Sample records for problem solving expertise

  1. Relevant Indicators of Relative Expertise in Economic Problem Solving: A Factor Analysis.

    ERIC Educational Resources Information Center

    VanFossen, Phillip J.

    This paper reports preliminary research into the nature of relative expertise in economic problem solving. Specifically, this report seeks to address the question of whether the presence of economic knowledge alone accounts for expertise in economic problem solving or whether both economic knowledge and the development and employment of economic…

  2. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  3. The Nature and Impact of Task Definition: Information Problem Categorization during Task Definition within the Information Problem-Solving Process

    ERIC Educational Resources Information Center

    Marino, John L., Jr.

    2017-01-01

    Information literacy describes expertise in information problem-solving. This expertise includes facility in several endeavors addressed by the information behavior literature, including information needs, seeking, and use. Definitions and descriptions of information literacy suggest that this expertise is broadly applicable to a variety of…

  4. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  5. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  6. Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.

    2015-04-01

    Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise-undergraduate students of chemistry and Ph.D. students in physical chemistry-identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed. Third contribution to special issue entitled: Conceptual metaphor and embodied cognition in science learning

  7. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2010-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

  8. Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics

    ERIC Educational Resources Information Center

    Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.

    2015-01-01

    Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent…

  9. Enhancing Problem-Solving Expertise by Means of an Authentic, Collaborative, Computer Supported and Problem-Based Course

    ERIC Educational Resources Information Center

    Arts, Jos A. R.; Gijselaers, Wim H.; Segers, Mien S. R.

    2006-01-01

    Instructional designs, embedding learning in meaningful contexts such as problem-based learning (PBL) are increasingly used for fostering expertise to prepare students for the demands of the future workplace. However, cognitive outcomes of these curricula in terms of expertise outcomes are not always conclusive. Based on the instructional…

  10. The Effects of Experience Grouping on Achievement, Problem-Solving Discourse, and Satisfaction in Professional Technical Training

    ERIC Educational Resources Information Center

    Mulcahy, Robert Sean

    2010-01-01

    Learners inevitably enter adult technical training classrooms--indeed, in all classrooms--with different levels of expertise on the subject matter. When the diversity of expertise is wide and the course makes use of small group problem solving, instructors have a choice about how to group learners: they may distribute learners with greater…

  11. Mental Models and Creative Problem-Solving: The Relationship of Objective and Subjective Model Attributes

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Hester, Kimberly S.; Robledo, Issac C.; Peterson, David R.; Day, Eric A.; Hougen, Dean F.; Barrett, Jamie D.

    2012-01-01

    Knowledge, or expertise, has been held to contribute to creative problem-solving. In this effort, the relationship of one form of knowledge, mental models, to creative problem-solving was assessed. Undergraduates were asked to solve either a marketing or an education problem calling for creative thought. Prior to generating solutions to these…

  12. Problem-Solving Rubrics Revisited: Attending to the Blending of Informal Conceptual and Formal Mathematical Reasoning

    ERIC Educational Resources Information Center

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-01-01

    Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…

  13. Assessing Expertise in Introductory Physics Using Categorization Task

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2011-01-01

    The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking…

  14. Assessing Student Expertise in Introductory Physics with Isomorphic Problems. II. Effect of Some Potential Factors on Problem Solving and Transfer

    ERIC Educational Resources Information Center

    Chandralekha; Singh

    2008-01-01

    In this paper, we explore the use of isomorphic problem pairs (IPPs) to assess introductory physics students' ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems "isomorphic" because they require the same physics principle to solve them. We analyze written…

  15. Qualitative Understanding of Magnetism at Three Levels of Expertise

    NASA Astrophysics Data System (ADS)

    Stefani, Francesco; Marshall, Jill

    2010-03-01

    This work set out to investigate the state of qualitative understanding of magnetism at various stages of expertise, and what approaches to problem-solving are used across the spectrum of expertise. We studied three groups: 10 novices, 10 experts-in-training, and 11 experts. Data collection involved structured interviews during which participants solved a series of non-standard problems designed to test for conceptual understanding of magnetism. The interviews were analyzed using a grounded theory approach. None of the novices and only a few of the experts in training showed a strong understanding of inductance, magnetic energy, and magnetic pressure; and for the most part they tended not to approach problems visually. Novices frequently described gist memories of demonstrations, text book problems, and rules (heuristics). However, these fragmentary mental models were not complete enough to allow them to reason productively. Experts-in-training were able to solve problems that the novices were not able to solve, many times simply because they had greater recall of the material, and therefore more confidence in their facts. Much of their thinking was concrete, based on mentally manipulating objects. The experts solved most of the problems in ways that were both effective and efficient. Part of the efficiency derived from their ability to visualize and thus reason in terms of field lines.

  16. Qualitative Understanding of Magnetism at Three Levels of Expertise

    NASA Astrophysics Data System (ADS)

    Stefani, Francesco; Marshall, Jill

    2009-04-01

    This work set out to investigate the state of qualitative understanding of magnetism at various stages of expertise, and what approaches to problem-solving are used across the spectrum of expertise. We studied three groups: 10 novices, 10 experts-in-training, and 11 experts. Data collection involved structured interviews during which participants solved a series of non-standard problems designed to test for conceptual understanding of magnetism. The interviews were analyzed using a grounded theory approach. None of the novices and only a few of the experts in training showed a strong understanding of inductance, magnetic energy, and magnetic pressure; and for the most part they tended not to approach problems visually. Novices frequently described gist memories of demonstrations, text book problems, and rules (heuristics). However, these fragmentary mental models were not complete enough to allow them to reason productively. Experts-in-training were able to solve problems that the novices were not able to solve, many times simply because they had greater recall of the material, and therefore more confidence in their facts. Much of their thinking was concrete, based on mentally manipulating objects. The experts solved most of the problems in ways that were both effective and efficient. Part of the efficiency derived from their ability to visualize and thus reason in terms of field lines.

  17. Impact of Guided Reflection with Peers on the Development of Effective Problem Solving Strategies and Physics Learning

    ERIC Educational Resources Information Center

    Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students must learn effective problem solving strategies in order to develop expertise in physics. Effective problem solving strategies include a conceptual analysis of the problem followed by planning of the solution, and then implementation, evaluation, and reflection upon the process. Research suggests that converting a problem from the initial…

  18. Toward Theory-Based Instruction in Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Heller, Joan I.; And Others

    Several empirical and theoretical analyses related to scientific problem-solving are reviewed, including: detailed studies of individuals at different levels of expertise, and computer models simulating some aspects of human information processing during problem solving. Analysis of these studies has revealed many facets about the nature of the…

  19. Problem Solving and the Development of Expertise in Management.

    ERIC Educational Resources Information Center

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  20. The Process of Solving Complex Problems

    ERIC Educational Resources Information Center

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  1. Model-Eliciting Activities (MEAs) as a Bridge between Engineering Education Research and Mathematics Education Research

    ERIC Educational Resources Information Center

    Hamilton, Eric; Lesh, Richard; Lester, Frank; Brilleslyper, Michael

    2008-01-01

    This article introduces Model-Eliciting Activities (MEAs) as a form of case study team problem-solving. MEA design focuses on eliciting from students conceptual models that they iteratively revise in problem-solving. Though developed by mathematics education researchers to study the evolution of mathematical problem-solving expertise in middle…

  2. Do Cases Teach Themselves? A Comparison of Case Library Prompts in Supporting Problem-Solving during Argumentation

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.

    2017-01-01

    Theorists have argued instructional strategies that emphasize ill-structured problem solving are an effective means to support higher order learning skills such as argumentation. However, argumentation is often difficult because novices lack the expertise or experience needed to solve contextualized problems. One way to supplement this lack of…

  3. Ill-Structured Problem Solving of Novice Reading Specialists and Expert Assessment Specialists: Learning and Expertise

    ERIC Educational Resources Information Center

    Currie-Rubin, Rachel

    2012-01-01

    This dissertation examines the problem-solving processes of seven graduate student novices enrolled in a course in educational assessment and ten educational assessment experts. Using Jonassen's (1997) ill- and well-structured problem-solving frameworks, I analyze think-aloud protocols of experts and novices as they examine ill-structured…

  4. Epistemic Beliefs about Justification Employed by Physics Students and Faculty in Two Different Problem Contexts

    NASA Astrophysics Data System (ADS)

    Çağlayan Mercan, Fatih

    2012-06-01

    This study examines the epistemic beliefs about justification employed by physics undergraduate and graduate students and faculty in the context of solving a standard classical physics problem and a frontier physics problem. Data were collected by a think-aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. Seven modes of justification were identified and used for exploring the relationships between each justification mode and problem context, and expertise level. The data showed that justification modes were not mutually exclusive and many respondents combined different modes in their responses in both problem contexts. Success on solving the standard classical physics problem was not related to any of the justification modes and was independent of expertise level. The strength of the association across the problem contexts for the authoritative, rational, and empirical justification modes fell in the medium range and for the modeling justification mode fell in the large range of practical significance. Expertise level was not related with the empirical and religious justification modes. The strength of the association between the expertise level and the authoritative, rational, experiential, and relativistic justification modes fell in the medium range, and the modeling justification mode fell in the large range of practical significance. The results provide support for the importance of context for the epistemic beliefs about justification and are discussed in terms of the implications for teaching and learning science.

  5. Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan

    DTIC Science & Technology

    2010-11-01

    applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied

  6. An embodied perspective on expertise in solving the problem of making a geologic map

    NASA Astrophysics Data System (ADS)

    Callahan, Caitlin Norah

    The task of constructing a geologic map is a cognitively and physically demanding field-based problem. The map produced is understood to be an individual's two-dimensional interpretation or mental model of the three-dimensional underlying geology. A popular view within the geoscience community is that teaching students how to make a geologic map is valuable for preparing them to deal with disparate and incomplete data sets, for helping them develop problem-solving skills, and for acquiring expertise in geology. Few previous studies have focused specifically on expertise in geologic mapping. Drawing from literature related to expertise, to problem solving, and to mental models, two overarching research questions were identified: How do geologists of different levels of expertise constrain and solve an ill-structured problem such as making a geologic map? How do geologists address the uncertainties inherent to the processes and interpretations involved in solving a geologic mapping problem? These questions were answered using a methodology that captured the physical actions, expressed thoughts, and navigation paths of geologists as they made a geologic map. Eight geologists, from novice to expert, wore a head-mounted video camera with an attached microphone to record those actions and thoughts, creating "video logs" while in the field. The video logs were also time-stamped, which allowed the visual and audio data to be synchronized with the GPS data that tracked participants' movements in the field. Analysis of the video logs yielded evidence that all eight participants expressed thoughts that reflected the process of becoming mentally situated in the mapping task (e.g. relating between distance on a map and distance in three-dimensional space); the prominence of several of these early thoughts waned in the expressed thoughts later in the day. All participants collected several types of data while in the field; novices, however, did so more continuously throughout the day whereas the experts collected more of their data earlier in the day. Experts and novices also differed in that experts focused more on evaluating certainty in their interpretations; the novices focused more on evaluating the certainty of their observations and sense of location.

  7. Context and Expertise: The Case of Electronic Troubleshooting.

    ERIC Educational Resources Information Center

    Flesher, Jeffrey W.

    Electronic troubleshooting expertise was explored in the three contexts (design, production, and repair) that reflect distinct problem solving task environments. The purpose of the effort was to provide a more precise definition of the boundaries of expertise in electronics troubleshooting and the relationship of context to the development of…

  8. Climate change: could it help develop 'adaptive expertise'?

    PubMed

    Bell, Erica; Horton, Graeme; Blashki, Grant; Seidel, Bastian M

    2012-05-01

    Preparing health practitioners to respond to the rising burden of disease from climate change is emerging as a priority in health workforce policy and planning. However, this issue is hardly represented in the medical education research. The rapidly evolving wide range of direct and indirect consequences of climate change will require health professionals to have not only broad content knowledge but also flexibility and responsiveness to diverse regional conditions as part of complex health problem-solving and adaptation. It is known that adaptive experts may not necessarily be quick at solving familiar problems, but they do creatively seek to better solve novel problems. This may be the result of an acquired approach to practice or a pathway that can be fostered by learning environments. It is also known that building adaptive expertise in medical education involves putting students on a learning pathway that requires them to have, first, the motivation to innovatively problem-solve and, second, exposure to diverse content material, meaningfully presented. Including curriculum content on the health effects of climate change could help meet these two conditions for some students at least. A working definition and illustrative competencies for adaptive expertise for climate change, as well as examples of teaching and assessment approaches extrapolated from rural curricula, are provided.

  9. Understanding Managerial Problem-Solving, Knowledge Use and Information Processing: Investigating Stages from School to the Workplace

    ERIC Educational Resources Information Center

    Arts, Jos A. R.; Gijselaers, Wim H.; Boshuizen, Henny P. A.

    2006-01-01

    The present study explores stages in managerial problem-solving skills of participants beginning with formal education, and continuing through the professional workplace setting. We studied nine different levels of expertise: from novice student groups, to graduates and expert groups. Participants were asked to diagnose and solve business cases.…

  10. Shifting College Students' Epistemological Framing Using Hypothetical Debate Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2014-01-01

    Developing expertise in physics problem solving requires the ability to use mathematics effectively in physical scenarios. Novices and experts often perceive the use of mathematics in physics differently. Students' perceptions and how they frame the use of mathematics in physics play an important role in their physics problem solving. In this…

  11. The Quality of High School Students' Problem Solving from an Expertise Development Perspective

    ERIC Educational Resources Information Center

    Elvira, Quincy; Imants, Jeroen; deMaeyer, Sven; Segers, Mien

    2015-01-01

    The ability to solve problems is a key skill and is essential to our day-to-day lives, at home, at school and at work. The present study explores the quality of managerial problem-solving of participants who are in secondary education. We studied 10th, 11th, and 12th graders following a business track in the Netherlands. Participants were asked to…

  12. Threading Together Patient Expertise

    PubMed Central

    Civan, Andrea; Pratt, Wanda

    2007-01-01

    Patients are valuable sources of expertise for other patients in similar situations, but little is understood about the nature of this expertise. To address this knowledge gap, we investigated informational support as a mechanism for peers to help one another learn to cope with the breast cancer experience. We analyzed the types of problems discussed and recommendations offered by correspondents in three online breast cancer communities. Informational support was prevalent and directed towards problems in which correspondents were planning for future events or coping with emergent situations. Peers shared a wealth of patient expertise, including action strategies, recommended knowledge, suggested approaches, and information resources for dealing with problems. Our results highlight how peers are helping one another to learn. These findings bring insight to new support we could provide to patients for developing and sharing patient expertise, such as problem-based information organization and functionality for collaborative problem solving. PMID:18693814

  13. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    ERIC Educational Resources Information Center

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  14. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    ERIC Educational Resources Information Center

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  15. Learning Geometry Problem Solving by Studying Worked Examples: Effects of Learner Guidance and Expertise

    ERIC Educational Resources Information Center

    Bokosmaty, Sahar; Sweller, John; Kalyuga, Slava

    2015-01-01

    Research has demonstrated that instruction that relies heavily on studying worked examples is more effective for less experienced learners compared to instruction emphasizing problem solving. However, the guidance associated with studying some worked examples may reduce the performance of more experienced learners. This study investigated…

  16. Mathematical Problem Solving Ability of Eleventh Standard Students

    ERIC Educational Resources Information Center

    Priya, J. Johnsi

    2017-01-01

    There is a general assertion among mathematics instructors that learners need to acquire problem solving expertise, figure out how to communicate using mathematics knowledge and aptitude, create numerical reasoning and thinking, to see the interconnectedness amongst mathematics and other subjects. Based on this perspective, the present study aims…

  17. How to Stop Dealing with the Same Types of Problems Day after Day, Part 2

    ERIC Educational Resources Information Center

    Martin, Gary

    2005-01-01

    Gaining expertise in leadership requires time, commitment, an adequate knowledge base, and a working plan for learning and growth. Without a plan for learning, only tacit or "how-to" expertise is developed. Leaders often know how to solve the problems facing them, but fail to analyze and act on the underlying causes. This results in administrators…

  18. How to Stop Dealing with the Same Types of Problems Day after Day, Part 1

    ERIC Educational Resources Information Center

    Martin, Gary

    2005-01-01

    Gaining expertise in leadership requires time, commitment, an adequate knowledge base, and a working plan for learning and growth. Without a plan for learning, only tacit or "how-to" expertise is developed. Leaders often know how to solve the problems facing them, but they fail to analyze and act on the underlying causes. This results in…

  19. Thoughts on Expertise.

    ERIC Educational Resources Information Center

    Glaser, Robert

    This paper briefly reviews research on tasks in knowledge-rich domains including developmental studies, work in artificial intelligence, studies of expert/novice problem solving, and information processing analysis of aptitude test tasks that have provided increased understanding of the nature of expertise. Particularly evident is the finding that…

  20. Deep Learning towards Expertise Development in a Visualization-Based Learning Environment

    ERIC Educational Resources Information Center

    Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun

    2017-01-01

    With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…

  1. Writing Expertise and Second-Language Proficiency.

    ERIC Educational Resources Information Center

    Cumming, Alister

    1989-01-01

    Assessment of the English writing proficiency of 23 native French speaking students on 3 composition tasks found variance in the qualities of written texts and problem-solving behaviors. Writing expertise was found to affect discourse organization and content, writing complexity, heuristic strategies, and control strategies, while second-language…

  2. HELPR: Hybrid Evolutionary Learning for Pattern Recognition

    DTIC Science & Technology

    2005-12-01

    to a new approach called memetic algorithms that combines machine learning systems with human expertise to create new tools that have the advantage...architecture could form the foundation for a memetic system capable of solving ATR problems faster and more accurately than possible using pure human expertise

  3. Problem-Solving Strategies for Career Planning.

    ERIC Educational Resources Information Center

    McBryde, Merry J.; Karr-Kidwell, PJ

    The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…

  4. Case-Based Instruction in Post-Secondary Education: Developing Students' Problem-Solving Expertise.

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.

    This study was designed to explore changes in students' problem-solving skills as they analyzed instructional design case studies during a semester-long course. Nineteen students at two Midwestern universities analyzed six to ten case studies as part of their course assignments. Both quantitative and qualitative data were collected, with students'…

  5. Expertise in Problem Solving.

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; And Others

    Based on the premise that the quality of domain-specific knowledge is the main determinant of expertise in that domain, an examination was made of the shift from considering general, domain-independent skills and procedures, in both cognitive psychology and artificial intelligence, to the study of the knowledge base. Empirical findings and…

  6. An Exploration of the Use of Eye-Gaze Tracking to Study Problem-Solving on Standardized Science Assessments

    ERIC Educational Resources Information Center

    Tai, Robert H.; Loehr, John F.; Brigham, Frederick J.

    2006-01-01

    This pilot study investigated the capacity of eye-gaze tracking to identify differences in problem-solving behaviours within a group of individuals who possessed varying degrees of knowledge and expertise in three disciplines of science (biology, chemistry and physics). The six participants, all pre-service science teachers, completed an 18-item…

  7. Thinking inside the Tool Box: Creativity, Constraints, and the Colossal Portraits of Chuck Close

    ERIC Educational Resources Information Center

    Stokes, Patricia D.

    2014-01-01

    This article presents a problem-solving model to examine the often problematic relationship between expertise and creativity. The model has two premises, each the opposite of a common cliché. The first cliché asserts that creativity requires thinking outside-the-box. The first premise argues that experts can only think and problem solve inside the…

  8. A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    PubMed Central

    Crowley, Rebecca S.; Medvedeva, Olga

    2003-01-01

    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159

  9. Improving Mathematical Problem Solving in Grades 4 through 8. IES Practice Guide. NCEE 2012-4055

    ERIC Educational Resources Information Center

    Woodward, John; Beckmann, Sybilla; Driscoll, Mark; Franke, Megan; Herzig, Patricia; Jitendra, Asha; Koedinger, Kenneth R.; Ogbuehi, Philip

    2012-01-01

    The Institute of Education Sciences (IES) publishes practice guides in education to bring the best available evidence and expertise to bear on current challenges in education. Authors of practice guides combine their expertise with the findings of rigorous research, when available, to develop specific recommendations for addressing these…

  10. Reflection as a Means of Developing Expertise in Problem Solving, Decision Making, and Complex Thinking of Designers.

    ERIC Educational Resources Information Center

    Moallem, Mahnaz

    This paper focuses on reflection and reflective thinking as a means of developing expertise in instructional designers. The need for the reflective instructional designer is discussed, and reflective thinking is examined from several perspectives, i.e., controlled thinking, tacit knowledge, epistemic assumption, abductive reasoning, willingness to…

  11. Development and Validation of a Supportive Learning Environment for Expertise Development Questionnaire (SLEED-Q)

    ERIC Educational Resources Information Center

    Elvira, Quincy; Beausaert, Simon; Segers, Mien; Imants, Jeroen; Dankbaar, Ben

    2016-01-01

    Development of professional expertise is the process of continually transforming the repertoire of knowledge, skills and attitudes necessary to solve domain-specific problems which begins in late secondary education and continues during higher education and throughout professional life. One educational goal is to train students to think more like…

  12. A proposal to encourage intuitive learning in a senior-level analogue electronics course

    NASA Astrophysics Data System (ADS)

    Berjano, E.; Lozano-Nieto, A.

    2011-05-01

    One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the particular case of analogue electronics, an additional difficulty seems to be that understanding involves both analytic skills and an intuitive grasp of circuit characteristics. This paper presents a proposal to help senior students to think intuitively in order to identify the common issue involved in a group of problems of analogue electronics and build an abstract concept based on, for example, a theory or a mathematical model in order to use it to solve future problems. The preliminary results suggest that this proposal could be useful to promote intuitive reasoning in analogue electronics courses. The experience would later be useful to graduates in analytically solving new types of problems or in designing new electronic circuits.

  13. Pseudolongitudinal Investigation on Chinese Students' Categorization of Kinematics and Mechanics Problems

    ERIC Educational Resources Information Center

    Zhu, Guangtian; Wang, Jue

    2017-01-01

    Students' categorization of physics problems reflects their expertise in problem solving. We conducted a pseudolongitudinal study to investigate the development of students' categorization ability. Over 250 Chinese students from grade 10 to grade 12 were asked to categorize 20 problems of kinematics and mechanics into suitable categories based on…

  14. Can Undergraduates Be Transdisciplinary? Promoting Transdisciplinary Engagement through Global Health Problem-Based Learning

    ERIC Educational Resources Information Center

    Hay, M. Cameron

    2017-01-01

    Undergraduate student learning focuses on the development of disciplinary strength in majors and minors so that students gain depth in particular fields, foster individual expertise, and learn problem solving from disciplinary perspectives. However, the complexities of real-world problems do not respect disciplinary boundaries. Complex problems…

  15. Everyday Expertise in Self-Management of Diabetes in the Dominican Republic: Implications for Learning and Performance Support Systems Design

    ERIC Educational Resources Information Center

    Reyes Paulino, Lisette G.

    2012-01-01

    An epidemic such as diabetes is an extremely complex public health, economic and social problem that is difficult to solve through medical expertise alone. Evidence-based models for improving healthcare delivery systems advocate educating patients to become more active participants in their own care. This shift demands preparing chronically ill…

  16. Semantic Language Extensions for Implicit Parallel Programming

    DTIC Science & Technology

    2013-09-01

    mobile CPU interacts with a GPU on the same device and a cloud based backend at a remote location presents endless possibilities for solving com...for his contribution to the compiler infrastructure . His creativity in solving research problems and expertise in architecting and implementing...92 5.5.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5.2 Backend

  17. Using Categorization of Problems as an Instructional Tool to Help Introductory Students Learn Physics

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2016-01-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large…

  18. Epistemological beliefs of physics undergraduate and graduate students and faculty in the context of a well-structured and an ill-structured problem

    NASA Astrophysics Data System (ADS)

    Mercan, Fatih C.

    This study examines epistemological beliefs of physics undergraduate and graduate students and faculty in the context of solving a well-structured and an ill-structured problem. The data collection consisted of a think aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. The data analysis involved (a) identification of the range of beliefs about knowledge in the context of the well-structured and the ill-structured problem solving, (b) construction of a framework that unites the individual beliefs identified in each problem context under the same conceptual base, and (c) comparisons of the problem contexts and expertise level groups using the framework. The results of the comparison of the contexts of the well-structured and the ill-structured problem showed that (a) authoritative beliefs about knowledge were expressed in the well-structured problem context, (b) relativistic and religious beliefs about knowledge were expressed in the ill-structured problem context, and (c) rational, empirical, modeling beliefs about knowledge were expressed in both problem contexts. The results of the comparison of the expertise level groups showed that (a) undergraduates expressed authoritative beliefs about knowledge more than graduate students and faculty did not express authoritative beliefs, (b) faculty expressed modeling beliefs about knowledge more than graduate students and undergraduates did not express modeling beliefs, and (c) there were no differences in rational, empirical, experiential, relativistic, and religious beliefs about knowledge among the expertise level groups. As the expertise level increased the number of participants who expressed authoritative beliefs about knowledge decreased and the number of participants who expressed modeling based beliefs about knowledge increased. The results of this study implied that existing developmental and cognitive models of personal epistemology can explain personal epistemology in physics to a limited extent, however, these models cannot adequately account for the variation of epistemological beliefs across problem contexts. Modeling beliefs about knowledge emerged as a part of personal epistemology and an indicator of epistemological sophistication, which do not develop until extensive experience in the field. Based on these findings, the researcher recommended providing opportunities for practicing model construction for students.

  19. Conflict Prevention and Resolution Center (CPRC)

    EPA Pesticide Factsheets

    The Conflict Prevention and Resolution Center is EPA's primary resource for services and expertise in the areas of consensus-building, collaborative problem solving, alternative dispute resolution, and environmental collaboration and conflict resolution.

  20. Assessing ethical problem solving by reasoning rather than decision making.

    PubMed

    Tsai, Tsuen-Chiuan; Harasym, Peter H; Coderre, Sylvain; McLaughlin, Kevin; Donnon, Tyrone

    2009-12-01

    The assessment of ethical problem solving in medicine has been controversial and challenging. The purposes of this study were: (i) to create a new instrument to measure doctors' decisions on and reasoning approach towards resolving ethical problems; (ii) to evaluate the scores generated by the new instrument for their reliability and validity, and (iii) to compare doctors' ethical reasoning abilities between countries and among medical students, residents and experts. This study used 15 clinical vignettes and the think-aloud method to identify the processes and components involved in ethical problem solving. Subjects included volunteer ethics experts, postgraduate Year 2 residents and pre-clerkship medical students. The interview data were coded using the instruments of the decision score and Ethical Reasoning Inventory (ERI). The ERI assessed the quality of ethical reasoning for a particular case (Part I) and for an individual globally across all the vignettes (Part II). There were 17 Canadian and 32 Taiwanese subjects. Based on the Canadian standard, the decision scores between Taiwanese and Canadian subjects differed significantly, but made no discrimination among the three levels of expertise. Scores on the ERI Parts I and II, which reflect doctors' reasoning quality, differed between countries and among different levels of expertise in Taiwan, providing evidence of construct validity. In addition, experts had a greater organised knowledge structure and considered more relevant variables in the process of arriving at ethical decisions than did residents or students. The reliability of ERI scores was 0.70-0.99 on Part I and 0.75-0.80 on Part II. Expertise in solving ethical problems could not be differentiated by the decisions made, but could be differentiated according to the reasoning used to make those decisions. The difference between Taiwanese and Canadian experts suggests that cultural considerations come into play in the decisions that are made in the course of providing humane care to patients.

  1. NASA Health and Human Performance in Spaceflight

    NASA Technical Reports Server (NTRS)

    Antonsen, Erik

    2017-01-01

    NASA, because of its mission and history, has tended to be an insular organization dominated by traditional engineering. Because of the engineering problems associated with early space endeavors, the historical approach to solving problems has been that of engineering. Long duration space travel will require a different approach, one requiring wider participation of those with expertise in divergent, emerging, and evolving fields. NASA has only recently begun to recognize this insufficiency and to reach out to communities, both domestic and international, to gain expertise on how to remedy it.

  2. A framework for solving ill-structured community problems

    NASA Astrophysics Data System (ADS)

    Keller, William Cotesworth

    A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.

  3. Edgar Schein's Process versus Content Consultation Models.

    ERIC Educational Resources Information Center

    Rockwood, Gary F.

    1993-01-01

    Describes Schein's three models of consultation based on assumptions inherent in different helping styles: purchase of expertise and doctor-patient models, which focus on content of organization problems; and process consultation model, which focuses on how organizational problems are solved. Notes that Schein has suggested that consultants begin…

  4. Model Eliciting Activities: A Home Run

    ERIC Educational Resources Information Center

    Magiera, Marta T.

    2013-01-01

    An important goal of school mathematics is to enable students to formulate, approach, and refine problems beyond those they have studied, allowing them to organize and consolidate their mathematical thinking. To achieve this goal, students should be encouraged to develop expertise in a variety of areas, such as problem solving, reasoning and…

  5. Leadership for Learning: An Action Theory of School Change.

    ERIC Educational Resources Information Center

    Wagner, Tony

    2001-01-01

    Common factors contributing to teachers' resistance include risk aversion, craft expertise, and autonomy and isolation. Leaders' problem is to create ownership, not buy-in. Principals cannot make change alone or by edict, but must nurture engagement and commitment and motivate groups to learn and solve problems cooperatively. (MLH)

  6. 21st Century Human Performance.

    ERIC Educational Resources Information Center

    Clark, Ruth Colvin

    1995-01-01

    Technology can extend human memory and improve performance, but bypassing human intelligence has its dangers. Cognitive apprenticeships that compress learning experiences, provide coaching, and allow trial and error can build complex problem-solving skills and develop expertise. (SK)

  7. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  8. Changes in Teachers' Adaptive Expertise in an Engineering Professional Development Course

    ERIC Educational Resources Information Center

    Martin, Taylor; Peacock, Stephanie Baker; Ko, Pat; Rudolph, Jennifer J.

    2015-01-01

    Although the consensus seems to be that high-school-level introductory engineering courses should focus on design, this creates a problem for teacher training. Traditionally, math and science teachers are trained to teach and assess factual knowledge and closed-ended problem-solving techniques specific to a particular discipline, which is unsuited…

  9. An investigation of aviator problem-solving skills as they relate to amount of total flight time

    NASA Astrophysics Data System (ADS)

    Guilkey, James Elwood, Jr.

    As aircraft become increasingly more reliable, safety issues have shifted towards the human component of flight, the pilot. Jensen (1995) indicated that 80% of all General Aviation (GA) accidents are the result, at least in part, of errors committed by the aviator. One major focus of current research involves aviator decision making (ADM). ADM combines a broad range of psychological factors including personality, attitude, and motivation. This approach fails to isolate certain key components such as aviator problem-solving (APS) which are paramount to safe operations. It should be noted that there is a clear delineation between problem-solving and decision making and not assume that they are homogenous. For years, researchers, industry, and the Federal Aviation Administration (FAA) have depended on total flight hours as the standard by which to judge aviator expertise. A pilot with less than a prescribed number of hours is considered a novice while those above that mark are considered experts. The reliance on time as a predictor of performance may be accurate when considering skills which are required on every flight (i.e., takeoff and landing) but we can't assume that this holds true for all aspects of aviator expertise. Complex problem-solving for example, is something that is rarely faced during the normal course of flying. In fact, there are a myriad of procedures and FAA mandated regulations designed to assist pilots in avoiding problems. Thus, one should not assume that aviator problem-solving skills will increase over time. This study investigated the relationship between problem-solving skills of general aviation pilots and total number of flight hours. It was discovered that flight time is not a good predictor of problem-solving performance. There were two distinct strategies that were identified in the study. The first, progressive problem solving (PPS) was characterized by a stepwise method in which pilots gathered information, formulated hypotheses, and evaluated outcomes. Both high time as well as low time pilots demonstrated this approach. The second method, termed knee-jerk decision making was distinguished by a lack of problem-solving abilities and involved an almost immediate decision with little if any supporting information. Again both high and low time pilots performed in this manner. The result of these findings is a recommendation that the FAA adopt new training methods which will allow pilots to develop the skills required to handle critical inflight situations.

  10. Nursing's role in Y2K planning.

    PubMed

    Simpson, R L

    1999-04-01

    Why haven't more nurses fulfilled their role in Y2K planning? Nurses need to apply their skills and expertise to solving often overlooked problems such as point-of-service applications, transactions with business partners, and contingency planning.

  11. Overview of OHB Expertise on Mars Planetary Exploration Missions

    NASA Astrophysics Data System (ADS)

    Bergemann, C.; Muehlbauer, Q.; Paul, R.; Jaime, A.; Thiel, M.

    2018-04-01

    The first part provides an overview of the design and testing of the ExoMars SPDS. Lastly, lessons learned obtained from the sample testing are presented showing how operational procedures can optimize the system and solve occurring problems.

  12. Taking It Online--The Effects of Delivery Medium and Facilitator on Student Achievement in Problem-Based Learning

    ERIC Educational Resources Information Center

    Schoenfeld-Tacher, Regina; McConnell, Sherry; Kogan, Lori R.

    2004-01-01

    This study compares the effects of delivery medium (online vs. face-to-face) and facilitator content expertise on academic outcomes in a problem-based learning (PBL) course in anatomy for pre-health/medical majors. The content of online PBL sessions was examined to gain insight into the problem-solving process taking place in these situations.…

  13. Enhancing Cross-functional Collaboration and Effective Problem Solving Through an Innovation Challenge for Point-of-Care Providers.

    PubMed

    Bakallbashi, Eni; Vyas, Anjali; Vaswani, Nikita; Rosales, David; Russell, David; Dowding, Dawn; Bernstein, Michael; Abdelaal, Hany; Hawkey, Regina

    2015-01-01

    An internal employee challenge competition is a way to promote staff engagement and generate innovative business solutions. This Spotlight on Leadership focuses on the approach that a large not-for-profit healthcare organization, the Visiting Nurse Service of New York, took in designing and executing an innovation challenge. The challenge leveraged internal staff expertise and promoted wide participation. This model is 1 that can be replicated by organizations as leaders work to engage employees at the point of service in organization-wide problem solving.

  14. Method of Testing and Predicting Failures of Electronic Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, Frances A.

    1996-01-01

    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.

  15. Examining Learning Styles and Perceived Benefits of Analogical Problem Construction on SQL Knowledge Acquisition

    ERIC Educational Resources Information Center

    Mills, Robert J.; Dupin-Bryant, Pamela A.; Johnson, John D.; Beaulieu, Tanya Y.

    2015-01-01

    The demand for Information Systems (IS) graduates with expertise in Structured Query Language (SQL) and database management is vast and projected to increase as "big data" becomes ubiquitous. To prepare students to solve complex problems in a data-driven world, educators must explore instructional strategies to help link prior knowledge…

  16. Investigating a Metacognitive Strategy for Solving Indefinite Integration Problems in Calculus: An fMRI Study

    ERIC Educational Resources Information Center

    Schroeder, Larissa Bucchi

    2011-01-01

    Expertise and expert performance has long been a rich area of research. Experts differ from novices in several ways including the depth of their knowledge base, the ability to detect and recognize salient features of problems, more skilled and accurate performance, and strong self-monitoring skills. Advances in neuroscience methods such as…

  17. Towards an alternative to Benner's theory of expert intuition in nursing: a discussion paper.

    PubMed

    Gobet, Fernand; Chassy, Philippe

    2008-01-01

    Several authors have highlighted the role of intuition in expertise. In particular, a large amount of data has been collected about intuition in expert nursing, and intuition plays an important role in the influential theory of nursing expertise developed by Benner [1984. From Novice to Expert: Excellence and Power in Clinical Nursing Practice. Addison-Wesley, Menlo Park, CA]. We discuss this theory, and highlight both data that support it and data that challenge it. Based on this assessment, we propose a new theory of nursing expertise and intuition, which emphasizes how perception and conscious problem solving are intimately related. In the discussion, we propose that this theory opens new avenues of enquiry for research into nursing expertise.

  18. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  19. Beyond rules: The next generation of expert systems

    NASA Technical Reports Server (NTRS)

    Ferguson, Jay C.; Wagner, Robert E.

    1987-01-01

    The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.

  20. Communities of Practice: The Organizational Frontier.

    ERIC Educational Resources Information Center

    Wenger, Etienne C.; Snyder, William M.

    2000-01-01

    Communities of practice are groups of people informally bound by shared expertise and passion for joint enterprise. In organizations that value knowledge, they can help drive strategy, solve problems quickly, transfer best practices, develop professional skills, and help recruit and retain talented employees. (SK)

  1. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  2. Facilitating Learning in Multidisciplinary Groups with Transactive CSCL Scripts

    ERIC Educational Resources Information Center

    Noroozi, Omid; Teasley, Stephanie D.; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin

    2013-01-01

    Knowledge sharing and transfer are essential for learning in groups, especially when group members have different disciplinary expertise and collaborate online. Computer-Supported Collaborative Learning (CSCL) environments have been designed to facilitate transactive knowledge sharing and transfer in collaborative problem-solving settings. This…

  3. Enhancing Critical Thinking Skills in the Workplace.

    ERIC Educational Resources Information Center

    Wojcik, Thomas T.

    1996-01-01

    Hoechst Celanese, one of the world's largest pharmaceutical and chemical companies, used an Innovation Model as a framework for integrating the technology, business, and human factors needed to solve problems and create business successes. The model involved three elements (expertise, skills, and motivation). An experiential course in principles…

  4. Improving Virtual Teams through Knowledge Management: A Case Study

    ERIC Educational Resources Information Center

    Laughridge, James F.

    2012-01-01

    Within the dynamic globalized operating environment, organizations are increasingly relying on virtual teams to solve their most difficult problems, leverage their expertise and expand their presence. The use of virtual teams by organizations continues to increase greatly as the technologies supporting them evolve. Despite improvements in…

  5. The Implications of Research on Expertise for Curriculum and Pedagogy

    ERIC Educational Resources Information Center

    Feldon, David F.

    2007-01-01

    Instruction on problem solving in particular domains typically relies on explanations from experts about their strategies. However, research indicates that such self-reports often are incomplete or inaccurate (e.g., Chao & Salvendy, 1994; Cooke & Breedin, 1994). This article evaluates research on experts' cognition, the accuracy of experts'…

  6. Research Cluster Development at a Predominantly Undergraduate Institution

    ERIC Educational Resources Information Center

    Langley-Turnbaugh, S. J.; Shehata, T.

    2015-01-01

    The University of Southern Maine (USM) designed and implemented an internal Research Cluster Seed Fund competition with the goals of building USM faculty expertise to address industry and community needs, deepening the impact of research through an interdisciplinary approach to solving problems, and leveraging external funding to sustain…

  7. Activity Theory Framework and Cognitive Perspectives in Designing Technology-Based Support Systems.

    ERIC Educational Resources Information Center

    Sheu, Feng-Ru

    With the increased demand and interest in electronic performance support systems (EPSS), particularly for supporting knowledge-based problems solving expertise in the information age (Gustafson, 2000; Dickelman, 2000; Kasvi & Vartiainen, 2000), instructional designers are facing a new challenge designing a system that could deliver (or…

  8. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    PubMed

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  9. VisEL: Visualisation of Expertise Level in a Special Interest Group Knowledge Portal

    NASA Astrophysics Data System (ADS)

    Zulhafizsyam Wan Ahmad, Wan Muhammad; Sulaiman, Shahida; Yusof, Umi Kalsom

    A variety of portals are available nowadays to support diverse purposes such as commercial, publishing, personal, affinity and corporate portals. Affinity portals promote electronic communities who share common interest such as a special interest group (SIG). Knowledge portal is an emerging trend that benefits the existing portal technology by designing such portals with proper representation of the members' shared knowledge. Besides textual representation for diverse expertise levels, graphical visualisation will be able to support the requirements in searching and representing expertise level among e-community. There is a number of existing SIG portals available. However, they do not visualise effectively and accurately the expertise level of members and make it difficult for users to search their targeted experts for instance searching the highest expertise level to have a discussion and to solve their problems related to a project. The goal of this paper is to propose a graphical visualisation of expertise level method (VisEL) using an interactive tag cloud technique that represents expertise level of each member based on their knowledge in a software engineering SIG portal.

  10. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course

    NASA Astrophysics Data System (ADS)

    Lufri, L.; Fitri, R.; Yogica, R.

    2018-04-01

    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  11. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  12. Cooperative Learning in Organic Chemistry Increases Student Assessment of Learning Gains in Key Transferable Skills

    ERIC Educational Resources Information Center

    Canelas, Dorian A.; Hill, Jennifer L.; Novicki, Andrea

    2017-01-01

    Science and engineering educators and employers agree that students should graduate from college with expertise in their major subject area as well as the skills and competencies necessary for productive participation in diverse work environments. These competencies include problem-solving, communication, leadership, and collaboration, among…

  13. Some Transportation Alternatives for Commuter Colleges and Universities.

    ERIC Educational Resources Information Center

    Hardwick, Mark W.; Kazlo, Martha P.

    This document is written in an effort to urge commuter colleges and universities to use their technical expertise in solving the automobile problem, which adds to the congestion and pollution in college communities. It has become a necessity that colleges and universities begin to explore ways to offer a variety of less expensive transportation…

  14. Teacher Leadership: Making Your Voice Count

    ERIC Educational Resources Information Center

    Singh, Kathryn

    2011-01-01

    Though principals play an important role in setting the vision for a school, and moving their staffs toward that vision, it is increasingly apparent that teachers must take on active decision-making and problem-solving roles. By sharing these responsibilities, schools can tap into the expertise of those most in tune with teaching and learning, and…

  15. Retooling Asian-Pacific Teachers to Promote Creativity, Innovation and Problem Solving in Science Classrooms

    ERIC Educational Resources Information Center

    Lee, Kar-Tin; Chalmers, Christina; Chandra, Vinesh; Yeh, Andy; Nason, Rod

    2014-01-01

    This paper reports on a Professional Learning Programme undertaken by primary school teachers in China that aimed to facilitate the development of "adaptive expertise" in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education's (2010--2020) education reforms.…

  16. The Role of the Consultant: Content Expert or Process Facilitator?

    ERIC Educational Resources Information Center

    Schein, Edgar H.

    1978-01-01

    This triad of consulting models identifies the assumption upon which each rests. The consultant with adequate knowledge and self-insight will understand which model is appropriate to a given situation. The three models include: (1) purchase of expertise; (2) doctor-patient role; and (3) consultation process for problem solving. (Author/MFD)

  17. A Modest Proposal for Improving the Education of Reading Teachers. Technical Report No. 487.

    ERIC Educational Resources Information Center

    Anderson, Richard C.; And Others

    A gap exists between talk about teaching that is featured in most preservice teacher education and the working knowledge and problem-solving expertise that characterize skilled teaching. This gap exists because typical teacher training does not embody the principles of modeling, coaching, scaffolding, articulation, and reflection. Three methods…

  18. The Key Roles in the Informal Organization: A Network Analysis Perspective

    ERIC Educational Resources Information Center

    de Toni, Alberto F.; Nonino, Fabio

    2010-01-01

    Purpose: The purpose of this paper is to identify the key roles embedded in the informal organizational structure (informal networks) and to outline their contribution in the companies' performance. A major objective of the research is to find and characterize a new key informal role that synthesises problem solving, expertise, and accessibility…

  19. Learning and Learning-to-Learn by Doing: Simulating Corporate Practice in Law School.

    ERIC Educational Resources Information Center

    Okamoto, Karl S.

    1995-01-01

    A law school course in advanced corporate legal practice is described. The course, a series of simulated lawyering tasks centered on a hypothetical leveraged buyout transaction, is designed to go beyond basic legal analysis to develop professional expertise in legal problem solving. The course description includes goals, syllabus design,…

  20. The Relative Efficiency of Two Strategies for Conducting Cognitive Task Analysis

    ERIC Educational Resources Information Center

    Flynn, Catherine L.

    2012-01-01

    Cognitive task analysis (CTA) has evolved over the past half century to capture the mental decisions and analysis that experts have learned to implement when solving complex problems. Since expertise is largely automated and nonconscious, a variety of observation and interview strategies have been developed to identify the most critical cognitive…

  1. Knowledge-based control for robot self-localization

    NASA Technical Reports Server (NTRS)

    Bennett, Bonnie Kathleen Holte

    1993-01-01

    Autonomous robot systems are being proposed for a variety of missions including the Mars rover/sample return mission. Prior to any other mission objectives being met, an autonomous robot must be able to determine its own location. This will be especially challenging because location sensors like GPS, which are available on Earth, will not be useful, nor will INS sensors because their drift is too large. Another approach to self-localization is required. In this paper, we describe a novel approach to localization by applying a problem solving methodology. The term 'problem solving' implies a computational technique based on logical representational and control steps. In this research, these steps are derived from observing experts solving localization problems. The objective is not specifically to simulate human expertise but rather to apply its techniques where appropriate for computational systems. In doing this, we describe a model for solving the problem and a system built on that model, called localization control and logic expert (LOCALE), which is a demonstration of concept for the approach and the model. The results of this work represent the first successful solution to high-level control aspects of the localization problem.

  2. Teaching for adaptive expertise in biomedical engineering ethics.

    PubMed

    Martin, Taylor; Rayne, Karen; Kemp, Nate J; Hart, Jack; Diller, Kenneth R

    2005-04-01

    This paper considers an approach to teaching ethics in bioengineering based on the How People Learn (HPL) framework. Curricula based on this framework have been effective in mathematics and science instruction from the kindergarten to the college levels. This framework is well suited to teaching bioengineering ethics because it helps learners develop "adaptive expertise". Adaptive expertise refers to the ability to use knowledge and experience in a domain to learn in unanticipated situations. It differs from routine expertise, which requires using knowledge appropriately to solve routine problems. Adaptive expertise is an important educational objective for bioengineers because the regulations and knowledge base in the discipline are likely to change significantly over the course of their careers. This study compares the performance of undergraduate bioengineering students who learned about ethics for stem cell research using the HPL method of instruction to the performance of students who learned following a standard lecture sequence. Both groups learned the factual material equally well, but the HPL group was more prepared to act adaptively when presented with a novel situation.

  3. Expertise in ill-defined problem-solving domains as effective strategy use.

    PubMed

    Schunn, Christian D; McGregor, Mark U; Saner, Lelyn D

    2005-12-01

    Expertise consists of many different cognitive structures. Lemaire and Siegler (1995) have proposed a four-layered account of expertise from a strategies perspective: Experts have better strategies, tend to use strategies that are better overall more often, are better able to select the circumstances to which a strategy best applies, and are better able to execute a given strategy. Originally, this account came from work in simple, well-defined domains. We explored this account in the complex, ill-defined domain of platoon leadership. In Experiment 1A, we elicited free-text responses to leadership scenarios from novices, intermediates, and experts, finding expertise effects for strategy base rates and choice, but not for strategy existence or the number of strategies used. In Experiment 1B, we used a new group of experts to gather ratings of the execution accuracy of the responses in Experiment 1A and found expertise differences in the ability to execute the same strategies. We propose several elaborations to the original four-layered strategies account of expertise on the basis of these results.

  4. Fuzzy logic and causal reasoning with an 'n' of 1 for diagnosis and treatment of the stroke patient.

    PubMed

    Helgason, Cathy M; Jobe, Thomas H

    2004-03-01

    The current scientific model for clinical decision-making is founded on binary or Aristotelian logic, classical set theory and probability-based statistics. Evidence-based medicine has been established as the basis for clinical recommendations. There is a problem with this scientific model when the physician must diagnose and treat the individual patient. The problem is a paradox, which is that the scientific model of evidence-based medicine is based upon a hypothesis aimed at the group and therefore, any conclusions cannot be extrapolated but to a degree to the individual patient. This extrapolation is dependent upon the expertise of the physician. A fuzzy logic multivalued-based scientific model allows this expertise to be numerically represented and solves the clinical paradox of evidence-based medicine.

  5. The Cognitive Roots of Scientific and Mathematical Ability and Discussant Reaction: Alternative Representations: A Key to Academic Talent?

    ERIC Educational Resources Information Center

    Perkins, D. N.; Simmons, Rebecca

    This paper examines the cognitive structures and processes that mediate mathematical and scientific ability. Ability is divided into achieved abilities and precursor abilities. Identified concepts in the area of achieved ability include expertise, understanding, and problem-solving. Other abilities can be seen as precursors to such achieved…

  6. Building Your Personal Learning Network (PLN): 21st-Century School Librarians Seek Self-Regulated Professional Development Online

    ERIC Educational Resources Information Center

    Moreillon, Judi

    2016-01-01

    For school librarians, being part of a "connected" community provides support for getting specific needs met, solving personally relevant and meaningful problems, and developing professional expertise. AASL provides many avenues for members of the profession to learn with and from one another. These include AASL and subgroup electronic…

  7. Writing as Problem-Solving in Interdisciplinary Programs: Literature and the Age of Technology.

    ERIC Educational Resources Information Center

    Gershuny, H. Lee; Rosich, Daniel

    A proposed interdisciplinary course linking the areas of English and data processing is described in this paper. Expertise in both fields is perceived as a function of the processes of defining, recreating metaphors and models, locating assumptions within messages, and becoming aware of meaning. Potential enrollees include both students in the…

  8. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  9. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    INSTRUMENTATION DIVISION STAFF

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientistsmore » from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.« less

  11. Coupling Conceptual and Quantitative Problems to Develop Expertise in Introductory Physics Students

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2008-10-01

    We discuss the effect of administering conceptual and quantitative isomorphic problem pairs (CQIPP) back to back vs. asking students to solve only one of the problems in the CQIPP in introductory physics courses. Students who answered both questions in a CQIPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of a CQIPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it and then reason about the solution conceptually. Even in individual interviews, when students who were only given conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling.

  12. Exploring how students think: a new method combining think-aloud and concept mapping protocols.

    PubMed

    Pottier, Pierre; Hardouin, Jean-Benoit; Hodges, Brian D; Pistorius, Marc-Antoine; Connault, Jérome; Durant, Cécile; Clairand, Renaud; Sebille, Véronique; Barrier, Jacques-Henri; Planchon, Bernard

    2010-09-01

    A key element of medical competence is problem solving. Previous work has shown that doctors use inductive reasoning to progress from facts to hypotheses and deductive reasoning to move from hypotheses to the gathering of confirmatory information. No individual assessment method has been designed to quantify the use of inductive and deductive procedures within clinical reasoning. The aim of this study was to explore the feasibility and reliability of a new method which allows for the rapid identification of the style (inductive or deductive) of clinical reasoning in medical students and experts. The study included four groups of four participants. These comprised groups of medical students in Years 3, 4 and 5 and a group of specialists in internal medicine, all at a medical school with a 6-year curriculum in France. Participants were asked to solve four clinical problems by thinking aloud. The thinking expressed aloud was immediately transcribed into concept maps by one or two 'writers' trained to distinguish inductive and deductive links. Reliability was assessed by estimating the inter-writer correlation. The calculated rate of inductive reasoning, the richness score and the rate of exhaustiveness of reasoning were compared according to the level of expertise of the individual and the type of clinical problem. The total number of maps drawn amounted to 32 for students in Year 4, 32 for students in Year 5, 16 for students in Year 3 and 16 for experts. A positive correlation was found between writers (R = 0.66-0.93). Richness scores and rates of exhaustiveness of reasoning did not differ according to expertise level. The rate of inductive reasoning varied as expected according to the nature of the clinical problem and was lower in experts (41% versus 67%). This new method showed good reliability and may be a promising tool for the assessment of medical problem-solving skills, giving teachers a means of diagnosing how their students think when they are confronted with clinical problems.

  13. Harnessing the crowd to accelerate molecular medicine research.

    PubMed

    Smith, Robert J; Merchant, Raina M

    2015-07-01

    Crowdsourcing presents a novel approach to solving complex problems within molecular medicine. By leveraging the expertise of fellow scientists across the globe, broadcasting to and engaging the public for idea generation, harnessing a scalable workforce for quick data management, and fundraising for research endeavors, crowdsourcing creates novel opportunities for accelerating scientific progress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thinking Like a Chemist: Development of a Chemistry Card-Sorting Task to Probe Conceptual Expertise

    ERIC Educational Resources Information Center

    Krieter, Felicia E.; Julius, Ryan W.; Tanner, Kimberly D.; Bush, Seth D.; Scott, Gregory E.

    2016-01-01

    An underlying goal in most chemistry curricula is to enable students to think like chemists, yet there is much evidence to suggest that students can learn to solve problems without thinking conceptually like a chemist. There are few tools, however, that assess whether students are learning to think like Ph.D. faculty, putative experts in the…

  15. The Interaction Effects of Working Memory Capacity, Gaming Expertise, and Scaffolding Design on Attention and Comprehension in Digital Game Based Learning

    ERIC Educational Resources Information Center

    Lee, Yu-Hao

    2013-01-01

    Educational digital games are often complex problem-solving experiences that can facilitate systematic comprehension. However, empirical studies of digital game based learning (DGBL) have found mixed results regarding DGBL's effect in improving comprehension. While learners generally enjoyed the DGBL learning experience, they often failed to…

  16. An Early Look at Building a Social Learning for Sustainability Community of Practice: RCE Grand Rapids' Flagship Project

    ERIC Educational Resources Information Center

    Glasser, Harold

    2010-01-01

    Grand Rapids is the first United Nations University (UNU) Regional Centre of Expertise (RCE) on education for sustainable development (ESD) in the United States. It builds on the region's long history and deep foundation in research, planning and problem solving to build a sustainable future. This article explores the concept of RCEs as social…

  17. Staff Specialist Survival Course

    DTIC Science & Technology

    2016-03-01

    acquisition acumen and critical thinking . These areas of expertise add to the staff specialist’s tool box. We enhance the experience with the case study...learner to the documents’ intent and provides an understanding of the formats used. Building Critical Thinking Skills The ability to think ...specifically de- veloped for staff specialists—ATL 900. This course provides not Defense AT&L: March-April 2016 52 only problem-solving solutions, critical

  18. FIST at 5: Looking Back, Looking Ahead

    DTIC Science & Technology

    2011-05-01

    Innovative Problem Solving ( TRIZ ) is a master’s class in design, with a strong em- phasis on simplicity and speed. Altshuller’s TRIZ contradiction matrix...and 40 principles are powerful, elegant, and efficient. They should be required reading across the acquisition com- munity (learn more at triz ...shortcuts. As with any tool, expertise comes from practice. Truly mastering Agile, Lean, TRIZ , or MOSA requires concentrated study, experimentation, and

  19. "Teaching Case": Who Renews? Who Leaves? Identifying Customer Churn in a Telecom Company Using Big Data Techniques

    ERIC Educational Resources Information Center

    Asamoah, Daniel A.; Sharda, Ramesh; Kalgotra, Pankush; Ott, Mark

    2016-01-01

    Within the context of the telecom industry, this teaching case is an active learning analytics exercise to help students build hands-on expertise on how to utilize Big Data to solve a business problem. Particularly, the case utilizes an analytics method to help develop a customer retention strategy to mitigate against an increasing customer churn…

  20. Use of actors as standardized psychiatric patients.

    PubMed

    Keltner, Norman L; Grant, Joan S; McLernon, Dennis

    2011-05-01

    Using actors in simulation provides opportunities for immersive, interactive, and reflective experiences to improve health care professionals' clinical expertise and practice. These experiences facilitate the development of enhanced critical thinking, problem-solving, and communication skills without risks to patients. This article discusses how to integrate actors and students into simulated experiences. Examples are provided using mental health simulations with actors as standardized psychiatric patients. Copyright 2011, SLACK Incorporated.

  1. Retooling Chinese Primary School Teachers to Use Technology Creatively to Promote Innovation and Problem Solving Skills in Science Classrooms

    ERIC Educational Resources Information Center

    Lee, Kar-Tin; Chalmers, Christina; Vinesh, Chandra; Yeh, Andy; Nason, Rod

    2014-01-01

    This paper reports on the initial phase of a Professional Learning Program (PLP) undertaken by 100 primary school teachers in China that aimed to facilitate the development of adaptive expertise in using technology to facilitate innovative science teaching and learning such as that envisaged by the Chinese Ministry of Education's (2010-2020)…

  2. Rapid knowledge assessment (RKA): Assessing students content knowledge through rapid, in class assessment of expertise

    NASA Astrophysics Data System (ADS)

    O'Connell, Erin

    Understanding how students go about problem solving in chemistry lends many possible advantages for interventions in teaching strategies for the college classroom. The work presented here is the development of an in-classroom, real-time, formative instrument to assess student expertise in chemistry with the purpose of developing classroom interventions. The development of appropriate interventions requires the understanding of how students go about starting to solve tasks presented to them, what their mental effort (load on working memory) is, and whether or not their performance was accurate. To measure this, the Rapid Knowledge Assessment (RKA) instrument uses clickers (handheld electronic instruments for submitting answers) as a means of data collection. The classroom data was used to develop an algorithm to deliver student assessment scores, which when correlated to external measure of standardized American Chemical Society (ACS) examinations and class score show a significant relationship between the accuracy of knowledge assessment (p=0.000). Use of eye-tracking technology and student interviews supports the measurements found in the classroom.

  3. [Forensic evidence-based medicine in computer communication networks].

    PubMed

    Qiu, Yun-Liang; Peng, Ming-Qi

    2013-12-01

    As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.

  4. How Experts Solve a Novel Problem within Their Domain of Expertise (Hoe Experts een Nieuw Probleem Binnen hun Expertisegebied Oplossen)

    DTIC Science & Technology

    1990-10-02

    between neighboring goals in verbal protocols. 18 2.2 Materials All subjects received the following problem: The manufacturer of Coca Cola wants to improve...his product. Recently, he has received complaints that Coca Cola does not taste as good any more as it used to. Therefore, he wants to investigate...what it is exactly that people taste when they drink Coca Cola . In order to be able to make a comparison with the competitors, Pepsi Cola and a house

  5. The Dreyfus model of clinical problem-solving skills acquisition: a critical perspective

    PubMed Central

    Peña, Adolfo

    2010-01-01

    Context The Dreyfus model describes how individuals progress through various levels in their acquisition of skills and subsumes ideas with regard to how individuals learn. Such a model is being accepted almost without debate from physicians to explain the ‘acquisition’ of clinical skills. Objectives This paper reviews such a model, discusses several controversial points, clarifies what kind of knowledge the model is about, and examines its coherence in terms of problem-solving skills. Dreyfus' main idea that intuition is a major aspect of expertise is also discussed in some detail. Relevant scientific evidence from cognitive science, psychology, and neuroscience is reviewed to accomplish these aims. Conclusions Although the Dreyfus model may partially explain the ‘acquisition’ of some skills, it is debatable if it can explain the acquisition of clinical skills. The complex nature of clinical problem-solving skills and the rich interplay between the implicit and explicit forms of knowledge must be taken into consideration when we want to explain ‘acquisition’ of clinical skills. The idea that experts work from intuition, not from reason, should be evaluated carefully. PMID:20563279

  6. HAWK MACH-III Intelligent Maintenance Tutor Design Development Report

    DTIC Science & Technology

    1986-12-01

    objective can best be achieved by designing the MACH-IIl to provide augmented hands-on experience in troubleshooting in a setting which will emphasize...artificial intelligence supporting the development activity will focus on development of a strategy for effective and efficient hierarchical simulation of...main components of such a system are the system simulation and problem-solving expertise, the student model, and the tutorial strategies . In the MACH

  7. A cognitive perspective on medical expertise: theory and implication.

    PubMed

    Schmidt, H G; Norman, G R; Boshuizen, H P

    1990-10-01

    A new theory of the development of expertise in medicine is outlined. Contrary to existing views, this theory assumes that expertise is not so much a matter of superior reasoning skills or in-depth knowledge of pathophysiological states as it is based on cognitive structures that describe the features of prototypical or even actual patients. These cognitive structures, referred to as "illness scripts," contain relatively little knowledge about pathophysiological causes of symptoms and complaints but a wealth of clinically relevant information about disease, its consequences, and the context under which illness develops. By contrast, intermediate-level students without clinical experience typically use pathophysiological, causal models of disease when solving problems. The authors review evidence supporting the theory and discuss its implications for the understanding of five phenomena extensively documented in the clinical-reasoning literature: (1) content specificity in diagnostic performance; (2) typical differences in data-gathering techniques between medical students and physicians; (3) difficulties involved in setting standards; (4) a decline in performance on certain measures of clinical reasoning with increasing expertise; and (5) a paradoxical association between errors and longer response times in visual diagnosis.

  8. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  9. Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Seah, Chin

    2009-01-01

    During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.

  10. Representation and matching of knowledge to design digital systems

    NASA Technical Reports Server (NTRS)

    Jones, J. U.; Shiva, S. G.

    1988-01-01

    A knowledge-based expert system is described that provides an approach to solve a problem requiring an expert with considerable domain expertise and facts about available digital hardware building blocks. To design digital hardware systems from their high level VHDL (Very High Speed Integrated Circuit Hardware Description Language) representation to their finished form, a special data representation is required. This data representation as well as the functioning of the overall system is described.

  11. Incredibly Versatile Microbial Fuel Cells Innovative Ideas at HES-SO Valais-Wallis for Solving Topical Problems.

    PubMed

    Heinzelmann, Elsbeth

    2016-01-01

    At HES-SO Valais-Wallis, Prof. Fabian Fischer is specialized in microbial fuel cells for novel applications that meet the challenge of producing renewable energies. He and his team possess a unique expertise in bioelectric energy vector generation, phosphate extraction (CHIMIA 2015, 69, 296) and the testing of antimicrobial surfaces. Let's take a look behind the scenes of the Institute of Life Technologies in Sion.

  12. Expertise in Problem Solving.

    DTIC Science & Technology

    1981-05-18

    determining our subsequent experimental procedure. Figures 2 - Ishow two samples of protocols, one from Expert R.E. and the oth,_ Irom Novice C.H., both on...in press). This is also true of older versus younger children (Chi, 1976), and fast as compared with slow learners. For example, good readers can...Using chunks as a defining unit of knowledge structure, Chase and Simon set out to experimentally identify the structure and size of chunks in the

  13. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  14. Knowledge Distance, Cognitive-Search Processes, and Creativity

    PubMed Central

    Acar, Oguz Ali; van den Ende, Jan

    2016-01-01

    Prior research has provided conflicting arguments and evidence about whether people who are outsiders or insiders relative to a knowledge domain are more likely to demonstrate scientific creativity in that particular domain. We propose that the nature of the relationship between creativity and the distance of an individual’s expertise from a knowledge domain depends on his or her cognitive processes of problem solving (i.e., cognitive-search effort and cognitive-search variation). In an analysis of 230 solutions generated in a science contest platform, we found that distance was positively associated with creativity when problem solvers engaged in a focused search (i.e., low cognitive-search variation) and exerted a high level of cognitive effort. People whose expertise was close to a knowledge domain, however, were more likely to demonstrate creativity in that domain when they drew on a wide variety of different knowledge elements for recombination (i.e., high cognitive-search variation) and exerted substantial cognitive effort. PMID:27016241

  15. Knowledge Distance, Cognitive-Search Processes, and Creativity: The Making of Winning Solutions in Science Contests.

    PubMed

    Acar, Oguz Ali; van den Ende, Jan

    2016-05-01

    Prior research has provided conflicting arguments and evidence about whether people who are outsiders or insiders relative to a knowledge domain are more likely to demonstrate scientific creativity in that particular domain. We propose that the nature of the relationship between creativity and the distance of an individual's expertise from a knowledge domain depends on his or her cognitive processes of problem solving (i.e., cognitive-search effort and cognitive-search variation). In an analysis of 230 solutions generated in a science contest platform, we found that distance was positively associated with creativity when problem solvers engaged in a focused search (i.e., low cognitive-search variation) and exerted a high level of cognitive effort. People whose expertise was close to a knowledge domain, however, were more likely to demonstrate creativity in that domain when they drew on a wide variety of different knowledge elements for recombination (i.e., high cognitive-search variation) and exerted substantial cognitive effort. © The Author(s) 2016.

  16. The workshop. [use and application of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Wake, W. H.

    1981-01-01

    The plan is presented for a two day workshop held to provide educational and training experience in the reading, interpretation, and application of LANDSAT and correlated larger scale imagery, digital printout maps, and other collateral material for a large number of participants with widely diverse levels of expertise, backgrounds, and occupations in government, industry, and education. The need for using surface truth field studies with correlated aerial imagery in solving real world problems was demonstrated.

  17. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    NASA Astrophysics Data System (ADS)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.

  18. Expanding color design methods for architecture and allied disciplines

    NASA Astrophysics Data System (ADS)

    Linton, Harold E.

    2002-06-01

    The color design processes of visual artists, architects, designers, and theoreticians included in this presentation reflect the practical role of color in architecture. What the color design professional brings to the architectural design team is an expertise and rich sensibility made up of a broad awareness and a finely tuned visual perception. This includes a knowledge of design and its history, expertise with industrial color materials and their methods of application, an awareness of design context and cultural identity, a background in physiology and psychology as it relates to human welfare, and an ability to problem-solve and respond creatively to design concepts with innovative ideas. The broadening of the definition of the colorists's role in architectural design provides architects, artists and designers with significant opportunities for continued professional and educational development.

  19. Task control and cognitive abilities of self and spouse in collaboration in middle-aged and older couples.

    PubMed

    Berg, Cynthia A; Smith, Timothy W; Ko, Kelly J; Beveridge, Ryan M; Story, Nathan; Henry, Nancy J M; Florsheim, Paul; Pearce, Gale; Uchino, Bert N; Skinner, Michelle A; Glazer, Kelly

    2007-09-01

    Collaborative problem solving may be used by older couples to optimize cognitive functioning, with some suggestion that older couples exhibit greater collaborative expertise. The study explored age differences in 2 aspects of collaborative expertise: spouses' knowledge of their own and their spouse's cognitive abilities and the ability to fit task control to these cognitive abilities. The participants were 300 middle-aged and older couples who completed a hypothetical errand task. The interactions were coded for control asserted by husbands and wives. Fluid intelligence was assessed, and spouses rated their own and their spouse's cognitive abilities. The results revealed no age differences in couple expertise, either in the ability to predict their own and their spouse's cognitive abilities or in the ability to fit task control to abilities. However, gender differences were found. Women fit task control to their own and their spouse's cognitive abilities; men only fit task control to their spouse's cognitive abilities. For women only, the fit between control and abilities was associated with better performance. The results indicate no age differences in couple expertise but point to gender as a factor in optimal collaboration. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  20. Science & Technology Review October/November 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, C.; Meissner, C.; Kotta, P. A.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  1. Science & Technology Review January/February 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, E. B.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  2. Science & Technology Review January/February 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, C. A.; Meissner, C. N.; Kotta, P. R.

    2016-01-18

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  3. Science & Technology Review June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Chinn, Ken B.; Kotta, Paul

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  4. Science & Technology Review January/February 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R. L.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  5. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  6. Human-Assisted Machine Information Exploitation: a crowdsourced investigation of information-based problem solving

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff

    2017-05-01

    The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.

  7. How to put to use results from research work in viable developments: Scope Water, an exciting new opportunity

    NASA Astrophysics Data System (ADS)

    Kerner, Martin

    2004-10-01

    Here, we introduce an interactive communication and management system, Scope Water, which is constructed to establish a transfer of results from research work directed towards the solving of a specific problem. To proceed step by step towards this goal, the system uses a structured approach. Starting with the global exploration of knowledge, expertise, and ideas from experts, passing an objective assessment of this information and leading finally to a coopertive making up of a concept for problem solving by specialists. Scope Water has been developed on the basis of recent advances in cybernetic management experienced in team meetings and was successfully launched as a tool to gain quick access to recent results from research work on water by Strategic Science Consult Ltd. (SSC). SSC now plans to broaden the application of SCope Water by adding a platform which allows scientists on remote sensing to offer their results, knowledge and ideas as a service to help to solve specific problems on studying/monitoring aquatic systems. Single scientists, working groups and research instituitions are invited to participate in such a service metwork on remote sensing and are asked to ceclare their interest by sending an e-mail to the authors address given above.

  8. Selective Effects of Motor Expertise in Mental Body Rotation Tasks: Comparing Object-Based and Perspective Transformations

    ERIC Educational Resources Information Center

    Steggemann, Yvonne; Engbert, Kai; Weigelt, Matthias

    2011-01-01

    Brain imaging studies provide strong evidence for the involvement of the human mirror system during the observation of complex movements, depending on the individual's motor expertise. Here, we ask the question whether motor expertise not only affects perception while observing movements, but also benefits perception while solving mental rotation…

  9. The Space Apps Challenge: Using Open Innovation Competitions to Engage The Public in the Scientific Process

    NASA Astrophysics Data System (ADS)

    Gupta, S. S.

    2016-12-01

    NASA's Space Apps Challenge encourages innovation, creativity and collaborative problem solving by gathering coders, builders, artists, designers, and storytellers in a 48-hour hackathon. Open Innovation competitions such as the Space Apps Challenge bring the scientific world to members of the public, regardless of age, experience, credentials, or expertise. In the past five years, this model of public engagement has been widely employed by government, nonprofit and academic institutions, allowing the building of partnerships between the scientific community and the individuals and communities they serve. Furthermore, advances in technology and challenge models have lowered the barriers and costs to scientific collaboration with and for the public. NASA's Space Apps Challenge, structured as a competition seeking solutions from the public to posed problems, brings together teams and forges collaborations between individuals and groups who would otherwise have never worked together for a short but high intensity problem solving session, Space Apps has has created a pathway to public engagement and innovation that is often faster, cheaper, and more impactful than traditional approaches.

  10. Knowledge-based approach to system integration

    NASA Technical Reports Server (NTRS)

    Blokland, W.; Krishnamurthy, C.; Biegl, C.; Sztipanovits, J.

    1988-01-01

    To solve complex problems one can often use the decomposition principle. However, a problem is seldom decomposable into completely independent subproblems. System integration deals with problem of resolving the interdependencies and the integration of the subsolutions. A natural method of decomposition is the hierarchical one. High-level specifications are broken down into lower level specifications until they can be transformed into solutions relatively easily. By automating the hierarchical decomposition and solution generation an integrated system is obtained in which the declaration of high level specifications is enough to solve the problem. We offer a knowledge-based approach to integrate the development and building of control systems. The process modeling is supported by using graphic editors. The user selects and connects icons that represent subprocesses and might refer to prewritten programs. The graphical editor assists the user in selecting parameters for each subprocess and allows the testing of a specific configuration. Next, from the definitions created by the graphical editor, the actual control program is built. Fault-diagnosis routines are generated automatically as well. Since the user is not required to write program code and knowledge about the process is present in the development system, the user is not required to have expertise in many fields.

  11. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.

  12. Inter-organisational response to disasters.

    PubMed

    Paturas, James L; Smith, Stewart R; Albanese, Joseph; Waite, Geraldine

    2016-01-01

    Inter-organisational communication failures during times of real-world disasters impede the collaborative response of agencies responsible for ensuring the public's health and safety. In the best of circumstances, communications across jurisdictional boundaries are ineffective. In times of crisis, when communities are grappling with the impact of a disaster, communications become critically important and more complex. Important factors for improving inter-organisational communications are critical thinking and problem-solving skills; inter-organisational relationships; as well as strategic, tactical and operational communications. Improving communication, critical thinking, problem-solving and decision-making requires a review of leadership skills. This discussion begins with an analysis of the existing disaster management research and moves to an examination of the importance of inter-organisational working relationships. Before a successful resolution of a disaster by multiple levels of first responders, the group of organisations must have a foundation of trust, collegiality, flexibility, expertise, openness, relational networking and effective communications. Leaders must also be prepared to improve leadership skills through continual development in each of these foundational areas.

  13. Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom

    NASA Astrophysics Data System (ADS)

    Cerny, Leonard Thomas

    A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is described using van Zee and Manogue's (2010) ethnography of communication. Bing's (2008) epistemic framing model is used to illuminate how students are framing what they are doing and whether or not they see the problem as geometric. Kuo, Hull, Gupta, and Elby's (2010) blending model and Krutetskii's (1976) model of harmonic reasoning are used to illuminate ways students show problem-solving expertise. Sayer and Wittmann's (2008) model is used to show how resource plasticity impacts students' geometric reasoning and the degree to which students accept incorrect results.

  14. Framework for understanding the patterns of student difficulties in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  15. Applying research to practice: generalist and specialist (visual ergonomics) consultancy.

    PubMed

    Long, Jennifer; Long, Airdrie

    2012-01-01

    Ergonomics is a holistic discipline encompassing a wide range of special interest groups. The role of an ergonomics consultant is to provide integrated solutions to improve comfort, safety and productivity. In Australia, there are two types of consultants--generalists and specialists. Both have training in ergonomics but specialist knowledge may be the result of previous education or work experience. This paper presents three projects illustrating generalist and specialist (visual ergonomics) consultancy: development of a vision screening protocol, solving visual discomfort in an office environment and solving postural discomfort in heavy industry. These case studies demonstrate how multiple ergonomics consultants may work together to solve ergonomics problems. It also describes some of the challenges for consultants, for those engaging their services and for the ergonomics profession, e.g. recognizing the boundaries of expertise, sharing information with business competitors, the costs-benefits of engaging multiple consultants and the risk of fragmentation of ergonomics knowledge and solutions. Since ergonomics problems are often multifaceted, ergonomics consultants should have a solid grounding in all domains of ergonomics, even if they ultimately only practice in one specialty or domain. This will benefit the profession and ensure that ergonomics remains a holistic discipline.

  16. Evaluation of a problem-solving (PS) techniques-based intervention for informal carers of patients with dementia receiving in-home care.

    PubMed

    Chiu, Mary; Pauley, Tim; Wesson, Virginia; Pushpakumar, Dunstan; Sadavoy, Joel

    2015-06-01

    The value of care provided by informal carers in Canada is estimated at $26 billion annually (Hollander et al., 2009). However, carers' needs are often overlooked, limiting their capacity to provide care. Problem-solving therapy (PST), a structured approach to problem solving (PS) and a core principle of the Reitman Centre CARERS Program, has been shown to alleviate emotional distress and improve carers' competence (Chiu et al., 2013). This study evaluated the effectiveness of problem-solving techniques-based intervention based on adapted PST methods, in enhancing carers' physical and emotional capacity to care for relatives with dementia living in the community. 56 carers were equally allocated to a problem-solving techniques-based intervention group or a control arm. Carers in the intervention group received three 1 hr visits by a care coordinator (CC) who had been given advanced training in PS techniques-based intervention. Coping, mastery, competence, burden, and perceived stress of the carers were evaluated at baseline and post-intervention using standardized assessment tools. An intention-to-treat analysis utilizing repeated measures ANOVA was performed on the data. Post-intervention measures completion rate was 82% and 92% for the intervention and control groups, respectively. Carers in the intervention group showed significantly improved task-oriented coping, mastery, and competence and significantly reduced emotion-oriented coping, burden and stress (p < 0.01-0.001). Control carers showed no change. PS techniques, when learned and delivered by CCs as a tool to coach carers in their day-to-day caregiving, improves carers' caregiving competence, coping, burden, and perceived stress. This may reduce dependence on primary, psychiatric, and institutional care. Results provide evidence that establishing effective partnerships between inter-professional clinicians in academic clinical health science centers, and community agencies can extend the reach of the expertise of specialized health care institutions.

  17. Critical thinking in nurse managers.

    PubMed

    Zori, Susan; Morrison, Barbara

    2009-01-01

    Formal education and support is needed for nurse managers to effectively function in their role in the current health care environment. Many nurse managers assume their positions based on expertise in a clinical role with little expertise in managerial and leadership skills. Operating as a manager and leader requires ongoing development of critical thinking skills and the inclination to use those skills. Critical thinking can have a powerful influence on the decision making and problem solving that nurse managers are faced with on a daily basis. The skills that typify critical thinking include analysis, evaluation, inference, and deductive and inductive reasoning. It is intuitive that nurse managers require both the skills and the dispositions of critical thinking to be successful in this pivotal role at a time of transformation in health care. Incorporating critical thinking into education and support programs for the nurse manager is necessary to position the nurse manager for success.

  18. If it takes two to tango, then why not teach both partners to dance? Collaboration instruction for all educators.

    PubMed

    Hudson, P; Glomb, N

    1997-01-01

    Being able to collaborate effectively is important for teachers who work together to serve students with learning disabilities in general education classrooms. Effective collaboration requires that teachers have knowledge and skills in how to effectively communicate and share their technical expertise for the purpose of solving classroom problems and providing continuity across instructional settings. Although both special education and general education preparation programs provide preservice teachers with the technical expertise for their respective areas of certification, few programs provide both special education and general education majors with instruction in interpersonal communication skills and collaboration strategies. The purpose of this article is to suggest guidelines and strategies to help teacher preparation programs move toward collaboration instruction for all educators. Suggestions for what to teach and how to teach it are offered, as well as an overview of factors that influence the implementation of collaboration instruction for all educators.

  19. 2010 MULTIPHOTON PROCESSES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010, TILTON, NH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mette Gaarde

    2010-06-11

    The Gordon Research Conference on Multiphoton Processes will be held for the 15th time in 2010. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Ultrafast coherent control; (2) Free-electron laser experiments and theory; (3) Generation of harmonics and attosecond pulses; (4) Ultrafast imaging; (5) Applications of very high intensity laser fields; (6) Strong-field processes in molecules and solids; (7) Attosecond science; and (8) Controlling light. The scientific program will blur traditional disciplinary boundariesmore » as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.« less

  20. Prevention of bile duct injury: the case for incorporating educational theories of expertise.

    PubMed

    McKinley, Sophia K; Brunt, L Michael; Schwaitzberg, Steven D

    2014-12-01

    Over 700,000 laparoscopic cholecystectomies are performed yearly in the US. Despite multiple advantages of laparoscopic surgery, the increased rate of bile duct injury (BDI) compared to the traditional, open approach to cholecystectomy remains problematic. Due to the seriousness of bile duct injury, the time has come for an aggressive educational campaign to better train laparoscopic surgeons in order to reduce the incidence of this life-threatening and expensive complication. We performed a literature review of what is currently known about the causes of bile duct injury during laparoscopic cholecystectomy. Based on these reviews, we identified educational theories of expertise that may be relevant in understanding variable rates of BDI between surgeons. Finally, we applied educational theories of expertise to the problem of BDI in laparoscopic cholecystectomy to propose how to develop and design an effective educational approach for the prevention of BDI. Multiple studies demonstrate that the primary causes of BDI during laparoscopic cholecystectomy are non-technical. Additionally, there exists a learning curve in which the rates of BDI are higher in a surgeon's earlier cases compared to later cases and that some surgeons perform laparoscopic cholecystectomy with significantly fewer injuries than others. Educational theories indicate that interventions that optimize novice to expert development require (1) revealing expert knowledge to novices and (2) scaffolding the mental habits of expert-like learners. BDI is an appropriate target for the application of educational theories of expertise. Designing better educational interventions for the prevention of BDI will require uncovering the hidden knowledge of expert surgeons and incorporating the processes of reinvestment and progressive problem solving that are inherent to expert performance.

  1. Psychological tools for knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Rueter, Henry H.; Olson, Judith Reitman

    1988-01-01

    Knowledge acquisition is said to be the biggest bottleneck in the development of expert systems. The problem is getting the knowledge out of the expert's head and into a computer. In cognitive psychology, characterizing metal structures and why experts are good at what they do is an important research area. Is there some way that the tools that psychologists have developed to uncover mental structure can be used to benefit knowledge engineers? We think that the way to find out is to browse through the psychologist's toolbox to see what there is in it that might be of use to knowledge engineers. Expert system developers have relied on two standard methods for extracting knowledge from the expert: (1) the knowledge engineer engages in an intense bout of interviews with the expert or experts, or (2) the knowledge engineer becomes an expert himself, relying on introspection to uncover the basis of his own expertise. Unfortunately, these techniques have the difficulty that often the expert himself isn't consciously aware of the basis of his expertise. If the expert himself isn't conscious of how he solves problems, introspection is useless. Cognitive psychology has faced similar problems for many years and has developed exploratory methods that can be used to discover cognitive structure from simple data.

  2. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  3. Brain organization underlying superior mathematical abilities in children with autism.

    PubMed

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod

    2014-02-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Interweaving Knowledge Resources to Address Complex Environmental Health Challenges.

    PubMed

    Anderson, Beth Ellen; Naujokas, Marisa F; Suk, William A

    2015-11-01

    Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. The National Institutes of Health's National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095-1099; http://dx.doi.org/10.1289/ehp.1409525.

  5. An ethnographic study: Becoming a physics expert in a biophysics research group

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research experiences that give graduate students agency and autonomy beyond their research groups gives students the motivation to finish graduate school and establish their physics expertise.

  6. MOORE: A prototype expert system for diagnosing spacecraft problems

    NASA Technical Reports Server (NTRS)

    Howlin, Katherine; Weissert, Jerry; Krantz, Kerry

    1988-01-01

    MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.

  7. Implications of the disintegration of the former Soviet Union for desertification control.

    PubMed

    Saiko, T A

    1995-01-01

    Following the removal of censorship on environmental information in 1986 the magnitude of the Aral Sea disaster has been publicly acknowledged while the situation has continually worsened. Major efforts by the USSR Academy of Sciences as well as republic scientists since the 1970s have been supplemented by international expertise. The Soviet government adopted a special resolution on the Aral Sea in September 1988, but adequate financing was not available to solve this problem. With the disintegration of the USSR, the new independent states took full responsibility for their desertification control. In a corresponding tide of nationalism, Russia was solely accused of being responsible for the problem, and, not surprisingly, the controversial project of Siberian river diversion has been recently revived. There has been a transition from Russian to state language in all institutions, thus "squeezing out" the speaking of Russian. The Central Asian states have started to explore their own ways to deal with the catastrophe. But political, cultural, and ethnic rivalries between countries; growing nationalism and economic difficulties; and competition for water have not created the conditions to successfully solve desertification problems. Without change, the future of the Aral Sea appears to be bleak.

  8. Diffusion, decolonializing, and participatory action research.

    PubMed

    Woodward, William R; Hetley, Richard S

    2007-03-01

    Miki Takasuna describes knowledge transfer between elite communities of scientists, a process by which ideas become structurally transformed in the host culture. By contrast, a process that we have termed knowledge transfer by deelitization occurs when (a) participatory action researchers work with a community to identify a problem involving oppression or exploitation. Then (b) community members suggest solutions and acquire the tools of analysis and action to pursue social actions. (c) Disadvantaged persons thereby become more aware of their own abilities and resources, and persons with special expertise become more effective. (d) Rather than detachment and value neutrality, this joint process involves advocacy and structural transformation. In the examples of participatory action research documented here, Third World social scientists collaborated with indigenous populations to solve problems of literacy, community-building, land ownership, and political voice. Western social scientists, inspired by these non-Western scientists, then joined in promoting PAR both in the Third World and in Europe and the Americas, e.g., adapting it for solving problems of people with disabilities or disenfranchised women. Emancipatory goals such as these may even help North American psychologists to break free of some methodological chains and to bring about social and political change.

  9. Expertise finding in bibliographic network: topic dominance learning approach.

    PubMed

    Neshati, Mahmood; Hashemi, Seyyed Hadi; Beigy, Hamid

    2014-12-01

    Expert finding problem in bibliographic networks has received increased interest in recent years. This problem concerns finding relevant researchers for a given topic. Motivated by the observation that rarely do all coauthors contribute to a paper equally, in this paper, we propose two discriminative methods for realizing leading authors contributing in a scientific publication. Specifically, we cast the problem of expert finding in a bibliographic network to find leading experts in a research group, which is easier to solve. We recognize three feature groups that can discriminate relevant experts from other authors of a document. Experimental results on a real dataset, and a synthetic one that is gathered from a Microsoft academic search engine, show that the proposed model significantly improves the performance of expert finding in terms of all common information retrieval evaluation metrics.

  10. Development of Legal Expertise

    ERIC Educational Resources Information Center

    Glöckner, Andreas; Towfigh, Emanuel; Traxler, Christian

    2013-01-01

    In a comprehensive empirical investigation (N = 71,405) we analyzed the development of legal expertise in a critical 1-year period of academic legal training in which advanced law students start practicing to solve complex cases. We were particularly interested in the functional form of the learning curve and inter-individual differences in…

  11. Software engineering with application-specific languages

    NASA Technical Reports Server (NTRS)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  12. Taking risks and taking advice: The role of experience in airline pilot diversions

    NASA Technical Reports Server (NTRS)

    Cohen, Marvin S.

    1993-01-01

    The research asks how pilots make diversion decisions, what factors determine whether they are make well or poorly, and how they may be improved. The results support the view that experienced decision makers may solve problems in a way that is qualitatively different from the approaches of less experienced decision makers. The results also support a concept of expertise that goes beyond a stock of specialized recognitional templates, to include domain-specific methods for processing information. Such metacognitive skills evolve through long experience. They may enhance both the accuracy and the efficiency of decision processes.

  13. Science & Technology Review September 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric B.; Kotta, Paul R.; Meissner, Caryn N.

    This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  14. I. Measuring and Reducing Stress and Surface Roughness in IBAD MgO Films and II. Developing Tools to Measure Transfer in Undergraduate Chemistry Students

    NASA Astrophysics Data System (ADS)

    Antonakos, Cory Dale

    I. MgO may be grown with a biaxial texture onto an amorphous substrate with the use of ion beam assisted deposition (IBAD). This MgO film may then be used as a platform on which to grow epitaxial films on an amorphous membrane for characterization purposes. However, the IBAD MgO film is stressed, causing buckles in the amorphous membrane and problems with further film growth on the IBAD MgO. This dissertation work explores the source of this film stress and develops methods to relax the stress and reduce surface roughness with annealing and increased growth temperature. It is determined that annealing and increased growth temperature coupled with a higher ion-to-atom ratio (IAR) during film growth reduce stress and surface roughness sufficiently to use even thinner IBAD MgO films as an intermediate layer between an amorphous membrane and epitaxial film. II. Much of the existing literature on knowledge transfer concludes that transfer is rare and does not occur spontaneously. However, studies supporting that transfer is rare often use methods that focus on binary success or failure to solve a problem correctly and do not analyze thought process. This dissertation work aims at developing transfer questions that allow open-ended responses, developing a method of analysis for these responses that looks for transfer in the problem-solving process, and assessing the methodology itself and its sensitivity, validity, and utility as a general transfer measurement technique for use across a broad range of expertise levels in chemistry. Detailed analysis of responses to each transfer question show that some transfer questions are more effective at distinguishing between expertise levels while also allowing responders of all levels to show knowledge transfer. Simpler questions that are more accessible to students of introductory chemistry proved the most useful at eliciting a range of responses that correlate with expertise level while still showing some degree of transfer in all levels of responders. More challenging questions with complex systems and common misconceptions are too advanced for lower level undergraduates to show knowledge transfer, but may be useful to show transfer in advanced undergraduates and experts.

  15. Diagnostic reasoning strategies and diagnostic success.

    PubMed

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  16. Health care workers and their needs: the forgotten shadow of AIM research.

    PubMed

    Lillehaug, S I; Lajoie, S

    1998-01-01

    The field of AI in Medicine (AIM) seems to have accepted that decision support is, and will be, needed within most medical domains. As society calls for cost-effectiveness, and human expertise or expert guidance are not always available, decision support systems (DSSs) are proposed as the solutions. These solutions, however, do not necessarily correspond with the basic needs of their targeted users. We will show this through a review of the literature related to health care workers and the various factors that have an influence on their performances. Furthermore, we will use these empirical findings to argue that the AIM community must go beyond its decision support philosophy, whereby the gaps in human expertise are filled in by the computer. In the future, joint emphasis must be placed on decision support and the promotion towards independent and self-sufficient problem solving. In order to implement this paradigm change, the AIM community will have to incorporate findings from the research discipline of AI in Education.

  17. Interweaving Knowledge Resources to Address Complex Environmental Health Challenges

    PubMed Central

    Anderson, Beth Ellen; Suk, William A.

    2015-01-01

    Background Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Objective Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. Discussion The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. Conclusions By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Citation Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095–1099; http://dx.doi.org/10.1289/ehp.1409525 PMID:25910282

  18. Wicked Problem Solvers.

    PubMed

    Edmondson, Amy C

    2016-06-01

    Companies today increasingly rely on teams that span many industries for radical innovation, especially to solve "wicked problems." So leaders have to understand how to promote collaboration when roles are uncertain, goals are shifting, expertise and organizational cultures are varied, and participants have clashing or even antagonistic perspectives. HBS professor Amy Edmondson has studied more than a dozen cross-industry innovation projects, among them the creation of a new city, a mango supply-chain transformation, and the design and construction of leading-edge buildings. She has identified the leadership practices that make successful cross-industry teams work: fostering an adaptable vision, promoting psychological safety, enabling knowledge sharing, and encouraging collaborative innovation. Though these practices are broadly familiar, their application within cross-industry teams calls for unique leadership approaches that combine flexibility, open-mindedness, humility, and fierce resolve.

  19. The impact of effective patents on future innovations in nanomedicine.

    PubMed

    Bosetti, Rita; Vereeck, Lode

    2012-03-01

    The success of nanomedicine is dependent upon an effective protection of IP rights. Unfortunately, the US nanomedicine patent system is dysfunctional because long R&D procedures as well as the patent pendency are insufficiently taken into account. This could be solved by changing the patent-protection starting point and increasing the capacity of the US PTO. The nanotechnology industry also suffers from overlapping patents. This could be avoided by improving the expertise of the PTO, using a more accurate definition of nanotechnology and devising a generally accepted nomenclature that enhances prior-art searches. To avoid disputes, inference practices and strategic patenting can be used. In the case of a dispute, parties can fall back on re-examination, cross-licensing and patent litigation. Cross-licensing agreements are recommended since they allows parties to access technology, create synergies and exclude third-party competitors. Solving the patent problems in the nanotechnology industry is a necessary step for future success.

  20. John Grant and the multifaceted nature of true professionalism: Personal perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Artyushkova, Kateryna; Fulghum, Julia E.

    Consideration of the elements that contribute to professional and scientific impact is relevant in a volume honoring John Grant for two reasons. First, John has contributed in many ways to both advancing the methodology and the practical application of surface-analytical tools to understanding surfaces and interfaces of technological importance. The second reason is a little more complex. In an era when there is an effort to quantify contributions in various ways (e.g., citations, H-index, number of publications) and when social media seems, at least anecdotally, to lead a younger generation of scientists to be less involved in traditional professional activities,more » it is appropriate to examine the nature of the activities that make a lasting contribution to the advancement of science and technology and the professional community that makes progress possible. The multifaceted nature of John’s professional activities provides an appropriate background for exploring the nature of professionalism. With no reservations one can say that the foundation of professionalism is rooted in a scientist’s expertise in some area of research or practice. This expertise might be measured in numerous ways depending upon the field and could include numbers of publications, citations, patents, problems solved, research support obtained, or students produced. These “products” may or may not be readily visible to the community at large. Chuck Wagner – a pioneer in XPS, developer of an empirical set of XPS sensitivity factors and the modified Auger-parameter plot, and winner of the AVS Nerken Award in 1989 – observed that he could not publish or talk about 90% of the work he had done when working for Shell Oil. However, based on XPS capability developments that he could publish, he had a major impact on the development and application of XPS. To some degree John Grant’s research fits this model as well. Much of his early work at the Air Force Materials Research Laboratory was directed at solving materials problems and this important and often ground-breaking work was not published. However, a great deal of creativity and development was required to enable surface-sensitive tools such as AES and XPS to become useful for solving critical problems, and this work could be published.« less

  1. Citizens unite for computational immunology!

    PubMed

    Belden, Orrin S; Baker, Sarah Catherine; Baker, Brian M

    2015-07-01

    Recruiting volunteers who can provide computational time, programming expertise, or puzzle-solving talent has emerged as a powerful tool for biomedical research. Recent projects demonstrate the potential for such 'crowdsourcing' efforts in immunology. Tools for developing applications, new funding opportunities, and an eager public make crowdsourcing a serious option for creative solutions for computationally-challenging problems. Expanded uses of crowdsourcing in immunology will allow for more efficient large-scale data collection and analysis. It will also involve, inspire, educate, and engage the public in a variety of meaningful ways. The benefits are real - it is time to jump in! Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  3. Teaching Sustainability in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Ibarra, D. L.

    2017-12-01

    Human impact on our planet Earth and its ecosystems is well documented and a new epoch, Anthropocene, has been suggested within the scientific community. As educators in the 21st century we are tasked within our communities to teach both the impacts of mankind on our planet and help students to design solutions that will solve a multitude of life threatening challenges. At ISF Academy in Hong Kong, faculty are working collaboratively within the whole school community to educate students about the fundamental problems facing society today and give students to skills to creatively solve these problems locally, regionally, and globally. As a leading school in HK, the physical campus has been updated to provide students with hands-on opportunities to see the latest technologies used for sustainable development. Recently added infrastructure includes air pollution monitoring equipment, an energy management system, aerobic food waste composting, organic garden, bio-diverse landscaping, and photovoltaic renewable energy. The design of each of these systems allows for students to interact directly with the equipment, and conduct student-led research. The curriculum across the campus is designed for all students K-12 and there is an on-going effort to make cross-disciplinary links. The programs outside of the classroom include ecology trips in the Asia region, experiential learning programs that allow students to learn first hand the climate change challenges for communities in distress, and field trips where students work with local experts. Also within the context of the school, there is a new established maker-space that will allow students to work collaboratively together while testing and prototyping their solutions. Hong Kong will need to solve many pressing problems in the next few years and this will require expertise, new innovations, and behaviour changes on the part of all citizens. Our goal at ISF Academy is to equip our students with the required background knowledge to help solve these problems.

  4. Use of EPA collaborative problem-solving model to obtain environmental justice in North Carolina.

    PubMed

    Wilson, Sacoby M; Wilson, Omega R; Heaney, Christopher D; Cooper, John

    2007-01-01

    The West End Revitalization Association (WERA), a community-based organization (CBO) in Mebane, North Carolina, was awarded a Collaborative Problem-Solving (CPS) grant from the U.S. Environmental Protection Agency's Office of Environmental Justice (EPA OEJ). The purpose of this paper is to highlight WERA's efforts to bring stakeholders in three low-income African-American communities where environmental hazards created public health risks together for collaboration rather than litigation. WERA's board and staff organized nine working groups with specific areas of expertise that would facilitate research, identify lack of basic amenities, and encourage funding for corrective action and participation in progress reporting workshops. WERA used consensus building, dispute resolution, and resource mobilization as part of the CPS model to address noncompliance with environmental laws, including the Clean Air Act, Clean Water Act, Safe Drinking Water Act, Toxic Substances Control Act, and Solid Waste Disposal Act. WERA's CPS "Right to Basic Amenities" project produced a framework for (1) grassroots management and ownership of a collaborative problem-solving process; (2) bringing stakeholders together with diverse and conflicting viewpoints; (3) implementation of an innovative community-owned and managed (COMR) research model; and (4) leveraging millions of dollars to fund installation of first-time municipal water/sewer services, street paving, and relocation of the 119-bypass to advance environmental health solutions. The structure and successes of WERA's Right to Basic Amenities project have been discussed at demonstration and training sessions to help others replicate the model in comparable low-income communities of color in North Carolina and across the United States.

  5. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    PubMed

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  6. Transforming incomplete fault tree to Ishikawa diagram as an alternative method for technology transfer

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.

    2012-12-01

    Fault Tree Analysis (FTA) can be used for technology transfer when the relevant problem (called 'top even' in FTA) is solved in a technology centre and the results are diffused to interested parties (usually Small Medium Enterprises - SMEs) that have not the proper equipment and the required know-how to solve the problem by their own. Nevertheless, there is a significant drawback in this procedure: the information usually provided by the SMEs to the technology centre, about production conditions and corresponding quality characteristics of the product, and (sometimes) the relevant expertise in the Knowledge Base of this centre may be inadequate to form a complete fault tree. Since such cases are quite frequent in practice, we have developed a methodology for transforming incomplete fault tree to Ishikawa diagram, which is more flexible and less strict in establishing causal chains, because it uses a surface phenomenological level with a limited number of categories of faults. On the other hand, such an Ishikawa diagram can be extended to simulate a fault tree as relevant knowledge increases. An implementation of this transformation, referring to anodization of aluminium, is presented.

  7. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    PubMed Central

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  8. Associative sequence learning: the role of experience in the development of imitation and the mirror system

    PubMed Central

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2009-01-01

    A core requirement for imitation is a capacity to solve the correspondence problem; to map observed onto executed actions, even when observation and execution yield sensory inputs in different modalities and coordinate frames. Until recently, it was assumed that the human capacity to solve the correspondence problem is innate. However, it is now becoming apparent that, as predicted by the associative sequence learning model, experience, and especially sensorimotor experience, plays a critical role in the development of imitation. We review evidence from studies of non-human animals, children and adults, focusing on research in cognitive neuroscience that uses training and naturally occurring variations in expertise to examine the role of experience in the formation of the mirror system. The relevance of this research depends on the widely held assumption that the mirror system plays a causal role in generating imitative behaviour. We also report original data supporting this assumption. These data show that theta-burst transcranial magnetic stimulation of the inferior frontal gyrus, a classical mirror system area, disrupts automatic imitation of finger movements. We discuss the implications of the evidence reviewed for the evolution, development and intentional control of imitation. PMID:19620108

  9. The Grounded Expertise Components Approach in the Novel Area of Cryptic Crossword Solving.

    PubMed

    Friedlander, Kathryn J; Fine, Philip A

    2016-01-01

    This paper presents a relatively unexplored area of expertise research which focuses on the solving of British-style cryptic crossword puzzles. Unlike its American "straight-definition" counterparts, which are primarily semantically-cued retrieval tasks, the British cryptic crossword is an exercise in code-cracking detection work. Solvers learn to ignore the superficial "surface reading" of the clue, which is phrased to be deliberately misleading, and look instead for a grammatical set of coded instructions which, if executed precisely, will lead to the correct (and only) answer. Sample clues are set out to illustrate the task requirements and demands. Hypothesized aptitudes for the field might include high fluid intelligence, skill at quasi-algebraic puzzles, pattern matching, visuospatial manipulation, divergent thinking and breaking frame abilities. These skills are additional to the crystallized knowledge and word-retrieval demands which are also a feature of American crossword puzzles. The authors present results from an exploratory survey intended to identify the characteristics of the cryptic crossword solving population, and outline the impact of these results on the direction of their subsequent research. Survey results were strongly supportive of a number of hypothesized skill-sets and guided the selection of appropriate test content and research paradigms which formed the basis of an extensive research program to be reported elsewhere. The paper concludes by arguing the case for a more grounded approach to expertise studies, termed the Grounded Expertise Components Approach. In this, the design and scope of the empirical program flows from a detailed and objectively-based characterization of the research population at the very onset of the program.

  10. The Problem of Developing Professional Expertise of Vocational College Students

    ERIC Educational Resources Information Center

    Zakirova, Venera G.; Gilmiyarova, Sophia G.

    2016-01-01

    The goal of the paper is to study the problem of developing the professional expertise of vocational college students, future technicians of the road transport industry. The nature and content of the concept "the professional expertise of a technician of road transport industry" has been defined. This concept is considered as a set of…

  11. A Multi-Level Model of Information Seeking in the Clinical Domain

    PubMed Central

    Hung, Peter W.; Johnson, Stephen B.; Kaufman, David R.; Mendonça, Eneida A.

    2008-01-01

    Objective: Clinicians often have difficulty translating information needs into effective search strategies to find appropriate answers. Information retrieval systems employing an intelligent search agent that generates adaptive search strategies based on human search expertise could be helpful in meeting clinician information needs. A prerequisite for creating such systems is an information seeking model that facilitates the representation of human search expertise. The purpose of developing such a model is to provide guidance to information seeking system development and to shape an empirical research program. Design: The information seeking process was modeled as a complex problem-solving activity. After considering how similarly complex activities had been modeled in other domains, we determined that modeling context-initiated information seeking across multiple problem spaces allows the abstraction of search knowledge into functionally consistent layers. The knowledge layers were identified in the information science literature and validated through our observations of searches performed by health science librarians. Results: A hierarchical multi-level model of context-initiated information seeking is proposed. Each level represents (1) a problem space that is traversed during the online search process, and (2) a distinct layer of knowledge that is required to execute a successful search. Grand strategy determines what information resources will be searched, for what purpose, and in what order. The strategy level represents an overall approach for searching a single resource. Tactics are individual moves made to further a strategy. Operations are mappings of abstract intentions to information resource-specific concrete input. Assessment is the basis of interaction within the strategic hierarchy, influencing the direction of the search. Conclusion: The described multi-level model provides a framework for future research and the foundation for development of an automated information retrieval system that uses an intelligent search agent to bridge clinician information needs and human search expertise. PMID:18006383

  12. A national clinician–educator program: a model of an effective community of practice

    PubMed Central

    Sherbino, Jonathan; Snell, Linda; Dath, Deepak; Dojeiji, Sue; Abbott, Cynthia; Frank, Jason R.

    2010-01-01

    Background The increasing complexity of medical training often requires faculty members with educational expertise to address issues of curriculum design, instructional methods, assessment, program evaluation, faculty development, and educational scholarship, among others. Discussion In 2007, The Royal College of Physicians & Surgeons of Canada responded to this need by establishing the first national clinician–educator program. We define a clinician–educator and describe the development of the program. Adopting a construct from the business community, we use a community of practice framework to describe the benefits (with examples) of this program and challenges in developing it. The benefits of the clinician–educator program include: improved educational problem solving, recognition of educational needs and development of new projects, enhanced personal educational expertise, maintenance of professional satisfaction and retention of group members, a positive influence within the Royal College, and a positive influence within other Canadian academic institutions. Summary Our described experience of a social reorganization – a community of practice – suggests that the organizational and educational benefits of a national clinician–educator program are not theoretical, but real. PMID:21151594

  13. Intelligent agents as a basis for natural language interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, D.N.

    1987-01-01

    Typical natural-language interfaces respond passively to the users's commands and queries. They cannot volunteer information, correction user misconceptions, or reject unethical requests. In order to do these things, a system must be an intelligent agent. UC (UNIX Consultant), a natural language system that helps the user solve problems in using the UNIX operating system, is such an intelligent agent. The agent component of UC in UCEgo. UCEgo provides UC with its own goals and plans. By adopting different goals in different situations, UCEgo creates and executes different plans, enabling it to interact appropriately with the user. UCEgo adopts goals frommore » its themes, adopts subgoals during planning, and adopts metagoals for dealing with goal interactions. It also adopts goals when it notices that the user either lacks necessary knowledge, or has incorrect beliefs. In these cases, UCEgo plans to volunteer information or correct the user's misconception as appropriate. The user's knowledge and beliefs are modeled by the KNOME (KNOwledge Model of Expertise) component of UC. KNOME is a double-stereotype system which categorizes users by expertise and categorizes UNIX facts by difficulty.« less

  14. A case-based assistant for clinical psychiatry expertise.

    PubMed

    Bichindaritz, I

    1994-01-01

    Case-based reasoning is an artificial intelligence methodology for the processing of empirical knowledge. Recent case-based reasoning systems also use theoretic knowledge about the domain to constrain the case-based reasoning. The organization of the memory is the key issue in case-based reasoning. The case-based assistant presented here has two structures in memory: cases and concepts. These memory structures permit it to be as skilled in problem-solving tasks, such as diagnosis and treatment planning, as in interpretive tasks, such as clinical research. A prototype applied to clinical work about eating disorders in psychiatry, reasoning from the alimentary questionnaires of these patients, is presented as an example of the system abilities.

  15. Optimel: Software for selecting the optimal method

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Popov, Boris; Romanov, Dmitry; Evseeva, Marina

    Optimel: software for selecting the optimal method automates the process of selecting a solution method from the optimization methods domain. Optimel features practical novelty. It saves time and money when conducting exploratory studies if its objective is to select the most appropriate method for solving an optimization problem. Optimel features theoretical novelty because for obtaining the domain a new method of knowledge structuring was used. In the Optimel domain, extended quantity of methods and their properties are used, which allows identifying the level of scientific studies, enhancing the user's expertise level, expand the prospects the user faces and opening up new research objectives. Optimel can be used both in scientific research institutes and in educational institutions.

  16. Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community

    NASA Technical Reports Server (NTRS)

    Howard, E. Davis, III

    1990-01-01

    MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

  17. A Technology Program that Rescues Spacecraft

    NASA Astrophysics Data System (ADS)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  18. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  19. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem

    PubMed Central

    Williams, Patricia AH; Woodward, Andrew J

    2015-01-01

    The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513

  20. Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.

    PubMed

    Williams, Patricia Ah; Woodward, Andrew J

    2015-01-01

    The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.

  1. The Flash-Preview Moving Window Paradigm: Unpacking Visual Expertise One Glimpse at a Time

    ERIC Educational Resources Information Center

    Litchfield, Damien; Donovan, Tim

    2017-01-01

    How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only…

  2. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  3. FIAP Forum on Entrepreneurship in Physics

    NASA Astrophysics Data System (ADS)

    2015-03-01

    With the changes in science as globalization has taken root, the future role of physicists becoming a part of the industrial physics community is more imperative. When 80% of graduating physicists will not be employed in academic positions, and 50% of all jobs for these physicists will be industrial sector, the importance of bringing our next generation of scientists up to speed on industrial applications is becoming much more important with the rapid, world-wide development of technology. FIAP is initiating a forum on entrepreneurship as a major role for the next generation of scientists. As physicists are problem solvers and the entrepreneurial experience is all about problem solving: whether involving technology, building a team, or financing a business. This forum seeks to link successful entrepreneurial physicists with the upcoming generation, through the dissemination of their global expertise and experience. The forum will consist of a panel discussion and then be open to question and answers from the audience.

  4. A case-based reasoning tool for breast cancer knowledge management with data mining concepts and techniques

    NASA Astrophysics Data System (ADS)

    Demigha, Souâd.

    2016-03-01

    The paper presents a Case-Based Reasoning Tool for Breast Cancer Knowledge Management to improve breast cancer screening. To develop this tool, we combine both concepts and techniques of Case-Based Reasoning (CBR) and Data Mining (DM). Physicians and radiologists ground their diagnosis on their expertise (past experience) based on clinical cases. Case-Based Reasoning is the process of solving new problems based on the solutions of similar past problems and structured as cases. CBR is suitable for medical use. On the other hand, existing traditional hospital information systems (HIS), Radiological Information Systems (RIS) and Picture Archiving Information Systems (PACS) don't allow managing efficiently medical information because of its complexity and heterogeneity. Data Mining is the process of mining information from a data set and transform it into an understandable structure for further use. Combining CBR to Data Mining techniques will facilitate diagnosis and decision-making of medical experts.

  5. Mahdi S. Hantush 1921”1984

    NASA Astrophysics Data System (ADS)

    Ahmad, M. U.; Gross, G. W.; Marino, M. A.; Papadopulos, S. S.; Saleem, Z. A.

    1984-04-01

    Mahdi Salih Hantush, Professor of Hydrology at the University of Kuwait, died on January 14, 1984 from complications following heart surgery.A hydrologist, scientist, and great teacher, Mantush specialized in the application of mathematics to the solution of transient groundwater flow problems. His particular expertise in the development of well-flow equations led the late R.W. Stallman of the U.S. Geological Survey to refer to him as “The Master of Radial Flow.” Hantush's numerous scientific publications contributed greatly to the present theories of flow in leaky aquifers, unconfined aquifers, and anisotropic aquifers. He derived the mathematical equations of flow to fully and/or partially penetrating wells in such aquifer systems, and devised methods for the analysis of pumpingtest data to determine their hydraulic properties. He was not only a researcher, but also a practicing hydrologist, deriving the equations he needed to solve practical problems.

  6. The Grounded Expertise Components Approach in the Novel Area of Cryptic Crossword Solving

    PubMed Central

    Friedlander, Kathryn J.; Fine, Philip A.

    2016-01-01

    This paper presents a relatively unexplored area of expertise research which focuses on the solving of British-style cryptic crossword puzzles. Unlike its American “straight-definition” counterparts, which are primarily semantically-cued retrieval tasks, the British cryptic crossword is an exercise in code-cracking detection work. Solvers learn to ignore the superficial “surface reading” of the clue, which is phrased to be deliberately misleading, and look instead for a grammatical set of coded instructions which, if executed precisely, will lead to the correct (and only) answer. Sample clues are set out to illustrate the task requirements and demands. Hypothesized aptitudes for the field might include high fluid intelligence, skill at quasi-algebraic puzzles, pattern matching, visuospatial manipulation, divergent thinking and breaking frame abilities. These skills are additional to the crystallized knowledge and word-retrieval demands which are also a feature of American crossword puzzles. The authors present results from an exploratory survey intended to identify the characteristics of the cryptic crossword solving population, and outline the impact of these results on the direction of their subsequent research. Survey results were strongly supportive of a number of hypothesized skill-sets and guided the selection of appropriate test content and research paradigms which formed the basis of an extensive research program to be reported elsewhere. The paper concludes by arguing the case for a more grounded approach to expertise studies, termed the Grounded Expertise Components Approach. In this, the design and scope of the empirical program flows from a detailed and objectively-based characterization of the research population at the very onset of the program. PMID:27199805

  7. Cognitive and Behavioral Components of Expertise in Teaching Physical Education.

    ERIC Educational Resources Information Center

    Dodds, Patt

    1994-01-01

    Synthesizes research on teaching expertise from physical education and other fields, offering two examples of expertise-related topics in physical education (the importance of personal performance skills and observational skills). The paper discusses cognitive, behavioral, and mixed indicators of expertise. Methodological problems in undertaking…

  8. How student models of expertise and innovation impact the development of adaptive expertise in medicine.

    PubMed

    Mylopoulos, Maria; Regehr, Glenn

    2009-02-01

    The ability to innovate new solutions in response to daily workplace challenges is an important component of adaptive expertise. Exploring how to optimally develop this skill is therefore of paramount importance to education researchers. This is certainly no less true in health care, where optimal patient care is contingent on the continuous efforts of doctors and other health care workers to provide the best care to their patients through the development and incorporation of new knowledge. Medical education programmes must therefore foster the skills and attitudes necessary to engage future doctors in the systematic development of innovative problem solving. The aim of this paper is to describe the perceptions and experiences of medical students in their third and fourth years of training, and to explore their understanding of their development as adaptive experts. A sample of 25 medical students participated in individual 45-60-minute semi-structured interviews. Interviews were audiotaped, transcribed and entered into NVivo qualitative data analysis software to facilitate a thematic analysis. The analysis was both inductive, in that themes were generated from the data, and deductive, in that our data were meaningful when interpreted in the context of theories of adaptive expertise. Participants expressed a general belief that, as learners in the health care system, exerting any effort to be innovative was beyond the scope of their responsibilities. Generally, students suggested that innovative practice was the prerogative of experts and an outcome of expert development centred on the acquisition of knowledge and experience. Students' perceptions of themselves as having no responsibility to be innovative in their learning process have implications for their learning trajectories as adaptive experts.

  9. The Problem of Expertise in Knowledge Societies

    ERIC Educational Resources Information Center

    Grundmann, Reiner

    2017-01-01

    This paper puts forward a theoretical framework for the analysis of expertise and experts in contemporary societies. It argues that while prevailing approaches have come to see expertise in various forms and functions, they tend to neglect the broader historical and societal context, and importantly the relational aspect of expertise. This will be…

  10. Hip Hop Dance Experience Linked to Sociocognitive Ability.

    PubMed

    Bonny, Justin W; Lindberg, Jenna C; Pacampara, Marc C

    2017-01-01

    Expertise within gaming (e.g., chess, video games) and kinesthetic (e.g., sports, classical dance) activities has been found to be linked with specific cognitive skills. Some of these skills, working memory, mental rotation, problem solving, are linked to higher performance in science, technology, math, and engineering (STEM) disciplines. In the present study, we examined whether experience in a different activity, hip hop dance, is also linked to cognitive abilities connected with STEM skills as well as social cognition ability. Dancers who varied in hip hop and other dance style experience were presented with a set of computerized tasks that assessed working memory capacity, mental rotation speed, problem solving efficiency, and theory of mind. We found that, when controlling for demographic factors and other dance style experience, those with greater hip hop dance experience were faster at mentally rotating images of hands at greater angle disparities and there was a trend for greater accuracy at identifying positive emotions displayed by cropped images of human faces. We suggest that hip hop dance, similar to other more technical activities such as video gameplay, tap some specific cognitive abilities that underlie STEM skills. Furthermore, we suggest that hip hop dance experience can be used to reach populations who may not otherwise be interested in other kinesthetic or gaming activities and potentially enhance select sociocognitive skills.

  11. Fairy tales of storyboarding.

    PubMed

    Hayes, S K; Childress, D M

    1999-01-01

    Once upon a time, there were two creative, intelligent, staff development educators who worked in a large hospital in Dayton, Ohio, and who wanted to tell a story about how to share performance improvement initiatives with others. To narrate their story, they used a problem-solving method, a coordinating theme, bright colors, graphics, clip art, photography, data collection, and a board to display their story for "The Fundamentals of Storyboarding." A properly designed poster/storyboard can successfully attract attention, stimulate interest, and impart information. Poster presentations are effective tools for educators to share their knowledge and expertise as well as demonstrate performance-improvement initiatives in their organization. Join these storytellers as they open their book and present the chapters to help create a powerful poster presentation.

  12. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop.

    PubMed

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig's scalability over many computing nodes and illustrate its use with example scripts. Available under the open source MIT license at http://sourceforge.net/projects/seqpig/

  13. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  14. Science and Technology Review April/May 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, R J

    2011-03-03

    At Lawrence Livermore National Laboratory, the focus is on science and technology research to ensure the nation's security. That expertise is also applied to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight time a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for April/May 2011, the features are 'Dealing with the Nonlinear Battlefield' andmore » 'From Video to Knowledge.' Research highlights are 'Kinetic Models Predict Biofuel Efficiency,' Going Deep with MEGa-Rays' and 'Energy on Demand.'« less

  15. A proposal for the measurement of graphical statistics effectiveness: Does it enhance or interfere with statistical reasoning?

    NASA Astrophysics Data System (ADS)

    Agus, M.; Penna, M. P.; Peró-Cebollero, M.; Guàrdia-Olmos, J.

    2015-02-01

    Numerous studies have examined students' difficulties in understanding some notions related to statistical problems. Some authors observed that the presentation of distinct visual representations could increase statistical reasoning, supporting the principle of graphical facilitation. But other researchers disagree with this viewpoint, emphasising the impediments related to the use of illustrations that could overcharge the cognitive system with insignificant data. In this work we aim at comparing the probabilistic statistical reasoning regarding two different formats of problem presentations: graphical and verbal-numerical. We have conceived and presented five pairs of homologous simple problems in the verbal numerical and graphical format to 311 undergraduate Psychology students (n=156 in Italy and n=155 in Spain) without statistical expertise. The purpose of our work was to evaluate the effect of graphical facilitation in probabilistic statistical reasoning. Every undergraduate has solved each pair of problems in two formats in different problem presentation orders and sequences. Data analyses have highlighted that the effect of graphical facilitation is infrequent in psychology undergraduates. This effect is related to many factors (as knowledge, abilities, attitudes, and anxiety); moreover it might be considered the resultant of interaction between individual and task characteristics.

  16. Sustainable knowledge development across cultural boundaries: Experiences from the EU-project SILMAS (Toolbox for conflict solving instruments in Alpine Lake Management)

    NASA Astrophysics Data System (ADS)

    Fegerl, Michael; Wieden, Wilfried

    2013-04-01

    Increasingly people have to communicate knowledge across cultural and language boundaries. Even though recent technologies offer powerful communication facilities people often feel confronted with barriers which clearly reduce their chances of making their interaction a success. Concrete evidence concerning such problems derives from a number of projects, where generated knowledge often results in dead-end products. In the Alpine Space-project SILMAS (Sustainable Instruments for Lake Management in Alpine Space), in which both authors were involved, a special approach (syneris® ) was taken to avoid this problem and to manage project knowledge in sustainable form. Under this approach knowledge input and output are handled interactively: Relevant knowledge can be developed continuously and users can always access the latest state of expertise. Resort to the respective tools and procedures can also assist in closing knowledge gaps and in developing innovative responses to familiar or novel problems. This contribution intends to describe possible ways and means which have been found to increase the chances of success of knowledge communication across cultural boundaries. The process of trans-cultural discussions of experts to find a standardized solution is highlighted as well as the problem of dissemination of expert knowledge to variant stakeholders. Finally lessons learned are made accessible, where a main task lies in the creation of a tool box for conflict solving instruments, as a demonstrable result of the project and for the time thereafter. The interactive web-based toolbox enables lake managers to access best practice instruments in standardized, explicit and cross-linguistic form.

  17. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Realizing Improvement through Team Empowerment (RITE): A Team-based, Project-based Multidisciplinary Improvement Program.

    PubMed

    Larson, David B; Mickelsen, L Jake; Garcia, Kandice

    2016-01-01

    Performance improvement in a complex health care environment depends on the cooperation of diverse individuals and groups, allocation of time and resources, and use of effective improvement methods. To address this challenge, we developed an 18-week multidisciplinary training program that would also provide a vehicle for effecting needed improvements, by using a team- and project-based model. The program began in the radiology department and subsequently expanded to include projects from throughout the medical center. Participants were taught a specific method for team-based problem solving, which included (a) articulating the problem, (b) observing the process, (c) analyzing possible causes of problems, (d) identifying key drivers, (e) testing and refining interventions, and (f) providing for sustainment of results. Progress was formally reviewed on a weekly basis. A total of 14 teams consisting of 78 participants completed the course in two cohorts; one project was discontinued. All completed projects resulted in at least modest improvement. Mean skill scores increased from 2.5/6 to 4.5/6 (P < .01), and the mean satisfaction score was 4.7/5. Identified keys to success include (a) engagement of frontline staff, (b) teams given authority to make process changes, (c) capable improvement coaches, (d) a physician-director with improvement expertise and organizational authority, (e) capable administrative direction, (f) supportive organizational leaders, (g) weekly progress reviews, (h) timely educational material, (i) structured problem-solving methods, and ( j ) multiple projects working simultaneously. The purpose of this article is to review the program, including the methods and results, and discuss perceived keys to program success. © RSNA, 2016.

  19. The West Virginia Occupational Safety and Health Initiative: practicum training for a new marketplace.

    PubMed

    Meyer, J D; Becker, P E; Stockdale, T; Ducatman, A M

    1999-05-01

    Occupational medicine practice has experienced a shift from larger corporate medical departments to organizations providing services for a variety of industries. Specific training needs will accompany this shift in practice patterns; these may differ from those developed in the traditional industrial or corporate medical department setting. The West Virginia Occupational Health and Safety Initiative involves occupational medicine residents in consultation to a variety of small industries and businesses. It uses the expertise of occupational physicians, health and safety extension faculty, and faculty in engineering and industrial hygiene. Residents participate in multidisciplinary evaluations of worksites, and develop competencies in team-building, workplace health and safety evaluation, and occupational medical consulting. Specific competencies that address requirements for practicum training are used to measure the trainee's acquisition of knowledge and skills. Particular attention is paid to the acquisition of group problem-solving expertise, skills relevant to the current market in practice opportunities, and the specific career interests of the resident physician. Preliminary evaluation indicates the usefulness of training in evaluation of diverse industries and worksites. We offer this program as a training model that can prepare residents for the challenges of a changing marketplace for occupational health and safety services.

  20. Meals for the Elderly

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA is drawing upon its food-preparation expertise to assist in solving a problem affecting a large segment of the American population. In preparation for manned space flight programs, NASA became experienced in providing astronauts simple, easily-prepared, nutritious meals. That experience now is being transferred to the public sector in a cooperative project managed by Johnson Space Center. Called Meal System for the Elderly, the project seeks to fill a gap by supplying nutritionally balanced meal packages to those who are unable to participate in existing meal programs. Many such programs are conducted by federal, state and private organizations, including congregate hot meal services and home-delivered "meals on wheels." But more than 3.5 million elderly Americans are unable to take advantage of these benefits. In some cases, they live in rural areas away from available services; in others, they are handicapped, temporarily ill, or homebound for other reasons. Meal System for the Elderly, a cooperative program in which the food-preparation expertise NASA acquired in manned space projects is being utilized to improve the nutritional status of elderly people. The program seeks to fill a gap by supplying nutritionally-balanced food packages to the elderly who are unable to participate b existing meal service programs.

  1. Sherlock Holmes: an expert's view of expertise.

    PubMed

    André, Didierjean; Fernand, Gobet

    2008-02-01

    In recent years, there has been an intense research effort to understand the cognitive processes and structures underlying expert behaviour. Work in different fields, including scientific domains, sports, games and mnemonics, has shown that there are vast differences in perceptual abilities between experts and novices, and that these differences may underpin other cognitive differences in learning, memory and problem solving. In this article, we evaluate the progress made in the last years through the eyes of an outstanding, albeit fictional, expert: Sherlock Holmes. We first use the Sherlock Holmes character to illustrate expert processes as described by current research and theories. In particular, the role of perception, as well as the nature and influence of expert knowledge, are all present in the description of Conan Doyle's hero. In the second part of the article, we discuss a number of issues that current research on expertise has barely addressed. These gaps include, for example, several forms of reasoning, the influence of emotions on cognition, and the effect of age on experts' knowledge and cognitive processes. Thus, although nearly 120-year-old, Conan Doyle's books show remarkable illustrations of expert behaviour, including the coverage of themes that have mostly been overlooked by current research.

  2. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching mechanisms), technical solutions are challenging. Finally, we discuss the major challenges for a technical solution: case record comprehensiveness, organization of information on similarity principles, development of pattern recognition and solving ethical issues. Summary Medical Informatics is an applied science that should be committed to advancing patient-centered medicine through individual knowledge processing. Case-based reasoning is the technical solution that enables a continuous individual knowledge processing and could be applied providing that challenges and ethical issues arising are addressed appropriately. PMID:15533257

  3. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    PubMed

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  4. Academia-industry symbiosis in organic chemistry.

    PubMed

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an opportunity for a symbiosis. This type of partnership is challenging but can be a win-win situation if both parties agree on some general guidelines, including clearly defined goals and deliverables, biweekly meetings to track research progress, and quarterly or annual meetings to recognize overarching, common objectives. This Account summarizes our personal experience concerning collaborations with various industrial groups and the way it impacted the research programs for both sides in a symbiotic fashion.

  5. Academia–Industry Symbiosis in Organic Chemistry

    PubMed Central

    2015-01-01

    Conspectus Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial “sponsoring” is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry’s point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry’s desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply “pure science” research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the “real world” at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an opportunity for a symbiosis. This type of partnership is challenging but can be a win–win situation if both parties agree on some general guidelines, including clearly defined goals and deliverables, biweekly meetings to track research progress, and quarterly or annual meetings to recognize overarching, common objectives. This Account summarizes our personal experience concerning collaborations with various industrial groups and the way it impacted the research programs for both sides in a symbiotic fashion. PMID:25702529

  6. Hip Hop Dance Experience Linked to Sociocognitive Ability

    PubMed Central

    Bonny, Justin W.; Lindberg, Jenna C.; Pacampara, Marc C.

    2017-01-01

    Expertise within gaming (e.g., chess, video games) and kinesthetic (e.g., sports, classical dance) activities has been found to be linked with specific cognitive skills. Some of these skills, working memory, mental rotation, problem solving, are linked to higher performance in science, technology, math, and engineering (STEM) disciplines. In the present study, we examined whether experience in a different activity, hip hop dance, is also linked to cognitive abilities connected with STEM skills as well as social cognition ability. Dancers who varied in hip hop and other dance style experience were presented with a set of computerized tasks that assessed working memory capacity, mental rotation speed, problem solving efficiency, and theory of mind. We found that, when controlling for demographic factors and other dance style experience, those with greater hip hop dance experience were faster at mentally rotating images of hands at greater angle disparities and there was a trend for greater accuracy at identifying positive emotions displayed by cropped images of human faces. We suggest that hip hop dance, similar to other more technical activities such as video gameplay, tap some specific cognitive abilities that underlie STEM skills. Furthermore, we suggest that hip hop dance experience can be used to reach populations who may not otherwise be interested in other kinesthetic or gaming activities and potentially enhance select sociocognitive skills. PMID:28146562

  7. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  8. Relative Expertise in an Everyday Reasoning Task: Epistemic Understanding, Problem Representation, and Reasoning Competence

    ERIC Educational Resources Information Center

    Weinstock, Michael

    2009-01-01

    Experts in cognitive domains differ from non-experts in how they represent problems and knowledge, and in their epistemic understandings of tasks in their domain of expertise. This study investigates whether task-specific epistemic understanding also underlies the representation of knowledge on an everyday reasoning task on which the competent…

  9. A Proposal to Encourage Intuitive Learning in a Senior-Level Analogue Electronics Course

    ERIC Educational Resources Information Center

    Berjano, E.; Lozano-Nieto, A.

    2011-01-01

    One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the…

  10. A Problem-Sorting Task Detects Changes in Undergraduate Biological Expertise over a Single Semester

    ERIC Educational Resources Information Center

    Hoskinson, Anne-Marie; Maher, Jessica Middlemis; Bekkering, Cody; Ebert-May, Diane

    2017-01-01

    Calls for undergraduate biology reform share similar goals: to produce people who can organize, use, connect, and communicate about biological knowledge. Achieving these goals requires students to gain disciplinary expertise. Experts organize, access, and apply disciplinary knowledge differently than novices, and expertise is measurable. By asking…

  11. Chess databases as a research vehicle in psychology: Modeling large data.

    PubMed

    Vaci, Nemanja; Bilalić, Merim

    2017-08-01

    The game of chess has often been used for psychological investigations, particularly in cognitive science. The clear-cut rules and well-defined environment of chess provide a model for investigations of basic cognitive processes, such as perception, memory, and problem solving, while the precise rating system for the measurement of skill has enabled investigations of individual differences and expertise-related effects. In the present study, we focus on another appealing feature of chess-namely, the large archive databases associated with the game. The German national chess database presented in this study represents a fruitful ground for the investigation of multiple longitudinal research questions, since it collects the data of over 130,000 players and spans over 25 years. The German chess database collects the data of all players, including hobby players, and all tournaments played. This results in a rich and complete collection of the skill, age, and activity of the whole population of chess players in Germany. The database therefore complements the commonly used expertise approach in cognitive science by opening up new possibilities for the investigation of multiple factors that underlie expertise and skill acquisition. Since large datasets are not common in psychology, their introduction also raises the question of optimal and efficient statistical analysis. We offer the database for download and illustrate how it can be used by providing concrete examples and a step-by-step tutorial using different statistical analyses on a range of topics, including skill development over the lifetime, birth cohort effects, effects of activity and inactivity on skill, and gender differences.

  12. Expertise and age differences in pilot decision making.

    PubMed

    Morrow, Daniel G; Miller, Lisa M Soederberg; Ridolfo, Heather E; Magnor, Clifford; Fischer, Ute M; Kokayeff, Nina K; Stine-Morrow, Elizabeth A L

    2009-01-01

    We examined the influence of age and expertise on pilot decision making. Older and younger expert and novice pilots read at their own pace scenarios describing simpler or more complex flight situations. Then in a standard interview they discussed the scenario problem and how they would respond. Protocols were coded for identification of problem and solutions to this problem, and frequency of elaborations on problem and solution. Scenario comprehension was measured as differential reading time allocation to problem-critical information and scenario memory by the accuracy of answering questions about the scenarios after the interview. All groups accurately identified the problems, but experts elaborated problem descriptions more than novices did. Experts also spent more time reading critical information in the complex scenarios, which may reflect time needed to develop elaborate situation models of the problems. Expertise comprehension benefits were similar for older and younger pilots. Older experts were especially likely to elaborate the problem compared to younger experts, while older novices were less likely to elaborate the problem and to identify appropriate solutions compared to their younger counterparts. The findings suggest age invariance in knowledge-based comprehension relevant to pilot decision making.

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Developing a "clinical presentation" curriculum at the University of Calgary.

    PubMed

    Mandin, H; Harasym, P; Eagle, C; Watanabe, M

    1995-03-01

    Currently, medical curricula are structured according to disciplines, body systems, or clinical problems. Beginning in 1988, the faculty of the University of Calgary Faculty of Medicine (U of C) carefully evaluated the advantages and disadvantages of each of these models in seeking to revise their school's curriculum. However, all three models fell short of a curricular structure based on current knowledge and principles of adult learning, clinical problem solving, community demands, and curriculum management. By 1991, the U of C had formulated a strategic plan for a revised curriculum structure based on the way patients present to physicians, and implementation of this plan has begun. In creating the new curriculum, 120 clinical presentations (e.g., "loss of consciousness/syncope") were defined and each was assigned to an individual or small group of faculty for development based on faculty expertise and interest. Terminal objectives (i.e., "what to do") were defined for each presentation to describe the appropriate clinical behaviors of a graduating physician. Experts developed schemes that outlined how they differentiated one cause (i.e., disease category) from another. The underlying enabling objectives (i.e., knowledge, skills, and attitudes) for reaching the terminal objectives for each clinical presentation were assigned as departmental responsibilities. A new administrative structure evolved in which there is a partnership between a centralized multidisciplinary curriculum committee and the departments. This new competency-based, clinical presentation curriculum is expected to significantly enhance students' development of clinical problem-solving skills and affirms the premise that prudent, continuous updating is essential for improving the quality of medical education.

  15. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  16. Lessons Learned from Crowdsourcing Complex Engineering Tasks.

    PubMed

    Staffelbach, Matthew; Sempolinski, Peter; Kijewski-Correa, Tracy; Thain, Douglas; Wei, Daniel; Kareem, Ahsan; Madey, Gregory

    2015-01-01

    Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems.

  17. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  18. Transfer of Expertise: An Eye Tracking and Think Aloud Study Using Dynamic Medical Visualizations

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Seppanen, Marko

    2013-01-01

    Expertise research has produced mixed results regarding the problem of transfer of expertise. Is expert performance context-bound or can the underlying processes be applied to more general situations? The present study tests whether expert performance and its underlying processes transfer to novel tasks within a domain. A mixed method study using…

  19. Understanding pictorial information in biology: students' cognitive activities and visual reading strategies

    NASA Astrophysics Data System (ADS)

    Brandstetter, Miriam; Sandmann, Angela; Florian, Christine

    2017-06-01

    In classroom, scientific contents are increasingly communicated through visual forms of representations. Students' learning outcomes rely on their ability to read and understand pictorial information. Understanding pictorial information in biology requires cognitive effort and can be challenging to students. Yet evidence-based knowledge about students' visual reading strategies during the process of understanding pictorial information is pending. Therefore, 42 students at the age of 14-15 were asked to think aloud while trying to understand visual representations of the blood circulatory system and the patellar reflex. A category system was developed differentiating 16 categories of cognitive activities. A Principal Component Analysis revealed two underlying patterns of activities that can be interpreted as visual reading strategies: 1. Inferences predominated by using a problem-solving schema; 2. Inferences predominated by recall of prior content knowledge. Each pattern consists of a specific set of cognitive activities that reflect selection, organisation and integration of pictorial information as well as different levels of expertise. The results give detailed insights into cognitive activities of students who were required to understand the pictorial information of complex organ systems. They provide an evidence-based foundation to derive instructional aids that can promote students pictorial-information-based learning on different levels of expertise.

  20. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  1. The SOBANE risk management strategy and the Déparis method for the participatory screening of the risks.

    PubMed

    Malchaire, J B

    2004-08-01

    The first section of the document describes a risk-prevention strategy, called SOBANE, in four levels: screening, observation, analysis and expertise. The aim is to make risk prevention faster, more cost effective, and more effective in coordinating the contributions of the workers themselves, their management, the internal and external occupational health (OH) practitioners and the experts. These four levels are: screening, where the risk factors are detected by the workers and their management, and obvious solutions are implemented; observation, where the remaining problems are studied in more detail, one by one, and the reasons and the solutions are discussed in detail; analysis, where, when necessary, an OH practitioner is called upon to carry out appropriate measurements to develop specific solutions; expertise, where, in very sophisticated and rare cases, the assistance of an expert is called upon to solve a particular problem. The method for the participatory screening of the risks (in French: Dépistage Participatif des Risques), Déparis, is proposed for the first level screening of the SOBANE strategy. The work situation is systematically reviewed and all the aspects conditioning the easiness, the effectiveness and the satisfaction at work are discussed, in search of practical prevention measures. The points to be studied more in detail at level 2, observation, are identified. The method is carried out during a meeting of key workers and technical staff. The method proves to be simple, sparing in time and means and playing a significant role in the development of a dynamic plan of risk management and of a culture of dialogue in the company.

  2. Passion play: Will Wright and games for science learning

    NASA Astrophysics Data System (ADS)

    Ching, Dixie

    2012-12-01

    Researchers and instructional designers are exploring the possibilities of using video games to support STEM education in the U.S., not only because they are a popular media form among youth, but also because well-designed games often leverage the best features of inquiry learning. Those interested in using games in an educational capacity may benefit from an examination of the work of video game designer Will Wright. Wright designs through a constructivist lens and his open-ended, sandbox games ( SimCity, The Sims, Spore) present wide "possibility spaces" that allow players to exercise their critical thinking and problem solving skills. His games invoke a delight in discovery that inspire creative acts and interest-driven learning both during and outside of the game. Finally, he reminds us that failure-based learning is a viable strategy for building expertise and understanding.

  3. An entropic barriers diffusion theory of decision-making in multiple alternative tasks

    PubMed Central

    Sigman, Mariano; Cecchi, Guillermo A.

    2018-01-01

    We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving. PMID:29499036

  4. Computers in Medical Education: A Cooperative Approach to Planning and Implementation

    PubMed Central

    Ellis, Lynda B.M.; Fuller, Sherrilynne

    1988-01-01

    After years of ‘ad hoc’ growth in the use of computers in the curriculum, the University of Minnesota Medical School in cooperation with the Bio-Medical Library and Health Sciences Computing Services developed and began implementation of a plan for integration of medical informatics into all phases of medical education. Objectives were developed which focus on teaching skills related to: 1) accessing, retrieving, evaluating and managing medical information; 2) appropriate utilization of computer-assisted instruction lessons; 3) electronic communication with fellow students and medical faculty; and 4) fostering a lifelong commitment to effective use of computers to solve clinical problems. Surveys assessed the status of computer expertise among faculty and entering students. The results of these surveys, lessons learned from this experience, and implications for the future of computers in medical education are discussed.

  5. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop

    PubMed Central

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Summary: Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig’s scalability over many computing nodes and illustrate its use with example scripts. Availability and Implementation: Available under the open source MIT license at http://sourceforge.net/projects/seqpig/ Contact: andre.schumacher@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24149054

  6. Are Tutor Behaviors in Problem-Based Learning Stable? A Generalizability Study of Social Congruence, Expertise and Cognitive Congruence

    ERIC Educational Resources Information Center

    Williams, Judith C.; Alwis, W. A. M.; Rotgans, Jerome I.

    2011-01-01

    The purpose of this study was to investigate the stability of three distinct tutor behaviors (1) use of subject-matter expertise, (2) social congruence and (3) cognitive congruence, in a problem-based learning (PBL) environment. The data comprised the input from 16,047 different students to a survey of 762 tutors administered in three consecutive…

  7. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  8. Mathematics and evolutionary biology make bioinformatics education comprehensible.

    PubMed

    Jungck, John R; Weisstein, Anton E

    2013-09-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.

  9. Mathematics and evolutionary biology make bioinformatics education comprehensible

    PubMed Central

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  10. An investigation of transitional management problems for the NSTS at NASA

    NASA Technical Reports Server (NTRS)

    Hunsucker, John

    1988-01-01

    This quarterly report summarizes the ideas and concepts developed by the University of Houston team with the collaboration and support of the Management Integration Offices of NASA. In addition it is hoped that this report will help to stimulate the healthy problem solving process already present at NASA. This is the second report in the fourth year of the research contract. The main aim of the work is to assist the National Space Transportation System (NSTS) in finding ways and means of moving into a truly operational era in the sense of routine timely production of flights. The reader who seeks an understanding of the concepts presented is encouraged to read the reports of the last three years. The overall strategy of this effort is to: (1) search the literature for applications of transition management and other related issues, (2) conduct investigations into the experiences of the industries with the transition management, and (3) to adapt the information found in (1) and (2) above into a form useful to NASA while at the same time applying industrial engineering and engineering management expertise to problems and issues as they emerge.

  11. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  12. Cataloging Expert Systems: Optimism and Frustrated Reality.

    ERIC Educational Resources Information Center

    Olmstadt, William J.

    2000-01-01

    Discusses artificial intelligence and attempts to catalog expert systems. Topics include the nature of expertise; examples of cataloging expert systems; barriers to implementation; and problems, including total automation, cataloging expertise, priorities, and system design. (LRW)

  13. Profile of cognitive problems in schizophrenia and implications for vocational functioning.

    PubMed

    Tan, Bhing-Leet

    2009-08-01

    This literature review attempts to profile specific areas of cognition that have shown unique and consistent evidence of dysfunction among people with schizophrenia. In addition, their impact on vocational functioning is illustrated, so as to highlight the importance of managing these cognitive difficulties in vocational rehabilitation. Literature search was carried out on seven key cognitive domains identified by the National Institute of Mental Health in the USA. Their impact on vocational function was also reviewed. It is found that attention, declarative and working memory, reasoning, problem-solving and social cognition are areas of impairment that have great impact on vocational functioning. Attention and memory problems affect learning of new work tasks. Executive function is particularly crucial in determining supported and open employment outcomes, as executive dysfunction cannot be easily compensated. Lastly, social cognition plays a major role in determining the success of workplace social exchanges. Occupational therapists need to have a good understanding of the profile of cognitive problems among people with schizophrenia, in order to tailor our intervention according to their cognitive strengths and difficulties. Several cognitive remediation strategies and programs have been designed specifically for people with mental illness. Equipping ourselves with skills in conducting such programs will augment our expertise in vocational rehabilitation.

  14. An advanced artificial intelligence tool for menu design.

    PubMed

    Khan, Abdus Salam; Hoffmann, Achim

    2003-01-01

    The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.

  15. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  16. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  17. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  18. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  19. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  20. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  1. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  2. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  3. Modeling Search Behaviors during the Acquisition of Expertise in a Sequential Decision-Making Task.

    PubMed

    Moënne-Loccoz, Cristóbal; Vergara, Rodrigo C; López, Vladimir; Mery, Domingo; Cosmelli, Diego

    2017-01-01

    Our daily interaction with the world is plagued of situations in which we develop expertise through self-motivated repetition of the same task. In many of these interactions, and especially when dealing with computer and machine interfaces, we must deal with sequences of decisions and actions. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion and a specific sequence of choices must be performed in order to produce the expected outcome. But, as we become experts in the use of such interfaces, is it possible to identify specific search and learning strategies? And if so, can we use this information to predict future actions? In addition to better understanding the cognitive processes underlying sequential decision making, this could allow building adaptive interfaces that can facilitate interaction at different moments of the learning curve. Here we tackle the question of modeling sequential decision-making behavior in a simple human-computer interface that instantiates a 4-level binary decision tree (BDT) task. We record behavioral data from voluntary participants while they attempt to solve the task. Using a Hidden Markov Model-based approach that capitalizes on the hierarchical structure of behavior, we then model their performance during the interaction. Our results show that partitioning the problem space into a small set of hierarchically related stereotyped strategies can potentially capture a host of individual decision making policies. This allows us to follow how participants learn and develop expertise in the use of the interface. Moreover, using a Mixture of Experts based on these stereotyped strategies, the model is able to predict the behavior of participants that master the task.

  4. Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education.

    PubMed

    Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H

    2009-02-01

    Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.

  5. Solving the Funding Riddle

    ERIC Educational Resources Information Center

    Boulard, Garry

    2006-01-01

    Some education officials with expertise in American Indian scholarship programs say a lack of available money and information continue to limit American Indian enrollment in higher education. Pamela Silas, director of the American Indian Science and Engineering Society (AISES) in Albuquerque, New Mexico, says they help more than 100 students a…

  6. Testing the Tester: Lessons Learned During the Testing of a State-of-the-Art Commercial 14nm Processor Under Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Szabo, Carl M., Jr.; Duncan, Adam R.; Label, Kenneth A.

    2017-01-01

    Testing of an Intel 14nm desktop processor was conducted under proton irradiation. We share lessons learned, demonstrating that complex devices beget further complex challenges requiring practical and theoretical investigative expertise to solve.

  7. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  8. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  9. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  10. Satellites as Sentinels for Environment & Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2002-01-01

    Satellites as Sentinels for Environment & Health Remotely-sensed data and observations are providing powerful new tools for addressing human and ecosystem health by enabling improved understanding of the relationships and linkages between health-related environmental parameters and society as well as techniques for early warning of potential health problems. NASA Office of Earth Science Applications Program has established a new initiative to utilize its data, expertise, and observations of the Earth for public health applications. In this initiative, lead by Goddard Space Flight Center, remote sensing, geographic information systems, improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. This presentation provides a number of recent examples of applications of advanced remote sensing and other technologies to health.and security issues related to the following: infectious and vector-borne diseases; urban, regional and global air pollution; African and Asian airborne dust; heat stress; UV radiation; water-borne disease; extreme weather; contaminant pathways (ocean, atmosphere, ice)

  11. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  12. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community

    PubMed Central

    Clarens, Andres F.; Peters, Catherine A.

    2016-01-01

    Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695

  13. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    PubMed

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  14. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  15. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  16. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  18. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  19. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  20. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  1. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  2. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  3. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  4. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  5. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  6. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  7. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  8. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  9. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  10. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  11. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  12. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  13. The Shifting Aesthetics of Expertise in the Sharing Economy of Scientific Medicine.

    PubMed

    Ostherr, Kirsten

    2018-03-01

    Argument The deficit model of science communication assumes that the creation and dissemination of knowledge is limited to researchers with formal credentials. Recent challenges to this model have emerged among "e-patients" who develop extensive online activist communities, demand access to their own health data, conduct crowd-sourced experiments, and "hack" health problems that traditional medical experts have failed to solve. This article explores the aesthetics of medical media that enact the transition from a deficit model to a patient-driven model of visual representation and health communication. I present a framework for understanding the role of film and video in patient movements by analyzing the historical transition from researchers filming patients as nameless, voiceless human research subjects to patients recording their own health narratives through activist cinematography. By comparing several approaches to patient-centered video, I argue that imperfect production aesthetics play a critically important role in establishing the credibility of health communications.

  14. E-mentoring in public health nursing practice.

    PubMed

    Miller, Louise C; Devaney, Susan W; Kelly, Glenda L; Kuehn, Alice F

    2008-09-01

    Attrition in the public health nursing work force combined with a lack of faculty to teach public health prompted development of a "long-distance" learning project. Practicing associate degree nurses enrolled in an online course in population-based practice worked with experienced public health nurse "e-mentors." Student-mentor pairs worked through course assignments, shared public health nursing experiences, and problem-solved real-time public health issues. Nursing faculty served as coordinators for student learning and mentor support. Over 3 years, 38 student-mentor pairs participated in the project. Students reported they valued the expertise and guidance of their mentors. Likewise, mentors gained confidence in their practice and abilities to mentor. Issues related to distance learning and e-mentoring centered around use of technology and adequate time to communicate with one another. E-mentoring is a viable strategy to connect nurses to a learning, sharing environment while crossing the barriers of distance, agency isolation, and busy schedules.

  15. Science & Technology Review July/August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Meissner, Caryn N.; Chinn, Ken B.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for the months of July and August 2016, there are two features: onemore » on Science and Technology in Support of Nuclear Nonproliferation, and another on Seeking Out Hidden Radioactive Materials. Then there are highlights are three research projects--on optics, plasma science, and the nature of neutrinos--along with a news section and patents and awards.« less

  16. An Interdisciplinary Module on Regulating Carbon Emissions to Mitigate Climate Change

    NASA Astrophysics Data System (ADS)

    Penny, S.; Sethi, G.; Smyth, R.; Leibensperger, E. M.; Gervich, C.; Batur, P.

    2016-12-01

    The dynamics of the unfolding carbon regulatory process presents a unique and timely opportunity to teach students about the grand challenge brought by climate change and the importance of systems thinking and interdisciplinary problem solving. In this poster, we summarize our recently developed 4-week activity-based class module "Regulating Carbon Emissions to Mitigate Climate Change," which we have developed as part of the InTeGrate ("Interdisciplinary Teaching about Earth for a Sustainable Future") program. These materials are suitable for introductory non-majors, environmental sciences majors, and political science majors, and we have formally piloted in each of these settings. This module is truly interdisciplinary and spans topics such as the Supreme Court ruling in Massachusetts v. EPA, costs and benefits of carbon abatement, and climate sensitivity. We discuss the unique challenges (and rewards!) that we experienced teaching materials entirely outside one's expertise.

  17. Mental health courts and their selection processes: modeling variation for consistency.

    PubMed

    Wolff, Nancy; Fabrikant, Nicole; Belenko, Steven

    2011-10-01

    Admission into mental health courts is based on a complicated and often variable decision-making process that involves multiple parties representing different expertise and interests. To the extent that eligibility criteria of mental health courts are more suggestive than deterministic, selection bias can be expected. Very little research has focused on the selection processes underpinning problem-solving courts even though such processes may dominate the performance of these interventions. This article describes a qualitative study designed to deconstruct the selection and admission processes of mental health courts. In this article, we describe a multi-stage, complex process for screening and admitting clients into mental health courts. The selection filtering model that is described has three eligibility screening stages: initial, assessment, and evaluation. The results of this study suggest that clients selected by mental health courts are shaped by the formal and informal selection criteria, as well as by the local treatment system.

  18. Professional development needs of nurse managers.

    PubMed

    Miltner, Rebecca S; Jukkala, Angela; Dawson, Martha A; Patrician, Patricia A

    2015-06-01

    Nurse managers have a key role in creating positive work environments where safe, high-quality care is consistently provided. This requires a broad range of skills to be successful within today's complex health care environment; however, managers are frequently selected based on their clinical expertise and are offered little formal preparation for this leadership role. We conducted three focus groups with 20 nurse managers to understand their professional development needs. Transcripts were analyzed using conventional content analysis. Three themes emerged: Managing Versus Leading, Gaining a Voice, and Garnering Support. Managers focused on daily tasks, such as matching staffing to patient needs. However, the data suggested gaps in foundational management skills, such as understanding organizational behavior, use of data to make decisions, and refined problem-solving skills. Professional development activities focusing on higher level leadership competencies could assist managers to be more successful in this challenging, but critical, role. Copyright 2015, SLACK Incorporated.

  19. Framework for Building Collaborative Research Environment

    DOE PAGES

    Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo

    2014-10-25

    Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Withinmore » this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.« less

  20. The Programme for Global Paediatric Research.

    PubMed

    Zipursky, Alvin

    2011-12-01

    When it comes to global health, there is no 'them'... only 'us.'" - Global Health Council There is a major anomaly in child health research. The majority of pediatric research resources and expertise is located in the developed world, whereas the vast majority of childhood disease and mortality is in the developing world. This disequilibrium has been referred to as the "10/90 gap", suggesting that only 10% of global health research dollars are devoted to conditions that account for 90% of the global disease burden (Global Forum for Health Research). The Programme for Global Paediatric Research (PGPR) began as an effort to include, in a major pediatric research conference, topics dealing with diseases of children in the developing world in order to engage more interest and more research dollars. It has evolved into a program educating and linking professionals, and developing global networks of colleagues working collaboratively to solve major childhood health problems.

  1. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. Thismore » network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.« less

  2. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

  3. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  4. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    PubMed

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  5. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  6. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  7. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  8. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  9. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  10. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  11. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  12. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    PubMed Central

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  13. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  14. Purdue University graduate certificate program in Veterinary Homeland Security.

    PubMed

    Amass, Sandra F; Blossom, Thaddaeus D; Ash, Marianne; McCay, Don; Mattix, Marc E

    2008-01-01

    Our nation lacks a critical mass of professionals trained to prevent and respond to food- and animal-related emergencies. Training veterinarians provides an immediate means of addressing this shortage of experts. Achievement of critical mass to effectively address animal-related emergencies is expedited by concurrent training of professionals and graduate students in related areas. Purdue University offers a Web-based Graduate Certificate in Veterinary Homeland Security to address this special area of need. The program is a collaborative effort among the Purdue University School of Veterinary Medicine, the Purdue Homeland Security Institute, the Indiana State Board of Animal Health, the Indiana State Police, and others with the overall goal of increasing capacity and preparedness to manage animal-related emergencies. Individuals with expertise in veterinary medicine, public health, animal science, or homeland security are encouraged to participate. The Web-based system allows courses to be delivered efficiently and effectively around the world and allows participants to continue their graduate education while maintaining full-time jobs. Participants enhance their understanding of natural and intentional threats to animal health, strengthen their skills in managing animal-health emergencies, and develop problem-solving expertise to become effective members of animal emergency response teams and of their communities. Students receive graduate credit from Purdue University that can be used toward the certificate and toward an advanced graduate degree. Currently, 70 participants from 28 states; Washington, DC; Singapore; and Bermuda are enrolled.

  15. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  16. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  17. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  18. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  19. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  20. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  1. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  2. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  3. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  4. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  5. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  6. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  7. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  8. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  9. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  10. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  12. [The current problems of injury assessment dealt with in the publications in the journal "Sudebnomeditsinskaya ekspertiza (Forensic medical expertise)" for the period from 2000 till 2014].

    PubMed

    Fetisov, V A; Gusarov, A A; Khabova, Z S; Smirenin, S A

    2015-01-01

    The objective of the present study was the analysis of the scientometric characteristics of the publication activity of the authors participating in the journal "Sudebno-meditsinskaya ekspertiza (Forensic medical expertise)" for the long period from 2000 till 2014 with special reference to the assessment of the coverage of the most topical problems, such as diagnostics of various injuries and their variability, expert evaluation of the conditions and mechanisms of their infliction for the purpose of characteristic of the properties of traumatic objects (weapons). The study allowed to identify the leading domestic and foreign periodicals most frequently cited by the authors of "Sudebno-meditsinskaya expertiza". The most active authors of the journal represent the research groups of the departments and laboratories of the forensic medical expertise agencies based at Moscow, Sankt-Peterburg, Novosibirsk, Barnaul, Kazan, Perm, Rostov-on-Don, Ryazan, Tver, and Khabarovsk. It is concluded that the continuation of the analysis and assessment of the scientific activity of the specialists in the this field of forensic medical expertise is an indispensable condition for the further development and improvement of forensic medical expertise in the Russian Federation.

  13. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  14. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  15. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  16. Enhancing memory and imagination improves problem solving among individuals with depression.

    PubMed

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  17. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  18. Goal specificity and knowledge acquisition in statistics problem solving: evidence for attentional focus.

    PubMed

    Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J

    2004-12-01

    Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.

  19. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109

  20. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. [The problems of professional competence in the complementary professional forensic medical expertise programs of advanced training and professional requalification].

    PubMed

    Shadymov, A B; Fominykh, S A; Dik, V P

    This article reports the results of the analysis of the new tendencies and normatives of the working legislation in the field of additional professional education in the speciality of «forensic medical expertise» and the application of the competency-based approach to the training of specialists in the framework of professional requalification and advanced training programs. Special attention is given to the problems of organization of the educational process and the elaboration of additional training programs based on the competency approach to the training of specialists at the Department of Forensic Medicine and Law with the professor V.N. Kryukov Course of Advanced Professional Training and Professional Requalification of Specialists at the state budgetary educational Institution of higher professional education «Altai State Medical University», Russian Ministry of Health. The study revealed the problems pertaining to the development of professional competencies in the framework of educational programs for the professional requalification and advanced training in the speciality «forensic medical expertise». The authors propose the legally substantiated approaches to the solution of these problems.

  2. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  3. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  4. Atmospheric Science: Solving Challenges of Climate Change

    ScienceCinema

    Geffen, Charlette

    2018-02-07

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  5. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  6. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    NASA Astrophysics Data System (ADS)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  7. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  8. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  9. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    ERIC Educational Resources Information Center

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  10. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    ERIC Educational Resources Information Center

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  11. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  12. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  13. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  14. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  15. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  16. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  17. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  18. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  19. Three CLIPS-based expert systems for solving engineering problems

    NASA Technical Reports Server (NTRS)

    Parkinson, W. J.; Luger, G. F.; Bretz, R. E.

    1990-01-01

    We have written three expert systems, using the CLIPS PC-based expert system shell. These three expert systems are rule based and are relatively small, with the largest containing slightly less than 200 rules. The first expert system is an expert assistant that was written to help users of the ASPEN computer code choose the proper thermodynamic package to use with their particular vapor-liquid equilibrium problem. The second expert system was designed to help petroleum engineers choose the proper enhanced oil recovery method to be used with a given reservoir. The effectiveness of each technique is highly dependent upon the reservoir conditions. The third expert system is a combination consultant and control system. This system was designed specifically for silicon carbide whisker growth. Silicon carbide whiskers are an extremely strong product used to make ceramic and metal composites. The manufacture of whiskers is a very complicated process. which to date. has defied a good mathematical model. The process was run by experts who had gained their expertise by trial and error. A system of rules was devised by these experts both for procedure setup and for the process control. In this paper we discuss the three problem areas of the design, development and evaluation of the CLIPS-based programs.

  20. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  1. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  2. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  3. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  4. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  5. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  6. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  7. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  8. Insightful problem solving and emulation in brown capuchin monkeys.

    PubMed

    Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A

    2017-05-01

    We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.

  9. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  11. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  12. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  13. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences.

    PubMed

    Soltani, Akbar; Allaa, Maryam; Moosapour, Hamideh; Aletaha, Azadeh; Shahrtash, Farzaneh; Monajemi, Alireza; Arastoo, Tohid; Ahmadinejad, Maryam; Mirzazadeh, Azim; Khabaz Mafinejad, Mahboobeh

    2017-01-01

    Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS). A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences), problem-solving and reasoning (Pathophysiology), evidence-based medicine (Clerkship), and clinical decision-making (Internship) were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  14. Pomona College Dreamers and Achievers Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C. A.

    As an undergraduate at Pomona, Carol Meyers ’00 enjoyed proofs and pure math, but she also had a hankering to solve real-world problems. This eventually led her to discover the field of operations research, in which she earned a PhD from MIT, and from there onto a career at a national laboratory. “National labs are great because they serve a role between academia and industry,” she says, “solving problems too large or too applied for academia, and insufficiently profitdriven for industry.” Her workplace, Lawrence Livermore National Laboratory, is home to the world’s largest laser, frequent home to the world’s fastestmore » supercomputer, and the namesake to element 116 (Livermorium) on the periodic table. During her 10+ years at the laboratory Carol has worked in the areas of energy grid modernization, nuclear counterterrorism, cyber security, stockpile stewardship, and supercomputing, often as a consultant providing mathematical modeling and optimization expertise. Carol has two young kids and serves as co-chair of the New Moms’ Group at her workplace. “Being in a supportive community of moms has really helped me at work,” she says, “because let’s face it – moms know how to get things done!” “People talk a lot about the importance of networking, but this doesn’t have to mean starting technical discussions with strangers. The ability to bond with and relate to other people is far more important, and many women do this very well. Some of my best work networking connections have come through our employer-affiliated daycare.”« less

  15. Preliminary Analysis of Perfusionists’ Strategies for Managing Routine and Failure Mode Scenarios in Cardiopulmonary Bypass

    PubMed Central

    Power, Gerald; Miller, Anne

    2007-01-01

    Abstract: Cardiopulmonary bypass (CPB) is a complex task requiring high levels of practitioner expertise. Although some education standards exist, few are based on an analysis of perfusionists’ problem-solving needs. This study shows the efficacy of work domain analysis (WDA) as a framework for analyzing perfusionists’ conceptualization and problem-solving strategies. A WDA model of a CPB circuit was developed. A high-fidelity CPB simulator (Manbit) was used to present routine and oxygenator failure scenarios to six proficient perfusionists. The video-cued recall technique was used to elicit perfusionists’ conceptualization strategies. The resulting recall transcripts were coded using the WDA model and analyzed for associations between task completion times and patterns of conceptualization. The WDA model developed was successful in being able to account for and describe the thought process followed by each participant. It was also shown that, although there was no correlation between experience with CPB and ability to change an oxygenator, there was a link between the between specific thought patterns and the efficiency in undertaking this task. Simulators are widely used in many fields of human endeavor, and in this research, the attempt was made to use WDA to gain insights into the complexities of the human thought process when engaged in the complex task of conducting CPB. The assumption that experience equates with ability is challenged, and rather, it is shown that thought process is a more significant determinant of success when engaged in complex tasks. WDA analysis in combination with a CPB simulator may be used to elucidate successful strategies for completing complex tasks. PMID:17972450

  16. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  17. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    PubMed

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  18. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  19. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  20. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

    ERIC Educational Resources Information Center

    Szetela, W.; Super, D.

    A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

  2. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  3. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  4. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…

  5. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  6. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    PubMed Central

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  7. Lessons Learned from Crowdsourcing Complex Engineering Tasks

    PubMed Central

    Kijewski-Correa, Tracy; Thain, Douglas; Kareem, Ahsan; Madey, Gregory

    2015-01-01

    Crowdsourcing Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Harnessing Crowdworkers for Engineering Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. Virtual Wind Tunnel We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. Conclusions With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems. PMID:26383029

  8. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  9. Computer Programming: A Medium for Teaching Problem Solving.

    ERIC Educational Resources Information Center

    Casey, Patrick J.

    1997-01-01

    Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…

  10. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  11. THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.

    ERIC Educational Resources Information Center

    DAVIS, GARY A.

    PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…

  12. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  13. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  14. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  15. Performance of subjects with and without severe mental illness on a clinical test of problem solving.

    PubMed

    Marshall, R C; McGurk, S R; Karow, C M; Kairy, T J; Flashman, L A

    2006-06-01

    Severe mental illness is associated with impairments in executive functions, such as conceptual reasoning, planning, and strategic thinking all of which impact problem solving. The present study examined the utility of a novel assessment tool for problem solving, the Rapid Assessment of Problem Solving Test (RAPS) in persons with severe mental illness. Subjects were 47 outpatients with severe mental illness and an equal number healthy controls matched for age and gender. Results confirmed all hypotheses with respect to how subjects with severe mental illness would perform on the RAPS. Specifically, the severely mentally ill subjects (1) solved fewer problems on the RAPS, (2) when they did solve problems on the test, they did so far less efficiently than their healthy counterparts, and (3) the two groups differed markedly in the types of questions asked on the RAPS. The healthy control subjects tended to take a systematic, organized, but not always optimal approach to solving problems on the RAPS. The subjects with severe mental illness used some of the problem solving strategies of the healthy controls, but their performance was less consistent and tended to deteriorate when the complexity of the problem solving task increased. This was reflected by a high degree of guessing in lieu of asking constraint questions, particularly if a category-limited question was insufficient to continue the problem solving effort.

  16. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    NASA Astrophysics Data System (ADS)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  17. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  18. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    PubMed Central

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454

  19. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  20. Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.

    PubMed

    Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J

    1992-01-01

    This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.

  1. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  2. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  3. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  4. Problem Solving. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…

  5. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    ERIC Educational Resources Information Center

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  6. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  7. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  8. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  9. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  10. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  11. Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry

    ERIC Educational Resources Information Center

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…

  12. The Role of Expository Writing in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  13. Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.

    ERIC Educational Resources Information Center

    Sabourin, Stephane; And Others

    1990-01-01

    Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…

  14. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  15. Perceived Barriers and Enablers of Help-Seeking for Substance Use Problems During Adolescence.

    PubMed

    Berridge, Bonita J; McCann, Terence V; Cheetham, Ali; Lubman, Dan I

    2018-01-01

    Receiving professional help early can reduce long-term harms associated with substance use. However, little is known about the factors that influence help-seeking for substance use problems during early-mid adolescence, prior to the emergence of disorder. Given that beliefs regarding help-seeking are likely to develop early, understanding adolescent views of help-seeking during this period is likely to provide important information for prevention and intervention efforts. The current study identifies perceptions that would facilitate or prevent adolescents from seeking support for substance use problems from formal and informal help sources. Thirty-four 12- to 16-year-olds from two schools in Melbourne, Victoria, Australia, were recruited. A qualitative interpretative design was used, incorporating semistructured, audio-recorded interviews. Three overlapping themes that reflected barriers or enablers to help-seeking were identified: approachability, confidentiality and trustworthiness, and expertise. Help-seeking was facilitated when adolescents believed that the help source would be supportive and understanding, would keep information confidential, and had expertise in the alcohol and drug field. Conversely, adolescents were reluctant to seek help from sources they believed would be judgmental, lacked expertise, or would inform their parents. These findings highlight perceptions that may influence help-seeking for alcohol and drug problems during adolescence. Further research is needed to determine if help-seeking can be facilitated by improving parents' and peers' knowledge and promoting health professionals' expertise in working with young people's alcohol and drug issues.

  16. When the lowest energy does not induce native structures: parallel minimization of multi-energy values by hybridizing searching intelligences.

    PubMed

    Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou

    2012-01-01

    Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise.

  17. When the Lowest Energy Does Not Induce Native Structures: Parallel Minimization of Multi-Energy Values by Hybridizing Searching Intelligences

    PubMed Central

    Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou

    2012-01-01

    Background Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. Results A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. Conclusions This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise. PMID:23028708

  18. Alternative Perspectives on Risk: Individual Differences in Problem Structuring

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Fischer, Ute; Connors, Mary M. (Technical Monitor)

    1997-01-01

    Team decision making involves contributions of multiple players toward a common goal. While much has been written about the importance of developing shared mental models in order for teams to work together effectively, little has been done to determine the value of alternative perspectives on problem solving and decision making. Early studies of expertise contrasted experts with novices and noted that the two groups differ in the way they structure problems and in their selection of information as salient. Little attention has been given to differences among experts who differ in their specializations. A series of experiments was conducted to determine: (1) what dimensions of flight-related problem situations pilots judge to be most important when making flight-relevant decisions; and (2) whether pilots in different crew positions differ in the way they interpret problems relating to flight decisions. A sorting task was used to identify underlying dimensions judged as salient to individual pilots. Captains, first officers, and flight engineers from two major carriers participated in the study. Twenty-two flight scenarios were developed based on ASRS reports. Pilots were required to make judgments about how they would respond in each case and to sort the scenarios on the basis of similarity of decision factors. They were also asked to provide a verbal label that described each of their sorted categories. A second study required a different group of pilots (also captains, first officers and flight engineers) to sort on predetermined bases.

  19. Effect of Tutorial Giving on The Topic of Special Theory of Relativity in Modern Physics Course Towards Students’ Problem-Solving Ability

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Haryoto, Dwi

    2017-05-01

    A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.

  20. Assertiveness and problem solving in midwives.

    PubMed

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  1. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  2. Association Between Anticipatory Grief and Problem Solving Among Family Caregivers of Persons with Cognitive Impairment

    PubMed Central

    Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda

    2013-01-01

    Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394

  3. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  4. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  5. Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era

    ERIC Educational Resources Information Center

    Sumitha, S.; Jose, Rexlin

    2016-01-01

    Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…

  6. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  7. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  8. Moving your eyes to solution: effects of movements on the perception of a problem-solving task.

    PubMed

    Werner, K; Raab, M

    2014-01-01

    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  9. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  10. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  11. Decomposing intuitive components in a conceptual problem solving task.

    PubMed

    Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J

    2007-06-01

    Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.

  12. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  13. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  14. The Relationship between Functional Status and Judgment/Problem Solving Among Individuals with Dementia

    PubMed Central

    Mayo, Ann M.; Wallhagen, Margaret; Cooper, Bruce A.; Mehta, Kala; Ross, Leslie; Miller, Bruce

    2012-01-01

    Objective To determine the relationship between functional status (independent activities of daily living) and judgment/problem solving and the extent to which select demographic characteristics such as dementia subtype and cognitive measures may moderate that relationship in older adult individuals with dementia. Methods The National Alzheimer’s Coordinating Center Universal Data Set was accessed for a study sample of 3,855 individuals diagnosed with dementia. Primary variables included functional status, judgment/problem solving, and cognition. Results Functional status was related to judgment/problem solving (r= 0.66; p< .0005). Functional status and cognition jointly predicted 56% of the variance in judgment/problem solving (R-squared = .56, p <.0005). As cognition decreases, the prediction of poorer judgment/problem solving by functional status became stronger. Conclusions Among individuals with a diagnosis of dementia, declining functional status as well as declining cognition should raise concerns about judgment/problem solving. PMID:22786576

  15. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  17. On the Analysis of Two-Person Problem Solving Protocols.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…

  18. The Development and Nature of Problem-Solving among First-Semester Calculus Students

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Epperson, James A. Mendoza

    2014-01-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…

  19. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  20. Socially Shared Metacognition of Dyads of Pupils in Collaborative Mathematical Problem-Solving Processes

    ERIC Educational Resources Information Center

    Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka

    2011-01-01

    This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…

  1. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  2. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  3. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    ERIC Educational Resources Information Center

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  4. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  5. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    ERIC Educational Resources Information Center

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  6. Teaching Social Problem Solving to Individuals with Mental Retardation

    ERIC Educational Resources Information Center

    Crites, Steven A.; Dunn, Caroline

    2004-01-01

    The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…

  7. The Microcomputer--A Problem Solving Tool.

    ERIC Educational Resources Information Center

    Hoelscher, Karen J.

    Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…

  8. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  9. The Reliability and Construct Validity of Scores on the Attitudes toward Problem Solving Scale

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Haron, Zolkepeli; Daud, Md Yusoff

    2004-01-01

    The Attitudes Toward Problem Solving Scale (ATPSS) has received limited attention concerning its reliability and validity with a Malaysian secondary education population. Developed by Charles, Lester & O'Daffer (1987), the instruments assessed attitudes toward problem solving in areas of Willingness to Engage in Problem Solving Activities,…

  10. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  11. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2017-01-01

    The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

  12. 77 FR 32138 - Agency Information Collection Agencies: Proposed Collection; Comments Requested Census of Problem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... Agencies: Proposed Collection; Comments Requested Census of Problem-Solving Courts 2012 ACTION: 30-Day...-Solving Courts (CPSC), 201 2. The title of the form/collection: Census of Problem-Solving Courts or CPSC... Abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics...

  13. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  14. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  15. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  16. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  17. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  18. The role of surgical expertise with regard to chronic postoperative inguinal pain (CPIP) after Lichtenstein correction of inguinal hernia: a systematic review.

    PubMed

    Lange, J F M; Meyer, V M; Voropai, D A; Keus, E; Wijsmuller, A R; Ploeg, R J; Pierie, J P E N

    2016-06-01

    The aim of this study was to evaluate whether a relation exists between surgical expertise and incidence of chronic postoperative inguinal pain (CPIP) after inguinal hernia repair using the Lichtenstein procedure . CPIP after inguinal hernia repair remains a major clinical problem despite many efforts to address this problem. Recently, case volume and specialisation have been found correlated to significant improvement of outcomes in other fields of surgery; to date these important factors have not been reviewed extensively enough in the context of inguinal hernia surgery. A systematic literature review was performed to identify randomised controlled trials reporting on the incidence of CPIP after the Lichtenstein procedure and including the expertise of the surgeon. Surgical expertise was subdivided into expert and non-expert. In a total of 16 studies 3086 Lichtenstein procedures were included. In the expert group the incidence of CPIP varied between 6.9 and 11.7 % versus an incidence of 18.1 and 39.4 % in the non-expert group. Due to the heterogeneity between groups no statistical significance could be demonstrated. The results of this evaluation suggest that an association between surgical expertise and CPIP is highly likely warranting further analysis in a prospectively designed study.

  19. The development and evaluation of a web-based programme to support problem-solving skills following brain injury.

    PubMed

    Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody

    2017-10-24

    Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.

  20. Physical activity problem-solving inventory for adolescents: Development and initial validation

    USDA-ARS?s Scientific Manuscript database

    Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...

  1. The relation between stressful life events and adjustment in elementary school children: the role of social support and social problem-solving skills.

    PubMed

    Dubow, E F; Tisak, J

    1989-12-01

    This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.

  2. The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems

    NASA Astrophysics Data System (ADS)

    Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.

    2018-01-01

    This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.

  3. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    NASA Astrophysics Data System (ADS)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  4. Problem Solving Interventions for Diabetes Self-management and Control: A Systematic Review of the Literature

    PubMed Central

    Fitzpatrick, Stephanie L.; Schumann, Kristina P.; Hill-Briggs, Felicia

    2013-01-01

    Aims Problem solving is deemed a core skill for patient diabetes self-management education. The purpose of this systematic review is to examine the published literature on the effect of problem-solving interventions on diabetes self-management and disease control. Data Sources We searched PubMed and PsychINFO electronic databases for English language articles published between November 2006 and September 2012. Reference lists from included studies were reviewed to capture additional studies. Study Selection Studies reporting problem-solving intervention or problem solving as an intervention component for diabetes self-management training and disease control were included. Twenty-four studies met inclusion criteria. Data Extraction Study design, sample characteristics, measures, and results were reviewed. Data Synthesis Sixteen intervention studies (11 adult, 5 children/adolescents) were randomized controlled trials, and 8 intervention studies (6 adult, 2 children/adolescents) were quasi-experimental designs. Conclusions Studies varied greatly in their approaches to problem-solving use in patient education. To date, 36% of adult problem-solving interventions and 42% of children/adolescent problem-solving interventions have demonstrated significant improvement in HbA1c, while psychosocial outcomes have been more promising. The next phase of problem-solving intervention research should employ intervention characteristics found to have sufficient potency and intensity to reach therapeutic levels needed to demonstrate change. PMID:23312614

  5. Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.

    PubMed

    Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T

    2012-06-01

    Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.

  6. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    NASA Astrophysics Data System (ADS)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  7. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  8. Analysis of problem solving skill in learning biology at senior high school of Surakarta

    NASA Astrophysics Data System (ADS)

    Rahmawati, D.; Sajidan; Ashadi

    2018-04-01

    Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.

  9. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    PubMed

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  10. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  12. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  13. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  14. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  15. Problem-solving skills training for mothers of children recently diagnosed with autism spectrum disorder: A pilot feasibility study.

    PubMed

    Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B

    2016-01-01

    Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.

  16. A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic

    NASA Astrophysics Data System (ADS)

    Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.

    2018-05-01

    Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.

  17. Active and passive problem solving: moderating role in the relation between depressive symptoms and future suicidal ideation varies by suicide attempt history.

    PubMed

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2015-04-01

    Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem-solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation among suicide attempters and nonattempters. Young adults (n = 324, 73% female, mean age = 19, standard deviation = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and suicidal ideation at baseline, and a self-report measure of suicidal ideation at 6-month follow-up. Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future suicidal ideation. Among attempters, active problem solving buffered against depressive symptoms in predicting future suicidal ideation. Suicide prevention should foster active problem solving, especially among suicide attempters. © 2015 Wiley Periodicals, Inc.

  18. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  19. Active and Passive Problem Solving: Moderating Role in the Relation between Depressive Symptoms and Future Suicidal Ideation Varies by Suicide Attempt History

    PubMed Central

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2016-01-01

    Objective Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation (SI) among suicide attempters and non-attempters. Method Young adults (n = 324, 73% female, Mage = 19, SD = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and SI at baseline, and also completed a self-report measure of SI at 6-month follow-up. Results Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future SI. Among attempters, active problem solving buffered against depressive symptoms in predicting future SI. Conclusions Suicide prevention should foster active problem solving, especially among suicide attempters. PMID:25760651

  20. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  1. The impact of childhood emotional abuse and experiential avoidance on maladaptive problem solving and intimate partner violence.

    PubMed

    Bell, Kathryn M; Higgins, Lorrin

    2015-04-16

    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.

  2. The social problem-solving abilities of people with borderline personality disorder.

    PubMed

    Bray, Stephanie; Barrowclough, Christine; Lobban, Fiona

    2007-06-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behaviour therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group. In this study, the social problem-solving (SPS) abilities of three groups of participants were assessed: a BPD group (n=25), a clinical control (CC) group (n=25) procedure and a non-clinical control (NCC) group (n=25). SPS ability was assessed using the means-end problem-solving (MEPS) procedure and the Social Problem-Solving Inventory-Revised (SPSI-R). The BPD group exhibited deficits in their SPS abilities, however the majority of these deficits were not specific to the BPD group but were also found in the CC group, indicating that a common factor between these two groups, such as negative affect, may account for these observed deficits. Specific SPS deficits were identified in the BPD group: they provided less specific solutions on the MEPS and reported higher levels of negative problem orientation and a more impulsive/carelessness style towards solving social problems. The results of this study provide empirical support for the use of problem-solving interventions with people suffering from BPD.

  3. The Impact of Childhood Emotional Abuse and Experiential Avoidance on Maladaptive Problem Solving and Intimate Partner Violence

    PubMed Central

    Bell, Kathryn M.; Higgins, Lorrin

    2015-01-01

    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person’s ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk. PMID:25893570

  4. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks

    PubMed Central

    Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen

    2018-01-01

    During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620

  5. Computing Across the Physics and Astrophysics Curriculum

    NASA Astrophysics Data System (ADS)

    DeGioia Eastwood, Kathy; James, M.; Dolle, E.

    2012-01-01

    Computational skills are essential in today's marketplace. Bachelors entering the STEM workforce report that their undergraduate education does not adequately prepare them to use scientific software and to write programs. Computation can also increase student learning; not only are the students actively engaged, but computational problems allow them to explore physical problems that are more realistic than the few that can be solved analytically. We have received a grant from the NSF CCLI Phase I program to integrate computing into our upper division curriculum. Our language of choice is Matlab; this language had already been chosen for our required sophomore course in Computational Physics because of its prevalence in industry. For two summers we have held faculty workshops to help our professors develop the needed expertise, and we are now in the implementation and evaluation stage. The end product will be a set of learning materials in the form of computational modules that we will make freely available. These modules will include the assignment, pedagogical goals, Matlab code, samples of student work, and instructor comments. At this meeting we present an overview of the project as well as modules written for a course in upper division stellar astrophysics. We acknowledge the support of the NSF through DUE-0837368.

  6. Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.

    PubMed

    Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don

    2018-06-01

    This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.

  7. Designing ligands to bind proteins

    PubMed Central

    Whitesides, George M.; Krishnamurthy, Vijay M.

    2009-01-01

    The ability to design drugs (so-called ‘rational drug design’) has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem – how to design tight-binding ligands (rational ligand design) – would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is ‘Why is it so difficult?’ and the answer is ‘We still don't entirely know’. This perspective discusses some of the technical issues – potential functions, protein plasticity, enthalpy/entropy compensation, and others – that contribute, and suggests areas where fundamental understanding of protein–ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein–ligand association is challenging. PMID:16817982

  8. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    PubMed

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, p<.0001), clinical interaction (ß=.129, p=.047), and interpersonal dysfunction (ß=-.402, p<.0001) were associated with social problem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Assertiveness and problem solving in midwives

    PubMed Central

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Background: Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. Materials and Methods: This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. Results: The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say “no” when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). Conclusions: There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession. PMID:26793247

  10. Exploring the Complexity of Tree Thinking Expertise in an Undergraduate Systematics Course

    ERIC Educational Resources Information Center

    Halverson, Kristy L.; Pires, Chris J.; Abell, Sandra K.

    2011-01-01

    Student understanding of biological representations has not been well studied. Yet, we know that to be efficient problem solvers in evolutionary biology and systematics, college students must develop expertise in thinking with a particular type of representation, phylogenetic trees. The purpose of this study was to understand how undergraduates…

  11. On-Line Representation of a Clinical Case and the Development of Expertise.

    ERIC Educational Resources Information Center

    Boshuizen, Henny P. A.; And Others

    Designed to examine the structural differences in the representation of medical problems in subjects with varying degrees of medical expertise, this study uses an online, thinking-aloud technique to investigate the validity of Feltovich and Barrows' model of expert medical knowledge and illness scripts. Study methodology involved asking one…

  12. Learning about Workplace Learning and Expertise from Jack: A Discourse Analytic Study

    ERIC Educational Resources Information Center

    Lee, Yew-Jin; Roth, Wolff-Michael

    2006-01-01

    Purpose: The purpose of this paper is to highlight some methodological problems concerning the neglect of participants' voices by workplace ethnographers and neglect of the highly interactional and co-constructive nature of research interviewing. The study aims to use discourse analysis, to show the phenomena of workplace learning and expertise to…

  13. What are some of the cognitive, psychological, and social factors that facilitate or hinder licensed vocational nursing students' acquisition of problem-solving skills involved with medication-dosage calculations?

    NASA Astrophysics Data System (ADS)

    Allen, Arthur William

    The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.

  14. Heuristics and Problem Solving.

    ERIC Educational Resources Information Center

    Abel, Charles F.

    2003-01-01

    Defines heuristics as cognitive "rules of thumb" that can help problem solvers work more efficiently and effectively. Professors can use a heuristic model of problem solving to guide students in all disciplines through the steps of problem-solving. (SWM)

  15. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    PubMed

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  17. Some methodological aspects of ethics committees' expertise: the Ukrainian example.

    PubMed

    Pustovit, Svitlana V

    2006-01-01

    Today local, national and international ethics committees have become an effective means of social regulation in many European countries. Science itself is an important precondition for the development of bioethical knowledge and ethics expertise. Cultural, social, historical and religious preconditions can facilitate different forms and methods of ethics expertise in each country. Ukrainian ethics expertise has some methodological problems connected with its socio-cultural, historical, science and philosophy development particularities. In this context, clarification of some common legitimacies or methodological approaches to ethics committee (EC) phenomena such as globalization, scientization and the prioritization of an ethics paradigm are very important. On the other hand, elaborate study and critical analysis of international experience by Ukraine and other Eastern European countries will provide the integration of their local and national ethics expertises into a world bioethics ethos.

  18. Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…

  19. Protocol Analysis of Group Problem Solving in Mathematics: A Cognitive-Metacognitive Framework for Assessment.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…

  20. Investigating Students' Success in Solving and Attitudes towards Context-Rich Open-Ended Problems in Chemistry

    ERIC Educational Resources Information Center

    Overton, Tina L.; Potter, Nicholas M.

    2011-01-01

    Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…

Top