Sample records for problem potable water

  1. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  2. Review of water disinfection techniques

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Sauer, Richard L.

    1987-01-01

    Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.

  3. Apollo experience report: Potable water system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Calley, D. J.

    1973-01-01

    A description of the design and function of the Apollo potable water system is presented. The command module potable water is supplied as a byproduct of the fuel cells. The cells, located in the service module, function primarily to supply electrical energy to the spacecraft. The source of the lunar module potable water is three tanks, which are filled before lift-off. The technique of supplying the water in each of these cases and the problems associated with materials compatibility are described. The chemical and microbiological quality of the water is reviewed, as are efforts to maintain the water in a microbially safe condition for drinking and food mixing.

  4. Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axness, Carl L.; Ferrando, Ana

    2010-08-01

    Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order tomore » be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.« less

  5. Water and Life in the International Year of Chemistry

    ERIC Educational Resources Information Center

    Bernal, Pedro J.

    2011-01-01

    This commentary talks about the worldwide health impact of lack of access to potable water. Household water treatment and storage (HWTS) is described as one approach to improving potable water accessibility in which students and educators can make a contribution to alleviate the problem of lack of access. The author suggests that, as chemists,…

  6. Elementary School Students' Water Awareness

    ERIC Educational Resources Information Center

    Coban, Gul Unal; Akpinar, Ercan; Kucukcankurtaran, Evren; Yildiz, Eylem; Ergin, Omer

    2011-01-01

    Environmental problems grow gradually and their effects are felt in various ways such as shortage of potable water. Among the various solutions offered to solve these problems, there is one standing which has the potential of encapsulating all the solutions in, that is "water education". Therefore, the aim of this study is to present the…

  7. 49 CFR 228.323 - Potable water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...

  8. 49 CFR 228.323 - Potable water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...

  9. 49 CFR 228.323 - Potable water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Potable water. 228.323 Section 228.323... Potable water. (a) General requirements. (1) Potable water shall be adequately and conveniently provided... processing. (2) Open containers such as barrels, pails, or tanks for drinking water from which the water must...

  10. 30 CFR 56.20002 - Potable water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...

  11. 30 CFR 56.20002 - Potable water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...

  12. 30 CFR 57.20002 - Potable water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...

  13. 30 CFR 57.20002 - Potable water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...

  14. 30 CFR 57.20002 - Potable water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...

  15. 30 CFR 57.20002 - Potable water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...

  16. 30 CFR 56.20002 - Potable water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...

  17. 30 CFR 57.20002 - Potable water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Potable water. 57.20002 Section 57.20002....20002 Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or...

  18. 30 CFR 56.20002 - Potable water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...

  19. 30 CFR 56.20002 - Potable water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Potable water. 56.20002 Section 56.20002... Potable water. (a) An adequate supply of potable drinking water shall be provided at all active working areas. (b) The common drinking cup and containers from which drinking water must be dipped or poured are...

  20. ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.

  1. ISS Expeditions 16 & 17: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2009-01-01

    During the twelve month span of Expeditions 16 and 17 beginning October of 2007, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principle sources of potable water and for the first time, European groundsupplied water was also available. Although water was transferred from Shuttle to ISS during Expeditions 16 and 17, no Shuttle potable water was consumed during this timeframe. A total of 12 potable water samples were collected using U.S. hardware during Expeditions 16 and 17 and returned on Shuttle flights 1E (STS122), 1JA (STS123), and 1J (STS124). The average sample volume was sufficient for complete chemical characterization to be performed. The results of JSC chemical analyses of these potable water samples are presented in this paper. The WAFAL also received potable water samples for analysis from the Russian side collected inflight with Russian hardware, as well as preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 30. Analytical results for these additional potable water samples are also reported and discussed herein. Although the potable water supplies available during Expeditions 16 and 17 were judged safe for crew consumption, a recent trending of elevated silver levels in the SVOZV water is a concern for longterm consumption and efforts are being made to lower these levels.

  2. Risk-based enteric pathogen reduction targets for non-potable ...

    EPA Pesticide Factsheets

    This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10−4 per person per year (ppy) or 10−2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens in the genera Rotavirus, Mastadenovirus (human adenoviruses), Norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium. Non-potable uses included indoor use (for toilet flushing and clothes washing) with occasional accidental ingestion of treated non-potable water (or cross-connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than non-potable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by the

  3. Chemical Analysis Results for Potable Water from ISS Expeditions 21 Through 25

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2011-01-01

    The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 through 25. Over a 14-month period the Space Shuttle visited the ISS on four occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), and STS-132 (ULF4), as well as on Soyuz flights 19-23. This paper reports the analytical results for these returned potable water archival samples and their compliance with ISS water quality standards.

  4. A Water-Service Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    It is important to let students see the value of mathematics in design--and how mathematics lends perspective to problem solving. In this article, the author describes a water-service challenge which enables students to design a water utility system that uses surface runoff into an open reservoir as the potable water source. This challenge…

  5. Beyond User Acceptance: A Legitimacy Framework for Potable Water Reuse in California.

    PubMed

    Harris-Lovett, Sasha R; Binz, Christian; Sedlak, David L; Kiparsky, Michael; Truffer, Bernhard

    2015-07-07

    Water resource managers often tout the potential of potable water reuse to provide a reliable, local source of drinking water in water-scarce regions. Despite data documenting the ability of advanced treatment technologies to treat municipal wastewater effluent to meet existing drinking water quality standards, many utilities face skepticism from the public about potable water reuse. Prior research on this topic has mainly focused on marketing strategies for garnering public acceptance of the process. This study takes a broader perspective on the adoption of potable water reuse based on concepts of societal legitimacy, which is the generalized perception or assumption that a technology is desirable or appropriate within its social context. To assess why some potable reuse projects were successfully implemented while others faced fierce public opposition, we performed a series of 20 expert interviews and reviewed in-depth case studies from potable reuse projects in California. Results show that proponents of a legitimated potable water reuse project in Orange County, California engaged in a portfolio of strategies that addressed three main dimensions of legitimacy. In contrast, other proposed projects that faced extensive public opposition relied on a smaller set of legitimation strategies that focused near-exclusively on the development of robust water treatment technology. Widespread legitimation of potable water reuse projects, including direct potable water reuse, may require the establishment of a portfolio of standards, procedures, and possibly new institutions.

  6. Bounding the marginal cost of producing potable water including the use of seawater desalinization as a backstop potable water production technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    2014-04-01

    The analysis presented in this technical report should allow for the creation of high, medium, and low cost potable water prices for GCAM. Seawater reverse osmosis (SWRO) based desalinization should act as a backstop for the cost of producing potable water (i.e., the literature seems clear that SWRO should establish an upper bound for the plant gate cost of producing potable water). Transporting water over significant distances and having to lift water to higher elevations to reach end-users can also have a significant impact on the cost of producing water. The three potable fresh water scenarios describe in this technicalmore » report are: low cost water scenario ($0.10/m3); medium water cost scenario ($1.00/m3); and high water cost scenario ($2.50/m3).« less

  7. Risk-Based Treatment Targets for Onsite Non-Potable Water ...

    EPA Pesticide Factsheets

    This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10-4 per person per year (ppy) or 10-2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens Rotavirus, Adenovirus, Norovirus, Campylobacter spp., Salmonella spp., Giardia spp., and Cryptosporidium spp.. Non-potable uses included indoor use (for toilet flushing and clothes washing) with accidental ingestion of treated non-potable water (or cross connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than nonpotable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by th

  8. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi

    2013-07-01

    Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Chemical Analysis Results for Potable Water from ISS Expeditions 21 to 25

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2010-01-01

    The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 to 25. Over a 14-month period, the Space Shuttle visited the ISS on five occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), STS-132 (ULF4) and STS-133 (ULF5), as well as on Soyuz flights 19-22. This paper reports the analytical results for the returned archival water samples and evaluates their compliance with ISS water quality standards. The WAFAL also received and analyzed aliquots of some Russian potable water samples collected in-flight and pre-flight samples of Rodnik potable water delivered to the Station on the Russian Progress vehicle during Expeditions 21 to 25. These additional analytical results are also reported and discussed in this paper.

  10. 29 CFR 1910.141 - Sanitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... where their presence is detected. (b) Water supply—(1) Potable water. (i) Potable water shall be... to, first-aid, medical services, dressing, showering, toilet use, washing, and eating. Potable water means water which meets the quality standards prescribed in the U.S. Public Health Service Drinking...

  11. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Debrah K.; Schultz, John R..; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include US Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The Water and Food Analytical Laboratory at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced an anticipated temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight Total Organic Carbon Analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation action.

  12. Potable water supply

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Calley, D. J.

    1975-01-01

    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  13. Advanced water iodinating system. [for potable water aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Wynveen, R. A.

    1975-01-01

    Potable water stores aboard manned spacecraft must remain sterile. Suitable sterilization techniques are needed to prevent microbial growth. The development of an advanced water iodinating system for possible application to the shuttle orbiter and other advanced spacecraft, is considered. The AWIS provides a means of automatically dispensing iodine and controlling iodination levels in potable water stores. In a recirculation mode test, simulating application of the AWIS to a water management system of a long term six man capacity space mission, noniodinated feed water flowing at 32.2 cu cm min was iodinated to 5 + or - ppm concentrations after it was mixed with previously iodinated water recirculating through a potable water storage tank. Also, the AWIS was used to successfully demonstrate its capability to maintain potable water at a desired I2 concentration level while circulating through the water storage tank, but without the addition of noniodinated water.

  14. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include U.S. Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The former Water and Food Analytical Laboratory (now Toxicology and Evironmental Chemistry Laboratory) at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced a third temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for the previous comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight total organic carbon analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation.

  15. Potable Water Reuse: What Are the Microbiological Risks?

    PubMed

    Nappier, Sharon P; Soller, Jeffrey A; Eftim, Sorina E

    2018-06-01

    With the increasing interest in recycling water for potable reuse purposes, it is important to understand the microbial risks associated with potable reuse. This review focuses on potable reuse systems that use high-level treatment and de facto reuse scenarios that include a quantifiable wastewater effluent component. In this article, we summarize the published human health studies related to potable reuse, including both epidemiology studies and quantitative microbial risk assessments (QMRA). Overall, there have been relatively few health-based studies evaluating the microbial risks associated with potable reuse. Several microbial risk assessments focused on risks associated with unplanned (or de facto) reuse, while others evaluated planned potable reuse, such as indirect potable reuse (IPR) or direct potable reuse (DPR). The reported QMRA-based risks for planned potable reuse varied substantially, indicating there is a need for risk assessors to use consistent input parameters and transparent assumptions, so that risk results are easily translated across studies. However, the current results overall indicate that predicted risks associated with planned potable reuse scenarios may be lower than those for de facto reuse scenarios. Overall, there is a clear need to carefully consider water treatment train choices when wastewater is a component of the drinking water supply (whether de facto, IPR, or DPR). More data from full-scale water treatment facilities would be helpful to quantify levels of viruses in raw sewage and reductions across unit treatment processes for both culturable and molecular detection methods.

  16. 21 CFR 1250.82 - Potable water systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  17. 21 CFR 1250.82 - Potable water systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  18. 21 CFR 1250.82 - Potable water systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  19. 21 CFR 1250.82 - Potable water systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  20. Analysis of MIR Condensate and Potable Water

    NASA Technical Reports Server (NTRS)

    Pierre, L. M.; Bobe, L.; Protasov, N. N.; Sauer, R. L.; Schultz, J. R.; Sinyak, Y. E.; Skuratov, V. M.

    1999-01-01

    Approximately fifty percent of the potable water supplied to the Russian cosmonauts, American astronauts, and other occupants of the current Russian Mir Space Station is produced by the direct recycle of water from humidity condensate. The remainder comes from ground supplied potable water that is delivered on a Progress resupply spacecraft, or processed fuel cell water transferred from the Shuttle. Reclamation of water for potable and hygiene purposes is considered essential for extended duration missions in order to avoid massive costs associated with resupplying water from the ground. The Joint U.S/Russian Phase 1 program provided the U.S. the first opportunity to evaluate the performance of water reclamation hardware in microgravity. During the Phase I program, the U.S. collected recycled water, stored water, and humidity condensate samples for chemical and microbial evaluation. This experiment was conducted to determine the potability of the water supplied on Mir, to assess the reliability of the water reclamation and distribution systems, and to aid in developing water quality monitoring standards for International Space Station.

  1. Mycobacterium mucogenicum and other non-tuberculous mycobacteria in potable water of a trauma hospital: a potential source for human infection.

    PubMed

    Fernandez-Rendon, E; Cerna-Cortes, J F; Ramirez-Medina, M A; Helguera-Repetto, A C; Rivera-Gutierrez, S; Estrada-Garcia, T; Gonzalez-Y-Merchand, J A

    2012-01-01

    This study examined the frequency of occurrence of non-tuberculous mycobacteria (NTM) in potable water samples from a main trauma hospital in Mexico City. Sixty-nine potable water samples were collected, 23 from each source: cistern, kitchen tap and bathroom showers. Of the 69 samples, 36 harboured NTM species. Twenty-nine of the 36 isolates were Mycobacterium mucogenicum, two Mycobacterium rhodesiae, one Mycobacterium peregrinum, one Mycobacterium fortuitum and three were Mycobacterium spp. Hospital potable water harbouring NTM represents a potential source for nosocomial infections, therefore we suggest that hospital potable water microbiological guidelines should include testing for NTM species. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  3. Development of a separate tank with an electrolysis-dependent bacteria controlling system for the long term storage of potable water.

    PubMed

    Ishizuka, Akinori; Tanji, Masataka; Hayashi, Nobuatsu; Wakabayashi, Akihiro; Tatsumoto, Hideki; Hotta, Kunimoto

    2006-12-01

    For the long term storage of tap water, we developed a separate type of tank (5 m3) equipped with an electrolysis system to control bacterial growth. The electrolysis conditions using 20A direct current and a water flow rate of 10 L/min were capable of producing available chlorine (AC) at the rate of 5-8mg/min and raising the AC level of the stored tap water by about 0.2 mg/kg within 20-30 min The electrolyzed tap water with 0.2 mg/kg AC showed a capability per ml of killing 10(5)-10(6) cfu of bacteria such as Escherichia coli and Pseudomonas aeruginosa within 15 sec. A 6-month trial operation of the storage system with an automatic electrolysis control to keep AC level ranging 0.2-0.4 mg/kg demonstrated that the system worked well for the stored tap water in suppressing bacterial growth as well as in keeping good potable quality with reference to the 46 parameters specified for Japanese tap water. Actually, the electrolysis treatment was administered intermittently with an interval of about two weeks. Thus we believe the developed system has good potential to secure a potable water supply not only in the occasion of emergencies but also in countries having problems in the supply of safe drinking water.

  4. ISS Potable Water Quality for Expeditions 26 through 30

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  5. Technical-economic modelling of integrated water management: wastewater reuse in a French island.

    PubMed

    Xu, P; Valette, F; Brissaud, F; Fazio, A; Lazarova, V

    2001-01-01

    An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.

  6. 77 FR 1591 - Energy Conservation Program: Test Procedure for Automatic Commercial Ice Makers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    .... Establishment of a Metric for Potable Water Used to Produce Ice 6. Standardization of Water Hardness for Measurement of Potable Water Used in Making Ice 7. Testing of Batch Type Ice Makers at the Highest Purge..., AHRI Standard 810 with Addendum 1. This addendum revised the definition of ``potable water use rate...

  7. Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.

    2007-01-01

    The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.

  8. Potable water dispenser

    NASA Technical Reports Server (NTRS)

    Cunningham, H. R. (Inventor)

    1973-01-01

    A dispenser particularly suited for use in dispensing potable water into food and beverage reconstitution bags is described. The dispenser is characterized by an expansible chamber, selectively adjustable stop means for varying the maximum dimensions, a rotary valve, and a linear valve coupled in a cooperating relation for delivering potable water to and from the chamber.

  9. Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama

    2017-11-01

    Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.

  10. Short-term versus long-term rainfall time series in the assessment of potable water savings by using rainwater in houses.

    PubMed

    Ghisi, Enedir; Cardoso, Karla Albino; Rupp, Ricardo Forgiarini

    2012-06-15

    The main objective of this article is to assess the possibility of using short-term instead of long-term rainfall time series to evaluate the potential for potable water savings by using rainwater in houses. The analysis was performed considering rainfall data from 1960 to 1995 for the city of Santa Bárbara do Oeste, located in the state of São Paulo, southeastern Brazil. The influence of the rainfall time series, roof area, potable water demand and percentage rainwater demand on the potential for potable water savings was evaluated. The potential for potable water savings was estimated using computer simulations considering a set of long-term rainfall time series and different sets of short-term rainfall time series. The ideal rainwater tank capacity was also assessed for some cases. It was observed that the higher the percentage rainwater demand and the shorter the rainfall time series, the larger the difference between the potential for potable water savings and the greater the variation in the ideal rainwater tank size. The sets of short-term rainfall time series considered adequate for different scenarios ranged from 1 to 13 years depending on the roof area, percentage rainwater demand and potable water demand. The main finding of the research is that sets of short-term rainfall time series can be used to assess the potential for potable water savings by using rainwater, as the results obtained are similar to those obtained from the long-term rainfall time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2011-10-01 2011-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  12. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., or waste water or other polluting materials. Arriving aircraft shall discharge such matter only at... 42 Public Health 1 2010-10-01 2010-10-01 false Food, potable water, and waste: U.S. seaports and... Inspection § 71.45 Food, potable water, and waste: U.S. seaports and airports. (a) Every seaport and airport...

  13. 2014 ISS Potable Water Characterization and Continuation of the DMSD Chronicle

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Mudgett, Paul D.

    2015-01-01

    During 2014 the crews from Expeditions 38-41 were resident on the International Space Station (ISS). In addition to the U.S. potable water reclaimed from humidity condensate and urine, the other water supplies available for their use were Russian potable water reclaimed from condensate and Russian ground-supplied potable water. Beginning in June of 2014, and for the fourth time since 2010, the product water from the U.S. Water Processor Assembly (WPA) experienced a rise in the total organic carbon (TOC) level due to organic contaminants breaking through the water treatment process. Results from ground analyses of ISS archival water samples returned on Soyuz 38 confirmed that dimethylsilanediol (DMSD) was once again the contaminant responsible for the rise. With this confirmation in hand and based upon the low toxicity of DMSD, a waiver was approved to allow the crew to continue to consume the water after the TOC level exceeded the U.S. Segment limit of 3 mg/L. Several weeks after the WPA multifiltration beds were replaced, as anticipated based upon experience from previous rises, the TOC levels returned to below the method detection limit of the onboard TOC analyzer (TOCA). This paper presents and discusses the chemical analysis results for the ISS archival potable water samples returned in 2014 and analyzed by the Johnson Space Center's Toxicology and Environmental Chemistry laboratory. These results showed compliance with ISS potable water quality standards and indicated that the potable water supplies were acceptable for crew consumption. Although DMSD levels were at times elevated they remained well below the 35 mg/L health limit, so continued consumption of the U.S potable water was considered a low risk to crew health and safety. Excellent agreement between inflight and archival sample TOC data confirmed that the TOCA performed optimally and it continued to serve as a vital tool for monitoring organic breakthrough and planning remediation action.

  14. 2014 ISS Potable Water Characterization and Continuation of the Dimethylsilanediol Chronicle

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Mudgett, Paul D.

    2015-01-01

    During 2014 the crews from Expeditions 38-41 were in residence on the International Space Station (ISS). In addition to the U.S. potable water reclaimed from humidity condensate and urine, the other water supplies available for their use were Russian potable water reclaimed from condensate and Russian ground-supplied potable water. Beginning in June of 2014 and for the fourth time since 2010, the product water from the U.S. water processor assembly (WPA) experienced a rise in the total organic carbon (TOC) level due to organic contaminants breaking through the water treatment process. Results from ground analyses of ISS archival water samples returned on Soyuz 38 confirmed that dimethylsilanediol was once again the contaminant responsible for the rise. With this confirmation in hand and based upon the low toxicity of dimethylsilanediol, a waiver was approved to allow the crew to continue to consume the water after the TOC level exceeded the U.S. Segment limit of 3 mg/L. Several weeks after the WPA multifiltration beds were replaced, the TOC levels returned to below the method detection limit of the onboard TOC analyzer (TOCA) as anticipated based upon experience from previous rises. This paper presents and discusses the chemical analysis results for the ISS archival potable-water samples returned in 2014 and analyzed by the Johnson Space Center's Toxicology and Environmental Chemistry laboratory. These results showed compliance with ISS potable water quality standards and indicated that the potable-water supplies were acceptable for crew consumption. Although dimethylsilanediol levels were at times elevated, they remained well below the 35 mg/L health limit so the continued consumption of the U.S. potable water was considered a low risk to crew health and safety. Excellent agreement between in-flight and archival sample TOC data confirmed that the TOCA performed optimally and continued to serve as a vital tool for monitoring organic breakthrough and planning remediation action.

  15. A review of polymeric membranes and processes for potable water reuse

    PubMed Central

    Warsinger, David M.; Chakraborty, Sudip; Tow, Emily W.; Plumlee, Megan H.; Bellona, Christopher; Loutatidou, Savvina; Karimi, Leila; Mikelonis, Anne M.; Achilli, Andrea; Ghassemi, Abbas; Padhye, Lokesh P.; Snyder, Shane A.; Curcio, Stefano; Vecitis, Chad; Arafat, Hassan A.; Lienhard, John H.

    2018-01-01

    Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes in the treatment of wastewater to potable water quality and highlight recent advancements in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development. PMID:29937599

  16. Risk-Based Treatment Targets for Onsite Non-Potable Water Reuse

    EPA Science Inventory

    This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Micr...

  17. Recent experiences with iodine water disinfection in Shuttle

    NASA Technical Reports Server (NTRS)

    Gibbons, Randall E.; Flanagan, David T.; Schultz, John R.; Sauer, Richard L.; Slezak, Terry N.

    1990-01-01

    Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 F. This is well above the MCV operating range of 65-90 F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine. These reduced the iodine residual to 3-4 ppm during STS-33, STS-34, STS-36 and STS-32. A high-temperature resin was formulated and initially flown on STS-31.

  18. International Space Station USOS Potable Water Dispenser Development

    NASA Technical Reports Server (NTRS)

    Shaw, Laura A.; Barreda, Jose L.

    2008-01-01

    The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.

  19. 7 CFR 1778.10 - Restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... areas from submitting joint proposals for assistance under this part. Each entity applying for financial... Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE..., cost, and are not directly related to correcting the potable water quantity or quality problem. (4) Pay...

  20. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  1. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  2. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  3. 42 CFR 71.45 - Food, potable water, and waste: U.S. seaports and airports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Food, potable water, and waste: U.S. seaports and airports. 71.45 Section 71.45 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.45 Food, potable water,...

  4. Advanced microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.

    1980-01-01

    A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.

  5. Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters

    EPA Science Inventory

    Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse o...

  6. Legionella pneumophila: From potable water to treated greywater; quantification and removal during treatment.

    PubMed

    Blanky, Marina; Rodríguez-Martínez, Sara; Halpern, Malka; Friedler, Eran

    2015-11-15

    Greywater is an alternative water source that can help alleviate stress on depleted water resources. The main options for greywater reuse are toilet flushing and garden irrigation, both producing aerosols. For that reason transmission of inhalable pathogens like Legionella present a potential risk. To improve the understanding about Legionella in greywater, we traced the pathogen seasonally from the potable water system to the final steps of the greywater treatment in four houses in northern Israel. Physicochemical and microbiological parameters were analyzed in order to assess background greywater quality and to establish possible associations with Legionella. The mean concentrations of Legionella pneumophila isolated from the potable water system were 6.4×10(2) and 5.9×10(3) cfu/l in cold and hot water respectively. By amending the ISO protocol for Legionella isolation from drinking water, we succeeded in quantifying Legionella in greywater. The mean Legionella concentrations that were found in raw, treated and treated chlorinated greywater were 1.2×10(5), 2.4×10(4) and 5.7×10(3) cfu/l respectively. While Legionella counts in potable water presented a seasonal pattern with high concentrations in summer, its counts in greywater presented an almost inversed pattern. Greywater treatment resulted in 95% decrease in Legionella counts. No significant difference was found between Legionella concentrations in potable water and the treated chlorinated greywater. These findings indicate that regarding Legionella, reusing treated chlorinated greywater would exhibit a risk that is very similar to the risk associated with using potable water for the same non-potable uses. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Environmental health program activities

    NASA Technical Reports Server (NTRS)

    Bergtholdt, C. P.

    1969-01-01

    Activities reported include studies on toxic air contaminants, excessive noise, poor lighting, food sanitation, water pollution, and exposure to nonionizing radiation as health hazards. Formulations for a radiological health manual provide guidance to personnel in the procurement and safe handling of radiation producing equipment and Apollo mission planning. A literature search and development of a water analysis laboratory are outlined to obtain information regarding microbiological problems involving potable water, waste management, and personal hygiene.

  8. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial-process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  9. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  10. Hospital Impact After a Chemical Spill That Compromised the Potable Water Supply: West Virginia, January 2014.

    PubMed

    Hsu, Joy; Del Rosario, Maria C; Thomasson, Erica; Bixler, Danae; Haddy, Loretta; Duncan, Mary Anne

    2017-10-01

    In January 2014, a chemical spill of 4-methylcyclohexanemethanol and propylene glycol phenyl ethers contaminated the potable water supply of approximately 300,000 West Virginia residents. To understand the spill's impact on hospital operations, we surveyed representatives from 10 hospitals in the affected area during January 2014. We found that the spill-related loss of potable water affected many aspects of hospital patient care (eg, surgery, endoscopy, hemodialysis, and infection control of Clostridium difficile). Hospital emergency preparedness planning could be enhanced by specifying alternative sources of potable water sufficient for hemodialysis, C. difficile infection control, and hospital processing and cleaning needs (in addition to drinking water). (Disaster Med Public Health Preparedness. 2017;11:621-624).

  11. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    USGS Publications Warehouse

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American Vertical Datum of 1988 (NAVD 88).] Future scenarios 4 to 9 represent withdrawals and the effects on the water supply while using estimated full build-out water demands. In most townships, existing wells would be used for withdrawals in the simulation. However, in Lower and Middle Townships, the Wildwoods, and the Cape Mays, withdrawals from some wells would be terminated, reduced, or increased. Depending on the scenario, proposed production wells would be installed in locations far from the saltwater fronts, in deep freshwater aquifers, in deeper saltwater aquifers, or proposed injection wells would be installed to inject reused water to create a freshwater barrier to saltwater intrusion. Simulations indicate that future Scenarios 4 to 9 would reduce many of the adverse effects of Scenarios 1, 2, and 3. No future scenario will minimize all adverse impacts. In Scenario 4, Lower Township would drill two production wells in the Cohansey aquifer farther from the Delaware shoreline than existing wells and reduce withdrawals from wells near the shoreline. Wildwood Water Utility (WWU) would reduce withdrawals from existing wells in the Cohansey aquifer and increase withdrawals from wells in the Rio Grande water-bearing zone. Results of the simulation indicate that saltwater intrusion and ecological-water supply problems would be reduced but not as much as in Scenarios 5, 7, 8, and 9. In Scenario 5, the Wildwoods and Lower Township each would install a desalination plant and drill two wells to withdraw saltwater from the Atlantic City 800-foot sand. Saltwater intrusion problems would be reduced to the greatest extent with this scenario. Ecological water supplies remain constant or decline from 2003 baseline values. Water-level altitudes would decline to -193 ft in the Atlantic City 800-foot sand, the deepest potentiometric level for all scenarios. In Scenario 6, Lower Township would build a tertiary treatment system and drill three wells open to the Cohanse

  12. Feasibility of potable water generators to meet vessel numeric ballast water discharge limits.

    PubMed

    Albert, Ryan J; Viveiros, Edward; Falatko, Debra S; Tamburri, Mario N

    2017-07-15

    Ballast water is taken on-board vessels into ballast water tanks to maintain vessel draft, buoyancy, and stability. Unmanaged ballast water contains aquatic organisms that, when transported and discharged to non-native waters, may establish as invasive species. Technologies capable of achieving regulatory limits designed to decrease the likelihood of invasion include onboard ballast water management systems. However, to date, the treatment development and manufacturing marketplace is limited to large vessels with substantial ballast requirements. For smaller vessels or vessels with reduced ballast requirements, we evaluated the feasibility of meeting the discharge limits by generating ballast water using onboard potable water generators. Case studies and parametric analyses demonstrated the architectural feasibility of installing potable water generators onboard actual vessels with minimal impacts for most vessel types evaluated. Furthermore, land-based testing of a potable water generator demonstrated capability to meet current numeric discharge limits for living organisms in all size classes. Published by Elsevier Ltd.

  13. Health risk assessment of organic micropollutants in greywater for potable reuse.

    PubMed

    Etchepare, Ramiro; van der Hoek, Jan Peter

    2015-04-01

    In light of the increasing interest in development of sustainable potable reuse systems, additional research is needed to elucidate the risks of producing drinking water from new raw water sources. This article investigates the presence and potential health risks of organic micropollutants in greywater, a potential new source for potable water production introduced in this work. An extensive literature survey reveals that almost 280 organic micropollutants have been detected in greywater. A three-tiered approach is applied for the preliminary health risk assessment of these chemicals. Benchmark values are derived from established drinking water standards for compounds grouped in Tier 1, from literature toxicological data for compounds in Tier 2, and from a Threshold of Toxicological Concern approach for compounds in Tier 3. A risk quotient is estimated by comparing the maximum concentration levels reported in greywater to the benchmark values. The results show that for the majority of compounds, risk quotient values were below 0.2, which suggests they would not pose appreciable concern to human health over a lifetime exposure to potable water. Fourteen compounds were identified with risk quotients above 0.2 which may warrant further investigation if greywater is used as a source for potable reuse. The present findings are helpful in prioritizing upcoming greywater quality monitoring and defining the goals of multiple barriers treatment in future water reclamation plants for potable water production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. STS-2 medical report

    NASA Technical Reports Server (NTRS)

    Pool, S. L. (Editor); Johnson, P. C., Jr. (Editor); Mason, J. A. (Editor)

    1982-01-01

    All medially related activities of the Space Transportation System 2 flight are described, ranging from preflight to postflight. Several medical problems occured during the flight. Their was marginal operation on-board potable water system caused by a malfunctioning fuel cell. Work and rest cycles by the crew were altered to maximize the scientific data acquisition. Inadequate time was allocated for food preparation and consumption. There was low water intake by the crew because of the water shortage.

  15. Promoting Sustainable Development Through Engagement.

    DTIC Science & Technology

    1999-01-30

    address development problems. In June 1992, the United Nations convened an international conference in Rio de Janeiro , commonly called the Earth... River or polluted air and water in the Central and Eastern European countries, nations are failing to provide their population potable water...situation in Central and Eastern Europe (CEE) provide us some examples. First, there is the health impact. Air pollution appears to be the cause of

  16. A CASE STUDY IN RISK MANAGEMENT ISSUES: PERCHLORATE IN POTABLE WATER

    EPA Science Inventory

    Risk management brings together many issues. While some of these are scientific in nature, many come down to policy and even emotion. As a result, striking a balance among competing objectives can be difficult. This is especially true when problems are localized or solutions are ...

  17. Potable water bactericide agent development

    NASA Technical Reports Server (NTRS)

    Hurley, T. L.; Bambenek, R. A.

    1972-01-01

    The results are summarized of the work performed for the development and evaluation of a bactericide agent/system concept capable of being used in the space shuttle potable water system. The concept selected for evaluation doses fuel cell water with silver ions before the water is stored and used, by passing this water through columns packed with silver chloride and silver bromide particles, respectively. Four simulated space shuttle potable water system tests, each of seven days duration, were performed to demonstrate that this concept is capable of delivering sterile water even though 3 + or - 1 x 10 to the 9th power Type IIIa or Pseudomonas aeruginosa bacteria, two types which have been found in the Apollo potable water system, are purposely injected into the system each day. This result, coupled with the fact that silver ions do not have to be periodically added to the stored water, indicates that this concept is superior to the chlorine and iodine techniques used on Apollo.

  18. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: a pilot study.

    PubMed

    Perez-Martinez, Iza; Aguilar-Ayala, Diana A; Fernandez-Rendon, Elizabeth; Carrillo-Sanchez, Alma K; Helguera-Repetto, Addy C; Rivera-Gutierrez, Sandra; Estrada-Garcia, Teresa; Cerna-Cortes, Jorge F; Gonzalez-Y-Merchand, Jorge A

    2013-12-11

    Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the "main house faucet" and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as "good quality" potable water. Household potable water may be a potential source of NTM infection in Mexico City.

  19. Biological warfare agents as threats to potable water.

    PubMed Central

    Burrows, W D; Renner, S E

    1999-01-01

    Nearly all known biological warfare agents are intended for aerosol application. Although less effective as potable water threats, many are potentially capable of inflicting heavy casualties when ingested. Significant loss of mission capability can be anticipated even when complete recovery is possible. Properly maintained field army water purification equipment can counter this threat, but personnel responsible for the operation and maintenance of the equipment may be most at risk of exposure. Municipal water treatment facilities would be measurably less effective. Some replicating (infectious) agents and a few biotoxins are inactivated by chlorine disinfection; for others chlorine is ineffective or of unknown efficacy. This report assesses the state of our knowledge of agents as potable water threats and contemplates the consequences of intentional or collateral contamination of potable water supplies by 18 replicating agents and 9 biotoxins known or likely to be weaponized or otherwise used as threats. PMID:10585901

  20. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  1. A Study of Failure Events in Drinking Water Systems As a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes

    PubMed Central

    Onyango, Laura A.; Quinn, Chloe; Tng, Keng H.; Wood, James G.; Leslie, Greg

    2015-01-01

    Potable reuse is implemented in several countries around the world to augment strained water supplies. This article presents a public health perspective on potable reuse by comparing the critical infrastructure and institutional capacity characteristics of two well-established potable reuse schemes with conventional drinking water schemes in developed nations that have experienced waterborne outbreaks. Analysis of failure events in conventional water systems between 2003 and 2013 showed that despite advances in water treatment technologies, drinking water outbreaks caused by microbial contamination were still frequent in developed countries and can be attributed to failures in infrastructure or institutional practices. Numerous institutional failures linked to ineffective treatment protocols, poor operational practices, and negligence were detected. In contrast, potable reuse schemes that use multiple barriers, online instrumentation, and operational measures were found to address the events that have resulted in waterborne outbreaks in conventional systems in the past decade. Syndromic surveillance has emerged as a tool in outbreak detection and was useful in detecting some outbreaks; increases in emergency department visits and GP consultations being the most common data source, suggesting potential for an increasing role in public health surveillance of waterborne outbreaks. These results highlight desirable characteristics of potable reuse schemes from a public health perspective with potential for guiding policy on surveillance activities. PMID:27053920

  2. A Study of Failure Events in Drinking Water Systems As a Basis for Comparison and Evaluation of the Efficacy of Potable Reuse Schemes.

    PubMed

    Onyango, Laura A; Quinn, Chloe; Tng, Keng H; Wood, James G; Leslie, Greg

    2015-01-01

    Potable reuse is implemented in several countries around the world to augment strained water supplies. This article presents a public health perspective on potable reuse by comparing the critical infrastructure and institutional capacity characteristics of two well-established potable reuse schemes with conventional drinking water schemes in developed nations that have experienced waterborne outbreaks. Analysis of failure events in conventional water systems between 2003 and 2013 showed that despite advances in water treatment technologies, drinking water outbreaks caused by microbial contamination were still frequent in developed countries and can be attributed to failures in infrastructure or institutional practices. Numerous institutional failures linked to ineffective treatment protocols, poor operational practices, and negligence were detected. In contrast, potable reuse schemes that use multiple barriers, online instrumentation, and operational measures were found to address the events that have resulted in waterborne outbreaks in conventional systems in the past decade. Syndromic surveillance has emerged as a tool in outbreak detection and was useful in detecting some outbreaks; increases in emergency department visits and GP consultations being the most common data source, suggesting potential for an increasing role in public health surveillance of waterborne outbreaks. These results highlight desirable characteristics of potable reuse schemes from a public health perspective with potential for guiding policy on surveillance activities.

  3. Water Supply and Treatment Equipment. Change Notice 1

    DTIC Science & Technology

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  4. Risk-based enteric pathogen reduction targets for non-potable and direct potable use of roof runoff, stormwater, and greywater

    EPA Science Inventory

    This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was use...

  5. Mycobacterium avium complex--the role of potable water in disease transmission.

    PubMed

    Whiley, H; Keegan, A; Giglio, S; Bentham, R

    2012-08-01

    Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation. No claim to Australian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. ISS Expeditions 16 Thru 20: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    This slide presentation reviews the results of the chemical analysis of the potable water supply from the International Space Station (ISS) expeditions 16 thru 20. Both Russian ground water and shuttle-transferred water are available for the use of the ISS crew's requirements. This is supplemented with condensate water and water form the Water Recovery System (WRS). An overview of the condensate H2O recovery system is given and the WRS is described and diagrammed. The water quality requirements, the handling, and analytical methods for the inorganic and organic tests are reviewed. The chemical analysis results for expeditions 16-20 archival water samples collected from the various water sources indicate that all of the ISS potable water supplies were acceptable for crew consumption.

  7. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in...

  8. Analysis and Operational Feasibility of Potable Water Production

    DTIC Science & Technology

    2015-09-01

    III. MODELING, SIMULATION, AND TEST RESULTS ANALYSIS ..............27 A. INTRODUCTION...Regions of Study ......................57 Table 10. Drinking Water Tests ...chemicals, and coliform bacteria. Testing of the condensed water is important to ensure potability, as common tests have been conducted to ensure

  9. Development of an automated potable water bactericide monitoring unit

    NASA Technical Reports Server (NTRS)

    Walsh, J. M.; Brawner, C. C.; Sauer, R. L.

    1975-01-01

    A monitor unit has been developed that permits the direct determination of the level of elemental iodine, used for microbiological control, in a spacecraft potable water supply system. Salient features of unit include low weight, volume and maintenance requirements, complete automatic operation, no inflight calibration, no expendables (except electrical current) and high accuracy and precision. This unit is capable of providing a signal to a controller that, in turn, automatically adjusts the addition rate of iodine to the potable water system so that a predetermined level of iodine can be maintained. In addition, the monitor provides a reading whereby the crewman can verify that the proper amount of iodine (within a range) is present in the water. A development history of the monitor is presented along with its design and theory of operation. Also presented are the results generated through testing of the unit in a simulated Shuttle potable water system.

  10. Compatibility Study of Silver Biocide in Drinking Water with Candidate Metals for Crew Exploration Vehicle Potable Water System

    NASA Technical Reports Server (NTRS)

    Adam, Niklas M.

    2009-01-01

    The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.

  11. 9 CFR 3.83 - Watering.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in sufficient quantity to every nonhuman primate housed at the facility. If potable water is not continually available to the nonhuman primates, it must be offered to them as often as necessary to ensure their health...

  12. Diversity of free-living amoebae in a dual distribution (potable and recycled) water system

    EPA Science Inventory

    Free-living amoebae are known to facilitate the growth of water associated pathogens. This study, for the first time, explored the diversity of free-living amoebae in a dual distribution (potable and recycled) water system in Rouse Hill NSW, Australia. Water and biofilm samples w...

  13. Implementing Problem Based Learning through Engineers without Borders Student Projects

    ERIC Educational Resources Information Center

    Wittig, Ann

    2013-01-01

    Engineers Without Borders USA (EWB) is a nonprofit organization that partners student chapters with communities in fundamental need of potable water, clean air, sanitation, irrigation, energy, basic structures for schools and clinics, roads and bridges, etc. While EWB projects may vary in complexity, they are all realistic, ill-structured and…

  14. RARE OCCURRENCE OF HETEROTROPHIC BACTERIA WITH PATHOGENIC POTENTIAL IN POTABLE WATER

    EPA Science Inventory

    Since the discovery of Legionella pneumophila, an opportunistic pathogen that is indigenous to water, microbiologists have speculated that there may be other opportunistic pathogens among the numerous heterotrophic bacteria found in potable water. The USEPA developed a series of...

  15. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: a pilot study

    PubMed Central

    2013-01-01

    Background Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. Results AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. Conclusion Household potable water may be a potential source of NTM infection in Mexico City. PMID:24330835

  16. 75 FR 30844 - General Mills, Inc.; Withdrawal of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... for the reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water... reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water intended for...

  17. TECHNIQUES AND METHODS FOR THE DETERMINATION OF HALOACETIC ACIDS IN POTABLE WATER

    EPA Science Inventory

    Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water suppli...

  18. Potable water taste enhancement

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the causes of and remedies for the unpalatability of potable water in manned spacecraft. Criteria and specifications for palatable water were established and a quantitative laboratory analysis technique was developed for determinig the amounts of volatile organics in good tasting water. Prototype spacecraft water reclamation systems are evaluated in terms of the essential palatability factors.

  19. Potable Water Treatment Facility General Permit (PWTF GP) for Massachusetts & New Hampshire

    EPA Pesticide Factsheets

    Documents, links & contacts for the Notice of Availability of the draft NPDES General Permit for Discharges from Potable Water Treatment Facilities in Massachusetts (MAG640000) and New Hampshire (NHG640000).

  20. Tertiary treatment and dual disinfection to improve microbial quality of reclaimed water for potable and non-potable reuse: A case study of facilities in North Carolina.

    PubMed

    Bailey, Emily S; Casanova, Lisa M; Simmons, Otto D; Sobsey, Mark D

    2018-07-15

    Treated wastewater is increasingly of interest for either nonpotable purposes, such as agriculture and industrial use, or as source water for drinking water supplies; however, this type of advanced treatment for water supply is not always possible for many low resource settings. As an alternative, multiple barriers of physical, chemical and biological treatment with lower cost and simpler operation and maintenance have been proposed as more globally applicable. One such water reclamation system for both non-potable and potable reuse, is that approved by the State of North Carolina "for Type 2" reclaimed water (NCT2RW). NC Type 2 potable reuse systems consist of a sequence of tertiary treatment to produce well oxidized reclaimed water that is then then further treated by two steps of disinfection, typically UV radiation and chlorination. In this case study, the log10 microbial reduction performance of NCT2RW producing water reclamation facilities is evaluated. Based on the results presented here, NCT2RW consistently achieved high (6 for bacteria, 4 for virus and 4 for protozoan parasite surrogates) log10 reductions using the NC proposed treatment methods. Additionally, lower but significant log10 reduction performance was also documented for protozoan parasites and human enteric viruses. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Shower Water Reuse System-Expanded Operations to Laundry Water

    DTIC Science & Technology

    2014-09-01

    19 10 Point of Contact ...come into contact with fecal material) allows for more efficient use of non-potable water in bases or encampments and reduces the need for potable...Research Council’s (NRC) Drinking Water and Health (NRC 1980), were also consulted. Commercial suppliers are sometimes contacted for results of in

  2. 40 CFR 35.918-1 - Additional limitations on awards for individual systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...

  3. 40 CFR 35.918-1 - Additional limitations on awards for individual systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...

  4. 40 CFR 35.918-1 - Additional limitations on awards for individual systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...

  5. 40 CFR 35.918-1 - Additional limitations on awards for individual systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Clean Water Act § 35.918-1 Additional limitations on awards for individual systems. In addition to those... underground potable water sources; (g) Establish a system of user charges and industrial cost recovery in... as a minimum, periodic testing of water from existing potable water wells in the area. Where a...

  6. Final Environmental Assessment for the Disposal of the Former Lynn Haven Fuel Depot, Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2015-12-01

    groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management, drainage, transportation systems, electricity and...on water resources (i.e., surface water and groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management...3-8 3.3.6.4 Sanitary Sewer

  7. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Wallace William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; hide

    2017-01-01

    This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.

  8. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Wallace, William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; hide

    2017-01-01

    This paper continues the annual tradition, at this conference, of summarizing the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life aboard the ISS, including the successful conclusion for 2 crewmembers of a record 1-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crewmembers of ISS Expeditions 46-50. The year was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples, taken during Expedition 46 and returned on Soyuz 44 in March 2016, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archival sample results.

  9. Pathogen Treatment Guidance and Monitoring Approaches fro On-Site Non-Potable Water Reuse

    EPA Science Inventory

    On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pat...

  10. The effect of influent temperature variations in a sedimentation tank for potable water treatment--a computational fluid dynamics study.

    PubMed

    Goula, Athanasia M; Kostoglou, Margaritis; Karapantsios, Thodoris D; Zouboulis, Anastasios I

    2008-07-01

    A computational fluid dynamics (CFD) model is used to assess the effect of influent temperature variation on solids settling in a sedimentation tank for potable water treatment. The model is based on the CFD code Fluent and exploits several specific aspects of the potable water application to derive a computational tool much more efficient than the corresponding tools employed to simulate primary and secondary wastewater settling tanks. The linearity of the particle conservation equations allows separate calculations for each particle size class, leading to the uncoupling of the CFD problem from a particular inlet particle size distribution. The usually unknown and difficult to be measured particle density is determined by matching the theoretical to the easily measured experimental total settling efficiency. The present model is adjusted against data from a real sedimentation tank and then it is used to assess the significance of influent temperature variation. It is found that a temperature difference of only 1 degrees C between influent and tank content is enough to induce a density current. When the influent temperature rises, the tank exhibits a rising buoyant plume that changes the direction of the main circular current. This process keeps the particles in suspension and leads to a higher effluent suspended solids concentration, thus, worse settling. As the warmer water keeps coming in, the temperature differential decreases, the current starts going back to its original position, and, thus, the suspended solids concentration decreases.

  11. Water management, purification, and conservation in arid climates. Volume 3: Water conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 3 addresses aspects of water conservation and includes rainwater harvesting and wastewater reuse and reclamation.« less

  12. Water management, purification, and conservation in arid climates. Volume 2: Water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-10-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 2 presents various methods of purifying water, and includes membrane processes and alternative techniques such as solar desalination.« less

  13. PILOT STUDY OF FLUORIDE AND ARSENIC REMOVAL FROM POTABLE WATER

    EPA Science Inventory

    Pilot plant studies were conducted on the removal of fluoride and arsenic from potable water using activated alumina as the adsorbent. The tests were run using water from the community of Why, Arizona, that contained 3 mg/L fluoride and 0.15 mg/L arsenic. The experimental data sh...

  14. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2010-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  15. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    PubMed Central

    Brusseau, Mark L.; Narter, Matthew

    2014-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on metropolitan water resources was assessed for Tucson, AZ, by comparing the aggregate volume of extracted groundwater for all pump-and-treat systems associated with contaminated sites in the region to the total regional groundwater withdrawal. The analysis revealed that the aggregate volume of groundwater withdrawn for the pump-and-treat systems operating in Tucson, all of which are located at chlorinated-solvent contaminated sites, was 20% of the total groundwater withdrawal in the city for the study period. The treated groundwater was used primarily for direct delivery to local water supply systems or for reinjection as part of the pump-and-treat system. The volume of the treated groundwater used for potable water represented approximately 13% of the total potable water supply sourced from groundwater, and approximately 6% of the total potable water supply. This case study illustrates the significant impact chlorinated-solvent contaminated sites can have on groundwater resources and regional potable-water supplies. PMID:24116872

  16. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  17. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Anderson, Molly; Anderson, Molly; Adam, Niklas; Vega, Leticia; Modica, Catherine; Bodkin, Douglas

    2012-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  18. Water management, purification, and conservation in arid climates. Volume 1: Water management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 1 examines water management problems in detail, along with water problems and water resources in arid climates, and includes chapters that cover aspects of water management. Water purification technology is another key issue. The economics of this technology is becoming more critical in arid areas due to increasing urbanization and industrialization.« less

  19. 21 CFR 211.48 - Plumbing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...

  20. 21 CFR 211.48 - Plumbing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...

  1. 21 CFR 211.48 - Plumbing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...

  2. 21 CFR 211.48 - Plumbing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.48 Plumbing. (a) Potable water shall be supplied under continuous positive pressure in a plumbing system free of defects that could contribute contamination to any drug product. Potable water shall meet the...

  3. OCCURRENCE OF HETEROTROPHIC BACTERIA WITH VIRULENCE CHARACTERISTICS IN POTABLE WATER

    EPA Science Inventory

    Treated potable water contains a variety of heterotrophic bacteria that survive current treatment processes. There is evidence that these bacteria are not hazardous to the healthy population, however, the possibility exists that some of them may be opportunistic pathogens capabl...

  4. Metering gun for dispensing precisely measured charges of fluid

    NASA Technical Reports Server (NTRS)

    Cook, T. A.; Scheibe, H. (Inventor)

    1974-01-01

    A cyclically operable fluid dispenser for use in dispensing precisely measured charges of potable water aboard spacecraft is described. The dispenser is characterized by (1) a sealed housing adapted to be held within a crewman's palm and coupled with a pressurized source of potable water; (2) a dispensing jet projected from the housing and configured to be received within a crewman's lips; (3) an expansible measuring chamber for measuring charges of drinking water received from the source; (4) and a dispenser actuator including a lever extended from the housing to be digitated for initiating operational cycles, whereby precisely measured charges of potable water selectively are delivered for drinking purposes in a weightless environment.

  5. Phase III Integrated Water Recovery Testing at MSFC - Closed hygiene and potable loop test results and lesson learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W., Jr.; Bagdigian, Robert M.

    1992-01-01

    A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

  6. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Taigbenu, Akpofure E.; Ncube, Mthokozisi

    Perennial water problems, precipitated by increased water demand in Bulawayo, the second largest city in Zimbabwe, has prompted the consideration of a wide array of strategies from demand management and water conservation measures to exploitation of alternative water sources. One of such strategies in the latter category includes recycling of blue water for both potable and non-potable purposes. This paper examines the existing reclaimed water system with a view at revamping the existing infrastructure to maximise reclaimed water use for purposes that are amenable to water of lower quality. It is a generally accepted practice to avoid the use of water of high quality for purposes that can tolerate a lower grade, unless it is in excess in amount [ Okun, D.A., 1973. Planning for water reuse. Journal of AWWA 65(10)]. The reclaimed water is assessed in terms of its quality and quantity vis-à-vis possible uses. Perceptions and expectations of both current and identified prospective consumers are examined and discussed, in addition to the feasibility of accommodating these identified prospective consumers in an expanded network. Apart from enhancement of the existing infrastructure, the paper highlights the need for social marketing and education in order to realise the optimum benefits of this alternative water source. The cost implications of implementing the proposed project are evaluated, including suggestions on suitable tariff structure and an allocation distribution that achieves equity.

  7. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    PubMed

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  8. Water Reuse and Wastewater Recycling at U.S. Army Installations: Policy Implications

    DTIC Science & Technology

    2011-06-01

    Definition Blackwater Water captured from toilets and urinals along with kitchen waste. Direct potable reuse The introduction of highly treated reclaimed...reused. It does not include water from kitchen sinks or dishwashers. Indirect potable reuse The planned incorporation of reclaimed water into a raw...industrial cooling. * Some organizations do accept a definition of “graywater” that does include kitchen and dishwasher waste- water along with wastewater

  9. Water security-National and global issues

    USGS Publications Warehouse

    Tindall, James A.; Campbell, Andrew A.

    2010-01-01

    Potable or clean freshwater availability is crucial to life and economic, environmental, and social systems. The amount of freshwater is finite and makes up approximately 2.5 percent of all water on the Earth. Freshwater supplies are small and randomly distributed, so water resources can become points of conflict. Freshwater availability depends upon precipitation patterns, changing climate, and whether the source of consumed water comes directly from desalination, precipitation, or surface and (or) groundwater. At local to national levels, difficulties in securing potable water sources increase with growing populations and economies. Available water improves living standards and drives urbanization, which increases average water consumption per capita. Commonly, disruptions in sustainable supplies and distribution of potable water and conflicts over water resources become major security issues for Government officials. Disruptions are often influenced by land use, human population, use patterns, technological advances, environmental impacts, management processes and decisions, transnational boundaries, and so forth.

  10. Detection of Cyanotoxins During Potable Water Treatment

    USDA-ARS?s Scientific Manuscript database

    In 2007, the U.S. EPA listed three cyanobacterial toxins on the CCL3 containment priority list for potable drinking waters. This paper describes all methodologies used for detection of these toxins, and assesses each on a cost/benefit basis. Methodologies for microcystin, cylindrospermopsin, and a...

  11. Defense Management: Further Analysis Needed to Identify Guam’s Public Infrastructure Requirements and Costs for DOD’s Realignment Plan

    DTIC Science & Technology

    2013-12-01

    Safe Drinking Water Act28 and the Clean Water Act.29 • Potable water : According to Waterworks officials, Guam’s potable water system currently is in...noncompliance with the Safe Drinking Water Act. The unreliable drinking water distribution system has historically resulted in bacterial...Protection Consolidated Grants program, provided Guam with almost $6.8 million in fiscal year 2012 to fund drinking water and wastewater system

  12. CARCINOGENIC EFFECTS IN A/J MICE OF PARTICULATE OF A COAL TAR PAINT USED IN POTABLE WATER SYSTEMS

    EPA Science Inventory

    Coal tar paints are among the products used as inside coatings for water pipes and storage tanks to retard corrosion in potable water supply systems. Four different formulations of these paints were tested in earlier work by this laboratory in the Ames mutagenesis and the mouse s...

  13. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings.

    PubMed

    Hammes, Gabriela; Thives, Liseane Padilha; Ghisi, Enedir

    2018-09-15

    This study assessed the potential for potable water savings in a building by using stormwater filtered by a porous asphalt pavement located in a parking lot. Stormwater is meant to be used for non-potable purposes (flushing toilets and urinals). Two models of porous pavement systems were constructed, both with porous asphalt mixture over a different combination of porous granular layers. The models were assessed for their filtering capacity; samples of stormwater runoff were collected in a parking lot located near the building where filtered stormwater is meant to be used. The models showed to be capable of filtering some pollutants. However, additional water treatment would be necessary to obtain the quality required for non-potable uses. Then one model was selected for a theoretical analysis on using it in a parking lot. The potential for potable water savings was analysed considering four scenarios as a function of daily local rainfall data. The thickness of the temporary stormwater reservoir layer was calculated in order to meet the design rainfall adopted, and the stormwater tank capacity was estimated using the Netuno computer programme. As a result, using a 45,000-litre stormwater tank, potable water savings of at least 53% would be obtained if filtered stormwater were used to flush toilets and urinals. This indicates that porous pavements show a great potential for filtering stormwater runoff to be used in buildings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Vega, Leticia; Aber, Gregory; Adam, Niklas; Clements, Anna; Modica, Catherine; Younker, Diane

    2011-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems which are less dependent on hardware that would need to be launched on a regular basis. Three systems for electrochemical production of potable water disinfectants are being assessed for use on the International Space Station (ISS). Since there is a wide variability in the literature with regards to efficacy in both concentration and exposure time of these disinfectants, there is a need to establish baseline efficacy values. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria and to determine whether these electrochemical disinfection devices are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  15. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    PubMed Central

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  16. Environmental benefit analysis of strategies for potable water savings in residential buildings.

    PubMed

    Marinoski, Ana Kelly; Rupp, Ricardo Forgiarini; Ghisi, Enedir

    2018-01-15

    The objective of this study is to assess the environmental benefit of using rainwater, greywater, water-efficient appliances and their combinations in low-income houses. The study was conducted surveying twenty households located in southern Brazil, which resulted in water end-uses estimation. Then, embodied energy, potential for potable water savings and sewage reduction when using the different strategies were estimated. The environmental benefit analysis of these strategies was performed using an indicator that includes embodied energy, potable water savings, reduction of sewage and energy consumption in the water utility, and sewage production during the life cycle of the system. The results indicated that the strategy with the greatest environmental benefit is the use of water-efficient appliances, which resulted in substantial water savings and reduction of sewage, causing low environmental impact due to lower embodied energy over the life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Indirect potable reuse: a sustainable water supply alternative.

    PubMed

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-03-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  18. 46 CFR 176.645 - AHE Procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...

  19. 46 CFR 176.645 - AHE Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...

  20. 46 CFR 176.645 - AHE Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...

  1. 46 CFR 176.645 - AHE Procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...

  2. 46 CFR 176.645 - AHE Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hull for examination, except internal tanks that carry fuel (unless damage or deterioration is discovered or suspect), sewage, or potable water. Internal sewage and potable water tanks may be examined... repairs if the assessment or repairs cannot be completed to the satisfaction of the OCMI while the vessel...

  3. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2009-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  4. EU legislation on food and potable water safety which could be potentially applied on board ferries and cruise ships: a comparison with US legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Hadjichristodoulou, Christos; Tserkezou, Persefoni; Mouchtouri, Varvara; Kremastinou, Jenny; Nichols, Gordon

    2010-06-01

    The high number of people moving around by ferries and cruise ships in conjunction with great amounts of food and potable water transported (occasionally overloaded) and consumed by passengers constitute a possible risk for communicable diseases. Another issue of equally great importance is the food handlers who come from diverse origin and have a different mentality, habits, and background. In this paper an attempt is made to present comparatively EU and US legislation that could be potentially applicable to passenger ships food premises and potable water supplies. Moreover, food and water related hazards, not currently covered by EU legislation, were assessed together with US legislation and other guidelines for cruise ships.

  5. CAN FLUORIDATION AFFECT LEAD (II) IN POTABLE WATER? HEXAFLUOROSILICATE AND FLUORIDE EQUILIBRIA IN AQUEOUS SOLUTION

    EPA Science Inventory

    Recent reports have attempted to show that fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of hexafluorosilicate hydrolysi...

  6. McArthur hydrates a juice drink using the potable water heater on Expedition 12

    NASA Image and Video Library

    2006-03-21

    ISS012-E-22572 (21 March 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, adds potable water to a soft beverage container at the galley in Zvezda Service Module of the International Space Station.

  7. 33 CFR 165.T09-1080 - Safety Zone and Regulated Navigation Area, Chicago Sanitary and Ship Canal, Romeoville, IL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vessels are prohibited from transiting the safety zone with any non-potable water on board if they intend to release that water in any form within, or on the other side of the safety zone. Non-potable water includes but is not limited to any water taken on board to control or maintain trim, draft, stability or...

  8. 33 CFR 165.T09-1054 - Safety Zone and Regulated Navigation Area, Chicago Sanitary and Ship Canal, Romeoville, IL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... safety zone with any non-potable water on board if they intend to release that water in any form within, or on the other side of the safety zone. Non-potable water includes but is not limited to any water taken on board to control or maintain trim, draft, stability or stresses of the vessel, or taken on...

  9. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  10. Recent Development of Chitosan Nanocomposites for Environmental Applications.

    PubMed

    Khan, Shahid Ali; Khan, Sher Bahadar; Kamal, Tahseen; Asiri, Abdullah M; Akhtar, Kalsoom

    2016-01-01

    Potable, clean and safe water is the basic need for all human beings. Major portion of the earth is occupied by water, however, this is contaminated by rapid industrialization, improper sewage and natural calamities and man-made activates, which produce several water-borne and fetal diseases. In this review we presented some recent patent for environmental remediation. Various technologies have been developed for the treatment of waste water consist of chemical, membrane, filtration, sedimentation, chlorination, disinfection, electrodialysis, electrolysis, reverse osmosis and adsorption. Among these entire phenomenon's, adsorption was the most efficient method for wastewater treatment, because it is a quick and cheap technology which signifies extensive practical applications. Adsorption phenomenon has been tactfully used for the removal of biological waste as well as soluble and insoluble material with a removal efficacy of 90-99%. Clean water supply is limited to human beings. The people in the developing countries have less or no access to the clean and potable water. The shortage of potable water resources and long term safe water deficiencies are some of the leading problems worldwide. In this review, we have explained in the detail adsorption phenomena of chitosan, pharmaceutical importance and other applications. It is worth to say that adsorption technologies using chitosan and its derivative is one of the quickest and cost effective methods for the wastewater treatment. The review comprises of ninety eight references. This review also covers various patents vis-a-vis the role of chitosan-nanocomposite in environmental application for wastewater treatment. Chitosan is a pseudo-neutral cationic polymer which is formed by the de-acetylation of chitin polymer. Various patent on chitosan and chitosan-nanocomposite were taken into account related to wastewater purification. We have found that chitosan and chitosan-nanocomposite are used for the removal of viruses, bacteria, cryptosporidium oocysts and giardia cysts, soluble and insoluble organic pollutants, poly aromatic hydrocarbons and heavy metals from wastewater. In this study, we also found that chitosan and chitosan-nanocomposite are selected for the removal of transition metals.

  11. Coffee

    NASA Image and Video Library

    2015-04-22

    ISS043E128431 (04/22/2015) --- The International Space Station employs one of the most complex water recycling systems ever designed, reclaiming waste water from astronauts and the environment and turning it into potable water. NASA astronaut Scott Kelly tweeted out this image of part of the innovative device with this remark: " Recycle Good to the last drop! Making pee potable and turning it into coffee on @space station. #NoPlaceLikeHome"

  12. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  13. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  14. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  15. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  16. 21 CFR 1250.82 - Potable water systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potable water systems. 1250.82 Section 1250.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation Facilities and Conditions...

  17. Phase III integrated water recovery testing at MSFC - Partially closed hygiene loop and open potable loop results and lessons learned

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Traweek, M. S.; Griffith, G. K.; Griffin, M. R.

    1991-01-01

    A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a predevelopment water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated in open and partially closed-loop modes, with man-in-the-loop, for a total of 28 days. Several significant subsystem physical anomalies were encountered during testing. Reclaimed potable and hygiene water generally met the current Space Station Freedom (SSF) water quality specifications for inorganic and microbiological constituents, but exceeded the maximum allowable concentrations for Total Organic Carbon (TOC). This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.

  18. Effect of ambient temperature storage on potable water coliform population estimations.

    PubMed Central

    Standridge, J H; Delfino, J J

    1983-01-01

    The effect of the length of time between sampling potable water and performing coliform analyses has been a long-standing controversial issue in environmental microbiology. The issue is of practical importance since reducing the sample-to-analysis time may substantially increase costs for water analysis programs. Randomly selected samples (from those routinely collected throughout the State of Wisconsin) were analyzed for total coliforms after being held at room temperature (20 +/- 2 degrees C) for 24 and 48 h. Differences in results for the two holding times were compared with differences predicted by probability calculations. The study showed that storage of the potable water for up to 48 h had little effect on the public health significance of most samples containing more than two coliforms per 100 ml. PMID:6651296

  19. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    PubMed

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  20. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  1. Alternate electrification and non-potable water: A health concern for Jamaicans

    PubMed Central

    Crawford, Tazhmoye V.

    2009-01-01

    Background: Research has shown that the absence of electricity and potable water usually result in negative effects on one's health and is more likely to affect women than men. Aim: To determine the extent to which alternate electrification and limited potable water, impacts on health. Materials and Method: This study is informed by primary and secondary data, representing a sample size of 150 respondents (75 male and 75 female), who were interviewed via a 24-item structured interview schedule during the period 2006-2007, throughout the 14 parishes of Jamaica. In an effort to determine the number of persons to be interviewed, each parish population was divided by the island's population (2,599,334) and then multiplied by 150. Data was analyzed using the statistical package for social scientists 15. Results: The respondents of this study who use kerosene lamp as an alternate means to electricity use firewood for cooking (12% male and 15% female). This sometimes result in obstructive pulmonary disease (female 43%; male 21%). The absence of electricity also results in the consumption of improperly stored meat, thus medical implications: paroxysmal abdominal pain (colic), and diarrhea (male 91%; female, 95%). The transporting of firewood, pans of water and laundry via head-loading, sometimes result in back/spinal injury (male, 75%; female, 48%). Conclusion: Alternate access to electricity and potable water result in the use of kerosene lamp, firewood and the consumption of non-potable water (often transported on one's head) - causing medical implications such as back/spinal injury, obstructive pulmonary disease, paroxysmal abdominal pain and gastroenteritis. PMID:22666721

  2. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection.

    PubMed

    Cooper, I R; Hanlon, G W

    2010-02-01

    The presence of Legionella spp. in potable water systems is a major concern to municipal water providers and consumers alike. Despite the inclusion of chlorine in potable supplies and frequent chlorination cycles, the bacterium is a recalcitrant human pathogen capable of causing incidents of Legionnaires' disease, Pontiac fever and community-acquired pneumonia in humans. Using two materials routinely employed for the delivery of potable water as a substratum, copper and stainless steel, the development of Legionella pneumophila biofilms and their response to chlorination was monitored over a three-day and a three-month period, respectively. Preliminary in vitro studies using broth and sterile tap water as culture media indicated that the bacterium was capable of surviving in low numbers for 28 days in the presence of chlorine. Subsequently, biofilms were grown for three days, one month and two months, respectively, on stainless steel and copper sections, which are widely used for the conveyance of potable water. Immediately after exposure to 50mg/L chlorine for 1h, the biofilms yielded no recoverable colonies, but colonies did reappear in low numbers over the following days. Despite chlorination at 50mg/L for 1h, both one- and two-month-old L. pneumophila biofilms were able to survive this treatment and to continue to grow, ultimately exceeding 1x10(6)cfu per disc. This research provides an insight into the resistance afforded to L. pneumophila against high levels of chlorine by the formation of biofilms and has implications for the delivery of potable water.

  3. Control of endemic nosocomial legionnaires' disease by using sterile potable water for high risk patients.

    PubMed Central

    Marrie, T. J.; Haldane, D.; MacDonald, S.; Clarke, K.; Fanning, C.; Le Fort-Jost, S.; Bezanson, G.; Joly, J.

    1991-01-01

    In a setting where potable water is contaminated with Legionella pneumophila serogroup 1, we performed two case control studies. The first case control study consisted of 17 cases of nosocomial Legionnaires' disease (LD) and 33 control (the patients who were admitted to the ward where the case was admitted immediately before and after the case) subjects. Cases had a higher mortality rate 65% vs 12% (P less than 0.004); were more likely to have received assisted ventilation (P less than 0.00001); to have nasogastric tubes (P less than 0.0004) and to be receiving corticosteroids or other immunosuppressive therapy (P less than 0.0001). Based on the results of this study, sterile water was used to flush nasogastric tubes and to dilute nasogastric feeds. Only 3 cases of nosocomial LD occurred during the next year compared with 12 the previous year (P less than 0.0001). Nine cases subsequently occurred and formed the basis for the second case-control study. Eighteen control subjects were those patients admitted to the same unit where the case developed LD, immediately before and after the case. The mortality rate for the cases was 89% vs 6% for controls (P less than 0.00003). The only other significant difference was that cases were more likely to be receiving corticosteroids or other immunosuppressive therapy 89% vs 39% (less than 0.01). We hypothesized that microaspiration of contaminated potable water by immunocompromised patients was a risk factor for nosocomial Legionnaires' disease. From 17 March 1989 onwards such patients were given only sterile potable water. Only two cases of nosocomial LD occurred from June 1989 to September 1990 and both occurred on units where the sterile water policy was not in effect. We conclude that aspiration of contaminated potable water is a possible route for acquisition of nosocomial LD in our hospital and that provision of sterile potable water to high risk patients (those who are receiving corticosteroids or other immunosuppressive drugs; organ transplant recipients or hospitalized in an intensive care unit) should be mandatory. PMID:1752308

  4. Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System

    NASA Astrophysics Data System (ADS)

    Kasmin, H.; Bakar, N. H.; Zubir, M. M.

    2016-07-01

    Rainwater harvesting is an alternative sources of water supply and can be used for potable and non-potable uses. It could helps to store treated rainwater for more beneficial use and also for flood mitigation. Sustainable approach for flooding problem reduction in urban areas is by slowing down the rate of surface runoff flows at source by providing more storage area/tank. In order to understand the performance of a rainwater harvesting system (RWH), a preliminary monitoring on a ‘do it yourself’ (DIY) RWH model with additional first -flush strategy for water quality treatment was done. The main concept behind first flush diversion is to prevent initial polluted rainwater from entering the storage tank. Based on seven rainfall events observed in Parit Raja, both quality and quantity of the rainfalls were analysed. For rainwater quality, the samples from first flush diverter and storage tank were taken to understand their performance based on pH, dissolved oxygen (DO), turbidity, total dissolved solid (TDS), total suspended solid (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. While for rainwater quantity, hydrograph analysis were done based on the performance of total rainfall and runoff, peak flow of rainfall and runoff; and delayed time parameters. Based on Interim National Water Quality Standard (INWQS) and National Drinking Water Quality Standard (NDWQS), first flush diverter apparently helps on water quality improvement in storage tanks when pH, DO, TDS, TSS and turbidity were classified as Class I (INWQS) and is allowable for drinking; but BOD and COD parameters were classified as Class III (INWQS). Hence, it has potential to be used as potable usage but will need extensive treatment to reduce its poor microbial quality. Based on the maximum observed rainfall event which had total volume of 3195.5 liter, had peakflow reduction from 0.00071 m3/s to 0.00034 m3/s and delayed runoff between 5 and 10 minutes after rainfall started. It concludes that the performance of water retention could be due to total rainfall and the tank capacity. Therefore, RWH has a potential to be used as potable use and at the same time it also has a potential to reduce local urban flooding.

  5. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  6. Upgrading and extended testing of the MSC integrated water and waste management hardware

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.

    1972-01-01

    The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.

  7. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    PubMed Central

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  8. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    PubMed

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  9. Zebra Mussel Chemical Control Guide, Version 2.0

    DTIC Science & Technology

    2015-07-01

    delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE

  10. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development

    PubMed Central

    Llewellyn, Garth T.; Dorman, Frank; Westland, J. L.; Yoxtheimer, D.; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E.; Brantley, Susan L.

    2015-01-01

    High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide. PMID:25941400

  11. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development.

    PubMed

    Llewellyn, Garth T; Dorman, Frank; Westland, J L; Yoxtheimer, D; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E; Brantley, Susan L

    2015-05-19

    High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.

  12. Drinking water and rural schools in the Western Amazon: an environmental intervention study

    PubMed Central

    Ribeiro, Maura Regina; de Abreu, Luiz Carlos

    2018-01-01

    Background Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli. Methods A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Results Before the intervention, 20% (n = 4), 100% (n = 20) and 70% (n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli, respectively. However, after intervention, 70% (p = 0.68), 75% (p < 0.001) and 100% (p < 0.001) of schools complied with potability standards. Discussion This intervention considerably improved schools’ water quality, thus decreasing children’s health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability. PMID:29922512

  13. Drinking water and rural schools in the Western Amazon: an environmental intervention study.

    PubMed

    Ribeiro, Maura Regina; de Abreu, Luiz Carlos; Laporta, Gabriel Zorello

    2018-01-01

    Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli . A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Before the intervention, 20% ( n = 4), 100% ( n = 20) and 70% ( n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli , respectively. However, after intervention, 70% ( p = 0.68), 75% ( p < 0.001) and 100% ( p < 0.001) of schools complied with potability standards. This intervention considerably improved schools' water quality, thus decreasing children's health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability.

  14. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  15. CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water.

    PubMed

    Bissonnette, Luc; Maheux, Andrée F; Bergeron, Michel G

    2017-01-01

    The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.

  16. A review of formal institutions affecting water supply and access in Botswana

    NASA Astrophysics Data System (ADS)

    Mogomotsi, Patricia K.; Mogomotsi, Goemeone E. J.; Matlhola, Dimpho M.

    2018-06-01

    Over the years, many countries across the world have increasingly experienced the collapse of their ecosystems, leading to an elevated increase on the demand for freshwater resources. Botswana is not an exception. The problem of disrupted potable water supply is widespread across the country. However, the physical shortage of water in the country is arguably coupled by lack of effective and efficient water supply and management institutions and water infrastructure. Most of the research on water scarcity in Botswana is mostly inclined towards physical water scarcity, while little is investigated on how the design of institutions for water management in developing countries leads to water scarcity. Furthermore, the premises of most research is neoclassical economics ideas, thereby offering solutions as developing and/or reforming water markets and water pricing mechanisms, among other findings. This paper analyses potable water supply and access in Botswana within a new institutional economics paradigm. The study examines key features of water institutions in Botswana on how they affect water supply and access, applying new institutional economics fundamentals. The study extensively uses various secondary data sources including weather and climate reports, policy documents, maps and charts and survey data, among others. The paper argues that to achieve effective water allocation in Botswana, there is a need to balance social and environmental water resource needs through water policies and other statutory enactments, as well as the crafting of practical management strategies. The country, therefore, requires not only a swift institutional transformation in the water sector, but also needs practical governance structure necessary for implementing integrated water resources management and driving water resources towards sustainability.

  17. Metagenomic Characterization of Antibiotic Resistance Genes in Full-Scale Reclaimed Water Distribution Systems and Corresponding Potable Systems.

    PubMed

    Garner, Emily; Chen, Chaoqi; Xia, Kang; Bowers, Jolene; Engelthaler, David M; McLain, Jean; Edwards, Marc A; Pruden, Amy

    2018-06-05

    Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, bla TEM , vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( bla TEM , qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R 2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.

  18. [Safe drinking water supply to the Vologda Region's population using risk assessment methodology].

    PubMed

    Kuznetsova, I A; Figurina, T Ia; Shadrina, S Iu

    2011-01-01

    To supply the population with qualitative potable water is a priority problem in the provision of sanitary-and-epidemiologic well-being and in the prevention of disease in the Vologda Region. The monitoring of the results of laboratory control over the quality of drinking-water and the assessment of health risk enabled a package of measures to be proposed to optimize the conditions of drinking water supply in the Vologda Region. The risk assessment technology used by a state agency for sanitary-and-epidemiological surveillance makes it possible to substantiate a system of actions to organize household water use and to include scientifically grounded proposals into the developed regional and local programs.

  19. Advancements in solar stills for enhanced flow rate

    NASA Astrophysics Data System (ADS)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  20. Source And Sink Of Iodine For Drinking Water

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Flanagan, David T.; Gibbons, Randall E.

    1991-01-01

    Proposed system for controlling concentration of iodine in potable water exploits temperature dependence of equilibrium partition of iodine between solution in water and residence in ion-exchange resin. Used to maintain concentration of iodine sufficient to kill harmful microbes, but not so great to make water unpalatable. Requires little attention, yet controls concentration of iodine more precisely than iodination and deiodination by manual techniques. Conceived for use aboard spacecraft, system has terrestrial applications in regions where water must be kept potable, resupply difficult, and system must operate largely unattended.

  1. Foale performs potable water analysis OPS in the SM during Expedition 8

    NASA Image and Video Library

    2003-11-07

    ISS008-E-05553 (7 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, floats in front of the galley in the Zvezda Service Module on the International Space Station (ISS) as he fills a Crew Healthcare System (CheCSS) Water Microbiology (WMK) in-flight analysis bag from the potable warter dispenser.

  2. COMPARISON OF LARGE RESTRICTION FRAGMENTS OF MYCOBACTERIUM AVIUM ISOLATES RECOVERED FROM AIDS AND NON-AIDS PATIENTS WITH THOSE OF ISOLATES FROM POTABLE WATER

    EPA Science Inventory

    We examined potable water in Los Angeles, California, as a possible source of infection in AIDS and non-AIDS patients. Nontuberculous mycobacteria were recovered from 12 (92%) of 13 reservoirs, 45 (82%) of 55 homes, 31 (100%) of 31 commercial buildings, and 15 (100%) of 15 hospit...

  3. COMPARISON OF LARGE RESTRICTION FRAGMENTS OF MYCOBACATERIUM AVIUM ISOLATES RECOVERED FROM AIDS AND NON-AIDS PATIENTS WITH THOSE OF ISOLATES FROM POTABLE WATER

    EPA Science Inventory

    We examined potable water in Los Angeles, California, as a possible source of infection in AIDS and non-AIDS patients. Nontuberculous mycobacteria were recovered from 12 (92%) of 13 reservoirs, 45 (82%) of 55 homes, 31 (100%) of 31 commercial buildings, and 15 (100%) of 15 hospi...

  4. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  5. Review of pathogen treatment reductions for onsite non ...

    EPA Pesticide Factsheets

    Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse of onsite-collected waters; the present work reviewed the relevant QMRA literature to prioritize knowledge gaps and identify health-protective pathogen treatment reduction targets. The review indicated that ingestion of untreated, onsite-collected graywater, rainwater, seepage water and stormwater from a variety of exposure routes resulted in gastrointestinal infection risks greater than the traditional acceptable level of risk. We found no QMRAs that estimated the pathogen risks associated with onsite, non-potable reuse of blackwater. Pathogen treatment reduction targets for non-potable, onsite reuse that included a suite of reference pathogens (i.e., including relevant bacterial, protozoan, and viral hazards) were limited to graywater (for a limited set of domestic uses) and stormwater (for domestic and municipal uses). These treatment reductions corresponded with the health benchmark of a probability of infection or illness of 10−3 per person per year or less. The pathogen treatment reduction targets varied depending on the target health benchmark, reference pathogen, source water, and water reuse application. Overall, there remains a need for pathogen reduction targets that are heal

  6. Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators.

    PubMed

    Mookerjee, Subham; Batabyal, Prasenjit; Halder, Madhumanti; Palit, Anup

    2014-11-01

    Conventional procedures for qualitative assessment of coliphage are time consuming multiple step approach for achieving results. A modified and rapid technique has been introduced for determination of coliphage contamination among potable water sources during water borne outbreaks. During December 2013, 40 water samples from different potable water sources, were received for water quality analyses, from a jaundice affected Municipality of West Bengal, India. Altogether, 30% water samples were contaminated with coliform (1-20 cfu/ml) and 5% with E. coli (2-5 cfu/ml). Among post-outbreak samples, preponderance of coliform has decreased (1-4 cfu/ml) with total absence of E. coli. While standard technique has detected 55% outbreak samples with coliphage contamination, modified technique revealed that 80%, double than that of bacteriological identification rate, were contaminated with coliphages (4-20 pfu/10 ml). However, post-outbreak samples were detected with 1-5 pfu/10 ml coliphages among 20% samples. Coliphage detection rate through modified technique was nearly double (50%) than that of standard technique (27.5%). In few samples (with coliform load of 10-100 cfu/ml), while modified technique could detect coliphages among six samples (10-20 pfu/10 ml), standard protocol failed to detect coliphage in any of them. An easy, rapid and accurate modified technique has thereby been implemented for coliphage assessment from water samples. Coliform free water does not always signify pathogen free potable water and it is demonstrated that coliphage is a more reliable 'biomarker' to ascertain contamination level in potable water. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. New techniques to control salinity-wastewater reuse interactions in golf courses of the Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Beltrao, J.; Costa, M.; Rosado, V.; Gamito, P.; Santos, R.; Khaydarova, V.

    2003-04-01

    Due to the lack water around the Mediterranean regions, potable water luxurious uses - as in golf courses - are increasingly contested. In order to solve this problem, non conventional water resources (effluent, gray, recycled, reclaimed, brackish), like treated wastewater, for irrigation gained increasing role in the planning and development of additional water supplies in golf courses. In most cases, the intense use of effluent for irrigation attracted public awareness in respect of contaminating pathogens and heavy metals. The contaminating effect of salinity in soil and underground water is very often neglected. The objective of this work is to present the conventional techniques to control salinity of treated wastewater and to present some results on new clean techniques to solve this problem, in the framework of the INCO-COPERNICUS project (no. IC-15CT98-0105) "Adaptation of Efficient Water Use Criteria in Marginal Regions of Europe and Middle Asia with Scarce Sources Subject to Environmental Control, Climate Change and Socio-Economic Development" and of the INCO-DC project (no. IC18-CT98-0266) "Control of Salination and Combating Desertification Effects in the Mediterranean Region. Phase II". Saline water is the most common irrigation water in arid climates. Moreover, for each region treated wastewater is always more saline than tap water, and therefore, when treated wastewater is reused in golf courses, more salinity problems occur. Conventional techniques to combat the salination process in golf courses can be characterized by four generations: 1) Problem of root zone salination by soil leaching - two options can occur - when there is an impermeable layer, salts will be concentrated above this layer; on the other hand, when there is no impermeable layer, aquifers contamination can be observed; 2) Use of subsurface trickle irrigation - economy of water, and therefore less additional salts; however the problem of groundwater contamination due to natural rain or artificial leaching remained; 3) Enhanced fertilization increases turfgrass tolerance to salinity, but the contamination will be increased by other hazardous chemicals such as nitrate; 4) Use of salt tolerant turfgrass species this technique will be very useful to the plants, but does not solve the problem os soil or groundwater contamination. When reusing treated wastewater in the Mediterranean areas, the only way to control the salination process and to maintain the sustainability of golf courses is to combat the salination problems by environmentally safe and clean techniques. These new clean techniques include: 1) Use of salt removing turfgrass species; 2) Use of drought tolerant turfgrass species - reduction of salt application by deficit irrigation; 3) Reuse of minimal levels of wastewater enough to obtain a good visual appearance GVA of the turfgrass. Regarding these new clean techniques, experiments were carried out in golf courses of Algarve, Portugal, the most southwest part of Europe. It was shown: 1) Use of salt removing turfgrass species - 3 sprinkle irrigated cultivars were studied (Agrostis solonífera L.; Cynodon dactylon, L. and Penninsetum clandestinum Hochst ex Chiov). 2) Use of drought tolerant turfgrass species -responses to several levels of sprinkle irrigation wastewater and potable water (with and without fertilization). An experimental design, known as sprinkle point source was specially used to simulate the several levels of water application, expressed by the crop coefficient kc and by the crop evapotranspiration rate ETc. Turfgrass yield was enhanced linearly with the increased application of treated wastewater. 3) Reuse of minimal levels of wastewater enough to obtain a good visual appearance GVA of the turfgrass - The minimal crop coefficient kc for a good visual appearance GVA of the turfgrass was around 1.0 to potable water irrigated mixed cultivars (with 30 kg nitrogen ha-1 month-1) and 1.2 to wastewater irrigated Bermuda grass (without any mineral fertilization). As concluding remarks, our results show that these new clean techniques are a strong and powerful tool to control salinity and to avoid soil salination and to maintain sustainability of golf courses.

  8. Developing effective messages about potable recycled water: The importance of message structure and content

    NASA Astrophysics Data System (ADS)

    Price, J.; Fielding, K. S.; Gardner, J.; Leviston, Z.; Green, M.

    2015-04-01

    Community opposition is a barrier to potable recycled water schemes. Effective communication strategies about such schemes are needed. Drawing on social psychological literature, two experimental studies are presented, which explore messages that improve public perceptions of potable recycled water. The Elaboration-Likelihood Model of information processing and attitude change is tested and supported. Study 1 (N = 415) premeasured support for recycled water, and trust in government information at Time 1. Messages varied in complexity and sidedness were presented at Time 2 (3 weeks later), and support and trust were remeasured. Support increased after receiving information, provided that participants received complex rather than simple information. Trust in government was also higher after receiving information. There was tentative evidence of this in response to two-sided messages rather than one-sided messages. Initial attitudes to recycled water moderated responses to information. Those initially neutral or ambivalent responded differently to simple and one-sided messages, compared to participants with positive or negative attitudes. Study 2 (N = 957) tested the effectiveness of information about the low relative risks, and/or benefits of potable recycled water, compared to control groups. Messages about the low risks resulted in higher support when the issue of recycled water was relevant. Messages about benefits resulted in higher perceived issue relevance, but did not translate into greater support. The results highlight the importance of understanding people's motivation to process information, and need to tailor communication to match attitudes and stage of recycled water schemes' development.

  9. Design, Development, and Performance Evaluation of Solar Heating System for Disinfection of Domestic Roof-Harvested Rainwater

    PubMed Central

    Sangodoyin, A. Y.

    2015-01-01

    A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh−1 (2.61 × 10−5 m3 s−1) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses. PMID:27347529

  10. Design, Development, and Performance Evaluation of Solar Heating System for Disinfection of Domestic Roof-Harvested Rainwater.

    PubMed

    Akintola, O A; Sangodoyin, A Y

    2015-01-01

    A box-type solar heater was designed, constructed, and used to determine the effect of solar heating on quality of domestic roof-harvested rainwater (DRHRW). During testing, naturally contaminated DRHRW was harvested in Ibadan, Nigeria, and released into the system at 93.96 Lh(-1) (2.61 × 10(-5) m(3) s(-1)) in a continuous flow process. Water temperatures at inlet, within the heating chamber, and at outlet from the heating chamber and solar radiation were monitored at 10 min interval. Samples were collected at both inlet to and outlet from the heating chamber at 10 min interval for microbiological analysis. The highest plate stagnation temperature, under no-load condition, was 100°C. The solar water heater attained a maximum operational temperature of 75°C with 89.6 and 94.4% reduction in total viable count and total coliform count, respectively, while Escherichia coli and Staphylococcus aureus were completely eradicated at this temperature. The solar heater developed proved to be effective in enhancing potability of DRHRW in Ibadan, Nigeria. This may be an appropriate household water treatment technology for developing countries, hence, a way of resolving problem of low quality water for potable uses.

  11. Strategic Siting of Contingency Bases: Assessing Options for Potable Water

    DTIC Science & Technology

    2017-02-01

    Assessing Options for Potable Water Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Lucy A. Whalley, David A. Krooks, and...George W. Calfas February 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and Development...geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s

  12. Offpost Interim Response Action, Alternatives Assessment, Version 2.3

    DTIC Science & Technology

    1988-12-01

    copper resulting from the use as algicides or herbicides of basic copper carbonate (molachite), copper sulfate (see below), copper monoethandime, and...mart per million for potable water for residues of -copper resulting from the use as algicides or herbicides of basic copper sulfat. and the other...Water ARAR: 21 C.F.R. § 193.90 (TPFA) -- tolerance of 1 part per million for potable water for residues of copper resulting from the use as algicides or

  13. Health risk assessment of potable water containing small amount of tritium oxide

    NASA Astrophysics Data System (ADS)

    Momot, O. A.; Synzynys, B. I.; Oudalova, A. A.

    2017-01-01

    The problem of groundwater pollution with tritium in a vicinity of radiation-dangerous facilities in Obninsk is considered. The information on the specific activity of tritium in Obninsk water sources is provided. The formula for the calculation of the β-radiation absorbed dose from tritium ingestion is proposed, reflecting the biological behavior of tritium in a human body. To establish the extent of tritium effects on human, the health risk is assessed. It is shown that if the specific activity of tritium in drinking water amounts to 10 Bq/l, the risk of stochastic effects of radiation will not exceed the limit of the individual lifetime risk.

  14. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    DTIC Science & Technology

    2013-11-18

    the experimental filter media Next-SandTM was used, thus turbidity results may not be translatable to conventional filtration media. The media...performance objective was not met. Further optimization of the media filtration process would result in meeting the objective. Dissolved Organic Carbon...FINAL REPORT Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration ESTCP Project ER

  15. From source to filter: changes in bacterial community composition during potable water treatment.

    PubMed

    Zanacic, Enisa; McMartin, Dena W; Stavrinides, John

    2017-06-01

    Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.

  16. Wastewater reclamation and recharge: A water management strategy for Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorder, P.J.; Brunswick, R.J.; Bockemeier, S.W.

    1995-12-31

    Approximately 61,000 acre-feet of the pumped water is annually discharged to the Rio Grande as treated wastewater. Albuquerque`s Southside Water Reclamation Plant (SWRP) is the primary wastewater treatment facility for most of the Albuquerque area. Its current design capacity is 76 million gallons per day (mgd), which is expected to be adequate until about 2004. A master plan currently is being prepared (discussed here in Wastewater Master Planning and the Zero Discharge Concept section) to provide guidelines for future expansions of the plant and wastewater infrastructure. Construction documents presently are being prepared to add ammonia and nitrogen removal capability tomore » the plant, as required by its new discharge permit. The paper discusses water management strategies, indirect potable reuse for Albuquerque, water quality considerations for indirect potable reuse, treatment for potable reuse, geohydrological aspects of a recharge program, layout and estimated costs for a conceptual reclamation and recharge system, and work to be accomplished under phase 2 of the reclamation and recharge program.« less

  17. Potable water supply in U.S. manned space missions

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  18. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  19. Water: neglected, unappreciated and under researched.

    PubMed

    Rush, E C

    2013-05-01

    Water, an essential nutrient, is often ignored in reports of dietary surveys and nutrition. Although it is ubiquitous in foods and beverages, the attention is often focused on the minerals or calorific values of the fluids imbibed rather than the water per se. Water is often taken for granted by many in Western countries due to its abundant availability through water systems. In developing countries, however, water and sanitation raise significant problems. This review overviews (i) the global perspective of the potable water supply, (ii) human rights and water, (iii) dietary guidelines and sources of water and (iv) the physiology of water balance. Gaps in knowledge and understanding around hydration and water requirements are also discussed. Nutritionists are urged to look at the bigger picture of the global water supply and to use good judgement and common sense when advising on water requirements.

  20. Economic and environmental analysis of standard, high efficiency, rainwater flushed, and composting toilets.

    PubMed

    Anand, C; Apul, D S

    2011-03-01

    The current sanitation technology in developed countries is based on diluting human excreta with large volumes of centrally provided potable water. This approach is a poor use of water resources and is also inefficient, expensive, and energy intensive. The goal of this study was to compare the standard sanitation technology (Scenario 1) with alternative technologies that require less or no potable water use in toilets. The alternative technologies considered were high efficiency toilets flushed with potable water (Scenario 2), standard toilets flushed with rainwater (Scenario 3), high efficiency toilets flushed with rainwater (Scenario 4), and composting toilets (Scenario 5). Cost, energy, and carbon implications of these five design scenarios were studied using two existing University of Toledo buildings. The results showed that alternative systems modeled in Scenarios 2, 4, and 5 were viable options both from an investment and an environmental performance perspective. High efficiency fixtures that use potable water (Scenario 2) is often the most preferred method in high efficiency buildings due to reduced water use and associated reductions in annual water and wastewater costs. However, the cost, energy, and CO(2)EE analyses all showed that Scenarios 4 and 5 were preferable over Scenario 2. Cost payback periods of scenarios 2, 4 and 5 were less than 10 years; in the future, increase in water and wastewater services would further decrease the payback periods. The centralized water and wastewater services have high carbon footprints; therefore if carbon footprint reduction is a primary goal of a building complex, alternative technologies that require less potable water and generate less wastewater can largely reduce the carbon footprint. High efficiency fixtures flushed with rainwater (Scenario 4) and composting toilets (Scenario 5) required considerably less energy than direct energy demands of buildings. However, the annual carbon footprint of these technologies was comparable to the annual carbon footprint from space heating. Similarly, the carbon savings that could be achieved from Scenario 4 or 5 were comparable to a recycling program that can be implemented in buildings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Detection of Legionella, L. pneumophila and Mycobacterium Avium Complex (MAC) along Potable Water Distribution Pipelines

    PubMed Central

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-01-01

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use. PMID:25046636

  2. Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines.

    PubMed

    Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard

    2014-07-18

    Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.

  3. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  4. High-Performance Energy-Efficient Cool Metal Roof Assemblies Utilizing Building Integrated Renewable Solar Energy Technologies for New and Retrofit Building Construction

    DTIC Science & Technology

    2014-04-01

    technology described in this proposal was first commercialized in 2004. It has been installed in 35 states and 5 countries primarily on residential ...temperatures. o Rainwater harvesting systems help reduce demands on potable water systems and help crowded cities manage stormwater drainage problems...of high density polyisocyanurate rigid insulation board installed over the existing roof and between the sub-purlins with the top layer taped to

  5. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing.

    PubMed

    Whiley, Harriet

    2016-12-24

    Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups.

  6. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing

    PubMed Central

    Whiley, Harriet

    2016-01-01

    Legionella is an opportunistic pathogen of public health significance. One of the main sources of Legionella is potable water systems. As a consequence of aging populations there is an increasing demographic considered at high risk for Legionellosis and, as such, a review of the guidelines is required. Worldwide, Legionella has been detected from many potable water sources, suggesting it is ubiquitous in this environment. Previous studies have identified the limitations of the current standard method for Legionella detection and the high possibility of it returning both false negative and false positive results. There is also huge variability in Legionella test results for the same water sample when conducted at different laboratories. However, many guidelines still recommend the testing of water systems. This commentary argues for the removal of routine Legionella monitoring from all water distribution guidelines. This procedure is financially consuming and false negatives may result in managers being over-confident with a system or a control mechanism. Instead, the presence of the pathogen should be assumed and focus spent on managing appropriate control measures and protecting high-risk population groups. PMID:28029126

  7. Microbial Surveillance of Potable Water Sources of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bruce, Rebekah J.; Ott, C. Mark; Skuratov, Vladimir M.; Pierson, Duane L.

    2005-01-01

    To mitigate risk to the crew, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. Monitoring was accomplished using a self-contained filter designed to allow bacterial growth and enumeration during flight. Upon return to earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gramnegative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Spingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated. Results of in-flight enumeration have indicated a fluctuation of bacterial counts above system design specifications. Additional in-flight monitoring capability for the specific detection of coliforms was added in 2004; no coliforms have been detected from any potable water source. Neither the bacterial concentrations nor the identification of the isolates recovered from these samples has suggested a threat to crew health.

  8. Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.

    PubMed

    Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A

    2012-01-01

    Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.

  9. Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry.

    PubMed

    Kettlitz, Beate; Kemendi, Gabriella; Thorgrimsson, Nigel; Cattoor, Nele; Verzegnassi, Ludovica; Le Bail-Collet, Yves; Maphosa, Farai; Perrichet, Aurélie; Christall, Birgit; Stadler, Richard H

    2016-06-01

    Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from < 0.003 to 0.803 mg l(-1) with a mean of 0.145 mg l(-1). Chlorate, however, can also be used as a pesticide, but authorisation was withdrawn in the European Union (EU), resulting in a default maximum residue limit (MRL) for foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.

  10. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending.

    PubMed

    Chaudhry, Rabia M; Hamilton, Kerry A; Haas, Charles N; Nelson, Kara L

    2017-06-13

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium , and Salmonella . Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10 -4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10 -4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.

  11. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending

    PubMed Central

    Chaudhry, Rabia M.; Hamilton, Kerry A.; Haas, Charles N.; Nelson, Kara L.

    2017-01-01

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR. PMID:28608808

  12. Measuring water ingestion from spray exposures.

    PubMed

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [Incidence of non-communicable diseases and health risks due to potable water quality].

    PubMed

    Skudarnov, S E; Kurkatov, S V

    2011-01-01

    Iron and fluorine concentrations and water mineralization and hardness, which exceeded the maximum allowable concentrations, were found to cause an increase in overall morbidity and morbidity from skeletal-and-muscular, urogenital, and digestive system involvement in the population of the Krasnoyarsk Region. A quantitative relationship were found between the concentrations of iron, the hardness and dry residue of water and the incidence rates of urogenital, skeletal-and-muscular and digestive diseases. The consumption of potable water contaminated with chloroform and methane tetrachloride presents unacceptable carcinogenic risks to the population of the Krasnoyarsk Region.

  14. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  15. Material Testing in Support of the ISS Electrochemical Disinfection Feasibility Study

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Shindo, David; Modica, Cathy

    2012-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  16. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  17. Chemical stability of oseltamivir in oral solutions.

    PubMed

    Albert, K; Bockshorn, J

    2007-09-01

    The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.

  18. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  19. Ground-water exploration in the Bosque del Apache Grant, Socorro County, New Mexico

    USGS Publications Warehouse

    Cooper, James B.

    1968-01-01

    Test drilling along the Rio Grande in the Bosque del Apache Grant in Socorro County, New Mexico has shown that the area is hydrologically complex and that the quality of the ground water varies from saline to fresh within short distances both laterally and vertically. Nearly all of the riverside land in the Grant is occupied by the migratory waterfowl refuge of the Bosque del Apache National Wildlife Refuge. Potable and near-potable water is obtained from 12 wells in this area that tap sand and gravel, and the wells are capable of yielding 1,000 gallons per minute or more. Stallion Range Center, a military installation on the White Sands Missile Range, about 15 miles east of =he waterfowl refuge, needs about 100,000 gallons per day of potable water. Potable water in large quantities is not known to be available at a location closer to the Center than the refuge area. The Fish and Wildlife Service, which operates the waterfowl refuge, gave permission to White Sands Missile Range to test drill and to develop a supply well in certain areas along the Rio Grande outside the managed lands of the refuge. The U.S. Geological Survey was then asked by White Sands Missile Range to choose locations for test drilling and to monitor drilling and testing of the wells. Between 1963 and 1967 test wells were drilled and a suitable location for a supply well as found. The well would be about 250 feet deep and would tap a body of potable water that is about 100 feet in thickness and is thought to underlie an area of at least 5 square miles. This report contains diagrammatic sections that show the lateral and vertical relation of waters of different quality along the Rio Grande in a part of the Bosque del Apache Grant. Basic data are given in tables; they include records of 7 test wells and 12 high-yield supply wells, and 52 chemical analyses of ground water from the wells.

  20. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  1. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    NASA Technical Reports Server (NTRS)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  2. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Gazda, Daniel; Roberts, Michael

    2009-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.

  3. Use of sorption technology for treatment of humidity condensate for potable water

    NASA Technical Reports Server (NTRS)

    Ajjarapu, Sundara R. M.; Symons, J. M.

    1992-01-01

    This research focused on the testing of the original potable water processor aboard Space Station Freedom that was to produce potable water from the humidity condensate and additional water generated by carbon dioxide reduction. Humidity condensate was simulated by an influent water model 'Ersatz'. The humidity condensate was treated with multifiltration (MF) beds that consisted of a train of sorption beds (referred to as 'Unibed') designed to remove specific contaminants. For the complete simulated MF system runs tested for 100 bed volumes (BV) (volume processed/total column volume), 0.6 percent of the TOC was removed by the SAC/IRN 77 (Strong Acid Cation exchange resin), 39.6 percent of the total organic carbon (TOC) was removed by the WBA/IRA 68 (Weak Base Anion exchange resin), 13.2 percent of the TOC was removed by activated carbon adsorption (580-26), and the remaining sorbent media acted as polishing units to remove an additional 1.6 percent of the TOC at steady state. At steady state, 45 percent of the influent TOC passed through the MF bed.

  4. Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions.

    PubMed

    Adugna, Dagnachew; Jensen, Marina Bergen; Lemma, Brook; Gebrie, Geremew Sahilu

    2018-02-14

    As in many other cities, urbanization coupled with population growth worsens the water supply problem of Addis Ababa, Ethiopia, with a water supply deficit of 41% in 2016. To investigate the potential contribution of rooftop rainwater harvesting (RWH) from large public institutions, 320 such institutions were selected and grouped into 11 categories, from which 25-30% representative 588 rooftops were digitalized and the potential RWH volume computed based on a ten-year rainfall dataset. When comparing the resulting RWH potential with the water consumption, up to 2.3% of the annual, potable water supply can be provided. If reused only within one's own institution, the self-sufficiency varies from 0.9 to 649%. Non-uniform rainfall patterns add uncertainty to these numbers, since the size of the storage tank becomes critical for coverage in the dry season from October to May. Despite the low replacement potential at the city level, RWH from large institutions will enable a significant volume of potable water to be transferred to localities critically suffering from water shortage. Further, large institutions may demonstrate how RWH can be practiced, thus acting as a frontrunner for the dissemination of RWH to other types of rooftops. To narrow the water supply gap, considering rooftop RWH as an alternative water supply source is recommended. However, the present study assumed that financial constraints to install large sized storage tanks are considered as a possible challenge. Thus, future research is needed to investigate the cost-benefit balance along with the invention of a cheap storage tank as they may affect the potential contribution of RWH from rooftops.

  5. Development of indirect potable reuse in impacted areas of the United States.

    PubMed

    Jansen, H P; Stenstrom, M K; de Koning, J

    2007-01-01

    This paper demonstrates the development of indirect potable reuse (IPR) in the United States. A legislative review and a survey of plants show that IPR is becoming an integral part of water reclamation. Public resistance is the limiting factor to its development while technology is not.

  6. The Marine Air Ground Task Force Expeditionary Family (MAGTF) of Fighting Vehicles (MEFFV) - Assault Variant Design: Recommendations for Urban Battle

    DTIC Science & Technology

    2003-01-01

    contemporary problems. Merely supplying the basic need for food is a struggle as Oliver Argenti , an urban food specialist with the United Nation’s Food and...An_Urbanizing_World.htm#intro>, accessed 4 January 2003. 17 Brockerhoff, np. 18 Olivio Argenti , “Feeding an Increasingly Urban World,” Food and...2003. 19 Argenti , np. 10 “squatters” reside in urban slums with no potable water supply and no adequate sewage, spreading disease amongst them

  7. Aquatic biomonitoring of reclaimed water for potable use: the San Diego Health Effects Study.

    PubMed

    de Peyster, A; Donohoe, R; Slymen, D J; Froines, J R; Olivieri, A W; Eisenberg, D M

    1993-05-01

    Highly treated reclaimed wastewater was evaluated as a possible supplement to raw water sources required to meet San Diego's growing need for potable water. Biomonitoring experiments employing fathead minnows (Pimephales promelas) were used to compare reclaimed water with the city's current raw water supply. Juvenile fish were exposed in flow-through aquaria in field laboratories located at the reclamation plant (AQUA II) and at a municipal potable water treatment facility (Miramar). Biomonitoring measurements were survival and growth, swimming performance, and trace amounts of 68 base/neutral/acid extractable organics, 27 pesticides, and 27 inorganic chemicals found in fish tissues after exposure. Biomonitoring revealed differences in survival, growth, and swimming performance only after 90- and 180-d exposure. Reclaimed water and raw water were not readily distinguishable in 28-d chemical bioaccumulation tests in terms of organic chemical contaminants in fish tissue except for pesticide levels, which tended to be higher in raw water. Similar inorganic species were found in samples from both waters, although there was greater evidence of bioaccumulation of certain contaminants from raw water. Based on biomonitoring parameters included in these experiments, the use of reclaimed water to supplement raw water supplies would appear to pose no major public health threats. The results of these studies will be combined with additional health effects information before final conclusions are reached about the suitability of reclaimed water for human consumption.

  8. The potable water system in Skylab

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Westover, J. B.

    1974-01-01

    Description of the medical requirements, development, system operation, and in-flight performance of the Skylab potable water system. Emphasized is the description of the unique features involving new space-flight concepts, procedures, and design incorporated in Skylab. The water supplied to the three Skylab missions was preloaded in stainless-steel tanks. These tanks were fitted with positive expulsion stainless-steel bellows. In-flight iodination of the water, for bacterial control, was accomplished as required. An in-flight bactericide monitor was used periodically to determine the level of bactericide in the water. Prior to the delivery of the water to the crewmen for consumption, the water was passed through a cation exchange resin for metallic ion removal and then heated for food reconstitution or chilled for drinking.

  9. Pathogen Treatment Guidance and Monitoring Approaches fro ...

    EPA Pesticide Factsheets

    On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pathogen log-reduction requirements coupled with alternative targets for monitoring enabled by genomic sequencing (i.e., the microbiome of reuse systems). 1. Discuss risk-based modeling to define pathogen log-reduction requirements 2. Review alternative targets for monitoring 3. Gain an understanding of how new tools can help improve successful development of sustainable on-site non-potable water reuse Presented at the Water Wastewater Equipment Treatment & Transport Show.

  10. Quantifying pathogen risks associated with potable reuse: A risk assessment case study for Cryptosporidium.

    PubMed

    Amoueyan, Erfaneh; Ahmad, Sajjad; Eisenberg, Joseph N S; Pecson, Brian; Gerrity, Daniel

    2017-08-01

    This study evaluated the reliability and equivalency of three different potable reuse paradigms: (1) surface water augmentation via de facto reuse with conventional wastewater treatment; (2) surface water augmentation via planned indirect potable reuse (IPR) with ultrafiltration, pre-ozone, biological activated carbon (BAC), and post-ozone; and (3) direct potable reuse (DPR) with ultrafiltration, ozone, BAC, and UV disinfection. A quantitative microbial risk assessment (QMRA) was performed to (1) quantify the risk of infection from Cryptosporidium oocysts; (2) compare the risks associated with different potable reuse systems under optimal and sub-optimal conditions; and (3) identify critical model/operational parameters based on sensitivity analyses. The annual risks of infection associated with the de facto and planned IPR systems were generally consistent with those of conventional drinking water systems [mean of (9.4 ± 0.3) × 10 -5 to (4.5 ± 0.1) × 10 -4 ], while DPR was clearly superior [mean of (6.1 ± 67) × 10 -9 during sub-optimal operation]. Because the advanced treatment train in the planned IPR system was highly effective in reducing Cryptosporidium concentrations, the associated risks were generally dominated by the pathogen loading already present in the surface water. As a result, risks generally decreased with higher recycled water contributions (RWCs). Advanced treatment failures were generally inconsequential either due to the robustness of the advanced treatment train (i.e., DPR) or resiliency provided by the environmental buffer (i.e., planned IPR). Storage time in the environmental buffer was important for the de facto reuse system, and the model indicated a critical storage time of approximately 105 days. Storage times shorter than the critical value resulted in significant increases in risk. The conclusions from this study can be used to inform regulatory decision making and aid in the development of design or operational criteria for IPR and DPR systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Feasibility of Rainwater Harvesting to fulfill potable water demand using quantitative water management in low-lying delta regions of Asia

    NASA Astrophysics Data System (ADS)

    Mahmood, A.; Hossain, F.

    2016-12-01

    Low-lying deltas of Asian region are usually densely populated and located in developing countries situated at the downstream end of major rivers. Extensive dam construction by the upstream countries has now caused water scarcity in large portions of low-lying deltas. Most inhabitants depend on shallow tube well for safe drinking water that tend to suffer from water quality issues (e.g. Arsenic contamination). In addition, people also get infected from water borne diseases like Cholera and Typhoid due to lack of safe drinking water. Developing a centralized piped network based water supply system is often not a feasible option in rural regions. Due to social acceptability, environment friendliness, lower capital and maintenance cost, rainwater harvesting can be the most sustainable option to supply safe drinking water in rural areas. In this study, first we estimate the monthly rainfall variability using long precipitation climatology from satellite precipitation data. The upper and lower bounds of monthly harvestable rainwater were estimated for each satellite precipitation grid. Taking this lower bound of monthly harvestable rainwater as input, we use quantitative water management concept to determine the percent of the time of the year potable water demand can be fulfilled. Analysis indicates that a 6 m³ reservoir tank can fulfill the potable water demand of a 6 person family throughout a year in almost all parts of this region.

  12. Evolution of water recycling in Australian cities since 2003.

    PubMed

    Radcliffe, J C

    2010-01-01

    The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.

  13. Potable water quality monitoring of primary schools in Magura district, Bangladesh: children's health risk assessment.

    PubMed

    Rahman, Aminur; Hashem, Abul; Nur-A-Tomal, Shahruk

    2016-12-01

    Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO 3 , and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.

  14. Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Callahan, Michael R.

    2007-01-01

    Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions on strategies that could be used for CEV based on previous spacecraft water systems will be made in the form of questions and recommendations.

  15. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Pruitt, Jennifer M.; Carter, Layne; Bagdigian, Robert M.; Kayatin, Mattthew J.

    2015-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. The WRS has been operational on ISS since November 2008, producing over 21,000 L of potable water during that time. Though the WRS has performed well during this time, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper lists these modifications, how they improve WRS performance, and a status on the ongoing development effort.

  16. Use of geophysical methods in man-made hazard management strategies. Case study from Ploiesti city, Romania

    NASA Astrophysics Data System (ADS)

    Chitea, F.; Anghelache, M. A.; Ioane, D.

    2010-05-01

    Identification of damages/changes that are affecting the underground water quality due to the effect of anthropogenic activities is often done after environmental problems have become evident, water potability being strongly affected. In this paper we will discuss the necessity of implementing non-invasive and non-destructive investigation tools in different parts of the management plan for urban areas affected or with high risk of being affected by man-made hazards. Geophysical investigations represent nowadays a useful tool in environmental problems that affect soil and underground water in urban areas, as useful information can be obtained regarding the following aspects: - detection of affected areas, especially when the effect or hazard sources are not visible at the surface - zonation of the area (severely affected zone or less affected) - investigation of the area (details on affected surface and affected soil depth) - location of "hidden" sources (illegal waste dump sites, petroleum transport or transfer pipes, etc) - estimation of soil and underground damages by monitoring petrophysical markers - risk evaluation (estimations on the direction and speed of environmental problems development, estimations of amplifying negative effects) - recovery from the man-made hazard of a certain area (monitoring information can give information about natural attenuation of the environmental problems or efficacy of resilience program) - preparedness for man-made hazards (prediction). Functionality of the above mentioned plans of geophysical applicability in identifying and characterizing the effect of anthropogenic hazards which affect soil and underground water quality has been tested in Ploiesti city, Romania. In this urban area, as well as in surrounding villages, water potability is severely affected because of the oil-products contamination caused by the refinery facilities developed in the area. Oil-contamination is a major problem environmental problem, due to the fact that affected area is continuously expanding as a consequence of contaminant transport by the underground water. Hydrogeologically the research area is located in the alluvium of one of the main hydrostructures of Romania, which holds important water resources. Preliminary investigations made in the Ploiesti city area, has shown the high vulnerability of the aquifer to pollution and it was detected a highly contaminated area. By detailed investigations made using geophysical investigations in the test-zone, it was possible the detection of the presence of the particular type of pollutants and a map with area zonation has been produced. Appliance of geophysical investigations in environmental strategies concerning underground water pollution should be added to the ones obtained by direct investigations for risk evaluation and remediation strategies in cases of man made hazards. Acknowledgements: The research was performed with financial support from MENER (project nr. 725/ 2006) and CNCSIS-UEFISCU (project nr. 244/2007)

  17. Enumeration of Somatic and F-RNA Phages as an Indicator of Fecal Contamination in Potable Water from Rural Areas of the North West Province.

    PubMed

    Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos

    2015-07-01

    Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated.

  18. Enumeration of Somatic and F-RNA Phages as an Indicator of Fecal Contamination in Potable Water from Rural Areas of the North West Province

    PubMed Central

    Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos

    2015-01-01

    Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated. PMID:26140675

  19. Social trust, risk perceptions and public acceptance of recycled water: testing a social-psychological model.

    PubMed

    Ross, Victoria L; Fielding, Kelly S; Louis, Winnifred R

    2014-05-01

    Faced with a severe drought, the residents of the regional city of Toowoomba, in South East Queensland, Australia were asked to consider a potable wastewater reuse scheme to supplement drinking water supplies. As public risk perceptions and trust have been shown to be key factors in acceptance of potable reuse projects, this research developed and tested a social-psychological model of trust, risk perceptions and acceptance. Participants (N = 380) were surveyed a few weeks before a referendum was held in which residents voted against the controversial scheme. Analysis using structural equation modelling showed that the more community members perceived that the water authority used fair procedures (e.g., consulting with the community and providing accurate information), the greater their sense of shared identity with the water authority. Shared social identity in turn influenced trust via increased source credibility, that is, perceptions that the water authority is competent and has the community's interest at heart. The findings also support past research showing that higher levels of trust in the water authority were associated with lower perceptions of risk, which in turn were associated with higher levels of acceptance, and vice versa. The findings have a practical application for improving public acceptance of potable recycled water schemes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Economic feasibility study of residential and commercial heating using existing water supply systems. Final report June 1, 1979 - August 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Donald R.; Looper, Marshall G.

    1979-08-15

    A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less

  1. Characterization of modified PVDF membrane by gamma irradiation for non-potable water reuse.

    PubMed

    Lim, Seung Joo; Kim, Tak-Hyun; Shin, In Hwan

    2015-01-01

    Poly(vinylidene fluorine) (PVDF) membranes were grafted by gamma-ray irradiation and were sulfonated by sodium sulfite to modify the surface of the membranes. The characteristics of the modified PVDF membranes were evaluated by the data of Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscope (FE-SEM), the contact angle of the membrane surface and the water permeability. From the results of FT-IR, XPS and FE-SEM, it was shown that the modified membranes were successfully grafted by gamma-ray irradiation and were sulfonated. The content of oxygen and sulfur increased with the monomer concentration, while the content of fluorine sharply decreased. The pore size of the modified membranes decreased after gamma-ray irradiation. The contact angle and the water permeability showed that the hydrophilicity of the modified membranes played a role in determining the membrane performance. The feasibility study of the modified PVDF membranes for using non-potable water reuse were carried out using a laboratory-scale microfiltration system. Grey wastewater was used as the influent in the filtration unit, and permeate quality satisfied non-potable water reuse guidelines in the Republic of Korea.

  2. Technical-financial evaluation of rainwater harvesting systems in commercial buildings-case ase studies from Sonae Sierra in Portugal and Brazil.

    PubMed

    Sousa, Vitor; Silva, Cristina Matos; Meireles, Inês C

    2017-11-10

    Water is an essential and increasingly scarce resource that should be preserved. The evolution of the human population and communities has contributed to the global decrease of potable water availability and the reduction of its consumption is now compulsory. Rainwater harvesting systems (RWHS) are emerging as a viable alternative source for water consumption in non-potable uses. The present study aims to contribute to the promotion of water efficiency, focusing on the application of rainwater harvesting systems in commercial buildings, and comprises four stages: (i) development of a technical evaluation tool to aid the design of RWHS and support their financial evaluation; (ii) validation of the tool using operational data from an existing RWHS installed at Colombo Shopping Center, in Lisbon, Portugal; (iii) assessment of the sensibility of the technical evaluation tool results to the variation of the inputs, namely the precipitation and consumption, through a parametric analysis for the Colombo Shopping Center; and (iv) comparison of the performance and financial feasibility of hypothetical RWHS in two existing commercial buildings. The technical tool was applied to two Sonae Sierra's shopping centers, one in Portugal and one in Brazil. The installation of a 200-m 3 tank is advised for the first case study, allowing non-potable water savings of 60% but a payback period of about 19 years. In the Brazilian shopping, the implementation of a tank with a capacity ranging from 100 to 400 m 3 leads to non-potable savings between 20 and 50%, but with smaller payback period, under 2 years, due to the relatively lower investment costs and higher water fees.

  3. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon treated) 74% is process energy and 26% is non-process energy. Sixty-six percent of the process energy is consumed by the main treatment facility and high service distribution. When analyzing seasonal variations, the highest amount of process energy treated the largest amount of potable water with the maxiμm revealing four Btu used per gallon treated while utilizing 54% of the design capacity. Compared to the periods when the lowest amount of the design capacity was utilized, 32 - 33%, the facility consumed the seasonal high in energy, approximately 6.7 Btu per gallon treated. For the wastewater treatment and reclamation side, secondary treatment dominates all 3 categories by consuming 81,701,764 kBtu, 1.1 million, and 32,395 metric tons of CO2 equivalent. The total onsite energy was 2.79E-03 kWh per gallon treated, of which 43% was process energy, and the remainder was consumed by natural gas heating and `other non-process and process' energy, 34% and 23%, respectively. Most significantly during the months of April and May, when the influent flow of wastewater doubles and is diluted due to the addition of seasonal rain water, the amount of energy spent per gallon of treated wastewater decreases by 48% and 34% from the maximum (5.03E-03 kWh/gallon). By functioning closer to a forecasted design capacity, the efficiency of the potable water treatment facility could be dramatically improved. This can be achieved by implementing additional storage of ready-to-use potable water and/or by expanding the customer base and collaborating with other regional potable water utilities. For example, a county-wide approach to potable water planning falls into agreement with sustainable planning methods, providing regions of the county that have maximized treatment capacity of potable water and giving this region the opportunity to operate closer to the intended design capacity. On the wastewater treatment side, it is apparent that the more dense the BOD concentration in influent waters the more energy is spent in secondary treatment trying to remove it. Exploring more effective screening and pre-precipitation methods could also prove to save a significant amount in energy spent in the secondary treatment step, reducing the organic load prior to aeration. Coupling this with aeration blower and diffuser improvements can offer significant energy savings. Further water quality data and energy use data needs to be collected and analyzed on the individual wastewater treatment processes, especially regarding the impact and effectiveness of the preliminary and primary treatment steps on secondary treatment.

  4. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  5. Q-PCR based bioburden assessment of drinking water throughout treatment and delivery to the International Space Station

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Stuecker, Tara; La Duc, Myron; Venkateswaran, Kasthuri

    2005-01-01

    Previous studies indicated evidence of opportunistic pathogens samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were used to elucidate overall bacterial rRNA gene numbers. while those specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and used to probe for the presence of these two opportunistic pathogens. This research builds upon previous microbial diversity studies of ISS water and demonstrates the utility of Q-PCR tool to examine water quality.

  6. Solar-driven membrane distillation demonstration in Leupp, Arizona.

    PubMed

    Ravisankar, Vishnu Arvind; Seaman, Robert; Mirchandani, Sera; Arnold, Robert G; Ela, Wendell P

    2016-03-01

    The Navajo Nation is the largest and one of the driest Native American reservations in the US. The population in the Navajo Nation is sporadically distributed over a very large area making it extremely ineffective to connect homes to a centralized water supply system. Owing to this population distribution and the multi decadal drought prevailing in the region, over 40% of the 300,000 people living on Navajo Tribal Lands lack access to running potable water. For many people the only alternative is hauling water from filling stations, resulting in economic hardship and limited supply. A solution to this problem is a de-centralized off-grid water source. The University of Arizona and US Bureau of Reclamation's Solar Membrane Distillation (SMD), stand-alone, pilot desalination system on the Navajo Reservation will provide an off-grid source of potable water; the pilot will serve as a proximal water source, ease the financial hardships caused by the drought, and provide a model for low-cost water treatment systems in arid tribal lands. Bench-scale experiments and an earlier field prototype plant showed viable operation of a solar heated, membrane distillation (MD) system, but further optimization is required. The objectives of the Navajo pilot study are to i) demonstrate integration of solar collectors and membrane distillation, ii) optimize operational parameters, iii) demonstrate and monitor technology performance during extended duration operation, and iv) facilitate independent system operation by the Navajo Water Resources Department, including hand-over of a comprehensive operations manual for implementation of subsequent SMD systems. The Navajo SMD system is designed as a perennial installation that includes remote communication of research data and full automation for remote, unmanned operation.

  7. Solar water disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Collier, R.

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potablemore » water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.« less

  8. Water demand management in Malawi: problems and prospects for its promotion

    NASA Astrophysics Data System (ADS)

    Mulwafu, W.; Chipeta, C.; Chavula, G.; Ferguson, A.; Nkhoma, B. G.; Chilima, G.

    This paper discusses the status of water demand management (WDM) in Malawi. Findings from the study indicate that, while WDM is highly advocated in the urban and peri-urban areas, very few aspects of WDM are practiced in the rural areas. The water pricing structure that the supplying institutions established serves as a disincentive for water wastages in the urban areas. Both private firms and individuals use various measures to conserve water as a way of minimizing water consumption. The motives for water conservation range from profit maximization to inadequate financial resources to meet the costs of water respectively. In the rural areas where water is supplied at no cost, the people tend to pay less attention to water conservation. In cases where water providers attempted to institute factors of cost sharing, the rural inhabitants tended to be reluctant to contribute. This is so because people view water as a social good that should be supplied to them free of charge. The paper demonstrates that although some aspects of WDM are being practiced in the country, the existing conditions on the ground militate against its increased expansion as a strategy for promoting an efficient and equitable use of existing water resources. A large section of the population still lack access to potable water and the Malawi government is committed to the provision of basic water services. Yet WDM will become even more critical in future because of the growing competition for water resources, particularly due to the growing population and the increasing economic activities such as farming, industrialization and urbanization. The paper argues that despite the promising benefits that WDM has, its promotion must necessarily be infused with ideas of water supply, considering that the largest population still lacks access to potable water. Coupled with this will be the need for a proper policy framework that promotes public awareness for people to start appreciating the economic value of water especially in the rural areas.

  9. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review.

    PubMed

    Williams, Margaret M; Armbruster, Catherine R; Arduino, Matthew J

    2013-01-01

    Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.

  10. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2012-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.

  11. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    NASA Technical Reports Server (NTRS)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2011-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on-orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials will be changed to be more corrosion resistant, and the Needle will be redesigned to preclude leakage. The redesigns have been tested and proven.

  12. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  13. Wealth status and sex differential of household head: implication for source of drinking water in Nigeria.

    PubMed

    Morakinyo, Oyewale Mayowa; Adebowale, Stephen Ayo; Oloruntoba, Elizabeth Omoladun

    2015-01-01

    Source of potable water has implication on the population health. Availability of Improved Drinking Water Sources (IDWS) is a problem in developing countries, but variation exists across segments of the population. This study therefore examined the relationship between wealth status, sex of household head and source of potable water. The 2013 Nigeria Demographic and Health Survey data was used. A representative sample of 40,680 households was selected for the survey, with a minimum target of 943 completed interviews per state covering the entire population residing in non-institutional dwelling units in the country. Households where information on drinking water sources was not reported were excluded, thus reducing the sample to 38021. The dependent and key independent variables were IDWS and Wealth Index respectively. Data were analysed using Chi-square and binary logistic regression (α = .05). Households that used IDWS were headed by females (66.7 %) than males (58.7 %). Highest proportion of households who used IDWS was found in the rich wealth index group (76.7 %). The likelihood of using IDWS was higher in household headed by females (OR = 1.41; C.I = 1.33-1.49, p <0.001). Households that belong to rich wealth index and middle class were 5.06(C.I = 4.81-5.32, p <0.001) and 2.62(C.I = 2.46-2.78, p <0.001) respectively times more likely to IDWS than the poor. This pattern was sustained when other confounding variables were introduced into the regression equation as control. Households headed by women used improved drinking water sources than those headed by men. However, wealth index has strong influence on the strength of relationship between sex of household head and improved drinking water sources.

  14. 29 CFR 1918.95 - Sanitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...

  15. 29 CFR 1918.95 - Sanitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cleaned and maintained in good order. (b) Drinking water. (1) Potable drinking water shall be accessible... water and ice, and shall be fitted with covers. (3) Common drinking cups are prohibited. (c) Prohibited...

  16. Potential fresh water saving using greywater in toilet flushing in Syria.

    PubMed

    Mourad, Khaldoon A; Berndtsson, Justyna C; Berndtsson, Ronny

    2011-10-01

    Greywater reuse is becoming an increasingly important factor for potable water saving in many countries. Syria is one of the most water scarce countries in the Middle East. However, greywater reuse is still not common in the country. Regulations and standards for greywater reuse are not available. Recently, however, several stakeholders have started to plan for greywater reuse. The main objective of this paper is to evaluate the potential for potable water saving by using greywater for toilet flushing in a typical Syrian city. The Sweida city in the southern part of Syria was chosen for this purpose. Interviews were made in order to reflect the social acceptance, water consumption, and the percentage of different indoor water uses. An artificial wetland (AW) and a commercial bio filter (CBF) were proposed to treat the greywater, and an economic analysis was performed for the treatment system. Results show that using treated greywater for toilet flushing would save about 35% of the drinking water. The economic analyses of the two proposed systems showed that, in the current water tariff, the payback period for AW and CBF in block systems is 7 and 52 years, respectively. However, this period will reduce to 3 and 21 years, respectively, if full water costs are paid by beneficiaries. Hence, introducing artificial wetlands in order to make greywater use efficient appears to be a viable alternative to save potable water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  18. Biosensor for detection of dissolved chromium in potable water: A review.

    PubMed

    Biswas, Puja; Karn, Abhinav Kumar; Balasubramanian, P; Kale, Paresh G

    2017-08-15

    The unprecedented deterioration rate of the environmental quality due to rapid urbanization and industrialization causes a severe global health concern to both ecosystem and humanity. Heavy metals are ubiquitous in nature and being used extensively in industrial processes, the exposure to excessive levels could alter the biochemical cycles of living systems. Hence the environmental monitoring through rapid and specific detection of heavy metal contamination in potable water is of paramount importance. Various standard analytical techniques and sensors are used for the detection of heavy metals include spectroscopy and chromatographic methods along with electrochemical, optical waveguide and polymer based sensors. However, the mentioned techniques lack the point of care application as it demands huge capital cost as well as the attention of expert personnel for sample preparation and operation. Recent advancements in the synergetic interaction among biotechnology and microelectronics have advocated the biosensor technology for a wide array of applications due to its characteristic features of sensitivity and selectivity. This review paper has outlined the overview of chromium toxicity, conventional analytical techniques along with a particular emphasis on electrochemical based biosensors for chromium detection in potable water. This article emphasized porous silicon as a host material for enzyme immobilization and elaborated the working principle, mechanism, kinetics of an enzyme-based biosensor for chromium detection. The significant characteristics such as pore size, thickness, and porosity make the porous silicon suitable for enzyme entrapment. Further, several schemes on porous silicon-based immobilized enzyme biosensors for the detection of chromium in potable water are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Total Water Management

    EPA Science Inventory

    This project will investigate total water management (TWM) as a way of improving water resource management and reducing waste streams. This project will also improve management of potable water, wastewater and wet-weather flow through combined management, reuse and recycling wil...

  20. Intelligent infrastructure for sustainable potable water: a roundtable for emerging transnational research and technology development needs.

    PubMed

    Adriaens, Peter; Goovaerts, Pierre; Skerlos, Steven; Edwards, Elizabeth; Egli, Thomas

    2003-12-01

    Recent commercial and residential development have substantially impacted the fluxes and quality of water that recharge the aquifers and discharges to streams, lakes and wetlands and, ultimately, is recycled for potable use. Whereas the contaminant sources may be varied in scope and composition, these issues of urban water sustainability are of public health concern at all levels of economic development worldwide, and require cheap and innovative environmental sensing capabilities and interactive monitoring networks, as well as tailored distributed water treatment technologies. To address this need, a roundtable was organized to explore the potential role of advances in biotechnology and bioengineering to aid in developing causative relationships between spatial and temporal changes in urbanization patterns and groundwater and surface water quality parameters, and to address aspects of socioeconomic constraints in implementing sustainable exploitation of water resources. An interactive framework for quantitative analysis of the coupling between human and natural systems requires integrating information derived from online and offline point measurements with Geographic Information Systems (GIS)-based remote sensing imagery analysis, groundwater-surface water hydrologic fluxes and water quality data to assess the vulnerability of potable water supplies. Spatially referenced data to inform uncertainty-based dynamic models can be used to rank watershed-specific stressors and receptors to guide researchers and policymakers in the development of targeted sensing and monitoring technologies, as well as tailored control measures for risk mitigation of potable water from microbial and chemical environmental contamination. The enabling technologies encompass: (i) distributed sensing approaches for microbial and chemical contamination (e.g. pathogens, endocrine disruptors); (ii) distributed application-specific, and infrastructure-adaptive water treatment systems; (iii) geostatistical integration of monitoring data and GIS layers; and (iv) systems analysis of microbial and chemical proliferation in distribution systems. This operational framework is aimed at technology implementation while maximizing economic and public health benefits. The outcomes of the roundtable will further research agendas in information technology-based monitoring infrastructure development, integration of processes and spatial analysis, as well as in new educational and training platforms for students, practitioners and regulators. The potential for technology diffusion to emerging economies with limited financial resources is substantial.

  1. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  2. Effect of iodine disinfection products on higher plants

    NASA Technical Reports Server (NTRS)

    Janik, D.; Macler, B.; Macelroy, R. D.; Thorstenson, Y.; Sauer, R.

    1989-01-01

    Iodine is used to disinfect potable water on United States spacecraft. Iodinated potable water will likely be used to grow plants in space. Little is known about the effects of iodine disinfection products on plants. Seeds of select higher plants were germinated in water iodinated using the Shuttle Microbial Check Valve, and water to which measured amounts of iodine was added. Percent germination was decreased in seeds of most species germinated in iodinated water. Beans were most affected. Germination rates, determined from germination half-times, were decreased for beans germinated in iodinated water, and water to which iodide was added. Development was retarded and rootlets were conspicuously absent in bean and several other plant species germinated in iodinated water. Iodide alone did not elicit these responses. Clearly iodine disinfection products can affect higher plants. These effects must be carefully considered for plant experimentation and cultivation in space, and in design and testing of closed environmental life support systems.

  3. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact time. With continued advances in the design and manufacture of UV-A LEDs and semi-conducting photocatalysts, LED activated photochemical process technology promises to extend its application to spacecraft environmental systems.

  4. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and cold running potable water must be provided for showering purposes. The water supplied to a shower... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a...

  5. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a shower...

  6. 49 CFR 228.321 - Showering facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provided with hot and cold water feeding a common discharge line. (3) Unless otherwise provided by a... and cold running potable water must be provided for showering purposes. The water supplied to a shower...

  7. Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland.

    PubMed

    O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W

    2018-07-15

    Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.

  8. Assessing rural small community water supply in Limpopo, South Africa: water service benchmarks and reliability.

    PubMed

    Majuru, Batsirai; Jagals, Paul; Hunter, Paul R

    2012-10-01

    Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (p<0.001, 95% CI 4.06-6.31) and distances to water sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Chemical qualities of water that contribute to human health in a positive way

    USGS Publications Warehouse

    Hopps, Howard C.

    1986-01-01

    The emphasis on harmful substances that may occur in potable waters has almost obscured the fact that important beneficial constituents are commonly present.The chemical substances in water that make positive contributions to human health act mainly in two ways: (i) nutritionally, by supplying essential macro and micro elements that the diet (excluding water) may not provide in adequate amounts (for example, Mg, I and Zn); and (ii) by providing macro and micro elements that inhibit the absorption and/or effects of toxic elements such as Hg, Pb and Cd. Specific examples of these beneficial effects will be given, also examples of harmful effects on health that may result from excessive intake of these ordinarily beneficial elements.Because concentrations of the essential macro and micro elements that occur in natural, potable waters vary greatly, depending upon their source, geographic considerations are very important in any studies attempting to relate water quality to health. In this context, the inverse relationship between hard water and cardiovascular disease will be discussed. Specific data relating hardness and Mg and Ca content of potable waters to specific geographic regions of the U.S.A. will be presented. These data show a strong positive correlation between low Mg content and decreased longevity, and between high Ca and Mg content and increased longevity. In the regions considered, increased longevity correlates strongly with decreased cardiovascular mortality, and the decreased longevity with increased cardiovascular mortality.

  10. BIOFILM IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Throughout the world there are millions of miles of water distribution pipe lines which provide potable water for use by individuals and industry. Some of these water distribution systems have been in service well over one hundred years. Treated water moving through a distributio...

  11. The provision of potable water in eradication of Guinea worm infection in Ezza North, Southeastern, Nigeria.

    PubMed

    Ede, Alison Okorie; Nwaokoro, Joakin Chidozie; Iwuala, C C; Amadi, A N; Akpelu, Ugochinyere Alvana

    2014-10-01

    Guinea worm is a parasite found in unprotected drinking water sources, causes considerable morbidity and loss of agricultural production among rural people. The study was to determine the current status of Guinea worm infection in Ezza North and to evaluate the impact of control measures on guinea worm infection. A total of 200 individuals in Ezza North Southeastern, Nigeria were examined for guinea worm infection. A standardized questionnaire was used to determine the effect of potable water on guinea worm eradication/control, the source of drinking water, information on the knowledge, attitude, symptom management practices, availability of health facilities and boreholes installation status. The instrument for data collection was well constructed, validated and reliable tested questionnaire by an expert. Data obtained was analyzed using Epi-Info model 3.4 versions. Results of a study indicated majority of the respondents 195 (97.5 %) have access to safe drinking water supply which indicated no case of Guinea worm infection. The active use of potable water supply was found among the age group of 20-30 years 71 (35.5 %) and higher in male (57.5 %) than females (42.5 %). The drastic reduction of Guinea worm infection to zero (0) level in Ezza North were due to multiple factors as health education, availability of functional boreholes, presence of health centers for immediate treatment if any case discovered.

  12. Q-PCR Based Culture-Independent Enumeration and Detection of Enterobacter: An Emerging Environmental Human Pathogen in Riverine Systems and Potable Water

    PubMed Central

    Patel, Chandra B.; Shanker, Rishi; Gupta, Vijai K.; Upadhyay, Ram S.

    2016-01-01

    The availability of safe and pristine water is a global challenge when large numbers of natural and anthropogenic water resources are being depleted with faster rate. The remaining water resources are severely contaminated with various kinds of contaminants including microorganisms. Enterobacter is one of the fecal coliform bacteria of family Enterobacteriaceae. Enterobacter was earlier used as an indicator bacterium along with other fecal Coliforms namely Escherichia coli, Citrobacter, and Klebsiella, but it is now known to cause various diseases in human beings. In this study, we have collected 55 samples from potable water and riverine system and proved their presence using their conserved sequences of 16S rRNA and 23S rRNA genes with the help of SYBR green real-time PCR, which showed very high specificity for the detection of Enterobacter. The Enterobacter counts in potable water were found to 1290 ± 32.89 to 1460 ± 39.42 cfu/100 ml. The Enterobacter levels in surface water were 1.76 × 104 ± 492, 1.33 × 104 ± 334, 1.15 × 104 ± 308, 2.56 × 104 ± 802, 2.89 × 104 ± 962, 8.16 × 104 ± 3443 cfu/100 ml; the levels of Enterobacter contamination associated with hydrophytes were 4.80 × 104 ± 1804, 3.48 × 104 ± 856, 8.50 × 104 ± 2074, 8.09 × 104 ± 1724, 6.30 × 104 ± 1738, 3.68 × 104 ± 949 cfu/10 g and the Enterobacter counts in sediments of the river, were 2.36 × 104 ± 703, 1.98 × 104 ± 530, 9.92 × 104 ± 3839, 6.80 × 104 ± 2230, 8.76 × 104 ± 3066 and 2.34 × 104 ± 732 cfu/10 g at the sampling Site #1, Site #2, Site #3, Site #4, Site #5, and Site #6, respectively. The assay could be used for the regular monitoring of potable water and other water reservoirs to check waterborne outbreaks. PMID:26925044

  13. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  14. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  15. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    EPA Science Inventory

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymeras...

  16. Crew Exploration Vehicle Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Tuan, George; Peterson, Laurie J.; Vega, Leticia M.

    2010-01-01

    A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.

  17. Investigation of DMSD Trend in the ISS Water Processor Assembly

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Bowman, Elizabeth; Wilson, Mark; Gentry, Greg; Rector, Tony

    2013-01-01

    The ISS Water Recovery System (WRS) is responsible for providing potable water to the crew, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. The WRS includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WPA processes condensate from the cabin air and distillate produced by the UPA. In 2010, an increasing trend in the Total Organic Carbon (TOC) in the potable water was ultimately identified as dimethylsilanediol (DMSD). The increasing trend was ultimately reversed after replacing the WPA's two multifiltration beds. However, the reason for the TOC trend and the subsequent recovery was not understood. A subsequent trend occurred in 2012. This paper summarizes the current understanding of the fate of DMSD in the WPA, how the increasing TOC trend occurred, and the plan for modifying the WPA to prevent recurrence.

  18. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    PubMed

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  19. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  20. Risk of post-fire metal mobilization into surface water resources: A review.

    PubMed

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2017-12-01

    One of the significant economic benefits to communities around the world of having pristine forest catchments is the supply of substantial quantities of high quality potable water. This supports a saving of around US$ 4.1 trillion per year globally by limiting the cost of expensive drinking water treatments and provision of unnecessary infrastructure. Even low levels of contaminants specifically organics and metals in catchments when in a mobile state can reduce these economic benefits by seriously affecting the water quality. Contamination and contaminant mobility can occur through natural and anthropogenic activities including forest fires. Moderate to high intensity forest fires are able to alter soil properties and release sequestered metals from sediments, soil organic matter and fragments of vegetation. In addition, the increase in post-fire erosion rate by rainfall runoff and strong winds facilitates the rapid transport of these metals downslope and downstream. The subsequent metal deposition in distal soil and water bodies can influence surface water quality with potential impacts to the larger ecosystems inclusive of negative effects on humans. This is of substantial concern as 4 billion hectares of forest catchments provide high quality water to global communities. Redressing this problem requires quantification of the potential effects on water resources and instituting rigorous fire and environmental management plans to mitigate deleterious effects on catchment areas. This paper is a review of the current state of the art literature dealing with the risk of post-fire mobilization of the metals into surface water resources. It is intended to inform discussion on the preparation of suitable management plans and policies during and after fire events in order to maintain potable water quality in a cost-effective manner. In these times of climate fluctuation and increased incidence of fires, the need for development of new policies and management frameworks are of heighted significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ugly ducklings-the dark side of plastic materials in contact with potable water.

    PubMed

    Neu, Lisa; Bänziger, Carola; Proctor, Caitlin R; Zhang, Ya; Liu, Wen-Tso; Hammes, Frederik

    2018-01-01

    Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 10 6  cells/cm 2 (clean water controls), 9.5 × 10 6  cells/cm 2 (real bath toys), and 7.3 × 10 7  cells/cm 2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.

  2. Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1982-01-01

    A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.

  3. Thyroid function changes related to use of iodinated water in the U.S. Space Program.

    PubMed

    McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L

    2000-11-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  4. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  5. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  6. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  8. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  9. Multivariate logistic regression for predicting total culturable virus presence at the intake of a potable-water treatment plant: novel application of the atypical coliform/total coliform ratio.

    PubMed

    Black, L E; Brion, G M; Freitas, S J

    2007-06-01

    Predicting the presence of enteric viruses in surface waters is a complex modeling problem. Multiple water quality parameters that indicate the presence of human fecal material, the load of fecal material, and the amount of time fecal material has been in the environment are needed. This paper presents the results of a multiyear study of raw-water quality at the inlet of a potable-water plant that related 17 physical, chemical, and biological indices to the presence of enteric viruses as indicated by cytopathic changes in cell cultures. It was found that several simple, multivariate logistic regression models that could reliably identify observations of the presence or absence of total culturable virus could be fitted. The best models developed combined a fecal age indicator (the atypical coliform [AC]/total coliform [TC] ratio), the detectable presence of a human-associated sterol (epicoprostanol) to indicate the fecal source, and one of several fecal load indicators (the levels of Giardia species cysts, coliform bacteria, and coprostanol). The best fit to the data was found when the AC/TC ratio, the presence of epicoprostanol, and the density of fecal coliform bacteria were input into a simple, multivariate logistic regression equation, resulting in 84.5% and 78.6% accuracies for the identification of the presence and absence of total culturable virus, respectively. The AC/TC ratio was the most influential input variable in all of the models generated, but producing the best prediction required additional input related to the fecal source and the fecal load. The potential for replacing microbial indicators of fecal load with levels of coprostanol was proposed and evaluated by multivariate logistic regression modeling for the presence and absence of virus.

  10. 9 CFR 3.30 - Watering.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...

  11. 9 CFR 3.30 - Watering.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...

  12. 9 CFR 3.30 - Watering.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...

  13. 9 CFR 3.30 - Watering.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Animal Health and Husbandry Standards § 3.30 Watering. Unless food supplements consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the...

  14. 49 CFR 228.319 - Lavatories.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...

  15. 49 CFR 228.319 - Lavatories.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...

  16. 49 CFR 228.319 - Lavatories.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or four occupants. (b) Water. Each lavatory must be provided with hot and cold potable running water... by a collective bargaining agreement, individual hand towels, of cloth or paper, warm air blowers, or...

  17. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  18. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  19. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  20. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  1. A single Legionella pneumophila genotype in the freshwater system in a ship experiencing three separate outbreaks of legionellosis in 6 years.

    PubMed

    Ahlen, Catrine; Aas, Marianne; Krusnell, Jadwiga; Iversen, Ole-Jan

    2016-01-01

    Recurrent legionella outbreaks at one and the same location are common. We have identified a single Legionella pneumophila genotype associated with recurrent Legionella outbreaks over 6 years. Field emergency surveys following Legionella outbreaks were performed on a vessel in 2008, 2009 and 2013. Water samples from both the distribution and technical parts of the potable water system were analyzed with respect to L. pneumophila [Real-Time PCR, cultivation, serotyping and genotyping (PFGE)] and free-living amoebae, (FLA). Legionella pneumophila serogroup 1 was present in the ship's potable water system during every outbreak. Genotyping of the 2008 survey material showed two separate PFGE genotypes while those in 2009 and 2013 demonstrated the presence of only one of the two genotypes. FLA with intracellular L. pneumophila of the same genotype were also detected. Analyses of the freshwater system on a ship following three separate Legionella outbreaks, for L. pneumophila and FLAs, revealed a single L. pneumophila genotype and FLA (Hartmanella). It is reasonable to assume that the L. pneumophila genotype detected in the freshwater system was the causal agent in the outbreaks onboard. Persistence of an apparently low-pathogenic L. pneumophila genotype and FLA in a potable water system represent a potential risk for recurrent outbreaks.

  2. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    PubMed

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Biological productivity in small impoundments

    USDA-ARS?s Scientific Manuscript database

    Most ponds and small impoundments are built or used with a principal use in mind. That use may be recreational fishing, commercial aquaculture, waterfowl hunting, potable water storage, irrigation water supply, livestock watering, stormwater retention, landscaping, swimming, or others. In practice, ...

  4. PHOSPHATE CHEMICALS FOR BUILDING POTABLE WATER TREATMENT

    EPA Science Inventory

    Buildings can contribute significant quantities of trace metal contamination to drinking water, particularly lead, copper and zinc. Discolored water may also result in corroded galvanized and steel plumbing and after prolonged stagnation times. To protect human health as well as ...

  5. [Modern problems of maintenance of hygienic safety of drinking water consumption at the regional level].

    PubMed

    Tulakin, A V; Tsyplakova, G V; Ampleeva, G P; Kozyreva, O N; Pivneva, O S; Trukhina, G M

    Problems of hygienic reliability of the drinking water use in regions of the Russian Federation are observed in the article. The optimization of the water use was shown must be based on the bearing in mind of regional peculiarities of the shaping of water quality of groundwater and surface sources of the water use, taking into account of the effectiveness of regional water protection programs, programs for water treatment, coordination of the activity of economic entities and oversight bodies in the management of water quality on the basis of socio-hygienic monitoring. Regional problems requiring hygienic justification and accounting, include such issues as complex hydrological, hydrogeological, climatic and geographical conditions, pronouncement of the severity of anthropogenic pollution of sources of water supply, natural conditions of the shaping of water quality, efficiency of the water treatment. There is need in the improvement of the problems of the water quality monitoring, including with the use of computer technology, which allows to realize regional hygienic monitoring and spatial-temporal analysis of the water quality, to model the water quality management, to predict conditions of the water use by population in regions taking into account peculiarities of the current health situation. In the article there is shown the practicability of the so-called complex concept of multiple barriers suggesting the combined use of chemical oxidation and physical methods of the preparation of drinking water. It is required the further development of legislation for the protection of water bodies from pollution with the bigging up the status of sanitary protection zones; timely revision of the regulatory framework, establishing sanitary-epidemiological requirements to potable water and drinking water supply. The problem of the provision of the population with safe drinking water requires complex solution within the framework of the implementation of target programs adopted at the Federal and regional levels.

  6. REMOVAL OF MTBE FROM WATER WITH ZEOLITES

    EPA Science Inventory

    MTBE has impacted public drinking water wells from releases of gasoline making the water non-potable. MTBE is highly soluble in water, has a low volatility, does not adsorb strongly to soil, and is not thought to be easily biodegradable. Traditional methods of removing organics ...

  7. 9 CFR 3.30 - Watering.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumed by guinea pigs or hamsters supply them with their normal water requirements, potable water shall... containers used for dispensing water to guinea pigs or hamsters shall be so placed in or attached to the... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea...

  8. Finding New Water: Development of On-Site Non-Potable Water Reuse Systems

    EPA Science Inventory

    By designing our buildings to collect and treat water generated on-site, can be and reused for flushing our toilets and irrigating our landscaping. Several water sources are generated with-in a building including: rainwater, stormwater, graywater, blackwater and foundation drain...

  9. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.

    PubMed

    Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi

    2017-12-12

    Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 78 FR 20128 - Extension of the Designation of Nicaragua for Temporary Protected Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Nicaragua's roads are paved. Hurricane Mitch damaged potable water, sewage treatment systems, water uptake systems, wells, water pump stations, and pipes in Nicaragua. The storm floods and runoff polluted water... education facilities, water supply and sanitation facilities, and the agricultural sector. Living conditions...

  11. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  12. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  13. 7 CFR 2902.12 - Water tank coatings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...

  14. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  15. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  16. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  17. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  18. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  19. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  20. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  1. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  2. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...

  3. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  4. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  5. 9 CFR 354.224 - Water supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Water supply. 354.224 Section 354.224....224 Water supply. The water supply shall be ample, clean, and potable with adequate facilities for its distribution in the plant and its protection against contamination and pollution. (a) Hot water at a...

  6. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided for...

  7. 7 CFR 2902.12 - Water tank coatings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...

  8. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...

  9. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased water...

  10. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  11. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  12. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKARYOTIC MICROORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...

  13. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKAROYOTIC MICROOORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...

  14. FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS

    EPA Science Inventory

    Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...

  15. STS-34 onboard view of iodine comparator assembly used to check water quality

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 closeup view taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the iodine comparator assembly. Potable water quality is checked by comparing the water color to the color chart on the surrounding board.

  16. Peake works on the WPA

    NASA Image and Video Library

    2016-03-22

    ISS047e013845 (03/22/2016) --- ESA (European Space Agency) astronaut Tim Peake works on the Water Processor Assembly (WPA) aboard the International Space Station. The WPA is is responsible for treating waste water aboard the station for recycling back into potable water.

  17. Mycobacterium lentiflavum in Drinking Water Supplies, Australia

    PubMed Central

    Carter, Robyn; Torbey, Matthew J.; Minion, Sharri; Tolson, Carla; Sidjabat, Hanna E.; Huygens, Flavia; Hargreaves, Megan; Thomson, Rachel M.

    2011-01-01

    Mycobacterium lentiflavum, a slow-growing nontuberculous mycobacterium, is a rare cause of human disease. It has been isolated from environmental samples worldwide. To assess the clinical significance of M. lentiflavum isolates reported to the Queensland Tuberculosis Control Centre, Australia, during 2001–2008, we explored the genotypic similarity and geographic relationship between isolates from humans and potable water in the Brisbane metropolitan area. A total of 47 isolates from 36 patients were reported; 4 patients had clinically significant disease. M. lentiflavum was cultured from 13 of 206 drinking water sites. These sites overlapped geographically with home addresses of the patients who had clinically significant disease. Automated repetitive sequence–based PCR genotyping showed a dominant environmental clone closely related to clinical strains. This finding suggests potable water as a possible source of M. lentiflavum infection in humans. PMID:21392429

  18. Emergency Response and Protection Water Treatment Technologies

    EPA Science Inventory

    The Expeditionary Unit Water Purifier (EUWP) is supported and deployed by NFESC, the TARDEC, and the USBR. The EUWP was deployed to Biloxi, MS after Hurricane Katrina to supply potable water to a hospital, using seawater from the Gulf of Mexico as the source water. The EUWP ...

  19. 9 CFR 3.83 - Watering.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...

  20. 9 CFR 3.83 - Watering.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...

  1. 9 CFR 3.83 - Watering.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Watering. 3.83 Section 3.83 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Primates 2 Animal Health and Husbandry Standards § 3.83 Watering. Potable water must be provided in...

  2. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).

    PubMed

    Amin, M T; Han, M Y

    2009-12-01

    The efficiency of solar disinfection (SODIS), recommended by the World Health Organization, has been determined for rainwater disinfection, and potential benefits and limitations discussed. The limitations of SODIS have now been overcome by the use of solar collector disinfection (SOCO-DIS), for potential use of rainwater as a small-scale potable water supply, especially in developing countries. Rainwater samples collected from the underground storage tanks of a rooftop rainwater harvesting (RWH) system were exposed to different conditions of sunlight radiation in 2-L polyethylene terephthalate bottles in a solar collector with rectangular base and reflective open wings. Total and fecal coliforms were used, together with Escherichia coli and heterotrophic plate counts, as basic microbial and indicator organisms of water quality for disinfection efficiency evaluation. In the SOCO-DIS system, disinfection improved by 20-30% compared with the SODIS system, and rainwater was fully disinfected even under moderate weather conditions, due to the effects of concentrated sunlight radiation and the synergistic effects of thermal and optical inactivation. The SOCO-DIS system was optimized based on the collector configuration and the reflective base: an inclined position led to an increased disinfection efficiency of 10-15%. Microbial inactivation increased by 10-20% simply by reducing the initial pH value of the rainwater to 5. High turbidities also affected the SOCO-DIS system; the disinfection efficiency decreased by 10-15%, which indicated that rainwater needed to be filtered before treatment. The problem of microbial regrowth was significantly reduced in the SOCO-DIS system compared with the SODIS system because of residual sunlight effects. Only total coliform regrowth was detected at higher turbidities. The SOCO-DIS system was ineffective only under poor weather conditions, when longer exposure times or other practical means of reducing the pH were required for the treatment of stored rainwater for potable purposes.

  3. EPA’s Research to Support On-Site Non-potable Water Systems

    EPA Science Inventory

    As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected water (e.g. combined wastewater, graywater, sto...

  4. TECHNOLOGY TRANSFER HANDBOOK: MANAGEMENT OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    Potable water treatment processes produce safe drinking water and generate a wide variety of waste products known as residuals, including organic and inorganic compounds in liquid, solid, and gaseous forms. In the current regulatory climate, a complete management program for a w...

  5. EXPLORATORY OCCURRENCE STUDY OF NEWLY EMERGING PATHOGENS IN POTABLE WATER

    EPA Science Inventory

    Recent attention has focused on the potential transmission via drinking water of two bacterial pathogens, Aeromonas and Helicobacter pylori, both of which are included in the current Contaminant Candidate List. Aeromonas bacteria occur naturally in surface waters and have been i...

  6. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  7. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  8. 43 CFR 404.44 - What criteria will Reclamation apply to determine whether it is appropriate to recommend that a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...

  9. 43 CFR 404.44 - What criteria will Reclamation apply to determine whether it is appropriate to recommend that a...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...

  10. 43 CFR 404.44 - What criteria will Reclamation apply to determine whether it is appropriate to recommend that a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... waters, non-potable waters, and water-reuse-based water supplies; (2) Has a positive effect on public and... THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.44 What criteria... in the investigation, whether the alternative: (1) Identifies viable water supplies and water rights...

  11. Development of a relative risk model for drinking water regulation and design recommendations for a peri urban region of Argentina.

    PubMed

    Rodriguez-Alvarez, María Soledad; Weir, Mark H; Pope, Joanna M; Seghezzo, Lucas; Rajal, Verónica B; Salusso, María Mónica; Moraña, Liliana B

    2015-10-01

    Argentina is a developing Latin American nation that has an aim of achieving the United Nations Millennium Development Goals for potable water supplies. Their current regulations however, limit the continued development of improved potable water quality and infrastructure from a microbiological viewpoint. This is since the current regulations are focused solely to pathogenic Eschericia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and fecal indicators. Regions of lower socioeconomic status such as peri-urban areas are particularly at risk due to lessened financial and political ability to influence their environmental quality and infrastructure needs. Therefore, a combined microbiological sampling, analysis and quantitative microbial risk assessment (QMRA) modeling effort were engaged for a peri-urban area of Salta Argentina. Drinking water samples from home taps were analyzed and a QMRA model was developed, results of which were compared against a general 1:10,000 risk level for lack of a current Argentinian standard. This QMRA model was able to demonstrate that the current regulations were being achieved for E. coli but were less than acceptable for P. aeruginosa in some instances. Appropriate health protections are far from acceptable for Giardia for almost all water sources. Untreated water sources were sampled and analyzed then QMRA modeled as well, since a significant number of the community (∼9%) still use them for potable water supplies. For untreated water E. coli risks were near 1:10,000, however, P. aeruginosa and Giardia risks failed to be acceptable in almost all instances. The QMRA model and microbiological analyses demonstrate the need for improved regulatory efforts for the peri-urban area along with improved investment in their water infrastructure. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Pathogen Treatment Guidance and Monitoring Approaches for On-Site Non-Potable Water (2016 Southwest Onsite Wastewater Conference)

    EPA Science Inventory

    As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected waters.  Given that alternative water...

  13. 9 CFR 3.139 - Food and water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and water requirements. 3.139..., and Marine Mammals Transportation Standards § 3.139 Food and water requirements. (a) All live animals shall be offered potable water within 4 hours prior to being transported in commerce. Dealers...

  14. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  15. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  16. 9 CFR 3.139 - Food and water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and water requirements. 3.139..., and Marine Mammals Transportation Standards § 3.139 Food and water requirements. (a) All live animals shall be offered potable water within 4 hours prior to being transported in commerce. Dealers...

  17. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  18. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  19. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  20. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  1. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  2. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  3. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  4. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  5. Removal of Stabilized Silver Nanoparticles from Ohio River Water by Potable Water Treatment Processes

    EPA Science Inventory

    Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...

  6. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Rector, Tony; Gazda, Daniel; Roberts, Michael

    2008-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial

  7. Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135

    NASA Technical Reports Server (NTRS)

    Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.

    2011-01-01

    The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in microgravity suggests that mass transport was dominated by diffusion, slowing the rate of permeate production across the membrane. It is possible that a predicted reduction in concentration polarization at the membrane surface that may have acted to increase the rate of permeate production in microgravity was negligible under the described test conditions.

  8. Discovery and Identification of Dimethylsilanediol as a Contaminant in ISS Potable Water

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.; Kuo, C. Mike; Curtis, Matthew; Jones, Patrick R.; Sparkman, O. David; McCoy, J. Torin

    2011-01-01

    In September 2010, analysis of ISS potable water samples was undertaken to determine the contaminant(s) responsible for a rise of total organic carbon (TOC) in the Water Processor Assembly (WPA) product water. As analysis of the routine target list of organic compounds did not reveal the contaminant, efforts to look for unknown compounds were initiated, resulting in discovery of an unknown peak in the gas chromatography/mass spectrometry (GC/MS) analysis for glycols. A mass spectrum of the contaminant was then generated by concentrating one of the samples and analyzing it by GC/MS in full-scan mode. Although a computer match of the compound identity could not be obtained with the instrument database, a search with a more up-to-date mass spectral library yielded a good match with dimethylsilanediol (DMSD). Inductively coupled plasma/mass spectrometry (ICP/MS) analyses showed abnormally high silicon levels in the samples, confirming that the unknown compound(s) contained silicon. DMSD was then synthesized to confirm the identification and provide a standard to develop a calibration curve. Further confirmation was provided by external direct analysis in real time time of flight (DART TOF) mass spectrometry. To routinely test for DMSD in the future, a quantitative method was needed. A preliminary GC/MS method was developed and archived samples from various locations on ISS were analyzed to determine the extent of the contamination and provide data for troubleshooting. This paper describes these events in more detail as well as problems encountered in routine GC/MS analyses and the subsequent development of high performance liquid chromatography and LC/MS/MS methods for measuring DMSD.

  9. POPULATION DIVERSITY IN MODEL DRINKING WATER BIOFILMS RECEIVING CHLORINE OR MONOCHLORAMINE RESIDUAL

    EPA Science Inventory

    Most water utilities add monochloramine or chlorine as a residual disinfectant in potable water distribution systems (WDS) to control bacterial regrowth. While monochloramine is considered more stable than chlorine, little is known about the fate of this disinfectant or the effec...

  10. Development of an Analytical Method to Extract and Detect Pharmaceuticals in Plant Matrices

    EPA Science Inventory

    It has been shown that human-use macrolide antibiotics (azithromycin, clindamycin, and roxithromycin) are environmentally available in wastewaters, source waters, and biosolids. Since some water authorities use the treated wastewater effluent for non-potable water reuse such as f...

  11. Irrigation of floricultural and nursery crops with saline wastewaters

    USDA-ARS?s Scientific Manuscript database

    Water security has become a major concern throughout the western United States and other arid and semiarid regions worldwide. Uncertainties concerning the allocation and dependability of good quality water have led to increased interest in the use alternative, non-potable waters for irrigated agric...

  12. 18 CFR 806.32 - Reopening/modification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Reopening/modification. 806.32 Section 806.32 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION... temporary source of potable water at the project sponsor's expense, pending a final determination of...

  13. Review of cost versus scale: water and wastewater treatment and reuse processes.

    PubMed

    Guo, Tianjiao; Englehardt, James; Wu, Tingting

    2014-01-01

    The US National Research Council recently recommended direct potable water reuse (DPR), or potable water reuse without environmental buffer, for consideration to address US water demand. However, conveyance of wastewater and water to and from centralized treatment plants consumes on average four times the energy of treatment in the USA, and centralized DPR would further require upgradient distribution of treated water. Therefore, information on the cost of unit treatment processes potentially useful for DPR versus system capacity was reviewed, converted to constant 2012 US dollars, and synthesized in this work. A logarithmic variant of the Williams Law cost function was found applicable over orders of magnitude of system capacity, for the subject processes: activated sludge, membrane bioreactor, coagulation/flocculation, reverse osmosis, ultrafiltration, peroxone and granular activated carbon. Results are demonstrated versus 10 DPR case studies. Because economies of scale found for capital equipment are counterbalanced by distribution/collection network costs, further study of the optimal scale of distributed DPR systems is suggested.

  14. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  15. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    PubMed

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  16. Impact of green roofs on stormwater quality in a South Australian urban environment.

    PubMed

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  17. 21 CFR 1240.95 - Sanitation of water boats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...

  18. 21 CFR 1240.95 - Sanitation of water boats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...

  19. 21 CFR 1240.95 - Sanitation of water boats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...

  20. 21 CFR 1240.95 - Sanitation of water boats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...

  1. 21 CFR 1240.95 - Sanitation of water boats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sanitation of water boats. 1240.95 Section 1240.95... DISEASES Source and Use of Potable Water § 1240.95 Sanitation of water boats. No vessel engaged in interstate traffic shall obtain water for drinking and culinary purposes from any water boat unless the tanks...

  2. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; (3) Addresses environmental quality and source water protection issues; (4) Addresses opportunities to treat and use low-quality or non-potable water, water-reuse based supplies, and brackish and... technologies to reduce water use and water system costs; (6) Addresses opportunities to take advantage of...

  3. 75 FR 24737 - Extension of the Designation of Nicaragua for Temporary Protected Status and Automatic Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... global economic crisis. Economic development has also been hindered and disrupted by electoral fraud and... damaged water supplies, leaving whole communities lacking potable water. According to the United Nations...

  4. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  5. Ultraviolet disinfection of potable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, R.L.

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as wellmore » as the advantages and disadvantages of UV disinfection. 38 refs.« less

  6. [Towards an urban world].

    PubMed

    1991-12-01

    It has been estimated that by the year 2006, the proportion of the world's population residing in cities will for the 1st time exceed 50%. The entire urban population will be living on 1% of the earth's surface. Rapid growth of cities is largely limited to developing countries, where about 9/10 of urban growth is expected to occur in coming decades. Urban growth in developing countries is due to high fertility as well as inmigration of poor peasants seeking a better life. The current growth rate of Third World cities is 3.6% annually, which signifies doubling of the population in 20 years. Paris required over a century to grow from 547,000 to 3 million, but Lagos grew from 700,000 to 5.6 million in 20 years and Cairo grew by 6.5 million in 34 years. Immoderate population growth places a great strain on cities attempting to provide basic services. Only a few authoritarian governments have succeeded in limiting immigration to their metropolitan areas. Rapidly growing cities have become symbols not only of poverty and social deterioration, but of ecological destruction, contamination, and lack of health. Air pollution, waste management, and the water supply are 3 of the most serious problems of hygiene and sanitation in the world's cities. Air pollution is caused by various factors including car exhausts and coal burning. According to World Health Organization data, less than 60% of Third World housing has access to an adequate sanitary system. 90% of sewage is not treated before elimination. And millions of persons with no potable water supply are obliged to consume contaminated water or to use their scarce resources to buy water. Many cities lose up to 60% of their scarce water supplies through leaking pipes. If these pipes were repaired, and the loss amounted to the 12% typical of the US and Great Britain, this single measure would double the volume of potable water available. The lack of social balance is at the root of urban problems in the Third World. 600 million inhabitants of the Third World live in unhealthy housing. Most housing inhabited by the poor shares 2 characteristics: presence of pathogenic microorganisms because of lack of access to sanitary means of waste disposal, and crowding. The wealthy inhabitants of Third world cities must act to mitigate the problems of urban growth, but external aid will also be needed to raise the quality of the urban environment. The increasing crowdedness of cities should prompt authorities to make family planning services universally available.

  7. Water-Related Infrastructure in a Region of Post-Earthquake Haiti: High Levels of Fecal Contamination and Need for Ongoing Monitoring

    PubMed Central

    Widmer, Jocelyn M.; Weppelmann, Thomas A.; Alam, Meer T.; Morrissey, B. David; Redden, Edsel; Rashid, Mohammed H.; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K.; Johnson, Judith A.; Morris, J. Glenn

    2014-01-01

    We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km2) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. PMID:25071005

  8. Water-related infrastructure in a region of post-earthquake Haiti: high levels of fecal contamination and need for ongoing monitoring.

    PubMed

    Widmer, Jocelyn M; Weppelmann, Thomas A; Alam, Meer T; Morrissey, B David; Redden, Edsel; Rashid, Mohammed H; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K; Johnson, Judith A; Morris, J Glenn

    2014-10-01

    We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km(2)) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. © The American Society of Tropical Medicine and Hygiene.

  9. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation

    NASA Astrophysics Data System (ADS)

    Maddah, Hisham; Chogle, Aman

    2017-10-01

    This paper is a comprehensive review of biofouling in reverse osmosis modules where we have discussed the mechanism of biofouling. Water crisis is an issue of pandemic concern because of the steady rise in demand of drinking water. Overcoming biofouling is vital since we need to optimize expenses and quality of potable water production. Various kinds of microorganisms responsible for biofouling have been identified to develop better understanding of their attacking behavior enabling us to encounter the problem. Both primitive and advanced detection techniques have been studied for the monitoring of biofilm development on reverse osmosis membranes. Biofouling has a negative impact on membrane life as well as permeate flux and quality. Thus, a mathematical model has been presented for the calculation of normalized permeate flux for evaluating the extent of biofouling. It is concluded that biofouling can be controlled by the application of several physical and chemical remediation techniques.

  10. Membrane Bioprocesses for Pharmaceutical Micropollutant Removal from Waters

    PubMed Central

    de Cazes, Matthias; Abejón, Ricardo; Belleville, Marie-Pierre; Sanchez-Marcano, José

    2014-01-01

    The purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW) containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters. Different types of bioprocesses are described in this work: from classical activated sludge systems, which allow the depletion of pharmaceuticals by bio-degradation and adsorption, to enzymatic reactions, which are more focused on the treatment of WW containing a relatively high content of pharmaceuticals and less organic carbon pollution than classical WW. Different aspects concerning the advantages of membrane bioreactors for pharmaceuticals removal are discussed, as well as the more recent studies on enzymatic membrane reactors to the depletion of these recalcitrant compounds. PMID:25295629

  11. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    PubMed

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. 7 CFR 1778.9 - Uses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... apply to changes in the requirements of FWPCA or SDWA. (k) Provide potable water to communities through... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.9 Uses. Grant funds may be used...) Construction of new wells, reservoirs, transmission lines, treatment plants, and other sources of water. (f...

  13. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    EPA Science Inventory

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  14. 24 CFR 3280.602 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture, water supplied appliances, or other device and the flood level rim of the receptacle... other liquids, mixtures, or substances into the distributing pipes of a potable supply of water from any...

  15. Nitrification of raw or used water using expanded bed biofilm reactor technology.

    PubMed

    Dempsey, M J

    2011-01-01

    Excessive ammonia in raw water increases the consumption of chlorine for disinfection during production of potable water, through oxidation to produce chloramines. Excessive ammonia in used water results in pollution of the aquatic environment, where it is particularly toxic to fish. Furthermore, nitrifying prokaryotes in the receiving water will consume dissolved oxygen equivalent to 4.6 g oxygen per g ammonia-nitrogen oxidized to nitrate. This places a considerable oxygen demand on the receiving water and can result in anoxic conditions. One solution to these problems is to nitrify the ammonia in a dedicated biological process. As nitrifiers are particularly slow growing, they are easily washed out of conventional water and wastewater treatment processes; hence, the use of immobilized biomass in an expanded bed biofilm reactor. This solution typically allows at least 10-times the biomass concentration of conventional systems, with a similar decrease in bioreactor size or increase in bioreactor productivity. This chapter describes expanded bed technology for nitrification of water, and methods for studying biomass and process performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Microbial Risk Assessment of Air Conditioning Condensate Reuse

    EPA Science Inventory

    Air conditioning condensate can provide a substantial water source for building-scale collection and non-potable use. Although produced water is anticipated to be of generally high quality, the potential for microbial contamination by biofilm-associated opportunistic pathogens t...

  17. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  18. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  19. 21 CFR 1240.86 - Protection of pier water system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Protection of pier water system. 1240.86 Section 1240.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... interstate traffic shall make a connection between its nonpotable water system and any pier potable water...

  20. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...

  1. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...

  2. 9 CFR 3.89 - Food and water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and water requirements. 3.89... Transportation of Nonhuman Primates 2 Transportation Standards § 3.89 Food and water requirements. (a) Each... nonhuman primate must be offered potable water at least once every 12 hours. These time periods apply to...

  3. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water for making ice. 1250.86 Section 1250.86 Food... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water shall be piped into a freezer for making ice for drinking and culinary purposes. ...

  4. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable water...

  5. Challenges with Operating a Water Recovery System (WRS) in the Microgravity Environment of the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Carter, Donald Layne

    2017-01-01

    The ISS WRS produces potable water from crew urine, crew latent, and Sabatier product water. This system has been operational on ISS since November 2008, producing over 30,000 L of water during that time. The WRS includes a Urine Processor Assembly (UPA) to produce a distillate from the crew urine. This distillate is combined with the crew latent and Sabatier product water and further processed by the Water Processor Assembly (WPA) to the potable water. The UPA and WPA use technologies commonly used on ISS for water purification, including filtration, distillation, adsorption, ion exchange, and catalytic oxidation. The primary challenge with the design and operation of the WRS has been with implementing these technologies in microgravity. The absence of gravity has created unique issues that impact the constituency of the waste streams, alter two-phase fluid dynamics, and increases the impact of particulates on system performance. NASA personnel continue to pursue upgrades to the existing design to improve reliability while also addressing their viability for missions beyond ISS.

  6. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  7. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  8. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  9. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  10. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water system...

  11. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.

    1998-01-01

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  12. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement between flow zones is better in southwestern Florida than in southeastern Florida. Vertical hydraulic conductivity in the upper part of the aquifer also may be higher in southeastern Florida because of unconformities present at formation contacts within the aquifer that may be better developed in this area. Recovery efficiencies per cycle varied widely. Eight sites had recovery efficiencies of less than about 10 percent for the first cycle, and three of these sites had not yet achieved recoveries exceeding 10 percent, even after three to five cycles. The highest recovery efficiency achieved per cycle was 94 percent. Three southeastern coastal sites and two southwestern coastal sites have achieved potable water recoveries per cycle exceeding 60 percent. One of the southeastern coastal sites and both of the southwestern coastal sites achieved good recoveries, even with long storage periods (from 174 to 191 days). The high recovery efficiencies for some cycles apparently resulted from water banking?an operational approach whereby an initial cycle with a large recharge volume of water is followed by cycles with much smaller recharge volume. This practice flushes out the aquifer around the well and builds up a buffer zone that can maintain high recovery efficiency in the subsequent cycles. The relative performance of all sites with adequate cycle test data was determined. Performance was arbitrarily grouped into ?high? (greater than 40 percent), ?medium? (between 20 and 40 percent), and ?low? (less than 20 percent) categories based primarily on their cumulative recovery efficiency for the first seven cycles, or projected to seven cycles if fewer cycles were conducted. The ratings of three sites, considered to be borderline, were modified using the overall recharge rate derived from the cumulative recharge volumes. A higher overall recharge rate (greater than 300 million gallons per year) can improve recovery efficiency because of the water-bankin

  13. Forward osmosis :a new approach to water purification and desalination.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution basedmore » solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization of membranes is recommended. The identification of optimal osmotic agents for different applications is also suggested as it is clear that the space of potential agents and recovery processes has not been fully explored.« less

  14. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    PubMed Central

    Gohar, Maha Kamal; Atta, Amal Hassan

    2016-01-01

    Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems. PMID:27725834

  15. Hydro-geochemical characterization of Treated Domestic Waste Water for possible use in homestead irrigation and managed aquifer recharge in the coastal city of Khulna, Bangladesh

    NASA Astrophysics Data System (ADS)

    Hamid, T.; Ahmed, K. M.

    2016-12-01

    Bangladesh is among the most densely populated countries in the world. Rapid and unplanned urbanization in Bangladesh has resulted in heterogeneous land use pattern and larger demands for municipal water. To meet the ever-increasing demand of water for such population, the usage of treated domestic waste water (DWW) has become a viable option that can serve specific purposes, i.e. homestead irrigation, managed aquifer recharge (MAR) in major cities like Khulna, the largest city in the southwest coastal region. It is an attractive solution to minimize the deficit between the demand and supply of water in the study area where, in specific parts, city-dwellers suffer year round shortage of potable water due to high salinity in shallow depths. However, certain degree of treatment is mandatory for DWW in order to ensure the compliance of the output water with a set of standards and regulations for the DWW reuse. At present, the DWW is being treated through Constructed Wetlands but the treated water is not used and discharged into the sewer system. Wastewater that has been treated through a constructed wetland is a resource that can be used for productive uses in homestead garden irrigation, artificial aquifer recharge, and other non-potable uses. The study addresses the effectiveness of constructed wetlands in improving the quality of wastewater through on the hydro-geochemical characterization of both raw and treated DWW as well as baseline water quality analysis of surface and ground water in and around the treatment plant with consideration of seasonal variations. The study aims at sustainable development through conservation of water, satisfaction of demands, reliability of water supply, contribution to urban food supply, sustenance of livelihood and replenishment of the depleting aquifer by assessing the suitability of the treated DWW for various non-potable uses and also to provide guidelines for possible uses of treated DWW without adverse impact on environment and ecology.

  16. REMOVAL OF ORGANIC CONTAMINANTS FROM GROUNDWATER.

    EPA Science Inventory

    More are than lOO million Americans depend on groundwater as a source of drinking water. hree quarters of U.S. cities get their water supplies totally or in part from groundwater and one-third of the largest cities rely on groundwater for at least part of their potable water supp...

  17. MTBE OXIDATION BYPRODUCTS FROM THE TREATMENT OF SURFACE WATERS BY OZONATION AND UV-OZONATION

    EPA Science Inventory

    In recent years, there has been considerable concern over the release of methyl tert-butyl ether (MTBE), as gasoline additive, into the aquifers used as potable water sources. MTBE readily dissolves in water and has entered the environment via gasoline spills and leaking...

  18. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  19. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  20. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  1. 7 CFR 1780.49 - Rural or Native Alaskan villages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and individual residents must haul water to or human waste from their homes and/or use pit privies. (2..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Loan and Grant Application Processing... can be used to pay reasonable costs associated with providing potable water or waste disposal services...

  2. DISTRIBUTION SYSTEM: COST OF REPAIR AND REPLACEMENT

    EPA Science Inventory

    The Safe Drinking Water Act of 1974 mandates that EPA be concerned with the supply of potable water to the consumer. Although most emphasis has been placed on water quality as it leaves the treatment plant interest is increasing in the role of the distribution system in causing w...

  3. Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies

    EPA Science Inventory

    One of the biggest challenges for humanity in the 21st century is easy access to purified and potable water. The presence of pathogens and toxins in water causes more than two million deaths annually, mostly among children under the age of five. Identifying and deploying effectiv...

  4. SUSTAINABILITY OF THE FILTR&OACUTE;N FOR MICROBIAL DISINFECTION

    EPA Science Inventory

    A significant portion, ~20%, of the world's population lives without access to safe water. Point of use (POU) devices for disinfection have been under-utilized as a tool to provide access to safe water. One such effective POU for producing potable water is the Filtr&oacut...

  5. IMPACT ON WATER DISTRIBUTION SYSTEM BIOFILM DENSITIES FROM REVERSE OSMOSIS MEMBRANE TREATMENT OF SUPPLY WATER

    EPA Science Inventory

    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  6. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  7. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    NASA Technical Reports Server (NTRS)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  8. Education & Collection Facility GSHP Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joplin, Jeff

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less

  9. EXPLORATORY OCCURRENCE OF HETEROTROPHIC BACTERIA IN POTABLE WATER

    EPA Science Inventory

    Heterotrophic bacteria (HPC) are common to community distribution systems conveying treated drinking water to consumers. There are known opportunistic pathogens among these organisms, for example some Legionella and some Aeromonas strains; and there may be others of which we are ...

  10. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  11. Fluorescence spectroscopy as a tool for determining microbial quality in potable water applications.

    PubMed

    Cumberland, Susan; Bridgeman, John; Baker, Andy; Sterling, Mark; Ward, David

    2012-01-01

    Building on previous work where fluorescence spectroscopy has been used to detect sewage in rivers, a portable LED spectrophotometer was used for the first time to establish bacterial numbers in a range of water samples. A mixed-method approach was used with standard bacteria enumeration techniques on diluted river water and sewage works final effluent using a number of diluents (Ringer's solution, tap water and potable spring water). Fluorescence from uncultured dilutions was detected at a 280 nm excitation/360 nm emission wavelength (corresponding to the region of tryptophan and indole fluorescence) and compared with bacteria numbers on the same cultured sample. Good correlations were obtained for total coliforms, E. coli and heterotrophic bacteria with the portable LED spectrophotometer (R2 = 0.78, 0.72 and 0.81 respectively). The results indicate that the portable spectrophotometer could be applied to establish the quality of drinking water in areas of poor sanitation that are subject to faecal contamination, where infrastructure failure has occurred in the supply of clean drinking water. This would be particularly useful where laboratory facilities are not at hand.

  12. Ecology of Legionella pneumophila within water distribution systems.

    PubMed Central

    Stout, J E; Yu, V L; Best, M G

    1985-01-01

    The reservoir for hospital-acquired Legionnaires disease has been shown to be the potable water distribution system. We investigated the influence of the natural microbial population and sediment (scale and organic particulates) found in water systems as growth-promoting factors for Legionella pneumophila. Our in vitro experiments showed that: (i) water from hot-water storage tank readily supported the survival of L. pneumophila, (ii) the concentration of sediment was directly related to the survival of L. pneumophila, (iii) the presence of environmental bacteria improved the survival of L. pneumophila via nutritional symbiosis, (iv) the combination of sediment and environmental bacteria acted synergistically to improve the survival of L. pneumophila, and (v) the role of sediment in this synergistic effect was determined to be nutritional. Sediment was found to stimulate the growth of environmental microflora, which in turn stimulated the growth of L. pneumophila. These findings confirm the empiric observations of the predilection of L. pneumophila for growth in hot-water tanks and its localization to sediment. L. pneumophila occupies an ecological niche within the potable water system, with interrelationships between microflora, sediment, and temperature. Images PMID:3977311

  13. Data gaps in evidence-based research on small water enterprises in developing countries.

    PubMed

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  14. Hydrochemistry of waters from five cenotes and evaluation of their suitability for drinking-water supplies, northeastern Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Alcocer, Javier; Lugo, Alfonso; Marín, Luis E.; Escobar, Elva

    Waters from five cenotes that are currently being used for aquatic recreational activities and that lie along the Cancun-Tulum touristic corridor, Mexico, were evaluated hydrochemically to determine whether the cenotes may be considered as potential drinking-water sources. Several parameters exceed the Mexican Drinking Water Standards (MDWS), but since they do not pose a significant health threat, four of the five cenotes may be used as drinking-water sources. The common contaminants in the Yucatan Peninsula, fecal coliforms and nitrate, are in most cases below the MDWS (0-460 MPN/100ml and 0.31-1.18mg/L, respectively). Although these four cenotes meet the MDWS, a careful groundwater management policy needs to be developed to avoid contamination (fecal and nitrates) and salt-water intrusion. Résumé Les eaux de cinq cénotés, qui sont normalement utilisées pour des activités de plein air, dans la région touristique de Cancun-Tulum (Mexique), ont été soumises à analyses chimiques pour savoir si les cénotés peuvent être considérés comme des sources d'eau potable. Plusieurs paramètres dépassent les normes mexicaines en matière d'eau potable; mais comme ceux-ci ne posent pas de problème réel de santé, quatre des cinq cénotés peuvent être captés pour l'eau potable. Les contaminants habituels dans les eaux de la presqu'île du Yucatan, coliformes fécaux et concentrations élevées en nitrate, sont la plupart du temps au-dessous des normes (respectivement 0 à 460 germes/100ml et 0,31 à 1,18mg/l). Bien que ces quatre cénotés satisfassent aux normes, il est nécessaire de mettre en place des règles précises de l'utilisation de l'eau souterraine, afin d'éviter la contamination par les germes fécaux et par les nitrates, ainsi que l'intrusion marine. Resumen Se analizó hidroquímica y bacteriológicamente el agua de algunos cenotes localizados a lo largo del corredor turístico Cancun-Tulum, que actualmente se utilizan para diversas actividades recreativas, para determinar su potencial de uso como fuente de abastecimiento de agua potable. La mayor parte de los parámetros excedieron los criterios establecidos en la Norma Mexicana para Agua Potable (NMAP), sin embargo, como éstas no representan una riesgo para la salud, el agua de cuatro de los cinco cenotes puede ser emplada como fuente de abastecimiento de agua potable. Los contaminantes comúnes del agua subterránea de la península de Yucatán, coliformes fecales y nitratos, se encuentran en la mayoría de los casos por debajo de la NMAP (0-460 NMP/ 100ml y 0.31-1.18mg/l, respectivamente). A pesar de que estos cuatro cenotes cumplen con la NMAP, es necesario desarrollar una política de manejo adecuada del agua subterránea para evitar la contaminación de este recurso (fecal y por nitratos), así como la intrusión de agua salina.

  15. 49 CFR Appendix C to Part 228 - Guidelines for Clean, Safe, and Sanitary Railroad Provided Camp Cars

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., medical services, dressing, showering, toilet use, washing, and eating. (g) Potable water means water that meets the quality standards prescribed in the U.S. Public Health Service Drinking Water Standards... purpose of urination. (l) Water closet means a toilet facility maintained within a toilet room for the...

  16. 49 CFR Appendix C to Part 228 - Guidelines for Clean, Safe, and Sanitary Railroad Provided Camp Cars

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., medical services, dressing, showering, toilet use, washing, and eating. (g) Potable water means water that meets the quality standards prescribed in the U.S. Public Health Service Drinking Water Standards... purpose of urination. (l) Water closet means a toilet facility maintained within a toilet room for the...

  17. Prevalence of E. coli, Salmonella spp. and L. monocytogenes in non-traditional irrigation waters in the Mid-Atlantic U.S.: a conserve project

    USDA-ARS?s Scientific Manuscript database

    Introduction: Surface and non-traditional irrigation water (SNIW) sources can increase the irrigation water supplies without consuming potable water. However, these sources must be evaluated for enteric pathogens that could adulterate crops intended for human consumption and comply with Food Safety ...

  18. Discovery and Identification of Dimethylsilanediol as a Contaminant in ISS Potable Water

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.; Kuo, C. Mike; Cole, Hraold E.; Manuel, Sam; Curtis, Matthew; Jones, Patrick R.; Sparkman, O. David; McCoy, J. Torin

    2010-01-01

    In September of 2010, analysis of ISS potable water samples was undertaken to determine the contaminant responsible for a rise in total organic carbon (TOC). As analysis of the routine target list of organic compounds did not reveal the contaminant, efforts to look for unknown compounds was initiated, resulting in an unknown peak being discovered in the gas chromatography/mass spectrometry (GC/MS) analysis for glycols. A mass spectrum of the contaminant was then generated by concentrating one of the samples by evaporation and analyzing by GC/MS in full-scan mode. Although a computer match of the compound s identity could not be obtained with the instrument s database, a search with a more up to date mass spectral library yielded a good match with dimethylsilanediol (DMSD). Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) analyses showed abnormally high silicon levels in the samples, confirming that the unknown contained silicon. DMSD was then synthesized to confirm the identification and provide a standard to develop a calibration curve. Further confirmation was provided by external Direct Analysis in Real Time (DART) GC/MS analysis. A preliminary GC/MS method was then developed and archived samples from various locations on ISS were analyzed to determine the extent of the contamination and provide data for troubleshooting. This paper describes these events in more detail as well as problems encountered in routine GC/MS analyses and the subsequent development of high performance liquid chromatography and LC/MS/MS methods for quantitation of DMSD.

  19. 75 FR 17970 - Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... industrial use. Potable water in the area is supplied to residents either through the Scriba Water District... and drift losses from the cooling tower. NMP2 has its own cooling water intake and discharge... service water system and makeup to the circulating water system to replace evaporation and drift losses...

  20. Photolysis of Mono- and Dichloramines in UV/Hydrogen Peroxide: Effects on 1,4-Dioxane Removal and Relevance in Water Reuse.

    PubMed

    Patton, Samuel; Romano, Mariano; Naddeo, Vincenzo; Ishida, Kenneth P; Liu, Haizhou

    2018-06-05

    Growing demands and increasing scarcity of fresh water resources necessitate potable water reuse, which has been implemented with the aid of UV-based advanced oxidation processes (UV/AOPs) that remove potentially hazardous trace organic contaminants from reclaimed water. During the potable reuse treatment process, chloramines are added to prevent membrane fouling that are carried over to the UV/AOP, where hydrogen peroxide (H 2 O 2 ) is commonly added. However, the impact of chloramines on the photolysis of H 2 O 2 and the overall performance of the UV/AOP remains unknown. This study investigated the impacts of the photochemistry of monochloramine (NH 2 Cl) and dichloramine (NHCl 2 ) associated with the photolysis of H 2 O 2 on the degradation of 1,4-dioxane (1,4-D), a trace organic contaminant ubiquitous in recycled water. Results indicated that NH 2 Cl and NHCl 2 alone functioned as oxidants upon UV photolysis, which produced HO • and Cl 2 •- as the two primary oxidative radicals. The speciation of chloramines did not have a significant impact on the degradation kinetics. The inclusion of monochloramine in UV/H 2 O 2 greatly decreased 1,4-D removal efficiency. HO • was the major radical in the mixed H 2 O 2 /chloramine system. Results from this study suggest that recognizing the existence of chloramines in UV/H 2 O 2 systems is important for predicting UV/AOP performance in the treatment train of potable reuse.

  1. Gastrointestinal infections in the setting of natural disasters.

    PubMed

    Watkins, Richard R

    2012-02-01

    Gastrointestinal illness following natural disasters is a common occurrence and often results from the disruption of potable water supplies. The risk for outbreaks of gastrointestinal illness is higher in developing countries because of fewer available resources and poorer infrastructure. But industrialized countries are not immune from this problem, as demonstrated by an outbreak of gastroenteritis from norovirus that followed in the wake of Hurricane Katrina in 2005. Rates of gastrointestinal illness following natural disasters are influenced by the endemicity of specific pathogens in the affected region before the disaster, the type of disaster itself, the availability of health care resources, and the response by public health personnel after the disaster. Ensuring the uninterrupted supply of safe drinking water following a natural disaster, like adding chlorine, is the most important strategy to prevent outbreaks of gastrointestinal illness.

  2. Science, society, and the coastal groundwater squeeze

    NASA Astrophysics Data System (ADS)

    Michael, Holly A.; Post, Vincent E. A.; Wilson, Alicia M.; Werner, Adrian D.

    2017-04-01

    Coastal zones encompass the complex interface between land and sea. Understanding how water and solutes move within and across this interface is essential for managing resources for society. The increasingly dense human occupation of coastal zones disrupts natural groundwater flow patterns and degrades freshwater resources by both overuse and pollution. This pressure results in a "coastal groundwater squeeze," where the thin veneers of potable freshwater are threatened by contaminant sources at the land surface and saline groundwater at depth. Scientific advances in the field of coastal hydrogeology have enabled responsible management of water resources and protection of important ecosystems. To address the problems of the future, we must continue to make scientific advances, and groundwater hydrology needs to be firmly embedded in integrated coastal zone management. This will require interdisciplinary scientific collaboration, open communication between scientists and the public, and strong partnerships with policymakers.

  3. 78 FR 20123 - Extension of the Designation of Honduras for Temporary Protected Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... deforestation and erosion, and Honduras's largest source of fresh water (the Lago de Yojoa) is heavily polluted... the potable water distribution systems and sewage treatment facilities in urban and rural Honduras... situation with funds designated for [[Page 20125

  4. Cistern Performance for Stormwater Management in Camden, NJ

    EPA Science Inventory

    The Camden County Municipal Utilities Authority (CCMUA) installed cisterns at locations around the city of Camden, NJ. Cisterns provide a cost effective approach to reduce stormwater runoff volume and peak discharge. The collected water can be substituted for potable water in s...

  5. Biological Treatment of Water Disinfection Byproducts using Biotrickling Filter under Anaerobic Conditions

    EPA Science Inventory

    Presentation not available. Abstract provided. The chlorination of potable water leads to the formation of harmful disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). Many of these compounds are volatile organic compounds (VOCs). DBPs may ...

  6. UNDERSTANDING, DERIVING, AND COMPUTING BUFFER CAPACITY

    EPA Science Inventory

    Derivation and systematic calculation of buffer capacity is a topic that seems often to be neglected in chemistry courses and given minimal treatment in most texts. However, buffer capacity is very important in the chemistry of natural waters and potable water. It affects corro...

  7. An approach to monitoring cyanobacteria blooms at surface drinking water intakes using satellite imagery (10th National Monitoring Conference)

    EPA Science Inventory

    Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...

  8. Burned forests impact water supplies

    Treesearch

    Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steven P. Norman; Erika C. Cohen; Yongqiang Liu; Kevin D. Bladon; Steven G. McNulty

    2018-01-01

    Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize longterm records of wildland fire, climate, and river flow for 168 locations across the United States. We show...

  9. Developing science-based strategies to manage water conveyance and control weed and sediment in irrigation and potable water supply canals

    USDA-ARS?s Scientific Manuscript database

    This paper describes on-going applied research, field monitoring, laboratory analyses and hydrologic investigations being conducted by Northwest Hydraulic Consultants (NHC) with the Solano County Water Agency (SCWA) in collaboration with USDA-ARS and Solano Project Operators to identify the sources ...

  10. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  11. How to Identify Lead-Free Certification Marks for Drinking Water System & Plumbing Materials - Presentation

    EPA Science Inventory

    In 2011, Congress passed the “Reduction of Lead in Drinking Water Act,” which effectively reduces the lead content allowed in material used for potable water plumbing. The Act, which will go into effect on January 4, 2014, changes the definition of “lead-free” by reducing allowed...

  12. A modeling approach to evaluate the impact of conservation practices on runoff and sediments in Sasumua watershed, Kenya

    USDA-ARS?s Scientific Manuscript database

    Degradation of agricultural watersheds often reduces their capacity to provide vital environmental services such as food production, clean potable water, water bodies for recreation and generation of hydro-electric power. Soil and water conservation practices on agricultural lands can enhance the ca...

  13. 21 CFR 1240.80 - General requirements for water for drinking and culinary purposes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... culinary purposes. 1240.80 Section 1240.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... requirements for water for drinking and culinary purposes. Only potable water shall be provided for drinking and culinary purposes by any operator of a conveyance engaged in interstate traffic, except as...

  14. A taxonomy of chemicals of emerging concern based on observed fate at water resource recovery facilities.

    PubMed

    Jones, Steven M; Chowdhury, Zaid K; Watts, Michael J

    2017-03-01

    As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to augment diminishing fresh drinking water resources, concern exists that conventional barriers may prove deficient, and the upcycling of chemicals of emerging concern (CECs) could prove harmful to human health and aquatic species if more effective and robust treatment barriers are not in place. A multiple month survey, of both primary and secondary effluents, from three (3) WRRFs, for 95 CECs was conducted in 2014 to classify CECs by their persistence through conventional water reclamation processes. By sampling the participating WRRF process trains at their peak performance (as determined by measured bulk organics and particulates removal), a short-list of recalcitrant CECs that warrant monitoring to assess treatment performance at advanced water reclamation and production facilities. The list of identified CECs for potable water reclamation (indirect or direct potable reuse) include a herbicide and its degradants, prescription pharmaceuticals and antibiotics, a female hormone, an artificial sweetener, and chlorinated flame retardants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dioxins, Furans and PCBs in Recycled Water for Indirect Potable Reuse

    PubMed Central

    Rodriguez, Clemencia; Cook, Angus; Devine, Brian; Van Buynder, Paul; Lugg, Richard; Linge, Kathryn; Weinstein, Philip

    2008-01-01

    An assessment of potential health impacts of dioxin and dioxin-like compounds in recycled water for indirect potable reuse was conducted. Toxic equivalency factors (TEFs) for 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (PCBs) congeners have been developed by the World Health Organization to simplify the risk assessment of complex mixtures. Samples of secondary treated wastewater in Perth, Australia were examined pre-and post-tertiary treatment in one full-scale and one pilot water reclamation plant. Risk quotients (RQs) were estimated by expressing the middle-bound toxic equivalent (TEQ) and the upper-bound TEQ concentration in each sampling point as a function of the estimated health target value. The results indicate that reverse osmosis (RO) is able to reduce the concentration of PCDD, PCDF and dioxin-like PCBs and produce water of high quality (RQ after RO=0.15). No increased human health risk from dioxin and dioxin-like compounds is anticipated if highly treated recycled water is used to augment drinking water supplies in Perth. Recommendations for a verification monitoring program are offered. PMID:19151430

  16. Water withdrawals and trends from the Floridan aquifer system in the southeastern United States, 1950-2000

    USGS Publications Warehouse

    Marella, Richard L.; Berndt, Marian P.

    2005-01-01

    The Floridan aquifer system in the southeastern United States is one of the most productive aquifers in the world (Miller, 1990). This aquifer system underlies an area of about 100,000 square miles in southern Alabama, eastern and southern Georgia, southeastern Mississippi, southern South Carolina, and all of Florida. The Floridan aquifer system is the primary source of water for nearly 10 million people and supports agriculture, industry, and tourism throughout most of the region. In most areas, water from this aquifer is potable and needs very little treatment before use. However, in southern Florida (south of Lake Okeechobee), northwestern Florida and southern Alabama and Mississippi (Pensacola and westward), and eastern South Carolina, water in the aquifer system generally is not potable. The purpose of this report is to: Provide a general description of the Floridan aquifer system; Discuss water withdrawals by category for 2000; Highlight trends in water withdrawals between 1950 and 2000; and Provide a brief summary on the effects that human impacts have on the Floridan aquifer system.

  17. A group decision-making tool for the application of membrane technologies in different water reuse scenarios.

    PubMed

    Sadr, S M K; Saroj, D P; Kouchaki, S; Ilemobade, A A; Ouki, S K

    2015-06-01

    A global challenge of increasing concern is diminishing fresh water resources. A growing practice in many communities to supplement diminishing fresh water availability has been the reuse of water. Novel methods of treating polluted waters, such as membrane assisted technologies, have recently been developed and successfully implemented in many places. Given the diversity of membrane assisted technologies available, the current challenge is how to select a reliable alternative among numerous technologies for appropriate water reuse. In this research, a fuzzy logic based multi-criteria, group decision making tool has been developed. This tool has been employed in the selection of appropriate membrane treatment technologies for several non-potable and potable reuse scenarios. Robust criteria, covering technical, environmental, economic and socio-cultural aspects, were selected, while 10 different membrane assisted technologies were assessed in the tool. The results show this approach capable of facilitating systematic and rigorous analysis in the comparison and selection of membrane assisted technologies for advanced wastewater treatment and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  19. How much drinking water can be saved by using rainwater harvesting on a large urban area? application to Paris agglomeration.

    PubMed

    Belmeziti, Ali; Coutard, Olivier; de Gouvello, Bernard

    2014-01-01

    This paper is based on a prospective scenario of development of rainwater harvesting (RWH) on a given large urban area (such as metropolitan area or region). In such a perspective, a new method is proposed to quantify the related potential of potable water savings (PPWS) indicator on this type of area by adapting the reference model usually used on the building level. The method is based on four setting-up principles: gathering (definition of buildings-types and municipalities-types), progressing (use of an intermediate level), increasing (choice of an upper estimation) and prioritizing (ranking the stakes of RWH). Its application to the Paris agglomeration shows that is possible to save up to 11% of the total current potable water through the use of RWH. It also shows that the residential sector offers the most important part because it holds two-thirds of the agglomeration PPWS.

  20. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  1. Experimental Study on Feasibility of Non Potable Water with Lime on Properties of Ppc

    NASA Astrophysics Data System (ADS)

    Reddy Babu, G.; Madhusudana Reddy, B.; Ramana, N. V.; Sudharshan Reddy, B.

    2017-08-01

    This research aimed to investigate feasibility of outlet water of water treatment plant and limewater on properties of Portland pozzolana cement (PPC). Twenty water treatment plants were found out in the Bhimavaram municipality region in West Godavari district, Andhra Pradesh, India. Approximately, each plant supplying potable water about 4000 to 5000 L/day. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. At outlet, huge quantity of wasted water is being discharged into side drains in Bhimavaram municipality. One typical treatment plant was selected, and water at outlet was collected and Physical and chemical analysis was carried out as per producer described in APHA. The effect of plant outlet water(POW), lime water(LM), and plant outlet water with lime (POWL) on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were studied in laboratory and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time in POW, LW, and (POWL) as compared with reference specimens made with distilled water (DW). Compressive strength was significantly increased with LW and (POWL) specimens compared to that of reference specimens. XRD technique was employed to study the mineralogical analysis.

  2. Water Resources Adaptation to Global Changes: Risk Management through Sustainable Infrastructure Planning and Managements

    EPA Science Inventory

    Global changes due to cyclic and long-term climatic variations, demographic changes and economic development, have impacts on the quality and quantity of potable and irrigation source waters. Internal and external climatic forcings, for example, redistribute precipitation season...

  3. Water Resources Adaptation to Global Changes: Risk Management through Sustainable Infrastructure Planning and Management - Paper

    EPA Science Inventory

    Global changes due to cyclic and long-term climatic variations, demographic changes and economic development, have impacts on the quality and quantity of potable and irrigation source waters. Internal and external climatic forcings, for example, redistribute precipitation season...

  4. DISINFECTION BYPRODUCTS IN DRINKING WATER [LETTER TO THE EDITOR

    EPA Science Inventory

    Comment on Professor Howard Weinberg's report on the analysis of potable water for disinfection byproducts.

    "I am unconvinced that it is necessary to identify and quantify each individual compound. Suppose we identify 1000 or 10,000 individual compounds, can we afford t...

  5. CAN FLUORIDATION AFFECT WATER LEAD LEVELS AND LEAD NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of nexafluo...

  6. FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES

    EPA Science Inventory

    This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...

  7. Satellite Remote Sensing and Crowd Sourcing to Monitor and Predict Cyanobacteria Blooms

    EPA Science Inventory

    Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...

  8. Potable Water Treatment Facility General Permit (PWTF GP) ...

    EPA Pesticide Factsheets

    2017-08-28

    The Final PWTF GP establishes permit eligibility conditions, Notice of Intent (NOI) requirements, effluent limitations, standards, prohibitions, and best management practices for facilities that discharge to waters in the Commonwealth of Massachusetts (including both Commonwealth and Indian country lands) and the State of New Hampshire.

  9. Water resources of the Grand Rapids area, Michigan

    USGS Publications Warehouse

    Stramel, G.J.; Wisler, C.O.; Laird, L.B.

    1954-01-01

    The Grand Rapids area, Michigan, has three sources from which to obtain its water supply: Lake Michigan, the Grand River and its tributaries, and ground water. Each of the first two and possibly the third is capable of supplying the entire needs of the area.This area is now obtaining a part of its supply from each of these sources. Of the average use of 50 mgd (million gallons per day) during 1951, Lake Michigan supplied 29 mgd; the Grand River and its tributaries supplied 1 mgd; and ground water supplied 20 mgd.Lake Michigan offers a practically unlimited source of potable water. However, the cost of delivery to the Grand Rapids area presents an economic problem in the further development of this source. Even without storage the Grand River can provide an adequate supply for the city of Grand Rapids. The present average use of the city of Grand Rapids is about 30 mgd and the maximum use is about 60 mgd, while the average flow of the Grand River is 2, 495 mgd or 3, 860 cfs (cubic feet per second) and the minimum daily flow recorded is 246 mgd. The quality and temperature of water in the Grand River is less desirable than Lake Michigan water. However, with proper treatment its chemical quality can be made entirely satisfactory.The city of Grand Rapids is actively engaged in a study that will lead to the expansion of its present water-supply facilities to meet the expected growth in population in Grand Rapids and its environs.Ground-water aquifers in the area are a large potential source of supply. The Grand Rapids area is underlain by glacial material containing a moderately hard to very hard water of varying chemical composition but suitable for most uses. The glacial outwash and lacustrine deposits bordering principal streams afford the greatest potential for the development of large supplies of potable ground water. Below the glacial drift, bedrock formations contain water that is extremely hard and moderately to highly mineralized. Thus the major sources of usable ground water are the glacial drift and some parts of the bedrock. Wherever the bedrock yields large quantities of water, the water is generally of inferior quality. Any development should be preceded by test drilling and careful hydrologic and geologic studies of the area under consideration and chemical analysis of the water found.

  10. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  11. Evidence of pathogenic microbes in the International Space Station drinking water: reason for concern?

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Sumner, Randall; Pierson, Duane; Venkat, Parth; Venkateswaran, Kasthuri

    2004-01-01

    Molecular analyses were carried out on four preflight and six postflight International Space Station (ISS)-associated potable water samples at various stages of purification, storage, and transport, to ascertain their associated microbial diversities and overall microbial burdens. Following DNA extraction, PCR amplification, and molecular cloning procedures, rDNA sequences closely related to pathogenic species of Acidovorax, Afipia, Brevundimonas, Propionibacterium, Serratia, and others were recovered in varying abundance. Retrieval of sequences arising from the iodine (biocide)-reducing Delftia acidovorans in postflight waters is also of concern. Total microbial burdens of ISS potable waters were derived from data generated by an ATP-based enumeration procedure, with results ranging from 0 to 4.9 x 10(4) cells/ml. Regardless of innate biases in sample collection and analysis, such circumstantial evidence for the presence of viable, intact pathogenic cells should not be taken lightly. Implementation of new cultivation approaches and/or viability-based assays are requisite to confirm such an occurrence.

  12. A hybrid regenerative water recovery system for lunar/Mars life support applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.

    1992-01-01

    Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.

  13. Structural Analysis of Biofilm Formation by Rapidly and Slowly Growing Nontuberculous Mycobacteria▿

    PubMed Central

    Williams, Margaret M.; Yakrus, Mitchell A.; Arduino, Matthew J.; Cooksey, Robert C.; Crane, Christina B.; Banerjee, Shailen N.; Hilborn, Elizabeth D.; Donlan, Rodney M.

    2009-01-01

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae, and M. fortuitum, implicated in health care-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understand factors that influence growth in their environmental source, clinical RGM and slowly growing MAC isolates were grown as biofilm in a laboratory batch system. High and low nutrient levels were compared, as well as stainless steel and polycarbonate surfaces. Biofilm growth was measured after 72 h of incubation by enumeration of bacteria from disrupted biofilms and by direct quantitative image analysis of biofilm microcolony structure. RGM biofilm development was influenced more by nutrient level than by substrate material, though both affected biofilm growth for most of the isolates tested. Microcolony structure revealed that RGM develop several different biofilm structures under high-nutrient growth conditions, including pillars of various shapes (M. abscessus and M. fortuitum) and extensive cording (M. abscessus and M. chelonae). Although it is a slowly growing species in the laboratory, a clinical isolate of M. avium developed more culturable biofilm in potable water in 72 h than any of the 10 RGM examined. This indicates that M. avium is better adapted for growth in potable water systems than in laboratory incubation conditions and suggests some advantage that MAC has over RGM in low-nutrient environments. PMID:19201956

  14. Point-of-care controls for nosocomial legionellosis combined with chlorine dioxide potable water decontamination: a two-year survey at a Welsh teaching hospital.

    PubMed

    Hosein, I K; Hill, D W; Tan, T Y; Butchart, E G; Wilson, K; Finlay, G; Burge, S; Ribeiro, C D

    2005-10-01

    This study reports a two-year programme of attempted eradication of Legionella colonization in the potable water supply of a 1000-bed tertiary care teaching hospital in Wales. There was a simultaneous, point-of-care, sterile-water-only policy for all intensive care units (ICU) and bone marrow and renal transplant units in order to prevent acquisition of nosocomial Legionnaires' disease. The programme was initiated following a case of nosocomial pneumonia caused by Legionella pneumophila serogroup 1-Bellingham-like genotype A on the cardiac ICU. The case occurred 14 days after mitral and aortic valve replacement surgery. Clinical and epidemiological investigations implicated aspiration of hospital potable water as the mechanism of infection. Despite interventions with chlorine dioxide costing over 25000 UK pounds per annum, Legionella has remained persistently present in significant numbers (up to 20000 colony forming units/L) and with little reduction in the number of positive sites. Two further cases of nosocomial disease occurred over the following two-year period; in one case, aspiration of tap water was implicated again, and in the other case, instillation of contaminated water into the right main bronchus via a misplaced nasogastric tube was implicated. These cases arose because of inadvertent non-compliance with the sterile-water-only policy in high-risk locations. Enhanced clinical surveillance over the same two-year period detected no other cases of nosocomial disease. This study suggests that attempts at eradication of Legionella spp. from complex water systems may not be a cost-effective measure for prevention of nosocomial infections, and to the best of our knowledge is the first study from the UK to suggest that the introduction of a sterile-water-only policy for ICUs and other high-risk units may be a more cost-effective approach.

  15. 22 CFR 216.2 - Applicability of procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... jurisdiction or endangered or threatened species or their critical habitat; (v) Document and information... improvement projects; (ix) Powerplants; (x) Industrial plants; (xi) Potable water and sewerage projects other...

  16. 22 CFR 216.2 - Applicability of procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... jurisdiction or endangered or threatened species or their critical habitat; (v) Document and information... improvement projects; (ix) Powerplants; (x) Industrial plants; (xi) Potable water and sewerage projects other...

  17. 22 CFR 216.2 - Applicability of procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... jurisdiction or endangered or threatened species or their critical habitat; (v) Document and information... improvement projects; (ix) Powerplants; (x) Industrial plants; (xi) Potable water and sewerage projects other...

  18. Groundwater Risk Management Handbook

    DTIC Science & Technology

    2008-01-01

    restoration of groundwater to drinking water quality may not always be achievable due to technology limitations and, therefore, has developed a...extent (horizontal and vertical) of groundwater contamination • Future plans for groundwater use in the area, including local water resource planning...exposure (e.g., drinking water supplied by public water system and groundwater beneath the site is restricted for potable purposes) • Land use

  19. The occurrence and geochemistry of fluoride in some natural waters of Kenya

    NASA Astrophysics Data System (ADS)

    Gaciri, S. J.; Davies, T. C.

    1993-03-01

    In recent years the acquisition of considerable additional data on the hydrogeochemical behaviour of fluoride in natural waters of Kenya has been made possible by extensive surface-water and groundwater sampling campaigns as well as by improvements in analytical techniques. Ultimately, the principal source of fluoride relates to emissions from volcanic activity associated with the East African Rift System. Through various intermediate steps, but also directly, fluoride passes into the natural water system and components of the food chain. Ingestion by man is mainly through drinking water and other beverages. River waters in Kenya generally have a fluoride concentration lower than the recommended level (1.3 ppm) for potable water, thus promoting susceptibility to dental caries. Groundwaters and lake waters show considerably higher fluoride contents, resulting in the widespread incidence of fluorosis in areas where groundwater is the major source of drinking water, and lake fish is a regular component of the diet. This paper presents a synthesis of the data so far obtained on the sources and distribution of fluoride in the hydrological system of Kenya, examines the extent of fluorine toxicity and puts forward recommendations to combat or minimise the problem.

  20. Continuous sterilization of plumbing systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Moyers, C. V.; Wright, E. E., Jr.

    1979-01-01

    Continuous sterilization of plumbing, such as in hospitals, clinics, and biological testing laboratories is possible with ethylene oxide/Freon 12 (ETO/F-12) humidifier developed for sterilization of potable water systems.

  1. Development of a method for the determination of iodine in spacecraft potable water

    NASA Technical Reports Server (NTRS)

    Whittle, G. P.

    1972-01-01

    A one-reagent indicator solution has been prepared for the analysis of iodine concentrations in the range of 0.5 to 12 mg/1 of I2 for use on the potable water proposed for the Skylab project. The indicator solution was formulated to contain the minimum concentrations of reagents for optimum analytical performance. Performance tests indicated that the reagent is stable for at least six months and is reliable for the determination of I2 under a variety of conditions of I(-) concentrations and sample temperatures. Visual estimations as low as 0.5 mg/1 were obtained without difficulty and the stability of the developed color allows visual determinations from 0.5 to 12 mg/1 of I2 with a relatively small error.

  2. Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. I.; Barnes, R.

    1994-01-01

    The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on 1 Nov. 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHF's) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR). The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out and into the RAHF drinking water tanks. The CWR is a Kevlar(trademark) reinforced storage bladder, connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system and allows for the transport of the water back to the Spacelab where it is pumped into each of two RAHFs. Additional components of the FPU system include the inlet and outlet fluid hoses, a power cable for providing 28 volt direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab. This paper will present the design process and development approach for the lnflight Refill Unit, define some of the key design issues which had to be addressed, and summarize the inflight operational performance of the unit during the SLS-2 mission.

  3. PATHOGENICITY OF DRINKING WATER ISOLATES OF HETEROTROPHIC BACTERIA WITH PUTATIVE VIRULENCE FACTORS

    EPA Science Inventory

    Although the heterotrophic plate count (HPC) bacteria normally found in potable water are not a threat to the healthy population, some of them may be opportunistic pathogens that could cause adverse health effects in individuals with impaired immune systems. Earlier studies of t...

  4. The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey

    ERIC Educational Resources Information Center

    Calabrese, Edward J.; And Others

    1978-01-01

    The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)

  5. Flooding and Health Care Visits for Clostridium Difficile Infection: A Case-Crossover Analysis

    EPA Science Inventory

    Floods can contaminate potable water and other resources, thus increasing the potential for fecal-oral transmission of pathogens. Clostridium difficile is a bacterium that can spread by water and cause acute gastrointestinal illness. It often affects older adults who are hospital...

  6. CAN FLUORIDATION AFFECT WATER LEAD (II) LEVELS AND LEAD (II) NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of hexafl...

  7. THE FATE OF THE HALOACETATES IN DRINKING WATER - CHEMICAL KINETICS IN AQUEOUS SOLUTION

    EPA Science Inventory

    Haloacetates comprise about 13% of the measurable halogenated organic matter in potable water supplies after chlorination. Some of these species have been linked with animal carcinogenesis and are regulated under the Stage 1 Disinfection Byproduct (DBP) Rule. However, it is known...

  8. Household Devices for Safe Drinking Water in Small Communities

    EPA Science Inventory

    In collaboration with the US EPA, the Inter American University of Puerto Rico Center for Environmental Education, Conservation and Research (CECIA-IAUPR) will sponsor the 9th CECIA-IAUPR Biennial Symposium on Potable Water Issues in Bayamon, Puerto Rico on March 10 and 11, 2011....

  9. 7 CFR 1778.21 - Application processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.21 Application... acute shortage of potable water, or that such a decline or shortage is imminent, and that the proposed... 7 Agriculture 12 2011-01-01 2011-01-01 false Application processing. 1778.21 Section 1778.21...

  10. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    USDA-ARS?s Scientific Manuscript database

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  11. Movement of Endotoxin Through Soil Columns

    PubMed Central

    Goyal, Sagar M.; Gerba, Charles P.; Lance, J. Clarence

    1980-01-01

    Land treatment of wastewater is an attractive alternative to conventional sewage treatment systems and is gaining widespread acceptance. Although land application systems prevent surface water pollution and augment the available water supplies, the potential dangers to human health should be evaluated. Since sewage may contain high amounts of bacterial endotoxin, the removal of endotoxin from sewage by percolation through soil was investigated. It was found that 90 to 99% of the endotoxin was removed after travel of sewage through 100 to 250 cm of loamy sand soil. When distilled water was allowed to infiltrate into the soil to simulate rainfall, the endotoxin was mobilized and moved in a concentrated band through the soil column. On testing samples from actual land treatment sites, as much as 480 ng of endotoxin per milliliter was found in some groundwater samples. The presence of endotoxin in potable water is known to be a potential problem under some circumstances, but the importance of endotoxin in water supplies has not been fully assessed. Therefore, the design, operation, and management of land application systems should take into account the fate of endotoxin in groundwater beneath the sites. PMID:7387154

  12. SURVEY OF GROUND, SURFACE, AND POTABLE WATERS FOR THE PRESENCE OF LEGIONELLA SPECIES BY ENVIROAMP PCR LEGIONELLA KIT, CULTURE, AND IMMUNOFLUORESCENT STAINING

    EPA Science Inventory

    A total of 116 samples from numerous aquatic sources including water from faucets, showerheads, dental units, fire sprinklers, and surface waters were examined for the presence of Legionella by the EnviroAmp Legionella PCR kit, culture on BCYEx, or direct fluorescent antibody (DF...

  13. 21 CFR 1240.80 - General requirements for water for drinking and culinary purposes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false General requirements for water for drinking and culinary purposes. 1240.80 Section 1240.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DRUG ADMINISTRATION CONTROL OF COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.80 General...

  14. Technologies for ECLSS Evolution

    NASA Technical Reports Server (NTRS)

    Diamant, Bryce L.

    1990-01-01

    Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.

  15. Primary Amebic Meningoencephalitis Caused by Naegleria fowleri, Karachi, Pakistan

    PubMed Central

    Shakoor, Sadia; Beg, Mohammad Asim; Bandea, Rebecca; Sriram, Rama; Noman, Fatima; Ali, Farheen; Visvesvara, Govinda S.; Zafar, Afia

    2011-01-01

    We report 13 cases of Naegleria fowleri primary amebic meningoencephalitis in persons in Karachi, Pakistan, who had no history of aquatic activities. Infection likely occurred through ablution with tap water. An increase in primary amebic meningoencephalitis cases may be attributed to rising temperatures, reduced levels of chlorine in potable water, or deteriorating water distribution systems. PMID:21291600

  16. [The prospects for using potable mineral waters as agents for the primary prevention of gastroduodenal ulcers].

    PubMed

    Polushina, N D; Frolkov, V K

    1990-01-01

    Primary preventive effects of mineral water Essentuki 17 were investigated on 500 male Wistar rats (body mass 200-250 g). It is demonstrated that oral pretreatment with the above water can prevent the onset of gastroduodenal ulcers. Changes in secretion of gastrin, insulin, glucagon, triiodothyronine and thyroxin support the clinical evidence.

  17. Solar Disinfection Improves Drinking Water Quality to Prevent Diarrhea in Under-Five Children in Sikkim, India

    PubMed Central

    Rai, BB; Pal, Ranabir; Kar, Sumit; Tsering, Dechen C

    2010-01-01

    Background: Solar radiations improve the microbiological quality of water and offer a method for disinfection of drinking water that requires few resources and no expertise and may reduce the prevalence of diarrhea among under-five children. Aims and Objectives: To find out the reduction in the prevalence of diarrhea in the under-five children after consumption of potable water treated with solar disinfection method. Materials and Methods: This was a population-based interventional prospective study in the urban slum area of Mazegoan, Jorethang, south Sikkim, during the period 1st May 2007 to 30th November 2007 on 136 children in the under-five age group in 102 households selected by random sampling. Main outcome measure was the assessment of the reduction of the prevalence of diarrhea among under-five children after consumption of potable water treated with solar disinfection method practiced by the caregivers in the intervention group keeping water in polyethylene terephthalate (PET) bottles as directed by the investigators. The data were collected by the interview method using a pre-tested questionnaire prepared on the basis of socio-demographics and prevalence of diarrhea. The data were subjected to percentages and chi-square tests, which were used to find the significance. Results: After four weeks of intervention among the study group, the diarrhea prevalence was 7.69% among solar disinfection (SODIS) users, while 31.82% prevalence was observed among non-users in that period; the reduction in prevalence of diarrhea was 75.83%. After eight weeks of intervention, the prevalence of diarrhea was 7.58% among SODIS users and 31.43% among non-users; the reduction in diarrhea was 75.88% in the study group. The findings were found to be statistically significant. Conclusions: In our study, we observed that the prevalence of diarrhea decreased significantly after solar disinfection of water was practiced by the caregivers keeping potable water in PET bottles in the intervention group. PMID:20927281

  18. An inflight refill unit for replenishing research animal drinking water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. L.; Barnes, R.

    1995-01-01

    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab.

  19. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review.

    PubMed

    Inyang, Mandu; Dickenson, Eric

    2015-09-01

    In this work, the potential benefits, economics, and challenges of applying biochar in water treatment operations to remove organic and microbial contaminants was reviewed. Minimizing the use of relatively more expensive traditional sorbents in water treatment is a motivating aspect of biochar production, e.g., $246/ton non-activated biochar to $1500/ton activated carbon. Biochar can remove organic contaminants in water, such as some pesticides (0.02-23 mg g(-1)), pharmaceutical and personal care products (0.001-59 mg g(-1)), dyes (2-104 mg g(-1)), humic acid (60 mg g(-1)), perfluorooctane sulfonate (164 mg g(-1)), and N-nitrosomodimethylamine (3 mg g(-1)). Including adsorption/filtration applications, biochar can potentially be used to inactivate Escherichia coli via disinfection, and transform 95% of 2-chlorobiphenyl via advanced oxidation processes. However, more sorption data using biochar especially at demonstration-scale, for treating potable and reuse water in adsorption/filtration applications will help establish the potential of biochars to serve as surrogates for activated carbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Computer simulation of thermal and fluid systems for MIUS integration and subsystems test /MIST/ laboratory. [Modular Integrated Utility System

    NASA Technical Reports Server (NTRS)

    Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.

    1975-01-01

    This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.

Top