach

    NASA Astrophysics Data System (ADS)

    Petrovici, A.; Andrei, O.

    2015-02-01

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A˜70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A˜70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A˜70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z 66As and 70Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  4. Solid-state NMR calculations for metal oxides and gallates: Shielding and quadrupolar parameters for perovskites and related phases

    NASA Astrophysics Data System (ADS)

    Middlemiss, Derek S.; Blanc, Frédéric; Pickard, Chris J.; Grey, Clare P.

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for 17O- and 69/71Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO 3, BaZrO 3, BaSnO 3, BaTiO 3, LaAlO 3, LaGaO 3, SrZrO 3, MgSiO 3 and Ba 2In 2O 5), and gallate (α- and β-Ga 2O 3, LiGaO 2, NaGaO 2, GaPO 4 and LaGaO 3) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO 5 site occurring in LaGaGe 2O 7 is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar ηQ-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases.

  5. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less

  6. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to themore » odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.« less

  7. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less

  8. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.

    PubMed

    Semchyschyn, Darlene J; Macdonald, Peter M

    2004-02-01

    The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a

  9. Solid-state NMR calculations for metal oxides and gallates: shielding and quadrupolar parameters for perovskites and related phases.

    PubMed

    Middlemiss, Derek S; Blanc, Frédéric; Pickard, Chris J; Grey, Clare P

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for (17)O- and (69/71)Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO(3), BaZrO(3), BaSnO(3), BaTiO(3), LaAlO(3), LaGaO(3), SrZrO(3), MgSiO(3) and Ba(2)In(2)O(5)), and gallate (alpha- and beta-Ga(2)O(3), LiGaO(2), NaGaO(2), GaPO(4) and LaGaO(3)) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO(5) site occurring in LaGaGe(2)O(7) is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar eta(Q)-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Distance Probes of Dark Energy

    DOE PAGES

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; ...

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  11. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    . -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.

  12. Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.

    1988-11-20

    Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.

  13. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Zhang, Lei

    2014-01-10

    In this manuscript, we quantitatively calculated the thermodynamic properties of critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics (CSDD) method. It is found that Cr concentration distribution in the critical nuclei strongly depend on the overall Cr concentration as well as temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated bymore » the phase field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.« less

  14. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  15. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  16. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yang, Rongyao; Wei, Sina; Jiang, Weizhou

    2018-01-01

    A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  17. On the evidence for axionlike particles from active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettinari, Guido Walter; Crittenden, Robert

    2010-10-15

    Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axionlike particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and x-ray monochromatic luminosities of active galactic nuclei. We extend their work by using the monochromatic luminosities of 320 unobscured active galactic nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey which allows the exploration of 18 different combinations of optical/UV and x-ray monochromatic luminosities. However, we do not find compelling evidence for the existencemore » of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to x-ray absorption rather than to photon-ALP oscillation.« less

  18. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  19. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  20. A Mo-95 and C-13 Solid-state NMR and Relativistic DFT Investigation of Mesitylenetricarbonylmolybdenum(0) -a Typical Transition Metal Piano-stool Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, David L.; Wasylishen, Roderick E.

    2002-06-21

    The chemical shift (CS) and electric field gradient (EFG) tensors in the piano-stool compound mesitylenetricarbonylmolybdenum(0), 1, have been investigated via {sup 95}Mo and {sup 13}C solid-state magic-angle spinning (MAS) NMR as well as relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations. Molybdenum-95 (I = 5/2) MAS NMR spectra acquired at 18.8 T are dominated by the anisotropic chemical shift interaction ({Omega} = 775 {+-} 30 ppm) rather than the 2nd-order quadrupolar interaction (C{sub Q} = -0.96 {+-} 0.15 MHz), an unusual situation for a quadrupolar nucleus. ZORA-DFT calculations of the {sup 95}Mo EFG and CS tensors are in agreementmore » with the experimental data. Mixing of appropriate occupied and virtual d-orbital dominated MOs in the region of the HOMO-LUMO gap are shown to be responsible for the large chemical shift anisotropy. The small, but non-negligible, {sup 95}Mo quadrupolar interaction is discussed in terms of the geometry about Mo. Carbon-13 CPMAS spectra acquired at 4.7 T demonstrate the crystallographic and magnetic nonequivalence of the twelve {sup 13}C nuclei in 1, despite the chemical equivalence of some of these nuclei in isotropic solutions. The principal components of the carbon CS tensors are determined via a Herzfeld-Berger analysis, and indicate that motion of the mesitylene ring is slow compared to a rate which would influence the carbon CS tensors (i.e. tens of {micro}s). ZORA-DFT calculations reproduce the experimental carbon CS tensors accurately. Oxygen-17 EFG and CS tensors for 1 are also calculated and discussed in terms of existing experimental data for related molybdenum carbonyl compounds. This work provides an example of the information available from combined multi-field solid-state multinuclear magnetic resonance and computational investigations of transition metal compounds, in particular the direct study of quadrupolar transition metal nuclei with relatively small magnetic

  1. Electromagnetic and neutral-weak response functions of light nuclei

    NASA Astrophysics Data System (ADS)

    Lovato, Alessandro

    2015-10-01

    A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Using imaginary-time projection technique, quantum Monte Carlo allows for solving the time-independent Schrödinger equation even for Hamiltonians including highly spin-isospin dependent two- and three- body forces. I will present a recent Green's function Monte Carlo calculation of the quasi-elastic electroweak response functions in light nuclei, needed to describe electron and neutrino scattering. We found that meson-exchange two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. These results challenge the conventional picture of quasi elastic inclusive scattering as being largely dominated by single-nucleon knockout processes. These findings are of particular interest for the interpretation of neutrino oscillation signals.

  2. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  3. Hard probes of short-range nucleon-nucleon correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nucleimore » and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.« less

  4. Probing Excited States in Nuclei at and Beyond the Proton Drip-Line

    NASA Astrophysics Data System (ADS)

    Carpenter, Michael P.

    1999-03-01

    The coupling of a Compton-suppressed Ge (CSGe) detector array to a recoil separator has seen limited use in the past due to the low efficiency for measuring recoil-γ ray coincidences (<0.1% ). With the building of new generation recoil separators and gamma-ray arrays, a substantial increase in detection efficiency has been achieved. This allows for the opportunity to measure excited states in nuclei with cross-sections below 100 nb. In this paper, results from the coupling of a modest array of CSGe detectors (AYE-Ball) and a current generation Ge array (Gammasphere) with a recoil separator (FMA) will be presented.

  5. Quantitative analysis of Earth's field NMR spectra of strongly-coupled heteronuclear systems.

    PubMed

    Halse, Meghan E; Callaghan, Paul T; Feland, Brett C; Wasylishen, Roderick E

    2009-09-01

    In the Earth's magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-(1/2) nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-(1/2) nuclei and quadrupolar (I>(1/2)) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, BH4-, and the ammonium cation, NH4+. For the tetrahydroborate anion, (1)J((11)B,(1)H)=80.9Hz, and in an Earth's field of 53.3microT, nu((1)H)=2269Hz and nu((11)B)=728Hz. The (1)H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes (1)H NMR spectra of the ammonium anion, (14)NH4+, where (1)J((14)N,(1)H)=52.75Hz when nu((1)H)=2269Hz and nu((14)N)=164Hz. Contrary to an early report, we find that the (1)H NMR spectra are independent of the sign of (1)J((14)N,(1)H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-(1/2) nuclei are also discussed.

  6. Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin

    NASA Astrophysics Data System (ADS)

    Yang, Junjie; Piekarewicz, J.

    2018-01-01

    It has recently been suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy L [Brown, Phys. Rev. Lett. 102, 122502 (2009), 10.1103/PhysRevLett.102.122502]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of L . Our results confirm that the difference in charge radii between various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and L . Moreover, given that various neutron-star properties are also sensitive to L , a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars.

  7. Non-Spherical Source-Surface Model of the Corona and Heliosphere for a Quadrupolar Main Field of the Sun

    NASA Astrophysics Data System (ADS)

    Schulz, M.

    2008-05-01

    Different methods of modeling the coronal and heliospheric magnetic field are conveniently visualized and intercompared by applying them to ideally axisymmetric field models. Thus, for example, a dipolar main B field with its moment parallel to the Sun's rotation axis leads to a flat heliospheric current sheet. More general solar main B fields (still axisymmetric about the solar rotation axis for simplicity) typically lead to cone-shaped current sheets beyond the source surface (and presumably also in MHD models). As in the dipolar case [Schulz et al., Solar Phys., 60, 83-104, 1978], such conical current sheets can be made realistically thin by taking the source surface to be non-spherical in a way that reflects the underlying structure of the Sun's main B field. A source surface that seems to work well in this respect [Schulz, Ann. Geophysicae, 15, 1379-1387, 1997] is a surface of constant F = (1/r)kB, where B is the scalar strength of the Sun's main magnetic field and k (~ 1.4) is a shape parameter. This construction tends to flatten the source surface in regions where B is relatively weak. Thus, for example, the source surface for a dipolar B field is shaped somewhat like a Rugby football, whereas the source surface for an axisymmetric quadrupolar B field is similarly elongated but somewhat flattened (as if stuffed into a pair of co-axial cones) at mid-latitudes. A linear combination of co-axial dipolar and quadrupolar B fields generates a somewhat apple-shaped source surface. If the region surrounded by the source surface is regarded as current-free, then the source surface itself should be (as nearly as possible) an equipotential surface for the corresponding magnetic scalar potential (expanded, for example, in spherical harmonics). More generally, the mean-square tangential component of the coronal magnetic field over the source surface should be minimized with respect to any adjustable parameters of the field model. The solar wind should then flow not quite

  8. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    PubMed

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  9. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  10. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  11. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    PubMed Central

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  12. Photoinduced ICT vs. excited rotamer intercoversion in two quadrupolar polyaromatic N-methylpyridinium cations.

    PubMed

    Cesaretti, A; Carlotti, B; Elisei, F; Fortuna, C G; Spalletti, A

    2018-01-24

    The excited state dynamics of two quadrupolar polyaromatic N-methylpyridinium cations have been fully investigated in order to acquire detailed information on their photo-induced behavior. The two molecules are symmetric push-pull compounds having a D-π-A + -π-D motif, with the same electron-acceptor central unit (A = N-methylpyridinium) and two distinctive electron-donor polyaromatic side groups (D), namely naphthyl and pyrenyl substituents. Both molecules undergo charge transfer during the absorption, as revealed by a significant solvatochromism exhibited with solvent polarity, but the fate of their excited state was found to be markedly different. The careful analysis of the data gathered from femtosecond-resolved fluorescence up-conversion and transient absorption experiments, supported by DFT quantum mechanical calculations and temperature-dependent stationary measurements, shows the leading role of intramolecular charge transfer, assisted by symmetry breaking, in the pyrenyl derivative and that of rotamer interconversion in the naphthtyl one. Both excited state processes are controlled by the viscosity rather than polarity of the solvent, and they occur during inertial solvation in low-viscous media and lengthening up to tens of picoseconds in highly viscous solvents.

  13. Colloquium: Laser probing of neutron-rich nuclei in light atoms

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.

    2013-10-01

    The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  14. Probing the Active Galactic Nuclei using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Vivek, M.

    Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.

  15. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in (23)Na and (133)Cs spectra.

    PubMed

    Kuchel, Philip W; Chapman, Bogdan E; Müller, Norbert; Bubb, William A; Philp, David J; Torres, Allan M

    2006-06-01

    NMR spectra of (23)Na(+) and (133)Cs(+) in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 degrees C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to approximately 2-fold. After constituting the gel in buffers containing NaCl and CsCl, both (23)Na and (133)Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B(0), of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  16. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: Verification with residual quadrupolar splittings in 23Na and 133Cs spectra

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Chapman, Bogdan E.; Müller, Norbert; Bubb, William A.; Philp, David J.; Torres, Allan M.

    2006-06-01

    NMR spectra of 23Na + and 133Cs + in gelatine in a silicone rubber tube that was stretched to various extents showed remarkably reproducible resonance multiplicity. The relative intensities of the components of the split peaks had ratios, 3:4:3, and 7:12:15:16:15:12:7, respectively, that conformed with those predicted using a Mathematica program. The silicone-rubber tube was sealed at its lower end by a small rubber stopper and placed inside a thick-walled glass tube. Gelatine was injected in solution into the silicone tube and 'set' by cooling below 30 °C. A plastic thumb-screw held the silicone tube at various degrees of extension, up to ˜2-fold. After constituting the gel in buffers containing NaCl and CsCl, both 23Na and 133Cs NMR spectroscopy revealed that after stretching the initial single Lorentzian line was split into a well-resolved triplet and a heptet, respectively. This was interpreted as being due to coupling between the electric quadrupoles of the nuclei and the average electric field gradient tensor of the collagen molecules of gelatine; these molecules became progressively more aligned in the direction of the main magnetic field, B0, of the vertical bore magnet, as the gel was stretched. This apparatus provides a simple way of demonstrating fundamental physical characteristics of quadrupolar cations, some characteristics of gelatine under stretching, and a way to invoke static distortion of red blood cells. It should be useful with these and other cell types, for studies of metabolic and membrane transport characteristics that may change when the cells are distorted, and possibly for structural studies of macromolecules.

  17. Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model

    NASA Astrophysics Data System (ADS)

    van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.

    1992-09-01

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  18. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn (I=1/2, S=3/2) spin systems.

    PubMed

    Tokatli, Ahmet; Gençten, Azmi; Sahin, Mükerrem; Tezel, Ozden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn (I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containing the 119Sn (I=1/2) and 35Cl (S=3/2) nuclei at the coupling constant of J(Sn-Cl)=375 Hz by using the Maple programme on computer.

  19. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn ( I=1/2, S=3/2) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Gençten, Azmi; Şahin, Mükerrem; Tezel, Özden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn ( I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containning the 119Sn ( I=1/2) and 35Cl ( S=3/2) nuclei at the coupling constant of JSn-Cl=375 Hz by using the Maple programme on computer.

  20. Spin excitations in the deformed nuclei 154Sm, 158Gd and 168Er

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Wörtche, H. J.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Helmer, R.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Vetterli, M. C.; Yen, S.

    1990-07-01

    An intermediate energy proton scattering experiment has been performed to probe spin excitation in the deformed rare earth nuclei 154Sm, 158Gd and 168Er for energies up to 12 MeV. A concentration of spin M1 strength is observed between 6 and 10MeV with a total strength of about 11 μN2 independent of the nucleus. The strength function shows two distinct structures separated by about 2.5 MeV and each having a width of about 2 MeV.

  1. A simple model of solvent-induced symmetry-breaking charge transfer in excited quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly I.; Dereka, Bogdan; Vauthey, Eric

    2017-04-01

    A simple model has been developed to describe the symmetry-breaking of the electronic distribution of AL-D-AR type molecules in the excited state, where D is an electron donor and AL and AR are identical acceptors. The origin of this process is usually associated with the interaction between the molecule and the solvent polarization that stabilizes an asymmetric and dipolar state, with a larger charge transfer on one side than on the other. An additional symmetry-breaking mechanism involving the direct Coulomb interaction of the charges on the acceptors is proposed. At the same time, the electronic coupling between the two degenerate states, which correspond to the transferred charge being localised either on AL or AR, favours a quadrupolar excited state with equal amount of charge-transfer on both sides. Because of these counteracting effects, symmetry breaking is only feasible when the electronic coupling remains below a threshold value, which depends on the solvation energy and the Coulomb repulsion energy between the charges located on AL and AR. This model allows reproducing the solvent polarity dependence of the symmetry-breaking reported recently using time-resolved infrared spectroscopy.

  2. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  3. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  4. Nuclei and the Unitary Limit

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2018-07-01

    Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.

  5. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  6. Parental genomes mix in mule and human cell nuclei.

    PubMed

    Hepperger, Claudia; Mayer, Andreas; Merz, Julia; Vanderwall, Dirk K; Dietzel, Steffen

    2009-06-01

    Whether chromosome sets inherited from father and mother occupy separate spaces in the cell nucleus is a question first asked over 110 years ago. Recently, the nuclear organization of the genome has come increasingly into focus as an important level of epigenetic regulation. In this context, it is indispensable to know whether or not parental genomes are spatially separated. Genome separation had been demonstrated for plant hybrids and for the early mammalian embryo. Conclusive studies for somatic mammalian cell nuclei are lacking because homologous chromosomes from the two parents cannot be distinguished within a species. We circumvented this problem by investigating the three-dimensional distribution of chromosomes in mule lymphocytes and fibroblasts. Genomic DNA of horse and donkey was used as probes in fluorescence in situ hybridization under conditions where only tandem repetitive sequences were detected. We thus could determine the distribution of maternal and paternal chromosome sets in structurally preserved interphase nuclei for the first time. In addition, we investigated the distribution of several pairs of chromosomes in human bilobed granulocytes. Qualitative and quantitative image evaluation did not reveal any evidence for the separation of parental genomes. On the contrary, we observed mixing of maternal and paternal chromosome sets.

  7. Protocol for chromosome-specific probe construction using PRINS, micromanipulation and DOP-PCR techniques.

    PubMed

    Passamani, Paulo Z; Carvalho, Carlos R; Soares, Fernanda A F

    2018-01-01

    Chromosome-specific probes have been widely used in molecular cytogenetics, being obtained with different methods. In this study, a reproducible protocol for construction of chromosome-specific probes is proposed which associates in situ amplification (PRINS), micromanipulation and degenerate oligonucleotide-primed PCR (DOP-PCR). Human lymphocyte cultures were used to obtain metaphases from male and female individuals. The chromosomes were amplified via PRINS, and subcentromeric fragments of the X chromosome were microdissected using microneedles coupled to a phase contrast microscope. The fragments were amplified by DOP-PCR and labeled with tetramethyl-rhodamine-5-dUTP. The probes were used in fluorescent in situ hybridization (FISH) procedure to highlight these specific regions in the metaphases. The results show one fluorescent red spot in male and two in female X chromosomes and interphase nuclei.

  8. Kn 26, a new quadrupolar planetary nebula

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Miranda, L. F.; Ramos-Larios, G.; Vázquez, R.

    2013-03-01

    Once classified as an emission line source, the planetary nebula (PN) nature of the source Kn 26 has only recently been recognized in digital sky surveys. To investigate the spectral properties and spatio-kinematical structure of Kn 26, we have obtained high spatial-resolution optical and near-IR narrow-band images, high-dispersion long-slit echelle spectra, and intermediate-resolution spectroscopic observations. The new data reveal an hourglass morphology typical of bipolar PNe. A detailed analysis of its morphology and kinematics discloses the presence of a second pair of bipolar lobes, making Kn 26 a new member of the subclass of quadrupolar PNe. The time lapse between the ejection of the two pairs of bipolar lobes is much shorter than their dynamical ages, implying a rapid change in the preferential direction of the central engine. The chemical composition of Kn 26 is particularly unusual among PNe, with a low N/O ratio (as for type II PNe) and a high helium abundance (as for type I PNe), although not atypical among symbiotic stars. Such an anomalous chemical composition may have resulted from the curtailment of the time in the asymptotic giant branch by the evolution of the progenitor star through a common envelope phase. Based on observations made with the Nordic Optical Telescope (NOT) and the William Herschel Telescope (WHT) on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC), the 2.1-m telescope of the Observatorio Astronómico Nacional at the Sierra de San Pedro Mártir (OAN-SPM), and the 1.5-m telescope at the Observatorio de Sierra Nevada (OSN), Granada, Spain. NOT is operated jointly by Denmark, Finland, Iceland, Norway, and Sweden. WHT is operated by the Isaac Newton Group. The 2.1-m telescope at the OAN-SPM is a national facility operated by the Instituto de Astronomía of the Universidad Nacional Autónoma de México. The 1.5-m telescope at the OSN is operated by the

  9. X-ray Reverberation Mapping in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2018-01-01

    Active Galactic Nuclei can produce as much or more electromagnetic and kinetic luminosities than the combined stellar luminosity of an entire galaxy. The energy output from AGN comes from the gravitational potential energy of the infalling material and the rotational energy of the black hole, both of which are released very close to the black hole. Therefore, probing the relativistic region of the inner accretion flow is essential to understanding how AGN work and effect their environments. In this talk, I will present a new technique for probing these relativistic environments: X-ray reverberation mapping. Similar to Optical reverberation mapping, where time delays of days or weeks between the continuum and Broad Line Region lines map out centiparsec scales, X-ray reverberation reveals time delays of tens of seconds, which map out microparsec scales in the accretion flow—well beyond the spatial resolution power of any instrument. This technique has been discovered in the past decade, so I will give a brief overview of how the measurements are made, and highlight some recent discoveries, which allow us to map the gas falling on to the black hole and measure the effects of strongly curved spacetime close to the event horizon.

  10. A Modular Implementation for the Simulation of 1D and 2D Solid-State NMR Spectra of Quadrupolar Nuclei in the Virtual Multifrequency Spectrometer-Draw Graphical Interface.

    PubMed

    Presti, Davide; Pedone, Alfonso; Licari, Daniele; Barone, Vincenzo

    2017-05-09

    We present the implementation of the solid state (SoS)NMR module for the simulation of several 1D and 2D NMR spectra of all the elements in the periodic table in the virtual multifrequency spectrometer (VMS). This module is fully integrated with the graphical user interface of VMS (VMS-Draw) [Licari et al., J. Comput. Chem. 36, 2015, 321-334], a freeware tool which allows a user-friendly handling of structures and analyses of advanced spectroscopical properties of chemical compounds-from model systems to real-world applications. Besides the numerous modules already available in VMS for the study of electronic, optical, vibrational, vibronic, and EPR properties, here the simulation of NMR spectra is presented with a particular emphasis on those techniques usually employed to investigate solid state systems. The SoSNMR module benefits from its ability to work under both periodic and nonperiodic conditions, such that small molecules/molecular clusters can be treated, as well as extended three-dimensional systems enforcing (or not) translational periodicity. These features allow VMS to simulate spectra resulting from NMR calculations by some popular quantum chemistry codes, namely Gaussian09/16, Castep, and Quantum Espresso. The effectiveness of the SoSNMR module of VMS is examined throughout the manuscript, and applied to simulate 1D static, MAS, and VAS NMR spectra as well as 2D correlation (90°, MAS) and MQMAS spectra of active NMR nuclei embedded in different amorphous and crystalline systems of actual interest in chemistry and material science. Finally, the program is able to simulate the spectra of both the total ensemble of spin-active nuclei present in the system and of subensembles differentiated depending on the chemical environment of the first and second coordination sphere in a very general way applicable to any kind of systems.

  11. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  12. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  13. Isolation of Nuclei and Nucleoli.

    PubMed

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  14. Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Chekhovich, Evgeny A.

    2017-06-01

    Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.

  15. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  16. Light nuclei production as a probe of the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; Pu, Jie; Xu, Zhangbu

    2018-06-01

    It is generally believed that the quark-hadron transition at small values of baryon chemical potentials μB is a crossover but changes to a first-order phase transition with an associated critical endpoint (CEP) as μB increases. Such a μB-dependent quark-hadron transition is expected to result in a double-peak structure in the collision energy dependence of the baryon density fluctuation in heavy-ion collisions with one at lower energy due to the spinodal instability during the first-order phase transition and another at higher energy due to the critical fluctuations in the vicinity of the CEP. By analyzing the data on the p, d and 3H yields in central heavy-ion collisions within the coalescence model for light nuclei production, we find that the relative neutron density fluctuation Δρn = 〈(δρn) 2 〉 /〈ρn 〉 2 at kinetic freeze-out indeed displays a clear peak at √{sNN } = 8.8GeV and a possible strong re-enhancement at √{sNN } = 4.86GeV. Our findings thus provide a strong support for the existence of a first-order phase transition at large μB and its critical endpoint at a smaller μB in the temperature versus baryon chemical potential plane of the QCD phase diagram.

  17. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei.

    PubMed

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. Copyright © 2016. Published by Elsevier Inc.

  18. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    PubMed

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  20. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  1. Investigation of timing effects in modified composite quadrupolar echo pulse sequences by mean of average Hamiltonian theory

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    2018-01-01

    The utility of the average Hamiltonian theory and its antecedent the Magnus expansion is presented. We assessed the concept of convergence of the Magnus expansion in quadrupolar spectroscopy of spin-1 via the square of the magnitude of the average Hamiltonian. We investigated this approach for two specific modified composite pulse sequences: COM-Im and COM-IVm. It is demonstrated that the size of the square of the magnitude of zero order average Hamiltonian obtained on the appropriated basis is a viable approach to study the convergence of the Magnus expansion. The approach turns to be efficient in studying pulse sequences in general and can be very useful to investigate coherent averaging in the development of high resolution NMR technique in solids. This approach allows comparing theoretically the two modified composite pulse sequences COM-Im and COM-IVm. We also compare theoretically the current modified composite sequences (COM-Im and COM-IVm) to the recently published modified composite pulse sequences (MCOM-I, MCOM-IV, MCOM-I_d, MCOM-IV_d).

  2. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  3. Black-sphere approximation to nuclei and its application to reactions with neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2013-09-01

    We briefly review our formula for a proton-nucleus total reaction cross section, σR, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a "black" sphere of radius "a". An extension to reactions involving neutron-rich nuclei is also reported.

  4. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  5. A study of isotropic-nematic transition of quadrupolar Gay-Berne fluid using density-functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2011-11-01

    The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.

  6. Endoscopic probe optics for spectrally encoded confocal microscopy.

    PubMed

    Kang, Dongkyun; Carruth, Robert W; Kim, Minkyu; Schlachter, Simon C; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.

  7. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    NASA Astrophysics Data System (ADS)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  8. Structure and density of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Lowry, Stephen C.

    2008-09-01

    Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple’s (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy- onglomerate planetesimals, possibly held together only by self-gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker-Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA’s Rosetta mission, now en route to comet 67P/Churyumov- Gerasimenko, will provide that opportunity.

  9. The effects of Q-nuclei on stellar burning

    NASA Astrophysics Data System (ADS)

    Boyd, R. N.; Turner, R. E.; Sur, B.; Rybarcyk, L.; Joseph, C.

    1985-01-01

    The effects of anomalous nuclei, Q-nuclei, on stellar burning are examined. The baryon binding energies, beta-decay properties, and thermonuclear reaction rates for the Q-nuclei suggest they could catalyze a cycle in which four protons are combined to form a 4He nucleus. The properties required of the Q-nuclei for them to solve the solar neutrino problem are determined. A solar modelling calculation was performed with Q-nuclei included, and several interesting results therefrom are compared to observations. Finally the solar neutrino detection rates for 71Ga and 115In detectors, in addition to that for 37Cl, are estimated when Q-nuclei are included in the solar burning.

  10. What Lurks in ULIRGs?—Probing the Chemistry and Excitation of Molecular Gas in the Nuclei of Arp 220 and NGC 6240

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, Swarnima; Scoville, Nick

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO{sup +}, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecularmore » gas is concentrated between the nuclei rather than on them. We calculated molecular H{sub 2} densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO{sup +} in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H{sub 2} volume densities are ∼5 × 10{sup 4} cm{sup −3} in the Arp 220 nuclei and ∼10{sup 4} cm{sup −3} in NGC 6240.« less

  11. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  12. A PCR-Based Method for RNA Probes and Applications in Neuroscience.

    PubMed

    Hua, Ruifang; Yu, Shanshan; Liu, Mugen; Li, Haohong

    2018-01-01

    In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.

  13. Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2010-07-15

    A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.

  14. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  15. Deformation effect on spectral statistics of nuclei

    NASA Astrophysics Data System (ADS)

    Sabri, H.; Jalili Majarshin, A.

    2018-02-01

    In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.

  16. Black-hole model of galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, C.A.; ter Haar, D.

    1973-04-01

    It is shown that the observed large infrared emission from some galactic nuclei finds a natural explanation, if one takes plasma turbulence into account in Lynden-Bell and Rees' blackhole model of galactic nuclei. (auth)

  17. Experimental results on antiproton-nuclei annihilation cross section at very low energies

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.; Zurlo, N.

    2014-03-01

    Investigating the antiproton cross section on nuclei at low energies (1 eV - 1 MeV) is of great interest for fundamental cosmology and nuclear physics as well. The process is of great relevance for the models which try to explain the matter/antimatter asymmetry in the universe assuming the existence of the so-called "island" where antinucleon-nucleon annihilations occur in the border region [1]. For the nuclear physics point of view, the annihilation process is considered a useful tool to evaluate the neutron/proton ratio probing the external region of the nucleus. Moreover, the cross section measured at LEAR in the 80s-90s showed an unexpected behaviour for energies below 1 MeV. The results showed a saturation with the atomic mass number against the A2/3 trend which is known for higher energies. The ASACUSA collaboration at CERN measured 5.3 MeV antiproton annihilation cross section on different nuclei whose results demonstrated to be consistent with the black-disk model with the Coulomb correction [2]. So far, experimental limits prevented the data acquisition for energies below 1 MeV. In 2012 the 100 keV region has been investigated for the first time [3]. We present here the results of the experiment.

  18. Effective theory for the nonrigid rotor in an electromagnetic field: Toward accurate and precise calculations of E2 transitions in deformed nuclei

    DOE PAGES

    Coello Pérez, Eduardo A.; Papenbrock, Thomas F.

    2015-07-27

    In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0 2 + band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less

  19. Dynamic Nuclear Polarization of 17O: Direct Polarization

    PubMed Central

    Michaelis, Vladimir K.; Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2014-01-01

    Dynamic nuclear polarization of 17O was studied using four different polarizing agents – the biradical TOTAPOL, and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and bi-radical polarizing agents. Enhancements were recorded < 88 K and were > 100 using the trityl (OX063) radical and < 10 with the other polarizing agents. The > 10,000 fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei. PMID:24195759

  20. Dynamic nuclear polarization of 17O: direct polarization.

    PubMed

    Michaelis, Vladimir K; Corzilius, Björn; Smith, Albert A; Griffin, Robert G

    2013-12-05

    Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at <88 K and were >100 using the trityl (OX063) radical and <10 with the other polarizing agents. The >10,000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.

  1. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  2. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF STATE [Public Notice: 7643] In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated Global Terrorist...

  3. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  4. Elastic scattering of spin-polarized electrons and positrons from 23Na nuclei

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.

    2018-07-01

    Differential cross sections and polarization correlations for the scattering of relativistic spin-polarized leptons from unpolarized ground-state sodium nuclei are calculated within the distorted-wave Born approximation (DWBA). Various nuclear ground-state charge distributions are probed. Besides potential scattering, also electric C2 and magnetic M1 and M3 transitions are taken into account. It is shown that even for a light nucleus such as 23Na there are considerable electron-positron differences at high collision energies and large scattering angles. In particular, the symmetry of the Sherman function with respect to a global sign change, as predicted by the second-order Born approximation when replacing electrons by positrons, is broken whenever the diffraction structures come into play beyond 100 MeV.

  5. Elusive active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  6. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog.

    PubMed

    Kociucka, B; Sosnowski, J; Kubiak, A; Nowak, A; Pawlak, P; Szczerbal, I

    2013-01-01

    Great progress has been achieved over the last years in studies on chromosome arrangement in mammalian cell nuclei. Growing evidence indicates that the genome's spatial organization is of functional relevance. So far, no attention has been paid to the nuclear organization of B chromosomes (Bs). In this study we have examined nuclear positioning of Bs in 2 species from the Canidae family--the red fox and the Chinese raccoon dog. Using 2D and 3D fluorescence in situ hybridization and 2 gene-specific probes (C-KIT and PDGFRA), we analyzed the location of Bs in fibroblast nuclei. We found that small Bs of the red fox occupied mostly the interior of the nucleus, while medium-sized Bs of the Chinese raccoon dog were observed in the peripheral area of the nucleus as well as in intermediate and interior locations. The more uniform distribution of B chromosomes in the Chinese raccoon dog may be the result of differences in their size, since 3 morphological types of Bs are distinguished in this species. Our results indicate that 3D positioning of B chromosomes in fibroblast nuclei of the 2 canid species is in agreement with the chromosome size-dependent theory. Copyright © 2013 S. Karger AG, Basel.

  7. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  8. Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, O.; Kholmetskii, Alexander; Arık, Metin

    2017-01-01

    Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of "pairing" ( e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that "pairing", as expected, definitely increases the stability of the given nucleus.

  9. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  10. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  11. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  12. Chaos in nuclei: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  13. On the occurrence of nuclei in mature sieve elements.

    PubMed

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  14. Superheavy nuclei from 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.

    2015-12-01

    The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.

  15. Electron Scattering Measurements applied to Neutrino Interactions on Nuclei

    NASA Astrophysics Data System (ADS)

    Christy, M. Eric

    2013-04-01

    The extraction of neutrino mass differences and flavor mixing parameters from oscillation experiments requires models of neutrino-nucleus scattering as input. With the reduction of other systematics, the uncertainties stemming from such models are expected to be one of the larger contributions to the systematic uncertainties for next generation oscillation experiments. The neutrino energy range sensitive to oscillations in long baseline experiments is typically the few GeV range, where the interactions with the nucleus and the subsequent production and propagation of hadrons within the nucleus is in the regime studied by nuclear physics experiments at facilities such as Jefferson Lab. While processes such as resonance production have been well studied in electron scattering, there is currently precious little corresponding data from neutrino scattering. Results from electron scattering experiments, therefore, have an important role to play in both building and constraining models for neutrino scattering. On the other hand, the study of nucleon structure via weak probes is very complementary to the program at Jefferson Lab utilizing electromagnetic probes. Neutrino scattering experiments such at MINERvA are expected to provide new experimental information on axial elastic and resonance transition form factors and on medium modifications via the axial coupling. This talk will focus on the application of electron scattering measurements to neutrino interactions on nuclei, but will also touch on where neutrino scattering measurements can add to our understanding of the nucleus.

  16. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  17. Brueckner-AMD Study of Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Kiyoshi; Yamamoto, Yuhei; Togashi, Tomoaki

    2011-06-28

    We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only {alpha}-nuclei but also N{ne}Z nuclei with A{approx}10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.

  18. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  19. Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes

    PubMed Central

    Hocking, Henry G; Zangger, Klaus; Madl, Tobias

    2013-01-01

    Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693

  20. Open sd-shell nuclei from first principles

    DOE PAGES

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  1. Open sd-shell nuclei from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  2. Ice nuclei emissions from biomass burning

    Treesearch

    Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller

    2009-01-01

    Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...

  3. The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system.

    PubMed

    Balikov, Daniel A; Brady, Sonia K; Ko, Ung Hyun; Shin, Jennifer H; de Pereda, Jose M; Sonnenberg, Arnoud; Sung, Hak-Joon; Lang, Matthew J

    2017-09-03

    The cytoskeleton provides structure and plays an important role in cellular function such as migration, resisting compression forces, and transport. The cytoskeleton also reacts to physical cues such as fluid shear stress or extracellular matrix remodeling by reorganizing filament associations, most commonly focal adhesions and cell-cell cadherin junctions. These mechanical stimuli can result in genome-level changes, and the physical connection of the cytoskeleton to the nucleus provides an optimal conduit for signal transduction by interfacing with nuclear envelope proteins, called nesprins, within the LINC (linker of the nucleus to the cytoskeleton) complex. Using single-molecule on single nuclei assays, we report that the interactions between the nucleus and the cytoskeleton, thought to be nesprin-cytoskeleton interactions, are highly sensitive to force magnitude and direction depending on whether cells are historically interfaced with the matrix or with cell aggregates. Application of ∼10-30 pN forces to these nesprin linkages yielded structural transitions, with a base transition size of 5-6 nm, which are speculated to be associated with partial unfoldings of the spectrin domains of the nesprins and/or structural changes of histones within the nucleus.

  4. Analysis of isomeric ratios for medium-mass nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the {sup 86,87}Y, {sup 94,95,96,99}Tc, and {sup 44}Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reasonmore » behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.« less

  5. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  6. Proton bombarded reactions of Calcium target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Depedelen, Mesut

    2017-09-01

    In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1-50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α), (p,n), (p,p) have been calculated using the semi-empirical formula Tel et al. [5].

  7. Excited nuclei, resonances and reactions in neutron star crusts

    NASA Astrophysics Data System (ADS)

    Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V.

    2018-01-01

    The short review of research results concerning the study of reactions and processes that occur in the neutron star crusts is given. The peculiarities of electron capture reactions by a nucleus in overdense crystalline structures have been demonstrated for various nuclei, in particular some even-even nuclei at electron capture reactions give daughter nuclei in excited states. Excited nuclei due to nonlinear interactions lead to a high-order harmonic generation. High energy gammas interact with charged particles, give a neutrino radiation and also knock out nucleons from neighbour nuclei. It is also shown that interactions of neutrons with two and more nuclei in an overdence lattice give a large number of new resonance states. These resonances result in a formation of specific local oscillations in the corresponding layers of the lattice. The periodic enhancement of these processes in the dependence on the elemental composition of the primary neutron star matter is considered.

  8. Feeding, Feedback and the Growth of Galaxies - Molecules as Tools for Probing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Aalto, Susanne

    2017-06-01

    Cold gas plays a central role in feeding and regulating star formation and growth of supermassive black holes (SMBH) in galaxy nuclei. Particularly powerful activity occurs when interactions of gas-rich galaxies funnel large amounts of gas and dust into nuclei of luminous and ultra luminous infrared galaxies (LIRGs/ULIRGs). These dusty objects are of key importance to galaxy mass assembly over cosmic time. Some (U)LIRGS have deeply embedded galaxy nuclei that harbour a very active evolutionary stage of AGNs and/or starbursts. The nuclear activity will often drive mechanical feedback in the form of molecular winds, jets and outflows. This feedback can for example remove baryons from low-mass galaxies, prevent overgrowth of galaxies, be linked to the M_{BH}-σ relation, and explain "red-and dead" properties of local ellipticals. With the ALMA and NOEMA telescopes we can use molecules as diagnostic tools to probe the properties of dust-enshrouded galaxy nuclei and their associated cold winds and outflows. Their morphology, velocity structure, physical conditions and even chemistry can be studied at unprecedented sensitivity and resolution, opening new avenues to further our understanding of the growth of galaxies. I will give a brief review of the ALMA/NOEMA view of AGN and starburst radiative and mechanical feedback, and how it is linked to the properties of the nuclear power source. I will discuss the use of molecules (e.g. H_2O, H_3O^{+}, HCN, HCO^+, H_2S) for studying dusty nuclei and the nature of the embedded activity. We can, for example, investigate ionization rates and the impact of cosmic ray-, X-ray- and PDR-chemistry and the onset of outflows and winds. Interestingly, in some deeply obscured nuclei the chemistry shows strong similarities to that of Galactic hot cores. Finally I will show peculiar molecular jets and very recent ALMA observations at resolutions of tens of milli-arcseconds (few pc) of vibrationally excited HCN in opaque nuclei. These regions

  9. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  10. The University of Chicago cosmic ray electrons and nuclei experiment on the H spacecraft

    NASA Technical Reports Server (NTRS)

    Meyer, P.; Evenson, P.

    1978-01-01

    The University of Chicago instrument on the Heliocentric spacecraft (MEH experiment) will measure the energy spectrum of cosmic electrons in the range 5-400 MeV. In addition, the energy spectra and relative abundances of nuclei from protons to the iron group, with energies ranging from 30 MeV/n to 15 GeV/n, will be determined. Primary scientific objectives involve the study of the long and short term variability of these components as a probe of the structure of the heliosphere. Particles are identified by multiparameter analysis using the pulse height analyzed signals from eight active detectors - silicon solid state, plastic and crystal scintillators are solid and gas Cerenkov counters. Data return is optimized by a three level priority logic scheme.

  11. Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta

    2017-12-01

    Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.

  12. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  13. Multifractal-based nuclei segmentation in fish images.

    PubMed

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  14. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  15. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  16. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  17. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-05

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  18. Transverse momenta of fragments of relativistic sulfur and lead nuclei after their interaction with track-emulsion nuclei at energies of 200 and 160 GeV per nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepekhin, F. G., E-mail: lepfed@yandex.ru; Tkach, L. N.

    2011-05-15

    Transverse-momentum distributions of doubly charged fragments of sulfur and lead nuclei having energies of 200 and 160 GeV per nucleon and interacting with nuclei in a track emulsion were investigated. No trace of compression or heating of nuclear matter in the interaction of these nuclei with track-emulsion nuclei was revealed experimentally. Transverse momenta of fragments of relativistic nuclei were found to obey a normal distribution that corresponds to a degenerate momentum distribution of nucleons in the ground state of a nucleus before its interaction with a track-emulsion nucleus. There is no piece of evidence that fragments of relativistic nuclei originatemore » from some excited state of an intermediate nucleus. This picture of the fragmentation of relativistic nuclei complies with the naive parton model proposed by Feynman and Gribov. In summary, the fragmentation of relativistic nuclei at energies of 160 and 200 GeV per nucleon is cold and fast.« less

  19. Theoretical investigation of α -like quasimolecules in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.; Baran, V. V.

    2018-06-01

    Quasimolecular α -like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states in these nuclei, we investigate the shape of an α -nucleus quasimolecular potential matched to a realistic external α -daughter interaction by using as input data α -decay widths. It turns out that its Gaussian length parameter lies in a narrow interval, b0∈[0.6 ,0.8 ] fm, and the equilibrium radius is slightly larger than the predicted Mott transition point from nucleonic to the α -cluster phase in finite nuclei, confirming that α clusters are born on the nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic factors Sα˜10 % . In addition, we predict that for nuclei with b0>0.75 fm, the first excited vibrational resonant state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it can be evidenced by the structure of the α -scattering cross section versus energy. Moreover, its detection by a highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α molecules in heavy nuclei.

  20. Testing General Relativity with Accretion-Flow Imaging of Sgr A^{*}.

    PubMed

    Johannsen, Tim; Wang, Carlos; Broderick, Avery E; Doeleman, Sheperd S; Fish, Vincent L; Loeb, Abraham; Psaltis, Dimitrios

    2016-08-26

    The Event Horizon Telescope is a global, very long baseline interferometer capable of probing potential deviations from the Kerr metric, which is believed to provide the unique description of astrophysical black holes. Here, we report an updated constraint on the quadrupolar deviation of Sagittarius A^{*} within the context of a radiatively inefficient accretion flow model in a quasi-Kerr background. We also simulate near-future constraints obtainable by the forthcoming eight-station array and show that in this model already a one-day observation can measure the spin magnitude to within 0.005, the inclination to within 0.09°, the position angle to within 0.04°, and the quadrupolar deviation to within 0.005 at 3σ confidence. Thus, we are entering an era of high-precision strong gravity measurements.

  1. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  2. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1983-01-01

    On the basis of the icy conglometate model of cometary nuclei various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes have been determined. Narrow dust jets near the nuclei of some bright comets require that small sources be embedded in larger active areas. Certain evidence suggests that very dusty areas and very dusty comets may be less active, respectively, than surrounding areas or other comets.

  3. AN EXPERIMENTAL STUDY ON ARTIFICIAL CONDENSATION NUCLEI,

    DTIC Science & Technology

    NH4Cl, CaCl2, P205, NH4NO3, (NH4)2SO4, etc.) and suspensoids such as camphor , silicon minerals, kaolin, lamp black, and calcium lime (CaO). The...findings reveal that the above mentioned soluble nuclei and camphor powder are active artificial hygroscopic condensation nuclei and that lamp black

  4. Mechanical positioning of multiple nuclei in muscle cells.

    PubMed

    Manhart, Angelika; Windner, Stefanie; Baylies, Mary; Mogilner, Alex

    2018-06-01

    Many types of large cells have multiple nuclei. In skeletal muscle fibers, the nuclei are distributed along the cell to maximize their internuclear distances. This myonuclear positioning is crucial for cell function. Although microtubules, microtubule associated proteins, and motors have been implicated, mechanisms responsible for myonuclear positioning remain unclear. We used a combination of rough interacting particle and detailed agent-based modeling to examine computationally the hypothesis that a force balance generated by microtubules positions the muscle nuclei. Rather than assuming the nature and identity of the forces, we simulated various types of forces between the pairs of nuclei and between the nuclei and cell boundary to position the myonuclei according to the laws of mechanics. We started with a large number of potential interacting particle models and computationally screened these models for their ability to fit biological data on nuclear positions in hundreds of Drosophila larval muscle cells. This reverse engineering approach resulted in a small number of feasible models, the one with the best fit suggests that the nuclei repel each other and the cell boundary with forces that decrease with distance. The model makes nontrivial predictions about the increased nuclear density near the cell poles, the zigzag patterns of the nuclear positions in wider cells, and about correlations between the cell width and elongated nuclear shapes, all of which we confirm by image analysis of the biological data. We support the predictions of the interacting particle model with simulations of an agent-based mechanical model. Taken together, our data suggest that microtubules growing from nuclear envelopes push on the neighboring nuclei and the cell boundaries, which is sufficient to establish the nearly-uniform nuclear spreading observed in muscle fibers.

  5. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    PubMed

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  6. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    PubMed Central

    Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071

  7. Cluster preformation law for heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Wei, K.; Zhang, H. F.

    2017-08-01

    The concept of cluster radioactivity has been extended to allow emitted particles with ZC>28 for superheavy nuclei by nuclear theory [Poenaru et al., Phys. Rev. Lett. 107, 062503 (2011), 10.1103/PhysRevLett.107.062503]. The preformation and emission mechanics of heavy-ion particles must be examined again before the fascinating radioactivity is observed for superheavy nuclei in laboratory. We extract the cluster preformation factor for heavy and superheavy nuclei within a preformed cluster model, in which the decay constant is the product of the preformation factor, assault frequency, and penetration probability. The calculated results show that the cluster penetration probability for superheavy nuclei is larger than that for actinide elements. The preformation factor depends on the nuclear structures of the emitted cluster and mother nucleus, and the well-known cluster preformation law S (AC) =S (α) (AC-1 )/3 [Blendowske and Walliser, Phys. Rev. Lett. 61, 1930 (1988), 10.1103/PhysRevLett.61.1930] will break down when the mass number of the emitted cluster Ac>28 , and new preformation formulas are proposed to estimate the preformation factor for heavy and superheavy nuclei.

  8. An instrument for measuring the complex permittivity of the Martian top soil

    NASA Technical Reports Server (NTRS)

    Grard, R.

    1988-01-01

    This permittivity measuring instrument measures the resistivity rho and the relative dielectric constant epsilon sub r of the Martian top soil along the path of a rover. This aim is achieved by measuring the real and imaginary parts of the complex permittivity epsilon = epsilon sub r - j epsilon sub i where epsilon sub i = omega epsilon sub o rho/1; epsilon sub 1 is the permittivity of vacuum and omega is a variable angular working frequency. The experimental technique consists in evaluating the mutual, or transfer, impedance of a quadrupolar probe, i.e., in quantifying the influence of the Martian ground on the electrical coupling of two Hertz dipoles. The horizontal and vertical spatial resolutions are of the order of the length and separation of the dipoles, typically 1 to 2 metres. The four-electrode method for measuring the ground resistivity on earth was first applied by Wenner and Schlumberger, but the proposed investigation bears closer resemblance to a similar instrument developed for ground surveying at shallow depth, in connection with archaelogical and pedological research. A quadrupolar probe will provide essential information about the electric properties of the Martian ground and will contribute usefully to the identification of the soil structure and composition in association with other experimental equipment (camera, infra-red detector, gamma and X-ray spectrometers, chemical analyzers, ground temperature probes).

  9. Matter distribution and spin-orbit force in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Co', G.; Anguiano, M.; De Donno, V.; Lallena, A. M.

    2018-03-01

    We investigate the possibility that some nuclei show density distributions with a depletion in the center, a semibubble structure, by using a Hartree-Fock plus Bardeen-Cooper-Schrieffer approach. We separately study the proton, neutron, and matter distributions in 37 spherical nuclei mainly in the s -d shell region. We found a relation between the semibubble structure and the energy splitting of spin-orbit partner single particle levels. The presence of semibubble structure reduces this splitting, and we study its consequences on the excitation spectrum of the nuclei under investigation by using a quasiparticle random-phase-approximation approach. The excitation energies of the low-lying 4+ states can be related to the presence of semibubble structure in nuclei.

  10. Space Shuttle ice nuclei

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.

    1982-08-01

    Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.

  11. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  12. The Structure of 34Mg Nuclei

    NASA Astrophysics Data System (ADS)

    Luna, Benjamin

    2017-09-01

    In the chart of nuclei below the beta-stability line, there are regions called islands of inversion where nuclei are expected have a spherical ground state, but it has been determined that these nuclei have a deformed ground state. This project was part of an ongoing investigation with the goal of obtaining new information about 34Mg and 34Al, which lie near an island of inversion. A beam of 34Mg was sent to the center of an array of plastic scintillators and HPGe detectors to collect data from the isotope's beta decay. This isotope beta decays to 34Al and to 34Si. The analysis softwares ROOT and GRSISort were used to sort the data into analysis trees, from which certain histograms were extracted. These histograms were used to determine an initial list of gamma ray transitions associated with the relatively fast decays of 34Mg and 34Al. Since the efficiencies of gamma ray detection are known, the true number of counts from each transition can be determined. This was done to order the gamma ray transitions into a nuclear level scheme. Future work on this subject will include the analysis of the angular correlations of the transitions found to determine spins of states populated in the 34Al and Si daughter nuclei as well as shedding light on the isomer in 34Al.

  13. THE HISTORY OF TIDAL DISRUPTION EVENTS IN GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharon, Danor; Battisti, Alessandra Mastrobuono; Perets, Hagai B.

    The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs, and in probing the properties and dynamics of their nuclear stellar cluster (NSC) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been little explored. Here we consider TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker–Planck approachmore » to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDE history based on N -body simulation data, and find them to be comparable. We consider NSCs that are built up from close-in star formation (SF) or from far-out SF/cluster-dispersal, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional SF/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g., LSST).« less

  14. Study of a structural phase transition by two dimensional Fourier transform NMR method

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.

    1985-09-01

    The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.

  15. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  16. Nuclei of plants as a sink for flavanols.

    PubMed

    Feucht, W; Polster, J

    2001-01-01

    Onion cepa (L.) and Tsuga canadensis (L.) Carr. were investigated histochemically on the association of flavanols to nuclei. The young roots of Onion cepa are totally devoid of flavanol structures. Therefore, the excised roots tips were directly incubated into different solutions of flavanols. After 3 h of incubation a flavanol binding on the nuclei was recognizable, as seen by a yellowish-brown tanning reaction. Still to ensure the presence of flavanols on the nuclei, subsequent staining with the p-dimethylaminocinnamaldehyde reagent (DMACA) resulted in an intense blue colouration. Tsuga canadensis has significant amounts of vacuolar flavanol deposits in all parts of the tree as indicated by the DMACA reagent. It is obvious that also the nuclei were associated strongly with flavanols which can be demonstrated particularly elegant in the cells of the seed wings by histochemical methods. However, the mode of flavanol release from the original deposits is not yet clear.

  17. Analysis of variances of quasirapidities in collisions of gold nuclei with track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2012-08-15

    A new method of an analysis of variances was developed for studying n-particle correlations of quasirapidities in nucleus-nucleus collisions for a large constant number n of particles. Formulas that generalize the results of the respective analysis to various values of n were derived. Calculations on the basis of simple models indicate that the method is applicable, at least for n {>=} 100. Quasirapidity correlations statistically significant at a level of 36 standard deviations were discovered in collisions between gold nuclei and track-emulsion nuclei at an energy of 10.6 GeV per nucleon. The experimental data obtained in our present study aremore » contrasted against the theory of nucleus-nucleus collisions.« less

  18. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, W. Udo

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less

  19. Probing dimensionality using a simplified 4-probe method.

    PubMed

    Kjeldby, Snorre B; Evenstad, Otto M; Cooil, Simon P; Wells, Justin W

    2017-10-04

    4-probe electrical measurements have been in existence for many decades. One of the most useful aspects of the 4-probe method is that it is not only possible to find the resistivity of a sample (independently of the contact resistances), but that it is also possible to probe the dimensionality of the sample. In theory, this is straightforward to achieve by measuring the 4-probe resistance as a function of probe separation. In practice, it is challenging to move all four probes with sufficient precision over the necessary range. Here, we present an alternative approach. We demonstrate that the dimensionality of the conductive path within a sample can be directly probed using a modified 4-probe method in which an unconventional geometry is exploited; three of the probes are rigidly fixed, and the position of only one probe is changed. This allows 2D and 3D (and other) contributions the to resistivity to be readily disentangled. The required experimental instrumentation can be vastly simplified relative to traditional variable spacing 4-probe instruments.

  20. Enrichment of heavy nuclei in the April 17, 1972 solar flare

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Renshaw, A.; Woods, R. T.

    1974-01-01

    Cosmic ray nuclei from the April 17, 1972 solar flare were recorded in polycarbonate plastic and phosphate glass track detectors exposed on the Apollo 16 flight. The energy spectra of iron group nuclei and of carbon and heavier nuclei were measured down to about 0.02 MeV/nucleon, revealing that the enrichment of iron relative to carbon and heavier nuclei increases markedly in this very low energy region.

  1. Quadrupole and octupole shapes in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, D.

    1993-12-31

    The heavy-ion multiple Coulomb excitation technique, which has benefited from many important contributions by Dick Diamond, has developed to the stage where rather complete sets of E1, E2 and E3 matrix elements are being measured. These provide a sensitive measures of quadrupole and octupole deformation in nuclei. The completeness of the E2 data is sufficient to determine directly the centroids and fluctuation widths of the E2 properties in the principal axis frame for low-lying states. The results and model implications of recent Coulomb excitation measurements of the quadrupole shapes in odd and even A nuclei will be presented. Recent measurementsmore » of E1, E2 and E3 matrix elements for collective bands in N=88 and Z=88 nuclei show that octupole correlations play an important role. These results and the implications regarding octupole deformation and reflection asymmetry will be discussed.« less

  2. EMC effect for light nuclei: New results from Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji Daniel

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less

  3. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  4. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  5. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  6. Occurrence of Partial Nuclei in Eggs of the Sand Dollar, Clypeaster japonicus.

    PubMed

    Yoneda, M; Nemoto, S I

    1990-10-01

    Females of Clypeaster japonicus bearing eggs with multiple nuclei were occasionally found. DAPI (4'-6-diamidino-2-phenylindole) stained all these nuclei. The summed volume of the two nuclei in binucleate eggs was similar to the nuclear volume in mononucleate eggs from the same batch. On fertilization, two partial nuclei migrated to the center of the egg with a time-course similar to that taken by a single nucleus; they then participated in forming the zygote nucleus, which subsequently formed a single mitotic spindle. These multiple nuclei thus appear to function as genuine nuclei. Possibly they result from the failure of a single nucleus to form during oogenesis.

  7. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. II. Dipolar, Quadrupolar, and Octupolar Topologies

    NASA Astrophysics Data System (ADS)

    Finley, Adam J.; Matt, Sean P.

    2018-02-01

    During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.

  8. Systematic study of fission barriers of excited superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.

    2009-07-01

    A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM* Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei Pu240 and Fm256, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations.

  9. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  10. Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration

    2015-01-01

    On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly magic nuclei such as 16O and 40Ca are investigated. We found that those nuclei are bound for the pseudoscalar meson mass MPS≃470 MeV. The mass number dependence of the binding energies, single-particle spectra, and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.

  11. Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-γ nuclei with different opportunities on two commercial NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Jakobsen, Hans J.; Bildsøe, Henrik; Gan, Zhehong; Brey, William W.

    2011-08-01

    The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using 14N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1 T and Bruker, 19.6 T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50 Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50 Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth ( Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1 T) in several exploratory wide bandwidth 14N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed 14N MAS spectra correspondingly acquired at 19.6 T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.

  12. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.

  13. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  14. A simple method for estimating the size of nuclei on fractal surfaces

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  15. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  16. Octupole deformation in odd-odd nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.

    1988-01-01

    Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.

  17. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  18. Dynamics of hot rotating nuclei

    NASA Astrophysics Data System (ADS)

    Garcias, F.; de La Mota, V.; Remaud, B.; Royer, G.; Sébille, F.

    1991-02-01

    The deexcitation of hot rotating nuclei is studied within a microscopic semiclassical transport formalism. This framework allows the study of the competition between the fission and evaporation channels of deexcitation, including the mean-field and two-body interactions, without shape constraint for the fission channel. As a function of initial angular momenta and excitation energies, the transitions between three regimes is analyzed [particle evaporation, binary (ternary) fussion and multifragmentation], which correspond to well-defined symmetry breakings in the inertia tensor of the system. The competition between evaporation and binary fission is studied, showing the progressive disappearance of the fission process with increasing excitation energies, up to a critical point where nuclei pass directly from evaporation to multifragmentation channels.

  19. Systematization of α-decaying nuclei based on shell structures: The case of odd-even and odd-odd nuclei

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Zaim, Nimet; Yarman, Ozan; Kholmetskii, Alexander; Arık, Metin

    In previous studies, we provided a novel systematization of α-decaying even-even and even-odd nuclei starting with the classically adopted mechanism [T. Yarman et al., Eur. Phys. J. A 52 (2016) 140; Eur. Phys. J. A 53 (2017) 4]. Knowing beforehand the measured decay half-life, we had taken as a parameter the probability of the α-particle as being first born in a unit period of time, within the parent nucleus before it is emitted out. We thence developed a scaffold based on shell properties of families composed of “alike nuclei”. Along the same line, we now present a systematization of odd-even (OE) as well as odd-odd (OO) nuclei. We apply our approach further to the investigation of the effect of pairing (e.g., the effect when the number of nucleons is increased by one neutron), and that of unpairing (e.g., the effect when the number of nucleons is decreased by one neutron); thus it becomes an even number for the case of odd-even nuclei (Case OE), and an odd number in the case of odd-odd nuclei (Case OO). For the first case (OE), we pick the exemplar set 161Re, 217Fr, 243Bk, 263Db; where we delineate by, respectively, Re, Fr, Bk, and Db all of the odd-even or odd-odd isotopes that neighbor the four mentioned odd-even isotopes on the proposed scaffold. We proceed in the same way for the second case (OO). Thus, we choose the exemplar set of odd-odd nuclei 172Ir, 218Ac, 244Es. We then gather all of the Ir, Ac, and Es odd-odd and odd-even isotopes that neighbor the three mentioned odd-odd isotopes on the proposed scaffold. We show that, in the former case, pairing, as expected, generally increases stability of the given nucleus; and in the latter case, unpairing works in just the opposite direction — i.e., it generally increases instability. We disclose “stability peaks” versus Z for both sets of nuclei, we tackle here. Furthermore, we present a study to highlight an outlook of “odd-A nuclei” at hand. Contrary to the general expectation, we unveil no

  20. Source spectral index of heavy cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W. R.

    1985-01-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements.

  1. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  2. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  3. Magnesium and Calcium in Isolated Cell Nuclei

    PubMed Central

    Naora, H.; Naora, H.; Mirsky, A. E.; Allfrey, V. G.

    1961-01-01

    The calcium and magnesium contents of thymus nuclei have been determined and the nuclear sites of attachment of these two elements have been studied. The nuclei used for these purposes were isolated in non-aqueous media and in sucrose solutions. Non-aqueous nuclei contain 0.024 per cent calcium and 0.115 per cent magnesium. Calcium and magnesium are held at different sites. The greater part of the magnesium is bound to DNA, probably to its phosphate groups. Evidence is presented that the magnesium atoms combined with the phosphate groups of DNA are also attached to mononucleotides. There is reason to believe that those DNA-phosphate groups to which magnesium is bound, less than 1/10th of the total, are metabolically active, while those to which histones are attached seem to be inactive. PMID:13727745

  4. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  5. Comparative evaluation of probing depth and clinical attachment level using a manual probe and Florida probe.

    PubMed

    Kour, Amandeep; Kumar, Ashish; Puri, Komal; Khatri, Manish; Bansal, Mansi; Gupta, Geeti

    2016-01-01

    To compare and evaluate the intra- and inter-examiner efficacy and reproducibility of the first-generation manual (Williams) probe and the third-generation Florida probe in terms of measuring pocket probing depth (PD) and clinical attachment level (CAL). Forty subjects/4000 sites were included in this comparative, cross-sectional study. Group- and site-wise categorizations were done. Based on gingival index, PD, and CAL, patients were divided into four groups, i.e., periodontally healthy, gingivitis, mild to moderate periodontitis, and severe periodontitis. Further, based on these parameters, a total of 4000 sites, with 1000 sites in each category randomly selected from these 40 patients, were taken. Full mouth PD and CAL measurements were recorded with two probes, by Examiner 1 and on Ramfjord teeth by Examiner 2. Full mouth and Ramfjord teeth group- and site-wise PD obtained with the manual probe by both the examiners were statistically significantly deeper than that obtained with the Florida probe. The full mouth and Ramfjord teeth mean CAL measurement by Florida probe was higher as compared to manual probe in mild to moderate periodontitis group and sites, whereas in severe periodontitis group and sites, manual probe recorded higher CAL as compared to Florida probe. Mean PD and CAL measurements were deeper with the manual probe as compared to the Florida probe in all the groups and sites, except for the mild-moderate periodontitis group and sites where the CAL measurements with the manual probe were less than the Florida probe. Manual probe was more reproducible and showed less interexaminer variability as compared to the Florida probe.

  6. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  7. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  8. Adaptive segmentation of nuclei in H&S stained tendon microscopy

    NASA Astrophysics Data System (ADS)

    Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.

  9. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  10. Enrichment of heavy nuclei in the 17 April 1972 solar flare.

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.

    1973-01-01

    Polycarbonate and glass detectors exposed on Apollo 16 to the Apr. 17, 1972, solar flare were used to measure the spectrum of iron-group cosmic-ray nuclei down to about 0.02 MeV/nucleon. The enrichment of iron relative to lighter nuclei previously seen at higher energies increases markedly in this new, very-low-energy region. The energy spectrum of carbon and heavier nuclei inferred from sensitized Lexan polycarbonate reveals the enrichment of iron relative to carbon and heavier nuclei down to about 0.03 MeV/nucleon.

  11. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Walter

    2010-12-23

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the ''hot'' fusion reactions and the continent of known nuclei. In these reactions we may also investigate the ''island of stability''. In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather longmore » ({>=}10{sup -20} s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.« less

  12. Hyperheavy nuclei in covariant density functional theory: the existence and stability

    NASA Astrophysics Data System (ADS)

    Gyawali, Abhinaya; Agbemava, Sylvester; Afanasjev, Anatoli

    2017-09-01

    The limits of existence of finite nuclei is one of interesting questions of modern low-energy nuclear physics. A lot of theoretical efforts have been dedicated to the study of superheavy nuclei with Z < 126. However, very little is known about existence and stability of hyperheavy nuclei with proton numbers Z > 126 . Almost all investigations of such nuclei consider only spherical shapes for the ground states. However, the study of superheavy nuclei indicates that such assumption leads in many cases to misinterpretation of the situation. Thus, we performed a systematic investigation of such nuclei for proton numbers from 122 up to 184 and from two-proton drip line up to two-neutron one within the axial relativistic Hartree-Bogoliubov theory. The calculations are carried out in large deformation space extending from megadeformed oblate shapes via spherical ones up to scission configuration. The stability of such nuclei against fission (including triaxial and octupole shapes) and beta-decays have been investigated and the islands of their stability have been defined. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037 and by Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002925.

  13. Investigation to synthesis more isotopes of superheavy nuclei Z = 118

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-07-01

    We have studied the α-decay properties of superheavy nuclei Z = 118 in the range 275 ≤ A ≤ 325. Most of the predicted, unknown nuclei in the range 291 ≤ A ≤ 301 were found to have α-decay chains. Of these the nuclei 293-301118 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory. Fusion barries for different projectile-target combinations to synthesis superheavy nuclei Z = 118 are studied and are also represented in simple relations. We have also studied the evaporation residue cross section, compound nucleus formation probability (PCN) and survival probability (PSurv) of different projectile-target combinations to synthesis superheavy element Z = 118. The selected most probable projectile-target combinations are Ca+Cf, Ti+Cm, Sc+Bk, V+Am, Cr+Pu, Fe+U, Mn+Np, Ni+Th and Kr+Pb. We have formulated simple relations for maximum evaporation residue cross sections and its corresponding energies. This helps to identify the projectile-target combinations quickly. Hence, we have identified the most probable projectile-target combinations to synthesis these superheavy nuclei. We hope that our predictions may be a guide for the future experiments in the synthesis of more isotopes of superheavy nuclei Z = 118.

  14. Reaction Studies With Light, Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Ernst Rehm, K.

    2006-10-01

    The availability of beams of exotic nuclei allows us for the first time to study in a terrestrial laboratory reactions, which occur in stellar explosions, such as Novae, Supernovae or X-ray bursts. In this talk I will present results from recent experiments performed with beams of light, unstable nuclei, which are produced via the in-flight technique at the ATLAs accelerator at Argonne. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract No. W-31-109-ENG-38 and by the NSF Grant No. PHY-02-16783 (Joint Institute for Nuclear Astrophysics).

  15. {gamma}-vibrational states in superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Yang; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000; Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  16. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  17. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  18. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  19. Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1993-01-01

    An extensive flight series was carried out during May-June 1990 in the remote North and South Pacific free tropospheric aboard the NASA DC-8. Condensation nuclei counters and optical particle counters provided information on aerosol particles with diameters between 0.003 and 7.0 micrometers. Vertical profiles revealed aerosol layers to be a common feature of the free troposphere. Regions with highest aerosol mass tended to have the highest concentrations of surface-derived nuclei but the lowest concentrations of total nuclei. Regions with lowest aerosol mass tended to have the highest concentrations of the smaller 'ultrafine' condensation nuclei with diameters below 0.02 mircometers. Horizontal transects totaling over 35,000 km at about 9 to 10-km altitude exhibited variability of approximately 3 orders of magnitude in both aerosol mass and number concentrations over spatial scales ranging from 1 to 1000 km. At these altitudes an approximate inverse relationship between ultrafine concentrations and the surface area of the larger aerosol was evident. Regions having lowest aerosol mass were characterized by aerosol thermal volatility, indicative of a predominately sulfuric acid composition, and by very high concentrations of ultrafine nuclei, indicative of recent homogeneous nucleation. These conditions were frequently observed but were conspicuously evident above cloud over the intertropical convergence zone. The clean, free troposphere appears to be a significant source region for new tropospheric nuclei. A simplified model of the lifetime, coagulation, and cycling of these nuclei suggests that they constitute a source of cloud condensation nuclei in the lower troposphere.

  20. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Yang, Jiefan; Lei, Hengchi; Lü, Yuhuan

    2017-08-01

    A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei (CCN) spectra was observed using a passive cloud and aerosol spectrometer (PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = cS k were 539 and 1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12 (Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles (1000-2500 cm-3) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of N CCN to N a (aerosols measured from PCASP) was 0.74 (0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities, such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.

  1. Description of transitional nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Lac, V.-S.; Kuyucak, S.

    1992-03-01

    We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.

  2. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  3. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  4. Pion-less effective field theory for real and lattice nuclei

    NASA Astrophysics Data System (ADS)

    Bansal, Aaina; Binder, Sven; Ekström, Andreas; Hagen, Gaute; Papenbrock, Thomas

    2017-09-01

    We compute the medium-heavy nuclei 16O and 40Ca using pion-less effective field theory (EFT) at leading order (LO) and next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to A = 2 , 3 nuclei data from experiments, or alternatively to data from lattice QCD at unphysical pion mass mπ = 806 MeV. The EFT is implemented through discrete variable representation of finite harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space and allows us to compute heavier atomic and lattice nuclei. The atomic nuclei 16O and 40Ca are bound with respect to decay into alpha particles at NLO, but not at LO.

  5. Spatial distribution of nuclei in progressive nucleation: Modeling and application

    NASA Astrophysics Data System (ADS)

    Tomellini, Massimo

    2018-04-01

    Phase transformations ruled by non-simultaneous nucleation and growth do not lead to random distribution of nuclei. Since nucleation is only allowed in the untransformed portion of space, positions of nuclei are correlated. In this article an analytical approach is presented for computing pair-correlation function of nuclei in progressive nucleation. This quantity is further employed for characterizing the spatial distribution of nuclei through the nearest neighbor distribution function. The modeling is developed for nucleation in 2D space with power growth law and it is applied to describe electrochemical nucleation where correlation effects are significant. Comparison with both computer simulations and experimental data lends support to the model which gives insights into the transition from Poissonian to correlated nearest neighbor probability density.

  6. In vivo imaging of cell nuclei by photoacoustic microscopy without staining

    NASA Astrophysics Data System (ADS)

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V.

    2012-02-01

    Ultraviolet photoacoustic microscopy (UVPAM) can image cell nuclei in vivo with high contrast and resolution noninvasively without staining. Here, we used UV light at wavelengths of 210-310 nm for excitation of DNA and RNA to produce photoacoustic waves. We applied the UVPAM to in vivo imaging of cell nuclei in mouse skin, and obtained UVPAM images of the unstained cell nuclei at wavelengths of 245-282 nm as ultrasound gel was used for acoustic coupling. The largest ratio of contrast to noise was found for the images of cell nuclei at a 250 nm wavelength.

  7. Projected shell model description of N = 114 superdeformed isotone nuclei

    NASA Astrophysics Data System (ADS)

    Guo, R. S.; Chen, L. M.; Chou, C. H.

    2006-03-01

    A systematic description of the yrast superdeformed (SD) bands in N = 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed.

  8. Ground states of larger nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wavemore » functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.« less

  9. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  10. Binding energies and modelling of nuclei in semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Tsushima, K.; Valcarce, A.

    2008-03-01

    We study the binding energies of spin isospin saturated nuclei with nucleon number 8⩽A⩽100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  11. Evolutional schemes for objects with active nuclei

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1979-01-01

    The observational properties of quasistellar objects (QSO) reveal that they are extremely violent nuclei of distant galaxies, but the evolutionary stage of these galaxies is still undetermined. Various published attempts to classify QSO under different criteria - including the one based on the morphological type of the surrounding galaxy E- or S- are analyzed. There are evidences that radioactive quasars reside in E-, while radio-quiet quasars reside in both E- and S- systems. The latter may be evolutionary connected to Seyfert-like objects. A correlation between the nuclei activity level in systems of different morphological type and the relative amount of gas in them is noted. From the point of view of activity level and the duration of active stage of nuclei it is concluded that an interaction of galaxies with the intergalactic medium is of particular importance and must be most conspicuous in spheriodal systems of central regions of rich clusters, in tight groups and binary galaxies.

  12. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  13. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  14. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  15. Probable alpha and 14C cluster emission from hyper Ac nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.

    2013-10-01

    A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.

  16. The ionizing radiation of Seyfert 2 galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.

    1993-01-01

    We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.

  17. Isolation of the constitutive heterochromatin from mouse liver nuclei.

    PubMed

    Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N

    2008-01-01

    A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.

  18. Interaction of 160-GeV muon with emulsion nuclei

    NASA Astrophysics Data System (ADS)

    Othman, S. M.; Ghoneim, M. T.; Hussein, M. T.; El-Samman, H.; Hussein, A.

    In this work we present some results of the interaction of high-energy muons with emulsion nuclei. The interaction results in emission of a number of fragments as a consequence of electromagnetic dissociation of the excited target nuclei. This excitation is attributed to absorption of photons by the target nuclei due to the intense electric field of the very fast incident muon particles. The interactions take place at impact parameters that allow ultra-peripheral collisions to take place, leading to giant resonances and hence multifragmentation of emulsion targets. Charge identification, range, energy spectra, angular distribution and topological cross-section of the produced fragments are measured and evaluated.

  19. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  20. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  1. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  2. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia

    PubMed Central

    Cobia, Derin J.; Smith, Matthew J.; Salinas, Ilse; Ng, Charlene; Gado, Mohktar; Csernansky, John G.; Wang, Lei

    2016-01-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. PMID:27613507

  3. Detection of high-grade atypia nuclei in breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Noël, Henri; Roux, Ludovic; Lu, Shijian; Boudier, Thomas

    2015-03-01

    Along with mitotic count, nuclear pleomorphism or nuclear atypia is an important criterion for the grading of breast cancer in histopathology. Though some works have been done in mitosis detection (ICPR 2012,1 MICCAI 2013,2 and ICPR 2014), not much work has been dedicated to automated nuclear atypia grading, especially the most difficult task of detection of grade 3 nuclei. We propose the use of Convolutional Neural Networks for the automated detection of cell nuclei, using images from the three grades of breast cancer for training. The images were obtained from ICPR contests. Additional manual annotation was performed to classify pixels into five classes: stroma, nuclei, lymphocytes, mitosis and fat. At total of 3,000 thumbnail images of 101 × 101 pixels were used for training. By dividing this training set in an 80/20 ratio we could obtain good training results (around 90%). We tested our CNN on images of the three grades which were not in the training set. High grades nuclei were correctly classified. We then thresholded the classification map and performed basic analysis to keep only rounded objects. Our results show that mostly all atypical nuclei were correctly detected.

  4. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.

    PubMed

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R

    2018-01-01

    Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

  5. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels

    PubMed Central

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.

    2018-01-01

    Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277

  6. Size distribution and growth rate of crystal nuclei near critical undercooling in small volumes

    NASA Astrophysics Data System (ADS)

    Kožíšek, Z.; Demo, P.

    2017-11-01

    Kinetic equations are numerically solved within standard nucleation model to determine the size distribution of nuclei in small volumes near critical undercooling. Critical undercooling, when first nuclei are detected within the system, depends on the droplet volume. The size distribution of nuclei reaches the stationary value after some time delay and decreases with nucleus size. Only a certain maximum size of nuclei is reached in small volumes near critical undercooling. As a model system, we selected recently studied nucleation in Ni droplet [J. Bokeloh et al., Phys. Rev. Let. 107 (2011) 145701] due to available experimental and simulation data. However, using these data for sample masses from 23 μg up to 63 mg (corresponding to experiments) leads to the size distribution of nuclei, when no critical nuclei in Ni droplet are formed (the number of critical nuclei < 1). If one takes into account the size dependence of the interfacial energy, the size distribution of nuclei increases to reasonable values. In lower volumes (V ≤ 10-9 m3) nucleus size reaches some maximum extreme size, which quickly increases with undercooling. Supercritical clusters continue their growth only if the number of critical nuclei is sufficiently high.

  7. Proxy-SU(3) symmetry in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.

    2017-06-01

    Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.

  8. Stability of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  9. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  10. Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.

    2008-11-01

    Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.

  11. The Heavy Nuclei eXplorer (HNX) Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Krizmanic, John; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2015-04-01

    The Heavy Nuclei eXplorer (HNX) will investigate the nature of the reservoirs of nuclei at the cosmic-ray sources, the mechanisms by which nuclei are removed from the reservoirs and injected into the cosmic accelerators, and the acceleration mechanism. HNX will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), flying in the SpaceX DragonLab, to measure, for the first time, the abundance of every individual element in the periodic table from carbon through the actinides, providing the first measurement of many of these elements. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei Z >= 30, including about 50 actinides, and will: determine whether GCRs are accelerated from new or old material, and find their age; measure the mix of nucleosynthesis processes responsible for the UHGCRs; determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrument complement of HNX will be discussed.

  12. Systematic shell-model study on spectroscopic properties from light to heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi

    2018-05-01

    A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.

  13. Science of active galactic nuclei with the GTC and CanariCam

    NASA Astrophysics Data System (ADS)

    Levenson, Nancy A.; Packham, Christopher C.; Alonso-Herrero, Almudena; Aretxaga, Itziar; Colina, Luis; Díaz-Santos, Tanio; Elitzur, Moshe; Mason, Rachel E.; Perlman, Eric S.; Radomski, James T.; Roche, Patrick F.; Rodríguez Espinosa, José Miguel; Young, Stuart; Telesco, Charles M.

    2008-07-01

    CanariCam is the facility mid-infrared (MIR) instrument for the Gran Telescopio Canarias (GTC), a 10.4m telescope at the Observatorio del Roque de los Muchachos on La Palma. One of the science drivers for CanariCam is the study of active galactic nuclei (AGN). We will exploit the instrument's high sensitivity in imaging, spectroscopy, and polarimetry modes to answer fundamental questions of AGN and their host galaxies. Dust in the nucleus of an active galaxy reprocesses the intrinsic radiation of the central engine to emerge in the MIR. Current work demonstrates that the hot dust immediately associated with the AGN, which blocks direct views of the AGN from some lines of sight, is confined to small (parsec) scales. Thus, high spatial resolution is essential to probe the "torus" of unified AGN models separate from the host galaxy. CanariCam provides a 0.08" pixel scale for Nyquist sampling the diffraction-limited point spread function at 8μm, and narrow (0.2") spectroscopy slits (with R=120-1300). New observations with the GTC/CanariCam will provide key constraints on the physical conditions in the clumpy torus, and we will sensitively determine AGN obscuration as a function of nuclear activity. We will therefore address the fueling process and its relationship to the torus, the interaction with the host galaxy, and dust chemistry. These data will be essential preparation for the next generation of telescopes that will observe the distant universe directly to explore galaxy and black hole formation and evolution, and the GTC/CanariCam system uniquely provides multiple modes to probe AGN.

  14. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  15. Shape coexistence and shape transition in light nuclei

    NASA Astrophysics Data System (ADS)

    Saxena, G.; Kumawat, M.; Singh, U. K.; Kaushik, M.; Jain, S. K.

    2018-05-01

    A systematic study has been performed to investigate the shape coexistence and shape transition for even-even nuclei between Z = 10-20 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We calculate ground state properties viz. binding energy, deformation etc. for even-even nuclei to find the shape coexistence and shape transition. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.

  16. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  17. The Top-of-Instrument corrections for nuclei with AMS on the Space Station

    NASA Astrophysics Data System (ADS)

    Ferris, N. G.; Heil, M.

    2018-05-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision magnetic spectrometer on the International Space Station (ISS). The top-of-instrument correction for nuclei flux measurements with AMS accounts for backgrounds due to the fragmentation of nuclei with higher charge. Upon entry in the detector, nuclei may interact with AMS materials and split into fragments of lower charge based on their cross-section. The redundancy of charge measurements along the particle trajectory with AMS allows for the determination of inelastic interactions and for the selection of high purity nuclei samples with small uncertainties. The top-of-instrument corrections for nuclei with 2 < Z ≤ 6 are presented.

  18. Calculation of primordial abundances of light nuclei including a heavy sterile neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosquera, M.E.; Civitarese, O., E-mail: mmosquera@fcaglp.unlp.edu.ar, E-mail: osvaldo.civitarese@fisica.unlp.edu.ar

    2015-08-01

    We include the coupling of a heavy sterile neutrino with active neutrinos in the calculation of primordial abundances of light-nuclei. We calculate neutrino distribution functions and primordial abundances, as functions depending on a renormalization of the sterile neutrino distribution function (a), the sterile neutrino mass (m{sub s}) and the mixing angle (φ). Using the observable data, we set constrains on these parameters, which have the values 0a < 0.4, sin{sup 2} φ ≈ 0.12−0.39 and 0m{sub s} < 7 keV at 1σ level, for a fixed value of the baryon to photon ratio. When the baryon to photon ratio is allowed to vary, its extracted value ismore » in agreement with the values constrained by Planck observations and by the Wilkinson Microwave Anisotropy Probe (WMAP). It is found that the anomaly in the abundance of {sup 7}Li persists, in spite of the inclusion of a heavy sterile neutrino.« less

  19. Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia.

    PubMed

    Cobia, Derin J; Smith, Matthew J; Salinas, Ilse; Ng, Charlene; Gado, Mokhtar; Csernansky, John G; Wang, Lei

    2017-02-01

    Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Scissors mode of Gd nuclei studied from resonance neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, J.; Baramsai, B.; Becker, J. A.

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information.more » Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.« less

  1. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  2. Study of hot thermally fissile nuclei using relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Quddus, Abdul; Naik, K. C.; Patra, S. K.

    2018-07-01

    We have studied the properties of hot 234,236U and 240Pu nuclei in the framework of relativistic mean field formalism. The recently developed FSUGarnet and IOPB-I parameter sets are implemented for the first time to deform nuclei at finite temperature. The results are compared with the well known NL3 set. The said isotopes are structurally important because of the thermally fissile nature of 233,235U and 239Pu as these nuclei (234,236U and 240Pu) are formed after the absorption of a thermal neutron, which undergoes fission. Here, we have evaluated the nuclear properties, such as shell correction energy, neutron-skin thickness, quadrupole and hexadecapole deformation parameters and asymmetry energy coefficient for these nuclei as a function of temperature.

  3. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  4. New Results on Short-Range Correlations in Nuclei

    DOE PAGES

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...

    2017-10-12

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  5. New Results on Short-Range Correlations in Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak

    Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less

  6. Polarized Nuclei in a Simple Mirror Fusion Reactor

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    The possibility of enhancing the ratio of output to input power Q in a simple mirror machine by polarizing Deuterium-Tritium (D- T) nuclei is evaluated. Taking the Livermore mirror reference design mirror ratio of 6.54, the expected sin(sup 2) upsilon angular distribution of fusion decay products reduces immediate losses of alpha particles to the loss cone by 7.6% and alpha-ion scattering losses by approx. 50%. Based on these findings, alpha- particle confinement times for a polarized plasma should therefore be 1.11 times greater than for isotropic nuclei. Coupling this enhanced alpha-particle heating with the expected greater than 50% D- T reaction cross section, a corresponding power ratio for polarized nuclei, Q(sub polarized), is found to be 1.63 times greater than the classical unpolarized value Q(sub classical). The effects of this increase in Q are assessed for the simple mirror.

  7. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  8. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Hader, J. D.; Wright, T. P.; Petters, M. D.

    2014-06-01

    Recent studies have suggested that the ice-nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules. These macromolecules may become dispersed by the rupturing of the pollen grain during wetting and drying cycles in the atmosphere. If true, this mechanism might prove to be a significant source of ice nuclei (IN) concentrations when pollen is present. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina, USA. Air samples were collected using a swirling aerosol collector twice per week and the solutions were analysed for ice nuclei activity using a droplet freezing assay. Rainwater samples were collected at times when pollen grain number concentrations were near their maximum value and analysed with the drop-freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Ambient ice nuclei spectra, defined as the number of ice nuclei per volume of air as a function of temperature, are inferred from the aerosol collector solutions. No general trend was observed between ambient pollen grain counts and observed IN concentrations, suggesting that ice nuclei multiplication via pollen grain rupturing and subsequent release of macromolecules was not prevalent for the pollen types and meteorological conditions typically encountered in the southeastern US. A serendipitously sampled collection after a downpour provided evidence for a rain-induced IN burst with an observed IN concentration of approximately 30 per litre, a 30-fold increase over background concentrations at -20 °C. The onset temperature of freezing for these particles was approximately -12 °C, suggesting that the ice-nucleating particles were biological in origin.

  9. Symmetry structure in neutron deficient xenon nuclei

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    1998-12-01

    The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).

  10. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  11. Heavy neutron rich nuclei: production and investigation

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, S.; Avvakumov, K.; Kazarinov, N.; Fedosseev, V.; Bark, R.; Blazczak, Z.; Janas, Z.

    2018-05-01

    For production and investigation of heavy neutron rich nuclei devoted the new setup, which is under construction at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna now. This setup is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the “north-east” region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  12. Polarized electrons, trions, and nuclei in charged quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.

    2003-07-01

    We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.

  13. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, S.; Carlson, J.; Cirigliano, V.

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v 18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such asmore » those corresponding to different orders in chiral effective theory.« less

  14. NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes

    PubMed Central

    Grisi, Marco; Vincent, Franck; Volpe, Beatrice; Guidetti, Roberto; Harris, Nicola; Beck, Armin; Boero, Giovanni

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy enables non-invasive chemical studies of intact living matter. However, the use of NMR at the volume scale typical of microorganisms is hindered by sensitivity limitations, and experiments on single intact organisms have so far been limited to entities having volumes larger than 5 nL. Here we show NMR spectroscopy experiments conducted on single intact ova of 0.1 and 0.5 nL (i.e. 10 to 50 times smaller than previously achieved), thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Performing experiments with inductive ultra-compact (1 mm2) single-chip NMR probes, consisting of a low noise transceiver and a multilayer 150 μm planar microcoil, we demonstrate that the achieved limit of detection (about 5 pmol of 1H nuclei) is sufficient to detect endogenous compounds. Our findings suggest that single-chip probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales. PMID:28317887

  15. Hauser-Feshbach calculations in deformed nuclei

    DOE PAGES

    Grimes, S. M.

    2013-08-22

    Hauser Feshbach calculations for deformed nuclei are typically done with level densities appropriate for deformed nuclei but with Hauser Feshbach codes which enforce spherical symmetry by not including K as a parameter in the decay sums. A code has been written which does allow the full K dependence to be included. Calculations with the code have been compared with those from a conventional Hauser Feshbach code. The evaporation portion (continuum) is only slightly affected by this change but the cross sections to individual (resolved) levels are changed substantially. It is found that cross sections to neighboring levels with the samemore » J but differing K are not the same. The predicted consequences of K mixing will also be discussed.« less

  16. Neuronal nuclei isolation from human postmortem brain tissue.

    PubMed

    Matevossian, Anouch; Akbarian, Schahram

    2008-10-01

    Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.

  17. Systematic study of cluster radioactivity of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Wang, Y. Z.

    2018-01-01

    The probable cluster radioactivity (CR) of 294118, 296120, and 298122 is studied by using the unified description (UD) formula, universal (UNIV) curve, Horoi formula, and universal decay law (UDL). The predictions by the former three models suggest that the probable emitted clusters are lighter nuclei, and the calculations within the UDL formula give a different prediction: that both the lighter clusters and heavier ones can be emitted from the parent nuclei. A further study on the competition between α decay and CR of Z =104 -124 isotopes is performed. The former three models predict that α decay is the dominant decay mode, but the UDL formula suggests that CR dominates over α decay for Z ≥118 nuclei and the isotopes of 118 292 -296 ,308 -318 , 120 , 284 -304 ,308 -324 and 122-322316 are the most likely candidates as the cluster emitters. Because the former three formulas are just preformation models, the lighter cluster emissions can be described. However, the UDL formula can predict the lighter and heavier CR owing to the inclusion of the preformation and fissionlike mechanisms. Finally, it is found that the shortest CR half-lives are always obtained when the daughter nuclei are around the double magic 208Pb within the UDL formula, which indicates that shell effect has an important influence on CR.

  18. Comparison of Muon Capture in Light and in Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Stocki, Trevor J.

    2007-10-01

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  19. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  20. Alternative method for evaluating the pair energy of nucleons in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurmukhamedov, A. M., E-mail: fattah52@mail.ru

    2015-12-15

    An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.

  1. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  2. Manifestation of the structure of heavy nuclei in their alpha decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.; Bezbakh, A. N.

    2016-11-15

    Low-lying one- and two-quasiparticle states of heavy nuclei are predicted. Alpha-decay chains, including those that proceed through isomeric states, are examined on the basis of the predicted properties of superheavy nuclei.

  3. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  4. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  5. Ultrafast X-ray Auger probing of photoexcited molecular dynamics

    DOE PAGES

    McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...

    2014-06-23

    Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less

  6. Probing relativistic effects in the central engine of AGN

    NASA Astrophysics Data System (ADS)

    Sanfrutos, M.; Miniutti, G.

    2017-03-01

    Active Galactic Nuclei (AGN) are perfect laboratories to check General Relativity (GR) effects by using Broad Line Region (BLR) clouds eclipses to probe the innermost regions of the accretion disk. A new relativistic X-ray spectral model for X-ray eclipses is introduced. First we present the different observables that are involved in X-ray eclipses, including the X-ray emitting regions size, the emissivity index, the cloud's column density, ionization, size and velocity, the black hole spin, and the system's inclination. Then we highlight some theoretical predictions on the observables by using XMM-Newton simulations, finding that absorption varies depending on the photons' energy range, being maximum when the approaching side of the X-ray-emitting region is covered. Finally, we fit our relativistic model to actual XMM-Newton data from a long observation of the NLS1 galaxy SWIFT J2127.4+5654, and compare our results with a previous work, in which we addressed the BLR cloud eclipse from a non-relativistic prespective.

  7. Isolation of Cardiomyocyte Nuclei from Post-mortem Tissue

    PubMed Central

    Bergmann, Olaf; Jovinge, Stefan

    2012-01-01

    Identification of cardiomyocyte nuclei has been challenging in tissue sections as most strategies rely only on cytoplasmic marker proteins1. Rare events in cardiac myocytes such as proliferation and apoptosis require an accurate identification of cardiac myocyte nuclei to analyze cellular renewal in homeostasis and in pathological conditions2. Here, we provide a method to isolate cardiomyocyte nuclei from post mortem tissue by density sedimentation and immunolabeling with antibodies against pericentriolar material 1 (PCM-1) and subsequent flow cytometry sorting. This strategy allows a high throughput analysis and isolation with the advantage of working equally well on fresh tissue and frozen archival material. This makes it possible to study material already collected in biobanks. This technique is applicable and tested in a wide range of species and suitable for multiple downstream applications such as carbon-14 dating3, cell-cycle analysis4, visualization of thymidine analogues (e.g. BrdU and IdU)4, transcriptome and epigenetic analysis. PMID:22805241

  8. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe.

    PubMed

    Zhang, Jing; Liang, Lijia; Guan, Xin; Deng, Rong; Qu, Huixin; Huang, Dianshuai; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-01

    A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2'-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles. Graphical abstract A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS.

  9. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  10. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R M; Phair, L W; Descovich, M

    2005-08-09

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  11. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  12. Four-probe measurements with a three-probe scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less

  13. Four-probe measurements with a three-probe scanning tunneling microscope.

    PubMed

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  14. A high-resolution study of ultra-heavy cosmic-ray nuclei (A0178)

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Oceallaigh, C.; Domingo, V.; Wenzel, K. P.

    1984-01-01

    The main objective of the experiment is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc (Z = 30) to uranium (Z = 92) and beyond using solid-state track detectors. Special emphasis will be placed on the relative abundances in the region Z or - 65, which is thought to be dominated by r-process nucleosynthesis. Subsidiary objectives include the study of the cosmic-ray transiron spectrum a search for the postulated long-lived superheavy (SH) nuclei (Z or = 110), such as (110) SH294, in the contemporary cosmic radiation. The motivation behind the search for super-heavy nuclei is based on predicted half-lives that are short compared to the age of the Earth but long compared to the age of cosmic rays. The detection of such nuclei would have far-reaching consequences for nuclear structure theory. The sample of ultraheavy nuclei obtained in this experiment will provide unique opportunities for many tests concerning element nucleosynthesis, cosmic-ray acceleration, and cosmic-ray propagation.

  15. Challenging Cosmic Ray Propagation with Antiprotons: Evidence for a "Fresh" Nuclei Component?

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.; Ormes, Jonathan F.

    2002-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratio (e.g., Boron/Carbon) produce too few antiprotons, while the traditional non-reacceleration models can reproduce the antiproton flux but fall short of explaining the low-energy decrease in the secondary to primary nuclei ratio. Matching both the secondary to primary nuclei ratio and antiproton flux requires artificial breaks in the diffusion coefficient and the primary injection spectrum suggesting the need for other approaches. In the present paper we discuss one possibility to overcome these difficulties. Using the measured antiproton flux to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local unprocessed component at low energies, thus decreasing the measured secondary to primary nuclei ratio. A model reproducing antiprotons, B/C ratio, and abundances up to Ni is presented.

  16. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  17. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; ...

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an N max=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is

  18. Light-Nuclei Spectra from Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.

  19. Spectroscopy of neutron-rich nuclei at REX-ISOLDE with MINIBALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroell, Th.

    2007-08-15

    We report on 'safe' Coulomb excitation of neutron-rich nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma} rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented and compared to theoretical models.

  20. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    NASA Astrophysics Data System (ADS)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  1. Description of deformed nuclei in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  2. "Spin-dependent" \\varvec{μ → e} conversion on light nuclei

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Kuno, Yoshitaka; Saporta, Albert

    2018-02-01

    The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the "spin-dependent" (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators.

  3. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  4. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; ...

    2012-02-01

    We present new, high-Q 2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  5. Bonner Prize Address: Measurements of the electromagnetic properties of nucleons and nuclei at short distance scales

    NASA Astrophysics Data System (ADS)

    Raymond, Arnold

    2000-04-01

    The talk will present the story of a series of experiments, beginning in 1973 and continuing today, that have measured the internal structure of nuclei and the nucleons using high energy beams of electrons and photons at the Stanford Linear Accelerator Center. These experiments have probed nuclear and nucleon structure in the energy and momentum transfer region where the meson-nucleon description merges with the quark-gluon picture. The experiments have worked at the border between nuclear and particle physics, and were conducted by large collaborative teams. Some were carried out in the context of a special program, called NPAS (Nuclear Physics at SLAC). The early results from these measurements helped stimulate the ideas and helped train and motivate the physicists who went on to build the Jefferson Laboratory. A brief summary of some highlights from the early measurements and updates on recent results will be given.

  6. Formation environment of cometary nuclei in the primordial solar nebula

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    1985-01-01

    The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.

  7. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  8. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z 0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q 2 = 0.62 GeV 2. The measured asymmetry was used to set newmore » constraints on the contribution of strange quark form factors (G s E,M ) to the nucleon electromagnetic form factors. A value of A PV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G s E + 0.517G s M = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q 2 = 0.009 GeV 2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z 0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.« less

  9. Towards a Deeper Understanding of the Nucleus with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Ormand, Erich

    2006-10-01

    Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.

  10. Singularities in the lineshape of a second-order perturbed quadrupolar nucleus and their use in data fitting.

    PubMed

    Field, Timothy R; Bain, Alex D

    2014-01-01

    Even for large quadrupolar interactions, the powder spectrum of the central transition for a half-integral spin is relatively narrow, because it is unperturbed to first order. However, the second-order perturbation is still orientation dependent, so it generates a characteristic lineshape. This lineshape has both finite step discontinuities and singularities where the spectrum is infinite, in theory. The relative positions of these features are well-known and they play an important role in fitting experimental data. However, there has been relatively little discussion of how high the steps are, so we present explicit formulae for these heights. This gives a full characterization of the features in this lineshape which can lead to an analysis of the spectrum without the usual laborious powder average. The transition frequency, as a function of the orientation angles, shows critical points: maxima, minima and saddle points. The maxima and minima correspond to the step discontinuities and the saddle points generate the singularities. Near a maximum, the contours are ellipses, whose dimensions are determined by the second derivatives of the frequency with respect to the polar and azimuthal angles. The density of points is smooth as the contour levels move up and down, but then drops to zero when a maximum is passed, giving a step. The height of the step is determined by the Hessian matrix-the matrix of all partial second derivatives. The points near the poles and the saddle points require a more detailed analysis, but this can still be done analytically. The resulting formulae are then compared to numerical simulations of the lineshape. We expand this calculation to include a relatively simple case where there is chemical shielding anisotropy and use this to fit experimental (139)La spectra of La2O3. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel

  12. FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI

    PubMed Central

    Dounce, Alexander L.; Monty, Kenneth J.

    1955-01-01

    1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437

  13. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  14. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    PubMed

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  15. A probabilistic template of human mesopontine tegmental nuclei from in vivo 7T MRI.

    PubMed

    Bianciardi, Marta; Strong, Christian; Toschi, Nicola; Edlow, Brian L; Fischl, Bruce; Brown, Emery N; Rosen, Bruce R; Wald, Lawrence L

    2018-04-15

    Mesopontine tegmental nuclei such as the cuneiform, pedunculotegmental, oral pontine reticular, paramedian raphe and caudal linear raphe nuclei, are deep brain structures involved in arousal and motor function. Dysfunction of these nuclei is implicated in the pathogenesis of disorders of consciousness and sleep, as well as in neurodegenerative diseases. However, their localization in conventional neuroimages of living humans is difficult due to limited image sensitivity and contrast, and a stereotaxic probabilistic neuroimaging template of these nuclei in humans does not exist. We used semi-automatic segmentation of single-subject 1.1mm-isotropic 7T diffusion-fractional-anisotropy and T 2 -weighted images in healthy adults to generate an in vivo probabilistic neuroimaging structural template of these nuclei in standard stereotaxic (Montreal Neurological Institute, MNI) space. The template was validated through independent manual delineation, as well as leave-one-out validation and evaluation of nuclei volumes. This template can enable localization of five mesopontine tegmental nuclei in conventional images (e.g. 1.5T, 3T) in future studies of arousal and motor physiology (e.g. sleep, anesthesia, locomotion) and pathology (e.g. disorders of consciousness, sleep disorders, Parkinson's disease). The 7T magnetic resonance imaging procedure for single-subject delineation of these nuclei may also prove useful for future 7T studies of arousal and motor mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Where Should the Nuclei Be Located?

    ERIC Educational Resources Information Center

    Ying Liu; Yue Liu; Drew, Michael G. B.

    2005-01-01

    The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.

  17. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    PubMed

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  18. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGES

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  19. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2017-03-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  20. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  1. Light-Nuclei Spectra from Chiral Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Baroni, A.; Girlanda, L.

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  2. Light-Nuclei Spectra from Chiral Dynamics

    DOE PAGES

    Piarulli, M.; Baroni, A.; Girlanda, L.; ...

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  3. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  4. Analysis of growth of tetraploid nuclei in roots of Vicia faba.

    PubMed

    Bansal, J; Davidson, D

    1978-03-01

    Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.

  5. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  6. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  7. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.

  8. Nuclear rainbow in elastic scattering of {sup 9}Be nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glukhov, Yu. A., E-mail: gloukhov@inbox.ru; Ogloblin, A. A.; Artemov, K. P.

    2010-01-15

    A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determinemore » unambiguously the nucleus-nucleus potential with a high probability.« less

  9. Probing the presently tenuous link between comets and the origin of life

    NASA Technical Reports Server (NTRS)

    Hobbs, R. W.; Hollis, J. M.

    1982-01-01

    The possibilities of using millimeter-wave technology to probe the subsurface processes of comets to investigate links between cometary materials and the origins of life are explored. It is noted that current theories hold that the necessities for life to begin comprise a fairly uniform temperature, the presence of a solvent to give materials mobility, and the presence of atoms which can form long chains of molecules. Consideration is given to two cometary nuclei models: a core with an equal amount of liquid water and lunar material, and a nucleus with equal amounts of frozen water ice and lunar material. Solutions to the radiative transfer equation for the two models are presented to characterize identifiable emissions using radiometric spectrometer instrumentation on a spacecraft. Particular species such as OH, CN, HCN, and glycine are expected to be detectable if present.

  10. Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Chernyavsky, M. M.

    2008-09-15

    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions: nuclear 'white' stars. A complete pattern of the relativistic dissociation of a 8B nucleus with target fragment accompaniment is presented. Relativistic dissociation {sup 9}Be {yields} 2{alpha} is explored using significant statistics, and a relative contribution of {sup 8}Be decays from 0+ and 2+ states is established. Target fragment accompaniments are shown for relativistic fragmentation {sup 14}N {yields} 3He +H and {sup 22}Ne {yields} 5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to breakupsmore » on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of the lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.« less

  11. Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J. C.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, Ch. E.; Dzuba, V. A.; Eliav, E.; Even, J.; Ferrer, R.; Flambaum, V. V.; Fritzsche, S.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Huyse, M.; Kaldor, U.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschläger, F.; Lauth, W.; Mistry, A. K.; Minaya Ramirez, E.; Nazarewicz, W.; Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Schuetrumpf, B.; Van Duppen, P.; Walther, T.; Wraith, C.; Yakushev, A.

    2018-06-01

    Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of No 252 ,253 ,254 , and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in No,254252 isotopes. Finally, the hyperfine splitting of No 253 was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

  12. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  13. Production and investigation of heavy neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon

    2017-11-01

    A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  14. Robust nuclei segmentation in cyto-histopathological images using statistical level set approach with topology preserving constraint

    NASA Astrophysics Data System (ADS)

    Taheri, Shaghayegh; Fevens, Thomas; Bui, Tien D.

    2017-02-01

    Computerized assessments for diagnosis or malignancy grading of cyto-histopathological specimens have drawn increased attention in the field of digital pathology. Automatic segmentation of cell nuclei is a fundamental step in such automated systems. Despite considerable research, nuclei segmentation is still a challenging task due noise, nonuniform illumination, and most importantly, in 2D projection images, overlapping and touching nuclei. In most published approaches, nuclei refinement is a post-processing step after segmentation, which usually refers to the task of detaching the aggregated nuclei or merging the over-segmented nuclei. In this work, we present a novel segmentation technique which effectively addresses the problem of individually segmenting touching or overlapping cell nuclei during the segmentation process. The proposed framework is a region-based segmentation method, which consists of three major modules: i) the image is passed through a color deconvolution step to extract the desired stains; ii) then the generalized fast radial symmetry transform is applied to the image followed by non-maxima suppression to specify the initial seed points for nuclei, and their corresponding GFRS ellipses which are interpreted as the initial nuclei borders for segmentation; iii) finally, these nuclei border initial curves are evolved through the use of a statistical level-set approach along with topology preserving criteria for segmentation and separation of nuclei at the same time. The proposed method is evaluated using Hematoxylin and Eosin, and fluorescent stained images, performing qualitative and quantitative analysis, showing that the method outperforms thresholding and watershed segmentation approaches.

  15. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Electromagnetic structure of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  17. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS

    DOE PAGES

    Paukert, M.; Hoose, C.; Simmel, M.

    2017-02-21

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  18. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paukert, M.; Hoose, C.; Simmel, M.

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  19. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  20. Active galactic nuclei as cosmological probes.

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta; Risaliti, Guido

    2018-01-01

    I will present the latest results on our analysis of the non-linear X-ray to UV relation in a sample of optically selected quasars from the Sloan Digital Sky Survey, cross-matched with the most recent XMM-Newton and Chandra catalogues. I will show that this correlation is not only very tight, but can be potentially even tighter by including a further dependence on the emission line full-width half maximum. This result imply that the non-linear X-ray to optical-ultraviolet luminosity relation is the manifestation of an ubiquitous physical mechanism, whose details are still unknown, that regulates the energy transfer from the accretion disc to the X-ray emitting corona in quasars. I will discuss what the perspectives of AGN in the context of observational cosmology are. I will introduce a novel technique to test the cosmological model using quasars as “standard candles” by employing the non-linear X-ray to UV relation as an absolute distance indicator.

  1. Properties of r-process nuclei near N=82 shell closure

    NASA Astrophysics Data System (ADS)

    Farhan, A. R.; Sharma, M. M.

    2004-10-01

    We have studied properties of nuclei in r-process region near N=82 shell closure with the RMF calculations in a deformed basis using the force NL-SV1 that includes vector self-coupling of w meson. It is shown that nuclei above N=82 in several isotopic chains in the r-process region exhibit an onset of deformation beyond the drip line. Consequently, induced by the deformation these nuclei show an extra stability above the shell closure. This stability of nuclei is expected to contribute to the r-process nucleosynthesis of nuclei below the abundance peak at A ˜130. A comparison with the mass formulae shows that our microscopic calculations with NL-SV1 show a decrease of shell strength with increase in isospin. This is in contrast to the strong shell effects shown by FRDM and ETF-SI in going to the drip line. The stiffness of the shell structure with FRDM and ETF-SI is known to lead to a shortfall in the r-process abundances. This shortcoming of the above mass formulae has inspired an ad-hoc inclusion of shell quenching in the mass formula ETF-SI(Q) with a view to better reproduce the r-process abundances. In comparison, our model shows a decrease of the shell strength in going from the r-process path to the drip line. Therefore, this represents a natural behaviour as required by r-process abundances. It may, however, be confirmed in network chain calculations using inputs from our microscopic model.

  2. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  3. Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression

    PubMed Central

    Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.

    2014-01-01

    Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074

  4. Elastic anomalies associated with two successive transitions of PrV2Al20 probed by ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Taniguchi, M.; Nakamura, M. M.; Hasegawa, J.; Ohyama, R.; Nakamura, M.; Yoshizawa, M.; Tsujimoto, M.; Nakatsuji, S.

    2018-05-01

    We have performed the ultrasound measurement on the non-Kramers doublet system PrV2Al20 in order to figure out the low-temperature multi-quadrupolar phase appearing at low temperatures. Elastic anomalies and their systematic magnetic field evolution were clearly observed in the temperature dependence of the elastic constant C44(T). We discuss the possible origin and implications of the rich variety of phases emerging from the simple ground state: the well-isolated non-Kramers doublet Γ3 subspace.

  5. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  6. Quartetting in even-even and odd-odd N=Z nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2018-02-01

    We report on a microscopic description of even-even N = Z nuclei in a formalism of quartets. Quartets are four-body correlated structures characterized by isospin T and angular momentum J. We show that the ground state correlations induced by a realistic shell model interaction can be well accounted for in terms of a restricted set of T = 0 low-J quartets, the J = 0 one playing by far a leading role among them. A conceptually similar description of odd-odd self-conjugate nuclei is given in terms of two distinct families of building blocks, one formed by the same T = 0 quartets employed for the even-even systems and the other by collective pairs with either T = 0 or T = 1. Some applications of this formalism are discussed for nuclei in the sd shell.

  7. High-precision {beta} decay half-life measurements of proton-rich nuclei for testing the CVC hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtukian-Nieto, T.; Collaboration: NEX Group of CENBG

    2011-11-30

    The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can bemore » expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.« less

  8. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  9. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  10. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  11. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  12. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  13. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.

  14. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  15. Stopping of 200-GeV gold nuclei in nuclear emulsions

    NASA Technical Reports Server (NTRS)

    Waddington, C.J.; Freier, P. S.; Fixsen, D. J.

    1983-01-01

    The residual ranges of Au-197(79) nuclei stopping in nuclear emulsions has been measured for nuclei with an incident energy of 991 MeV/amu. The mean ranges observed are appreciably less than those predicted from measurements made on energetic particles of lower charge. However, by the consideration of higher-order correction terms to the rate of energy loss, good agreement can be obtained between the predicted and observed ranges.

  16. Probe tip heating assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Roger William; Oh, Yunje

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably receivedmore » and clamped within the socket.« less

  17. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  18. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  19. 71Ga-77Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Nagashima, Hiroki; Trébosc, Julien; Calvez, Laurent; Pourpoint, Frédérique; Mear, François; Lafon, Olivier; Amoureux, Jean-Paul

    2017-09-01

    We introduce two-dimensional (2D) 71Ga-77Se through-bond and through-space correlation experiments. Such correlations are achieved using (i) the J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as (ii) the J- or dipolar-mediated Hetero-nuclear Multiple-Quantum Correlation (J- or D-HMQC) schemes with 71Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are applied to the crystalline β-Ga2Se3 and the 0.2Ga2Se3-0.8GeSe2 glass. Such glass leads to a homogeneous and reproducible glass-ceramic, which is a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. We show that 2D 71Ga-77Se correlation experiments allow resolving the 77Se signals of molecular units, which are not resolved in the 1D 77Se CPMG spectrum. Additionally, the build-up curves of the J-RINEPT and the J-HMQC experiments allow the estimate of the 71Ga-77Se J-couplings via one and three-bonds in the three-dimensional network of β-Ga2Se3. Furthermore, these build-up curves show that the one-bond 1J71Ga-77Se couplings in the 0.2Ga2Se3-0.8GeSe2 glass are similar to those measured for β-Ga2Se3. We also report 2D 71Ga Satellite Transition Magic-Angle Spinning (STMAS) spectrum of β-Ga2Se3 using QCPMG detection at high magnetic field and high Magic-Angle Spinning frequency using large radio frequency field. Such spectrum allows separating the signal of β-Ga2Se3 and that of an impurity.

  20. A cryostatic, fast scanning, wideband NQR spectrometer for the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann; Bödenler, Markus; Narnhofer, Dominik

    2018-01-01

    In the search for a novel MRI contrast agent which relies on T1 shortening due to quadrupolar interaction between Bi nuclei and protons, a fast scanning wideband system for zero-field nuclear quadrupole resonance (NQR) spectroscopy is required. Established NQR probeheads with motor-driven tune/match stages are usually bulky and slow, which can be prohibitive if it comes to Bi compounds with low SNR (excessive averaging) and long quadrupolar T1 times. Moreover many experiments yield better results at low temperatures such as 77 K (liquid nitrogen, LN) thus requiring easy to use cryo-probeheads. In this paper we present electronically tuned wideband probeheads for bands in the frequency range 20-120 MHz which can be immersed in LN and which enable very fast explorative scans over the whole range. To this end we apply an interleaved subspectrum sampling strategy (ISS) which relies on the electronic tuning capability. The superiority of the new concept is demonstrated with an experimental scan of triphenylbismuth from 24 to 116 MHz, both at room temperature and in LN. Especially for the first transition which exhibits extremely long T1 times (64 ms) the and low signal the new approach allows an acceleration factor by more than 100 when compared to classical methods.

  1. Differentiating Cerebellar Impact on Thalamic Nuclei.

    PubMed

    Gornati, Simona V; Schäfer, Carmen B; Eelkman Rooda, Oscar H J; Nigg, Alex L; De Zeeuw, Chris I; Hoebeek, Freek E

    2018-05-29

    The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. DNA content of hepatocyte and erythrocyte nuclei of the spined loach (Cobitis taenia L.) and its polyploid forms.

    PubMed

    Juchno, Dorota; Lackowska, Bozena; Boron, Alicja; Kilarski, Wincenty

    2010-09-01

    We analyzed the DNA content of hepatocyte and erythrocyte nuclei of the spined loach Cobitis taenia (diploid) and its allopolyploid forms. Twenty triploid females and one tetraploid were used. At least 20,000 hepatocyte and erythrocyte nuclei were acquired and analyzed by flow cytometry. C. taenia erythrocyte nuclei contain 3.15 +/- 0.21 pg of DNA and the hepatocyte nuclei 4.45 +/- 0.46 pg of DNA. Triploid Cobitis have 5.08 +/- 0.41 pg of DNA in erythrocyte nuclei and 6.11 +/- 0.40 pg of DNA in hepatocyte nuclei, whereas the tetraploid erythrocyte and hepatocyte nuclei contained 6.60 and 7.40 pg of DNA, respectively. In general, the DNA contents correlate positively with the ploidy level of the fish investigated. The DNA content variation in the hepatocyte and erythrocyte nuclei may be due to differences in extent of chromatin condensation, which is more pronounced in the erythrocyte than hepatocyte nuclei, or to the several orders of ploidy that occur in the parenchymal liver cells.

  3. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.

    PubMed

    Polak, Leo; Wijngaarden, Rinke J

    2016-12-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Changes in the chromatin structure of hepatocyte nuclei of rats trained to hypoxia].

    PubMed

    Domkina, L K; Bresler, V M; Simanovskiĭ, L N

    1976-03-01

    Structure of chromatin in the nuclei of the isolated surviving hepatocytes and in the isolated nuclei of hepatocytes were studied by fluorochroming with acridine orange and by microfluorimetry of fluorescenc connected with the stain chromatin at 530 and 590 nm in intact rats and in the animals trained to hypoxia in a pressure chamber for 60 days. The nuclei of hepatocytes of intact rats were distributed by fluorescence at 530 nm into three classes with the intensity ratio of 1:2:4; as to the nuclei of hepatocytes of the rats trained to hypoxia - they formed a single class corresponding to the second class of control. In intact rats the ratio of the fluorescence intensity at 590 nm to such at 530 nm (alpha coefficient) formed normal distribution; in trained rats - a bimodal distribution with a shift of the maximum in the direction of reduction and increase of alpha in comparison with control. It is supposed that in hypoxia there is a repression of one and depression of other genes in the chromatine of the nuclei of the liver.

  5. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  6. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  7. Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dote, Akinobu

    2010-05-12

    Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.

  8. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    NASA Astrophysics Data System (ADS)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  9. Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images.

    PubMed

    Nandy, Kaustav; Gudla, Prabhakar R; Amundsen, Ryan; Meaburn, Karen J; Misteli, Tom; Lockett, Stephen J

    2012-09-01

    Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Published 2012 Wiley Periodicals, Inc.

  10. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  11. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.

    PubMed

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi

    2013-08-26

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation

    PubMed Central

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M.; Kobayashi, Yasushi

    2013-01-01

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. PMID:23756176

  13. Hypercharged dark matter and direct detection as a probe of reheating.

    PubMed

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  14. Probing the parameters of the HAT-P-2 system

    NASA Astrophysics Data System (ADS)

    Bailey, Elizabeth; Naoz, Smadar; Batygin, Konstantin

    2018-04-01

    The HAT-P-2 system contributes an exceptional set of parameters to the exoplanetary inventory. HAT-P-2b weighs in at approximately 9 Jupiter masses, residing on one of the most eccentric, close-in orbits of any hot Jupiter (e~0.5, a~0.07). The identification of an RV trend points to the existence of an additional, long-period companion, which may have facilitated Kozai-Lidov cycles in the system over its multi-Gyr history. The well-constrained parameters of HAT-P-2b present an opportunity to predict the parameters of the perturber, and furthermore, to assess the tidal dissipation involved in the system's evolution. In this work, we employ an octupole-level secular model to account for the interaction of the two massive planets, thus classifying the system's deviations away from purely quadrupolar dynamics.

  15. Characterization of Non-Innocent Metal Complexes Using Solid-State NMR Spectroscopy: o-Dioxolene Vanadium Complexes

    PubMed Central

    Chatterjee, Pabitra B.; Goncharov-Zapata, Olga; Quinn, Laurence L.; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W.; Polenova, Tatyana; Crans, Debbie C.

    2012-01-01

    51V solid-state NMR (SSNMR) studies of a series of non-innocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that 51V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic 51V NMR chemical shifts cover a wide range from −200 ppm to 400 ppm in solution and from −219 to 530 ppm in the solid state. A linear correlation of 51V NMR isotropic solution and solid-state chemical shifts of complexes containing non-innocent ligands is observed. These experimental results provide the information needed for the application of 51V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems, and in particular those containing non-innocent ligands and that have chemical shifts outside the populated range of −300 ppm to −700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from 51V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (DFT) calculations of NMR parameters for [VO(hshed)(Cat)] yield 51V CSA tensor in reasonable agreement with the experimental results, but surprisingly, the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the

  16. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    PubMed Central

    Sakai, Hiroki; Yokoyama, Takeshi; Abe, Hiroaki; Fujii, Tsuguru; Suzuki, Masataka G.

    2013-01-01

    In Bombyx mori, polar body nuclei are observed until 9 h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe). The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/+pe) of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/+pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells). Analyses of serosal cells pigmentation indicated that ~30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26% of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25). Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos. PMID:24027530

  17. The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets and Nuclei

    PubMed Central

    Xiang, Siheng; Kato, Masato; Wu, Leeju; Lin, Yi; Ding, Ming; Zhang, Yajie; Yu, Yonghao; McKnight, Steven L.

    2016-01-01

    SUMMARY Many DNA and RNA regulatory proteins contain polypeptide domains that are unstructured when analyzed in cell lysates. These domains are typified by an over-representation of a limited number of amino acids and have been termed prion-like, intrinsically disordered or low complexity (LC) domains. When incubated at high concentration, certain of these LC domains polymerize into labile, amyloid-like fibers. Here we report methods allowing the generation of a molecular footprint of the polymeric state of the LC domain of hnRNPA2. By deploying this footprinting technique to probe the structure of the native hnRNPA2 protein present in isolated nuclei, we offer evidence that its LC domain exists in a similar conformation as that described for recombinant polymers of the protein. These observations favor biologic utility to the polymerization of LC domains in the pathway of information transfer from gene to message to protein. PMID:26544936

  18. Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images

    PubMed Central

    Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.

    2014-01-01

    Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods

  19. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    DOE PAGES

    Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...

    2017-02-06

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H 2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H 2 scattering length is calculated as A = $-$ 2.70 a 0 for the ground state and A = $-$ 3.16 a 0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand totalmore » cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our R m = 1.448 a 0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less

  20. Accuracy of probing attachment levels using a new computerized cemento-enamel junction probe.

    PubMed

    Deepa, R; Prakash, Shobha

    2012-01-01

    The assessment of clinical attachment level (CAL) represents the gold standard for diagnosing and monitoring periodontal disease. The aim of the present study was to evaluate the performance of the newly introduced cemento-enamel junction (CEJ) probe in detecting CAL, using CEJ as a fixed reference point, and to compare the CEJ probe with the Florida stent probe (FSP) as well as with a standard manual probe, University of North Carolina-15 (UNC-15). Three examiners recorded the probing attachment level in 384 sites in case group (chronic periodontitis), and in 176 sites, in control group (healthy periodontal status), using the three probes. Subjects included both the sexes and ranged from 35 to 45 years. The experimental design was structured to balance the intra- and inter-examiner consistency at the same site during the two visits. CEJ probe showed higher intra-and inter-examiner consistency over both FSP and UNC-15 in both the case and control groups. Frequency distribution of differences of various magnitudes of repeated measurements ≤1 mm was in the higher range of 86.8% to 87.5% for CEJ probe. The FSP was more reproducible than UNC-15 in detecting relative attachment level (RAL). CEJ automated probe was found to have greatest potential for accuracy and consistency in detecting CAL than FSP and UNC-15. The automated probes appeared to be more reproducible than manual probes.

  1. Modeling multi-nucleon transfer in symmetric collisions of massive nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, T.; Loveland, W.; Yanez, R.

    We propose symmetric collisions of massive nuclei, such as 238U + 248Cm, as ways to make new n-rich heavy nuclei via multi-nucleon transfer (MNT) reactions. We have measured the yields of several projectile-like and target-like fragments from the reaction of 1360 MeV 204Hg + 198Pt. We also find that current models for this symmetric collision (GRAZING, DNS, ImQMD) significantly underestimate the yields of these transfer products, even for small transfers.

  2. Modeling multi-nucleon transfer in symmetric collisions of massive nuclei

    DOE PAGES

    Welsh, T.; Loveland, W.; Yanez, R.; ...

    2017-05-18

    We propose symmetric collisions of massive nuclei, such as 238U + 248Cm, as ways to make new n-rich heavy nuclei via multi-nucleon transfer (MNT) reactions. We have measured the yields of several projectile-like and target-like fragments from the reaction of 1360 MeV 204Hg + 198Pt. We also find that current models for this symmetric collision (GRAZING, DNS, ImQMD) significantly underestimate the yields of these transfer products, even for small transfers.

  3. On the thermalization achieved in the reactions involving superheavy nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Rajni

    In the present study, we aim to explore the role of Coulomb potential on the thermalization achieved in the reactions involving superheavy nuclei. Particularly, we shall study the degree of the equilibrium attained in a reaction by the 3D density plots, anisotropy ratio as well as by the rapidity distribution of the nucleons. Our study reveals that the degree of the equilibrium attained in the central reactions of the superheavy nuclei remains unaffected by the Coulomb potential.

  4. Beta-decay half-lives for short neutron rich nuclei involved into the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2018-01-01

    The beta-strength function model based on Finite Fermi-Systems Theory is applied for calculations of the beta-decay half-lives for short neutron rich nuclei involved into the r- process. It is shown that the accuracy of beta-decay half-lives of short-lived neutron-rich nuclei is improving with increasing neutron excess and can be used for modeling of nucleosynthesis of heavy nuclei in the r-process.

  5. Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets: Implications for mixing processes

    NASA Technical Reports Server (NTRS)

    Twohy, Cynthia H.; Hudson, James G.

    1995-01-01

    In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.

  6. Concentration and variability of ice nuclei in the subtropical maritime boundary layer

    NASA Astrophysics Data System (ADS)

    Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank

    2018-04-01

    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.

  7. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.

    PubMed

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.

  8. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  9. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  10. Emergent properties of nuclei from ab initio coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  11. Ultrahigh energy cosmic ray nuclei from remnants of dead quasars

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto J.; Colon, Rafael A.; Guerra, Juan J.; O'Dowd, Matthew J.; Anchordoqui, Luis A.

    2017-03-01

    We re-examine the possibility of ultrahigh energy cosmic rays being accelerated in nearby dormant quasars. We particularize our study to heavy nuclei to accommodate the spectrum and nuclear composition recently reported by the Pierre Auger Collaboration. Particle acceleration is driven by the Blandford-Znajek mechanism, which wires the dormant spinning black holes as Faraday unipolar dynamos. We demonstrate that energy losses are dominated by photonuclear interactions on the ambient photon fields. We argue that the local dark fossils of the past quasar activity can be classified on the basis of how source parameters (mass of the central engine and photon background surrounding the accelerator) impact the photonuclear interaction. In this classification it is possible to distinguish two unequivocal type of sources: those in which nuclei are completely photodisintegrated before escaping the acceleration region and those in which photopion production is the major energy damping mechanism. We further argue that the secondary nucleons from the photodisintegrated nuclei (which have a steep spectral index at injection) can populate the energy region below ;the ankle; feature in the cosmic ray spectrum, whereas heavy and medium mass nuclei (with a harder spectral index) populate the energy region beyond ;the ankle;, all the way to the high energy end of the spectrum. In addition, we show that five potential quasar remnants from our cosmic backyard correlate with the hot-spot observed by the Telescope Array.

  12. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  13. Direct Reactions with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  14. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  15. Dissociable Contributions of Thalamic Nuclei to Recognition Memory: Novel Evidence from a Case of Medial Dorsal Thalamic Damage

    ERIC Educational Resources Information Center

    Newsome, Rachel N.; Trelle, Alexandra N.; Fidalgo, Celia; Hong, Bryan; Smith, Victoria M.; Jacob, Alexander; Ryan, Jennifer D.; Rosenbaum, R. Shayna; Cowell, Rosemary A.; Barense, Morgan D.

    2018-01-01

    The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments…

  16. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.

    PubMed

    Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy

    2013-06-01

    A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.

  17. Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells

    PubMed Central

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H.

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery. PMID:24091012

  18. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O.

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistepmore » decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.« less

  19. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  20. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE PAGES

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano; ...

    2018-03-22

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  1. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  2. Analyzing the spatial positioning of nuclei in polynuclear giant cells

    NASA Astrophysics Data System (ADS)

    Stange, Maike; Hintsche, Marius; Sachse, Kirsten; Gerhardt, Matthias; Valleriani, Angelo; Beta, Carsten

    2017-11-01

    How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.

  3. What perspectives for the synthesis of heavier superheavy nuclei? Results and comparison with models

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.

    2013-03-01

    The possibility to synthesize heavier superheavy elements in massive nuclei reactions is strongly limited by the hindrance to complete fusion of reacting nuclei: due to the onset of the quasifission process in the entrance channel, which competes with complete fusion, and by strong increase of the fission yield along the de-excitation cascade of the compound nucleus in comparison to the evaporation residue formation. We present a wide and detailed procedure allowing us to describe the experimental results (evaporation residue nuclei and fissionlike products) in the mass asymmetric and symmetric reactions. Very reliable estimations and perspectives for the synthesis of superheavy elements in many massive nuclei reactions up to Z = 120 and eventually also for Z > 120 have been obtained.

  4. Neutron-antineutron oscillations in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dover, C.B.; Gal, A.; Richard, J.M.

    1983-03-01

    We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less

  5. Alpha-decay chains of superheavy nuclei 292-296118

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Kumawat, M.; Saxena, G.; Kaushik, M.; Jain, S. K.

    2018-05-01

    We have employed relativistic mean-field plus BCS (RMF+BCS) approach for the study of even-even superheavy nuclei with Z = 118 which is the last and recent observed element in the periodic chart so far. Our study includes binding energies, Qα values, alpha-decay half-lives and spontaneous decay half-lives along with comparison of available experimental data and the results of FRDM calculations. We find an excellent match with the only known decay chain of 294118 for Z = 118 so far and predict decay chain of 292118 and 296118 in consistency with known experimental decay chains and FRDM results. These results may provide a very helpful insight to conduct experiments for realizing the presence of nuclei with Z = 118.

  6. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  7. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papenbrock, Thomas

    2014-05-16

    The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  8. Modular Rake of Pitot Probes

    NASA Technical Reports Server (NTRS)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  9. Radiation-induced association of beta-glucuronidase with purified nuclei from irradiated MOLT-4 and HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.E.; Kalinich, J.F.; Poplack, J.K.

    1989-02-01

    Beta-glucuronidase, a lysosomal marker enzyme, associates with purified nuclei from HeLa and MOLT-4 cell lines in a radiation dose-dependent manner, up to 300 cGy in MOLT-4 cells, and 1000 cGy in HeLa cells. In MOLT-4 cells (200-cGy exposure), there is a significant increase in beta-glucuronidase activity detected in the nuclear fraction 24 h postirradiation with a maximum association occurring at 72 h. In HeLa cells (1000-cGy exposure), a significant association is first detected 24 h postirradiation with a maximum association at 48 h. The association is not the result of nonspecific contamination occurring during nuclei purification since nuclei from irradiatedmore » cells show no greater levels of plasma membrane marker and mitochondrial marker than controls. The nature of the association remains unclear, but activity is not removed by detergents used in the nuclei isolation procedure, and incubation of the nuclei with EDTA reverses the association only modestly. Exposure of nuclei from irradiated cells to anisotonic buffers also results in only a small decrease in beta-glucuronidase activity associated with the nuclei. These observations suggest that lysosomal hydrolases become intimately associated with the nuclei of irradiated cells.« less

  10. Effective field theory description of halo nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  11. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis.

    PubMed

    Thier, Peter; Möck, Martin

    2006-01-01

    Cerebral cortex and the cerebellum interact closely in order to facilitate spatial orientation and the generation of motor behavior, including eye movements. This interaction is based on a massive projection system that allows the exchange of signals between the two cortices. This cerebro-cerebellar communication system includes several intercalated brain stem nuclei, whose eminent role in the organization of oculomotor behavior has only recently become apparent. This review focuses on the two major nuclei of this group taking a precerebellar position, the pontine nuclei and the nucleus reticularis tegmenti pontis, both intimately involved in the visual guidance of eye movements.

  12. Describing the observed cosmic neutrinos by interactions of nuclei with matter

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2014-11-01

    IceCube has observed neutrinos that are presumably of extra-Galactic origin. Since specific sources have not yet been identified, we discuss what could be learned from the conceptual point of view. We use a simple model for neutrino production from the interactions between nuclei and matter, and we focus on the description of the spectral shape and flavor composition observed by IceCube. Our main parameters are the spectral index, maximal energy, magnetic field, and composition of the accelerated nuclei. We show that a cutoff at PeV energies can be achieved by soft enough spectra, a cutoff of the primary energy, or strong enough magnetic fields. These options, however, are difficult to reconcile with the hypothesis that these neutrinos originate from the same sources as the ultrahigh-energy cosmic rays. We demonstrate that heavier nuclei accelerated in the sources may be a possible way out if the maximal energy scales appropriately with the mass number of the nuclei. In this scenario, neutrino observations can actually be used to test the ultrahigh-energy cosmic ray acceleration mechanism. We also emphasize the need for a volume upgrade of the IceCube detector for future precision physics, for which the flavor information becomes a statistically meaningful model discriminator as well as a qualitatively new ingredient.

  13. Ultraviolet observations of close-binary and pulsating nuclei of planetary nebulae; Winds and shells around low-mass supergiants; The close-binary nucleus of the planetary nebula HFG-1; A search for binary nuclei of planetary nebulae; UV monitoring of irregularly variable planetary nuclei; and The pulsating nucleus of the planetary nebula Lo 4

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1992-01-01

    A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.

  14. Replication of pea enation mosaic virus RNA in isolated pea nuclei

    PubMed Central

    Powell, C. A.; Zoeten, G. A. de

    1977-01-01

    Isolated nuclei from healthy pea plants were primed with pea enation mosaic virus (PEMV), southern bean mosaic virus (SBMV), radish mosaic virus (RdMV), tobacco mosaic virus (TMV), PEMV RNA, SBMV RNA, RdMV RNA, or TMV RNA. RNA replication occurred only with PEMV RNA and not with intact PEMV or any of the other viruses or RNAs, as judged by ensuing actinomycin D-insensitive polymerase activity. Molecular hybridization experiments showed that some of the product of the polymerase was PEMV-specific (-)RNA. The substrate and ionic requirements of this polymerase were the same as those for the RNA-dependent RNA polymerase present in nuclei isolated from PEMV-infected pea plants. No virus particles could be recovered from nuclei primed with PEMV RNA. These results are discussed in relation to the possible mechanism for in vivo infection of pea cells. PMID:16592421

  15. The Mirror Nuclei 3H and 3He Program at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Javier

    2017-02-28

    Jefferson Lab plans to carry out in the near future a group of four experiments involving the mirror nuclei 3H and 3He, using electron beam energies of up to 11 GeV. Our experiments aim to, (A) extract the deep inelastic neutron to proton structure function ratio Fmore » $$n\\atop{2}$$F$$p\\atop{2}$$ (and u / d quark distributions) for 0.2 ≤ x ≤ 0.9 , (B) study the isospin structure of two-nucleon and search for three-nucleon Short Range Correlations (SRC) for x < 3 , (C) measure the proton momentum distribution of both nuclei at $x = 1.2$ to further our understanding of SRCs in the few-body and (D) extract the charge radii of both nuclei at Q 2 ≤ 0.1 GeV 2.« less

  16. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  17. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  18. Emergent properties of nuclei from ab initio coupled-cluster calculations

    DOE PAGES

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; ...

    2016-05-17

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less

  19. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome.

    PubMed

    Swanson, Larry W; Sporns, Olaf; Hahn, Joel D

    2016-10-04

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure-function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network's modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system.

  20. Network architecture of the cerebral nuclei (basal ganglia) association and commissural connectome

    PubMed Central

    Swanson, Larry W.; Sporns, Olaf; Hahn, Joel D.

    2016-01-01

    The cerebral nuclei form the ventral division of the cerebral hemisphere and are thought to play an important role in neural systems controlling somatic movement and motivation. Network analysis was used to define global architectural features of intrinsic cerebral nuclei circuitry in one hemisphere (association connections) and between hemispheres (commissural connections). The analysis was based on more than 4,000 reports of histologically defined axonal connections involving all 45 gray matter regions of the rat cerebral nuclei and revealed the existence of four asymmetrically interconnected modules. The modules form four topographically distinct longitudinal columns that only partly correspond to previous interpretations of cerebral nuclei structure–function organization. The network of connections within and between modules in one hemisphere or the other is quite dense (about 40% of all possible connections), whereas the network of connections between hemispheres is weak and sparse (only about 5% of all possible connections). Particularly highly interconnected regions (rich club and hubs within it) form a topologically continuous band extending through two of the modules. Connection path lengths among numerous pairs of regions, and among some of the network’s modules, are relatively long, thus accounting for low global efficiency in network communication. These results provide a starting point for reexamining the connectional organization of the cerebral hemispheres as a whole (right and left cerebral cortex and cerebral nuclei together) and their relation to the rest of the nervous system. PMID:27647882

  1. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  2. Enrichment of heavy nuclei in He-3-rich flares. [Imp-7 observed solar events

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.; Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1975-01-01

    IMP-7 observations of five solar-flare particle events characterized by He-3 enrichment are reported which show that such events are also enriched in nuclei with charges (Z) of at least 6. The ratio of these nuclei to H-1 at approximately 3 MeV/nucleon was found to be enriched by about 10 to 100 times, while the ratio with respect to He-4 was enriched by about 3 to 30 times. It is suggested that the simultaneous enhancement of He-3 and the heavier nuclei as well as the absence of H-2 and H-3 during the observed events may be partly due to a preferential acceleration process which depends on the ratio of the square of the charge to the atomic weight of the nuclei.

  3. Cell nuclei segmentation in fluorescence microscopy images using inter- and intra-region discriminative information.

    PubMed

    Song, Yang; Cai, Weidong; Feng, David Dagan; Chen, Mei

    2013-01-01

    Automated segmentation of cell nuclei in microscopic images is critical to high throughput analysis of the ever increasing amount of data. Although cell nuclei are generally visually distinguishable for human, automated segmentation faces challenges when there is significant intensity inhomogeneity among cell nuclei or in the background. In this paper, we propose an effective method for automated cell nucleus segmentation using a three-step approach. It first obtains an initial segmentation by extracting salient regions in the image, then reduces false positives using inter-region feature discrimination, and finally refines the boundary of the cell nuclei using intra-region contrast information. This method has been evaluated on two publicly available datasets of fluorescence microscopic images with 4009 cells, and has achieved superior performance compared to popular state of the art methods using established metrics.

  4. Modeling multi-nucleon transfer in symmetric collisions of massive nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, T.; Loveland, W.; Yanez, R.

    Symmetric collisions of massive nuclei, such as U-238 + Cm-248, have been proposed as ways to make new n-rich heavy nuclei via multi-nucleon transfer (MNT) reactions. We have measured the yields of several projectile-like and target-like fragments from the reaction of 1360 MeV Hg-204 + Pt-198. We find that current models for this symmetric collision (GRAZING, DNS, ImQMD) significantly underestimate the yields of these transfer products, even for small transfers. (C) 2017 The Author(s). Published by Elsevier B.V.

  5. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  6. KEWPIE: A dynamical cascade code for decaying exited compound nuclei

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David

    2004-05-01

    A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is of the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.

  7. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi

  9. Active Galactic Nuclei, Host Star Formation, and the Far Infrared

    NASA Astrophysics Data System (ADS)

    Draper, Aden R.; Ballantyne, D. R.

    2011-05-01

    Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nuclei (AGN) hosts. The FIR is also an important spectral region for observing AGN which are heavily enshrouded by dust, such as Compton thick (CT) AGN. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGN in the FIR. Expected differential number counts of AGN and their host galaxies are calculated in the Herschel bands. The expected contribution of AGN and their hosts to the cosmic infrared background (CIRB) is also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at 350 and 500 um are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. AGN and host differential number counts are dominated by CT AGN in the Herschel-SPIRE bands. Therefore, X-ray stacking of bright SPIRE sources is likely to disclose a large fraction of the CT AGN population.

  10. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  11. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  12. Fission barriers of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.

    1989-04-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.

  13. Multinucleon transfer reactions – a pathway to new heavy and superheavy nuclei?

    NASA Astrophysics Data System (ADS)

    Heinz, Sophie

    2018-05-01

    Recently, we reported the observation of several new neutron-deficient isotopes with proton numbers Z ≥ 92 in collisions of 48Ca + 248Cm at the Coulomb barrier. The peculiarity is that these nuclei were produced in deep inelastic multinucleon transfer reactions, a method which is presently discussed as a possible new pathway to enter so far unknown regions in the upper part of the Chart of Nuclides. Of particular interest are multinucleon transfer reactions as a possible means to produce neutron-rich superheavy nuclei and nuclei along the magic neutron shell N = 126. Based on present-day physical and technical state-of-the art, we will discuss the question how big are our chances to enter these regions by applying multinucleon transfer reactions.

  14. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema

    Oganessian, Yuri

    2018-01-24

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  15. Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2017-10-01

    While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.

  16. Probing atomic Higgs-like forces at the precision frontier

    NASA Astrophysics Data System (ADS)

    Delaunay, Cédric; Ozeri, Roee; Perez, Gilad; Soreq, Yotam

    2017-11-01

    We propose a novel approach to probe new fundamental interactions using isotope shift spectroscopy in atomic clock transitions. As a concrete toy example we focus on the Higgs boson couplings to the building blocks of matter: the electron and the up and down quarks. We show that the attractive Higgs force between nuclei and their bound electrons, which is poorly constrained, might induce effects that are larger than the current experimental sensitivities. More generically, we discuss how new interactions between the electron and the neutrons, mediated via light new degrees of freedom, may lead to measurable nonlinearities in a King plot comparison between isotope shifts of two different transitions. Given state-of-the-art accuracy in frequency comparison, isotope shifts have the potential to be measured with sub-Hz accuracy, thus potentially enabling the improvement of current limits on new fundamental interactions. A candidate atomic system for this measurement requires two different clock transitions and four zero nuclear spin isotopes. We identify several systems that satisfy this requirement and also briefly discuss existing measurements. We consider the size of the effect related to the Higgs force and the requirements for it to produce an observable signal.

  17. Laser-heated emissive plasma probe.

    PubMed

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  18. Self-Affinity and Lacunarity of Chromatin Texture in Benign and Malignant Breast Epithelial Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Einstein, Andrew J.; Wu, Hai-Shan; Gil, Joan

    1998-01-01

    Methods are presented for characterizing the self-affinity and lacunarity of arbitrarily shaped images. Chromatin appearance in breast epithelial cell nuclei is shown to be statistically self-affine. Spectral and Minkowski dimensions are lesser in nuclei of malignant cases than in nuclei of benign cases, and lacunarity further quantifies morphologic differences such as chromatin clumping and nucleoli. Fractal texture features are used as the basis for an accurate cytologic diagnosis of breast cancer.

  19. Nuclear spectroscopy of r-process nuclei around N = 126 using KISS

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Miyatake, H.; Schury, P.; Wada, M.; Oyaizu, M.; Kakiguchi, Y.; Mukai, M.; Kimura, S.; Ahmed, M.; Jeong, S. C.; Moon, J. Y.; Park, J. H.

    2017-09-01

    The beta-decay properties and atomic mass of nuclei with neutron magic number of N = 126 are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We will produce and measure the half-lives and masses of the nuclei with Z = 74-77 around N = 126 by using the multinucleon transfer (MNT) reaction of ^{136} Xe/ ^{238} U beams and ^{198} Pt target system. For this purpose, we have constructed the KEK Isotope Separation System (KISS) at RIKEN RIBF facility. KISS consists of an argon gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 . We performed the on-line tests to study the basic properties of the KISS and, successfully extracted laser-ionized nuclei around N = 126.

  20. Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Schmitt, Michael; Romeike, Bernd F M; Dietzek, Benjamin; Popp, Jürgen

    2012-11-01

    Nonlinear optical (NLO) imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or two photon excited fluorescence (TPEF) show great potential for biomedical imaging. In order to facilitate the diagnostic process based on NLO imaging, there is need for an automated calculation of quantitative values such as cell density, nucleus-to-cytoplasm ratio, average nuclear size. Extraction of these parameters is helpful for the histological assessment in general and specifically e.g. for the determination of tumor grades. This requires an accurate image segmentation and detection of locations and boundaries of cells and nuclei. Here we present an image processing approach for the detection of nuclei and cells in co-registered TPEF and CARS images. The algorithm developed utilizes the gray-scale information for the detection of the nuclei locations and the gradient information for the delineation of the nuclear and cellular boundaries. The approach reported is capable for an automated segmentation of cells and nuclei in multimodal TPEF-CARS images of human brain tumor samples. The results are important for the development of NLO microscopy into a clinically relevant diagnostic tool. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural and decay properties of Z = 132, 138 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, Bharat; Patra, S. K.

    2016-12-01

    In this paper, we analyze the structural properties of Z = 132 and Z = 138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL3 * parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α-decay, β-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z = 132 within the range 312 ≤ A ≤ 392 and 318 ≤ A ≤ 398 for Z = 138 is systematically analyzed within self-consistent relativistic mean-field model. From our analysis, we inferred that the α-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β-decay as dominant mode of decay in 318-322138 isotopes.

  2. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    PubMed

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also

  3. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations

    PubMed Central

    Core, Jason Q.; Mehrabi, Mehrsa; Robinson, Zachery R.; Ochs, Alexander R.; McCarthy, Linda A.; Zaragoza, Michael V.

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method’s utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei. PMID:29149195

  4. Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations.

    PubMed

    Core, Jason Q; Mehrabi, Mehrsa; Robinson, Zachery R; Ochs, Alexander R; McCarthy, Linda A; Zaragoza, Michael V; Grosberg, Anna

    2017-01-01

    Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.

  5. Detectability of neural tracts and nuclei in the brainstem utilizing 3DAC-PROPELLER.

    PubMed

    Nishikawa, Taro; Okamoto, Kouichirou; Matsuzawa, Hitoshi; Terumitsu, Makoto; Nakada, Tsutomu; Fujii, Yukihiko

    2014-01-01

    Despite clinical importance of identifying exact anatomical location of neural tracts and nuclei in the brainstem, no neuroimaging studies have validated the detectability of these structures. The aim of this study was to assess the detectability of the structures using three-dimensional anisotropy contrast-periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC-PROPELLER) imaging. Forty healthy volunteers (21 males, 19 females; 19-53 years, average 23.4 years) participated in this study. 3DAC-PROPELLER axial images were obtained with a 3T-MR system at four levels of the brainstem: the lower midbrain, upper and lower pons, and medulla oblongata. Three experts independently judged whether five tracts (corticospinal tract, medial lemniscus, medial longitudinal fasciculus, central tegmental and spinothalamic tracts) and 10 nuclei (oculomotor and trochlear nuclei, spinal trigeminal, abducens, facial, vestibular, hypoglossal, prepositus, and solitary nuclei, locus ceruleus, superior and inferior olives) on each side could be identified. In total, 240 assessments were made. The five tracts and eight nuclei were identified in all the corresponding assessments, whereas the locus ceruleus and superior olive could not be identified in 3 (1.3%) and 16 (6.7%) assessments, respectively. 3DAC-PROPELLER seems extremely valuable imaging method for mapping out surgical strategies for brainstem lesions. Copyright © 2013 by the American Society of Neuroimaging.

  6. The Enigmatic Local Hubble Flow: Probing the Nearby Peculiar Velocity Field with Consistent Distances to Neighboring Galaxies.

    NASA Astrophysics Data System (ADS)

    Mendez, B.; Davis, M.; Newman, J.; Madore, B. F.; Freedman, W. L.; Moustakas, J.

    2002-12-01

    The properties of the velocity field in the local volume (cz < 550 km s-1) have been difficult to constrain due to a lack of a consistent set of galaxy distances. The sparse observations available to date suggest a remarkably quiet flow, with little deviation from a pure Hubble law. However, velocity field models based on the distribution of galaxies in the 1.2 Jy IRAS redshift survey, predict a quadrupolar flow pattern locally with strong infall at the poles of the local Supergalactic plane. In an attempt to resolve this discrepency, we probe the local velocity field and begin to establish a consistent set of galactic distances. We have obtained images of nearby galaxies in I, V, and B bands from the W.M. Keck Observatory and in F814W and F555W filters from the Hubble Space Telescope. Where these galaxies are well resolved into stars we can use the Tip of the Red Giant Branch (TRGB) as a distance indicator. Using a maximum likelihood analysis to quantitatively measure the I magnitude of the TRGB we determine precise distances to several nearby galaxies. We supplement that dataset with published distances to local galaxies measured using Cepheids, Surface Brightness Fluctuations, and the TRGB. With these data we find that the amplitude of the local flow is roughly half that expected in linear theory and N-body simulations; thus the enigma of cold local flows persists. This work was supported in part by NASA through a grant from the Space Telescope Science Institute and a Predoctoral Fellowship for Minorities from the Ford Foundation.

  7. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  8. Development of Mackintosh Probe Extractor

    NASA Astrophysics Data System (ADS)

    Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd

    2016-11-01

    Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.

  9. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.

    PubMed

    Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L

    2014-10-01

    Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.

  10. Variable path length spectrophotometric probe

    DOEpatents

    O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  11. Microscopic description of fission properties for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Giuliani, S. A.; Martínez-Pinedo, G.; Robledo, L. M.

    2018-01-01

    Fission properties of 886 even-even nuclei in the region 84 ≤ Z ≤ 120 and 118 ≤ Z ≤ 250 were computed using the Barcelona-Catania-Paris-Madrid energy density functional. An extensive study of both the potential energy surfaces and collectives inertias was performed. Spontaneous fission half-lives are computed using the semiclassical Wentzel-Kramers-Brillouin formalism. By comparing these three quantities we found that the stability of the nucleus against the fission process is driven by the interplay between both the potential energy and the collective inertias. In our calculations, nuclei with relative long half-lives were found in two regions around Z = 120, N = 182 and Z = 104, N = 222.

  12. Dynamics of 28,30S i* compound nuclei formed at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Bir Bikram; Kaur, Sarbjeet

    2018-05-01

    The decay of 28S i* and 30S i* compound nuclei (CN) formed at sub-barrier energies, in the reactions induced by stable projectile 16O and exotic projectile 18O, respectively, has been investigated within the quantum mechanical fragmentation theory based dynamical cluster-decay model (DCM). The collective potential energy surface shows that xα-type (x is an integer) clusters are minimized in the decay of 28S i* while in case of 30S i* in addition to xα-type clusters, np-xα (n, p are neutron and proton, respectively) type clusters are also minimized. These minimized fragments have more preformation probability P0, which is an important factor through which nuclear structure effects of decaying CN are probed, within DCM. The results show that light particles (LPs) are contributing mostly in the fusion cross-section, σfusion. In case of 30S i*, the contribution of 1n is highest and more compared to 4He in case of 28S i*, which seems to play an important role in fusion enhancement. The DCM calculated σfusion for both the CN formed with same Ec.m. = 7.0 MeV gives more value for σfusion of 30S i*, in agreement with the experimental data.

  13. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.

    PubMed

    Pöschl, U; Martin, S T; Sinha, B; Chen, Q; Gunthe, S S; Huffman, J A; Borrmann, S; Farmer, D K; Garland, R M; Helas, G; Jimenez, J L; King, S M; Manzi, A; Mikhailov, E; Pauliquevis, T; Petters, M D; Prenni, A J; Roldin, P; Rose, D; Schneider, J; Su, H; Zorn, S R; Artaxo, P; Andreae, M O

    2010-09-17

    The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

  14. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis, T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.; Andreae, M. O.

    2010-09-01

    The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

  15. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; Petrie, C.; Carlson, J.; Schmidt, K. E.; Schwenk, A.

    2018-04-01

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3 ≤A ≤16 . Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.

  16. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  17. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  18. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  19. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.

    PubMed

    Bryce, David L; Bultz, Elijah B; Aebi, Dominic

    2008-07-23

    Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.

  20. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uin, Janek

    2016-04-01

    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only inmore » the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.« less