Sample records for problem solving findings

  1. Trading a Problem-solving Task

    NASA Astrophysics Data System (ADS)

    Matsubara, Shigeo

    This paper focuses on a task allocation problem, especially cases where the task is to find a solution in a search problem or a constraint satisfaction problem. If the search problem is hard to solve, a contractor may fail to find a solution. Here, the more computational resources such as the CPU time the contractor invests in solving the search problem, the more a solution is likely to be found. This brings about a new problem that a contractee has to find an appropriate level of the quality in a task achievement as well as to find an efficient allocation of a task among contractors. For example, if the contractee asks the contractor to find a solution with certainty, the payment from the contractee to the contractor may exceed the contractee's benefit from obtaining a solution, which discourages the contractee from trading a task. However, solving this problem is difficult because the contractee cannot ascertain the contractor's problem-solving ability such as the amount of available resources and knowledge (e.g. algorithms, heuristics) or monitor what amount of resources are actually invested in solving the allocated task. To solve this problem, we propose a task allocation mechanism that is able to choose an appropriate level of the quality in a task achievement and prove that this mechanism guarantees that each contractor reveals its true information. Moreover, we show that our mechanism can increase the contractee's utility compared with a simple auction mechanism by using computer simulation.

  2. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  3. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  4. Decomposing intuitive components in a conceptual problem solving task.

    PubMed

    Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J

    2007-06-01

    Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.

  5. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  6. Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.

    ERIC Educational Resources Information Center

    Sabourin, Stephane; And Others

    1990-01-01

    Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…

  7. When Best Intentions Go Awry: The Failures of Concrete Representations to Help Solve Probability Word Problems

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.

    2011-01-01

    Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…

  8. Instructional Design-Based Research on Problem Solving Strategies

    ERIC Educational Resources Information Center

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  9. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  10. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  11. Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.

    PubMed

    Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J

    1992-01-01

    This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.

  12. Profile of students’ generated representations and creative thinking skill in problem solving in vocational school

    NASA Astrophysics Data System (ADS)

    Fikri, P. M.; Sinaga, P.; Hasanah, L.; Solehat, D.

    2018-05-01

    This study aims to determine profile of students’ generated representations and creative thinking skill on problem solving in vocational school. This research is a descriptive research to get an idea of comprehend students’ generated representations and creative thinking skill on problem solving of vocational school in Bandung. Technique of collecting data is done by test method, observation, and interview. Representation is something that represents, describes or symbolizes an object or process. To evaluate the multi-representation skill used essay test with rubric of scoring was used to assess multi-depressant student skills. While creative thinking skill on problem solving used essay test which contains the components of skills in finding facts, problem finding skills, idea finding skills and solution finding skills. The results showed generated representations is still relatively low, this is proven by average student answers explanation is mathematically correct but there is no explanation verbally or graphically. While creative thinking skill on problem solving is still relatively low, this is proven by average score for skill indicator in finding the student problem is 1.52 including the non-creative category, average score for the skill indicator in finding the student idea is 1.23 including the non-creative category, and the average score of the students skill in finding this solution is 0.72 belongs to a very uncreative category.

  13. Insight into the ten-penny problem: guiding search by constraints and maximization.

    PubMed

    Öllinger, Michael; Fedor, Anna; Brodt, Svenja; Szathmáry, Eörs

    2017-09-01

    For a long time, insight problem solving has been either understood as nothing special or as a particular class of problem solving. The first view implicates the necessity to find efficient heuristics that restrict the search space, the second, the necessity to overcome self-imposed constraints. Recently, promising hybrid cognitive models attempt to merge both approaches. In this vein, we were interested in the interplay of constraints and heuristic search, when problem solvers were asked to solve a difficult multi-step problem, the ten-penny problem. In three experimental groups and one control group (N = 4 × 30) we aimed at revealing, what constraints drive problem difficulty in this problem, and how relaxing constraints, and providing an efficient search criterion facilitates the solution. We also investigated how the search behavior of successful problem solvers and non-solvers differ. We found that relaxing constraints was necessary but not sufficient to solve the problem. Without efficient heuristics that facilitate the restriction of the search space, and testing the progress of the problem solving process, the relaxation of constraints was not effective. Relaxing constraints and applying the search criterion are both necessary to effectively increase solution rates. We also found that successful solvers showed promising moves earlier and had a higher maximization and variation rate across solution attempts. We propose that this finding sheds light on how different strategies contribute to solving difficult problems. Finally, we speculate about the implications of our findings for insight problem solving.

  14. Problem Finding in Professional Learning Communities: A Learning Study Approach

    ERIC Educational Resources Information Center

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    This study marries collaborative problem solving and learning study in understanding the onset of a cycle of teacher professional development process within school-based professional learning communities (PLCs). It aimed to explore how a PLC carried out collaborative problem finding--a key process involved in collaborative problem solving--that…

  15. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  16. Do clients' problem-solving appraisals predict career counseling outcomes or vice versa? A reanalysis of Heppner, et al.

    PubMed

    Lee, Dong-Gwi; Park, Hyun-Joo; Heppner, Mary J

    2009-12-01

    Using Heppner, et al.'s data from 2004, this study tested career counseling clients in the United States on problem-solving appraisal scores and career-related variables. A cross-lagged panel design with structural equation modeling was used. Results supported the link between clients' precounseling problem-solving appraisal scores and career outcome. This finding held for career decision-making, but not for vocational identity. The study provided further support for Heppner, et al.'s findings, highlighting the influential role of clients' problem-solving appraisals in advancing their career decision-making processes.

  17. Update: Guidelines for Effective Facilitation of Creative Problem Solving. Part 2.

    ERIC Educational Resources Information Center

    Firestien, Roger L.; Treffinger, Donald J.

    1989-01-01

    In this second article of a series, the first three stages of the CPS (Creative Problem Solving) process are described and several facilitation techniques that can be used in each stage are discussed. The three stages discussed (Mess-Finding, Data-Finding, and Problem-Finding) each involve a creative thought and a critical thought phase. (JDD)

  18. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  19. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  20. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    PubMed

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  1. Scaffolding for solving problem in static fluid: A case study

    NASA Astrophysics Data System (ADS)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of scaffolding to support their students in finding the solutions.

  2. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  3. Self-calibration of robot-sensor system

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu

    1990-01-01

    The process of finding the coordinate transformation between a robot and an external sensor system has been addressed. This calibration is equivalent to solving a nonlinear optimization problem for the parameters that characterize the transformation. A two-step procedure is herein proposed for solving the problem. The first step involves finding a nominal solution that is a good approximation of the final solution. A varational problem is then generated to replace the original problem in the next step. With the assumption that the variational parameters are small compared to unity, the problem that can be more readily solved with relatively small computation effort.

  4. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  5. Social Problem Solving and Health Behaviors of Undergraduate Students.

    ERIC Educational Resources Information Center

    Elliott, Timothy R.; And Others

    1997-01-01

    Examines the relationship of social problem solving to health behaviors as reported by 126 undergraduate students. Findings revealed significant relationships between elements of social problem solving and wellness and accident prevention behaviors, and traffic and substance risk taking. However, correlations revealed differences between men and…

  6. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  7. Children's Use of Metacognition in Solving Everyday Problems: An Initial Study from an Asian Context

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Teo, Timothy; Bergin, David

    2009-01-01

    The aim of this study is to understand the relationship between metacognition and students' everyday problem solving. Specifically, we were interested to find out whether regulation of cognition and knowledge of cognition are related to everyday problem solving and whether students who perform better in the decision-making problem will better…

  8. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    ERIC Educational Resources Information Center

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  9. Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum

    ERIC Educational Resources Information Center

    Tseng, Shian-Shyong; Weng, Jui-Feng

    2010-01-01

    The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…

  10. Pre-Service Elementary Teachers' Motivation and Ill-Structured Problem Solving in Korea

    ERIC Educational Resources Information Center

    Kim, Min Kyeong; Cho, Mi Kyung

    2016-01-01

    This article examines the use and application of an ill-structured problem to pre-service elementary teachers in Korea in order to find implications of pre-service teacher education with regard to contextualized problem solving by analyzing experiences of ill-structured problem solving. Participants were divided into small groups depending on the…

  11. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  12. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  13. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  14. PROSPECTIVE ASSOCIATIONS OF DEPRESSIVE RUMINATION AND SOCIAL PROBLEM SOLVING WITH DEPRESSION: A 6-MONTH LONGITUDINAL STUDY(.).

    PubMed

    Hasegawa, Akira; Hattori, Yosuke; Nishimura, Haruki; Tanno, Yoshihiko

    2015-06-01

    The main purpose of this study was to examine whether depressive rumination and social problem solving are prospectively associated with depressive symptoms. Nonclinical university students (N = 161, 64 men, 97 women; M age = 19.7 yr., SD = 3.6, range = 18-61) recruited from three universities in Japan completed the Beck Depression Inventory-Second Edition (BDI-II), the Ruminative Responses Scale, Social Problem-Solving Inventory-Revised Short Version (SPSI-R:S), and the Means-Ends Problem-Solving Procedure at baseline, and the BDI-II again at 6 mo. later. A stepwise multiple regression analysis with the BDI-II and all subscales of the rumination and social problem solving measures as independent variables indicated that only the BDI-II scores and the Impulsivity/carelessness style subscale of the SPSI-R:S at Time 1 were significantly associated with BDI-II scores at Time 2 (β = 0.73, 0.12, respectively; independent variables accounted for 58.8% of the variance). These findings suggest that in Japan an impulsive and careless problem-solving style was prospectively associated with depressive symptomatology 6 mo. later, as contrasted with previous findings of a cycle of rumination and avoidance problem-solving style.

  15. Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems

    ERIC Educational Resources Information Center

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark

    2012-01-01

    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…

  16. Assessment of Expert-Novice Chemistry Problem Solving Using HyperCard: Early Findings.

    ERIC Educational Resources Information Center

    Kumar, David D.

    1993-01-01

    Results of a HyperCard method for assessing the performance of expert and novice high school chemistry students solving stoichiometric chemistry problems (balancing chemical equations) is reported. MANOVA results indicate significant difference between expert and novice students solving the five stoichiometric chemistry problems using…

  17. Teaching Evidence-based Medicine Using Literature for Problem Solving.

    ERIC Educational Resources Information Center

    Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti

    2001-01-01

    Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)

  18. A Structured Approach to Teaching Applied Problem Solving through Technology Assessment.

    ERIC Educational Resources Information Center

    Fischbach, Fritz A.; Sell, Nancy J.

    1986-01-01

    Describes an approach to problem solving based on real-world problems. Discusses problem analysis and definitions, preparation of briefing documents, solution finding techniques (brainstorming and synectics), solution evaluation and judgment, and implementation. (JM)

  19. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  20. Problem Solving as an Encoding Task: A Special Case of the Generation Effect

    ERIC Educational Resources Information Center

    Kizilirmak, Jasmin M.; Wiegmann, Berit; Richardson-Klavehn, Alan

    2016-01-01

    Recent evidence suggests that solving problems through insight can enhance long-term memory for the problem and its solution. Previous findings have shown that generation of the solution as well as experiencing a feeling of Aha! can have a beneficial relationship to later memory. These findings lead to the question of how learning in…

  1. Diagnostic Problem-Solving Process in Professional Contexts: Theory and Empirical Investigation in the Context of Car Mechatronics Using Computer-Generated Log-Files

    ERIC Educational Resources Information Center

    Abele, Stephan

    2018-01-01

    This article deals with a theory-based investigation of the diagnostic problem-solving process in professional contexts. To begin with, a theory of the diagnostic problem-solving process was developed drawing on findings from different professional contexts. The theory distinguishes between four sub-processes of the diagnostic problem-solving…

  2. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  3. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  4. Introduction to Problem Solving: Strategies for the Elementary Math Classroom.

    ERIC Educational Resources Information Center

    O'Connell, Susan

    This book is designed to help better understand problem-solving instruction. It presents information on helping students understand the problem-solving process as well as information on teaching specific strategies, including: Choose an Operation; Find a Pattern; Make a Table; Make an Organized List; Draw a Picture or Diagram; Guess, Check, and…

  5. Working memory components that predict word problem solving: Is it merely a function of reading, calculation, and fluid intelligence?

    PubMed

    Fung, Wenson; Swanson, H Lee

    2017-07-01

    The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.

  6. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  7. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  8. Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts1

    PubMed Central

    Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye

    2012-01-01

    In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes. PMID:23397430

  9. Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts().

    PubMed

    Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye

    2013-01-01

    In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes.

  10. Using Self-Generated Drawings to Solve Arithmetic Word Problems.

    ERIC Educational Resources Information Center

    Van Essen, Gerard; Hamaker, Christiaan

    1990-01-01

    Results are presented from two intervention studies which investigate whether encouraging elementary students to generate drawings of arithmetic word problems facilitates problem-solving performance. Findings indicate that fifth graders (N=50) generated many drawings of word problems and improved problem solutions after the intervention, whereas…

  11. Attitude and practice of physical activity and social problem-solving ability among university students.

    PubMed

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend < 0.01). The present findings suggest that regular physical activity or intention to start physical activity may be an effective strategy to improve social problem-solving ability.

  12. Developing Instruction Materials Based on Joyful PBL to Improve Students Mathematical Representation Ability

    ERIC Educational Resources Information Center

    Minarni, Ani; Napitupulu, E. Elvis

    2017-01-01

    Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…

  13. Mathematical Problem Solving among Latina/o Kindergartners: An Analysis of Opportunities to Learn

    ERIC Educational Resources Information Center

    Turner, Erin E.; Celedon-Pattichis, Sylvia

    2011-01-01

    This study explores opportunities to learn mathematics problem solving for Latina/o students in 3 kindergarten classrooms in the southwest. Mixed methods were used to examine teaching practices that engaged Latina/o students in problem solving and supported their learning. Findings indicate that although students in all 3 classrooms showed growth…

  14. Does Incubation Enhance Problem Solving? A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Sio, Ut Na; Ormerod, Thomas C.

    2009-01-01

    A meta-analytic review of empirical studies that have investigated incubation effects on problem solving is reported. Although some researchers have reported increased solution rates after an incubation period (i.e., a period of time in which a problem is set aside prior to further attempts to solve), others have failed to find effects. The…

  15. The Effects of Differentiating Instruction by Learning Styles on Problem Solving in Cooperative Groups

    ERIC Educational Resources Information Center

    Westbrook, Amy F.

    2011-01-01

    It can be difficult to find adequate strategies when teaching problem solving in a standard based mathematics classroom. The purpose of this study was to improve students' problem solving skills and attitudes through differentiated instruction when working on lengthy performance tasks in cooperative groups. This action research studied for 15 days…

  16. Analyses of Attribute Patterns of Creative Problem Solving Ability among Upper Elementary Students in Taiwan

    ERIC Educational Resources Information Center

    Lin, Chia-Yi

    2010-01-01

    The purpose of this research is to find the relationships among attributes of creative problem solving ability and their relationships with the Math Creative Problem Solving Ability. In addition, the attribute patterns of high, medium, and low mathematical creative groups were identified and compared. There were 409 fifth and sixth graders…

  17. Exploring the Validity of the Problem-Solving Inventory with Mexican American High School Students

    ERIC Educational Resources Information Center

    Huang, Yu-Ping; Flores, Lisa Y.

    2011-01-01

    The Problem-Solving Inventory (PSI; Heppner & Petersen, 1982) was developed to assess perceived problem-solving abilities. Using confirmatory factor analysis, results supported a bilevel model of PSI scores with a sample of 164 Mexican American students. Findings support the cultural validity of PSI scores with Mexican Americans and enhance the…

  18. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  19. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  20. Problem Solving in a Natural Language Environment.

    DTIC Science & Technology

    1979-07-21

    another mapping that can map the "values" of those slots onto each other. 11.2 Kowledge Reoresentation Systems Several general knowledge...Hirach Frames The problem solving frames are general descriptions of problems (and solutions). Much more power could be milked from the concept of...general and powerful matching routines can be seen if the problem solving frames are going to work. The matcher must find matches between an element

  1. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  2. Using Technology To Enhance Problem Solving and Critical Thinking Skills.

    ERIC Educational Resources Information Center

    Mingus, Tabitha; Grassl, Richard

    1997-01-01

    Secondary mathematics teachers participated in a problem-solving course in which technology became a means to develop as teachers and as problem solvers. Findings indicate a delineation between technical competence and metatechnology--thinking about how and when to apply technology to particular problems. (PVD)

  3. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  4. Social Problem-Solving Skills of Children in Terms of Maternal Acceptance-Rejection Levels

    ERIC Educational Resources Information Center

    Tepeli, Kezban; Yilmaz, Elif

    2013-01-01

    This study was conducted to find an answer to the question of "Do social problem-solving skills of 5-6 years old children differentiate depending on the levels of maternal acceptance rejection?" The participants of the study included 359 5-6 years old children and their mothers. Wally Social Problem-Solving Test and PARQ (Parental…

  5. Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2016-09-01

    It is shown that finding the equivalence set for solving multiobjective discrete optimization problems is advantageous over finding the set of Pareto optimal decisions. An example of a set of key parameters characterizing the economic efficiency of a commercial firm is proposed, and a mathematical model of its activities is constructed. In contrast to the classical problem of finding the maximum profit for any business, this study deals with a multiobjective optimization problem. A method for solving inverse multiobjective problems in a multidimensional pseudometric space is proposed for finding the best project of firm's activities. The solution of a particular problem of this type is presented.

  6. Complex Problem Solving in a Workplace Setting.

    ERIC Educational Resources Information Center

    Middleton, Howard

    2002-01-01

    Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)

  7. Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem

    NASA Astrophysics Data System (ADS)

    Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.

    2018-01-01

    This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.

  8. Linking Recent Research in Cognitive Science and Problem Solving to Instructional Practice: New Possibilities.

    ERIC Educational Resources Information Center

    Lippert, Renate

    The application of recent advances in the understanding of problem solving to the classroom is reviewed. Current research findings are described, and the instructional validity of these findings is illustrated by a research study of an instructional strategy called novice knowledge engineering. How various instructional strategies serve as…

  9. Ill-defined problem solving in amnestic mild cognitive impairment: linking episodic memory to effective solution generation.

    PubMed

    Sheldon, S; Vandermorris, S; Al-Haj, M; Cohen, S; Winocur, G; Moscovitch, M

    2015-02-01

    It is well accepted that the medial temporal lobes (MTL), and the hippocampus specifically, support episodic memory processes. Emerging evidence suggests that these processes also support the ability to effectively solve ill-defined problems which are those that do not have a set routine or solution. To test the relation between episodic memory and problem solving, we examined the ability of individuals with single domain amnestic mild cognitive impairment (aMCI), a condition characterized by episodic memory impairment, to solve ill-defined social problems. Participants with aMCI and age and education matched controls were given a battery of tests that included standardized neuropsychological measures, the Autobiographical Interview (Levine et al., 2002) that scored for episodic content in descriptions of past personal events, and a measure of ill-defined social problem solving. Corroborating previous findings, the aMCI group generated less episodically rich narratives when describing past events. Individuals with aMCI also generated less effective solutions when solving ill-defined problems compared to the control participants. Correlation analyses demonstrated that the ability to recall episodic elements from autobiographical memories was positively related to the ability to effectively solve ill-defined problems. The ability to solve these ill-defined problems was related to measures of activities of daily living. In conjunction with previous reports, the results of the present study point to a new functional role of episodic memory in ill-defined goal-directed behavior and other non-memory tasks that require flexible thinking. Our findings also have implications for the cognitive and behavioural profile of aMCI by suggesting that the ability to effectively solve ill-defined problems is related to sustained functional independence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An episodic specificity induction enhances means-end problem solving in young and older adults.

    PubMed

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  11. An episodic specificity induction enhances means-end problem solving in young and older adults

    PubMed Central

    Madore, Kevin P.; Schacter, Daniel L.

    2014-01-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688

  12. Students' Images of Problem Contexts when Solving Applied Problems

    ERIC Educational Resources Information Center

    Moore, Kevin C.; Carlson, Marilyn P.

    2012-01-01

    This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…

  13. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  14. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  15. A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic

    NASA Astrophysics Data System (ADS)

    Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.

    2018-05-01

    Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.

  16. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  18. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A restricted Steiner tree problem is solved by Geometric Method II

    NASA Astrophysics Data System (ADS)

    Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

    2013-03-01

    The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

  20. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  1. Finer Distinctions: Variability in Satisfied Older Couples' Problem-Solving Behaviors.

    PubMed

    Rauer, Amy; Williams, Leah; Jensen, Jakob

    2017-06-01

    This study utilized observational and self-report data from 64 maritally satisfied and stable older couples to explore if there were meaningful differences in how couples approached marital disagreements. Using a typology approach to classify couples based on their behaviors in a 15-minute problem-solving interaction, findings revealed four types of couples: (1) problem solvers (characterized by both spouses' higher problem-solving skills and warmth), (2) supporters (characterized by both spouses' notable warmth), (3) even couples (characterized by both spouses' moderate problem-solving skills and warmth), and (4) cool couples (characterized by both spouses' greater negativity and lower problem-solving skills and warmth). Despite the differences in these behaviors, all couples had relatively high marital satisfaction and functioning. However, across nearly all indices, spouses in the cool couple cluster reported poorer marital functioning, particularly when compared to the problem solvers and supporters. These findings suggest that even modest doses of negativity (e.g., eye roll) may be problematic for some satisfied couples later in life. The implications of these typologies are discussed as they pertain to practitioners' efforts to tailor their approaches to a wider swath of the population. © 2015 Family Process Institute.

  2. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  3. Foundational Skills and Dispositions for Learning: An Experience with Information Problem Solving on the Web

    ERIC Educational Resources Information Center

    Caviglia, Francesco; Delfino, Manuela

    2016-01-01

    Active participation in the information society requires the ability to find some order in the chaotic nature of the Web and not to get lost within the endemic presence of inaccurate, misleading, biased and false information. This article presents an approach to Information Problem Solving (IPS)--that is, finding, understanding and assessing…

  4. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  5. Problem? "No Problem!" Solving Technical Contradictions

    ERIC Educational Resources Information Center

    Kutz, K. Scott; Stefan, Victor

    2007-01-01

    TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…

  6. Justification of violence beliefs and social problem-solving as mediators between maltreatment and behavior problems in adolescents.

    PubMed

    Calvete, Esther

    2007-05-01

    This study examined whether justification of violence beliefs and social problem solving mediated between maltreatment experiences and aggressive and delinquent behavior in adolescents. Data were collected on 191 maltreated and 546 nonmaltreated adolescents (ages 14 to 17 years), who completed measures of justification of violence beliefs, social problem-solving dimensions (problem orientation, and impulsivity/carelessness style), and psychological problems. Findings indicated that maltreated adolescents' higher levels of delinquent and aggressive behavior were partially accounted for by justification of violence beliefs, and that their higher levels of depressive symptoms were partially mediated by a more negative orientation to social problem-solving. Comparisons between boys and girls indicated that the model linking maltreatment, cognitive variables, and psychological problems was invariant.

  7. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  8. Mythologizing Literacy.

    ERIC Educational Resources Information Center

    Olson, David R.

    1988-01-01

    Cautions against the common tendency to find in illiteracy an explanation for poverty, unemployment, disease, and hopelessness. Argues that to solve a pressing social problem it must be described correctly, and that social problems are solved by providing opportunities. (SR)

  9. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  10. Suicidality, problem-solving skills, attachment style, and hopelessness in Turkish students.

    PubMed

    Zeyrek, Emek Yüce; Gençöz, Faruk; Bergman, Yoav; Lester, David

    2009-09-01

    Among 180 Turkish university students, the probability of suicide was strongly predicted by both hopelessness and deficiencies in problem solving. In addition, for women, unhealthy attachment styles (preoccupied and dismissing) also predicted suicidality. The clinical implications of these findings are that psychotherapists should focus on helping suicidal adolescents improve their problem solving skills and decreasing their hopelessness and, for women, assisting them to develop healthier relationship styles.

  11. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    PubMed

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  12. Social problem solving strategies and posttraumatic stress disorder in the aftermath of intimate partner violence.

    PubMed

    Reich, Catherine M; Blackwell, Náthali; Simmons, Catherine A; Beck, J Gayle

    2015-05-01

    Social factors are often associated with the development or maintenance of posttraumatic stress disorder (PTSD) in the aftermath of interpersonal traumas. However, social problem solving strategies have received little attention. The current study explored the role of social problem solving styles (i.e., rational approaches, impulsive/careless strategies, or avoidance strategies) as intermediary variables between abuse exposure and PTSD severity among intimate partner violence survivors. Avoidance problem solving served as an intermediating variable for the relationship between three types of abuse and PTSD severity. Rational and impulsive/careless strategies were not associated with abuse exposure. These findings extend the current understanding of social problem solving among interpersonal trauma survivors and are consistent with more general avoidance coping research. Future research might examine whether avoidance problem solving tends to evolve in the aftermath of trauma or whether it represents a longstanding risk factor for PTSD development. Published by Elsevier Ltd.

  13. The impact of childhood emotional abuse and experiential avoidance on maladaptive problem solving and intimate partner violence.

    PubMed

    Bell, Kathryn M; Higgins, Lorrin

    2015-04-16

    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.

  14. The Impact of Childhood Emotional Abuse and Experiential Avoidance on Maladaptive Problem Solving and Intimate Partner Violence

    PubMed Central

    Bell, Kathryn M.; Higgins, Lorrin

    2015-01-01

    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person’s ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk. PMID:25893570

  15. Others' anger makes people work harder not smarter: the effect of observing anger and sarcasm on creative and analytic thinking.

    PubMed

    Miron-Spektor, Ella; Efrat-Treister, Dorit; Rafaeli, Anat; Schwarz-Cohen, Orit

    2011-09-01

    The authors examine whether and how observing anger influences thinking processes and problem-solving ability. In 3 studies, the authors show that participants who listened to an angry customer were more successful in solving analytic problems, but less successful in solving creative problems compared with participants who listened to an emotionally neutral customer. In Studies 2 and 3, the authors further show that observing anger communicated through sarcasm enhances complex thinking and solving of creative problems. Prevention orientation is argued to be the latent variable that mediated the effect of observing anger on complex thinking. The present findings help reconcile inconsistent findings in previous research, promote theory about the effects of observing anger and sarcasm, and contribute to understanding the effects of anger in the workplace. PsycINFO Database Record (c) 2011 APA, all rights reserved

  16. Mathematical Problem Solving for Youth with ADHD, with and without Learning Disabilities.

    ERIC Educational Resources Information Center

    Zentall, Sydney S.; Ferkis, Mary Ann

    1993-01-01

    This review of research finds that, when IQ and reading ability are controlled, "true" math deficits of students with learning disabilities, attention deficit disorders, and attention deficit hyperactive disorders (ADHD) are specific to mathematical concepts and problem types. Slow computation affects problem solving by increasing attentional…

  17. Transformational and derivational strategies in analogical problem solving.

    PubMed

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  18. Strategic Improvement of Mathematical Problem-Solving Performance of Secondary School Students Using Procedural and Conceptual Learning Strategies

    ERIC Educational Resources Information Center

    Adeleke, M. A.

    2007-01-01

    The paper examined the possibility of finding out if improvements in students' problem solving performance in simultaneous linear equation will be recorded with the use of procedural and conceptual learning strategies and in addition to find out which of the strategies will be more effective. The study adopted a pretest, post test control group…

  19. Strategies of Pre-Service Primary School Teachers for Solving Addition Problems with Negative Numbers

    ERIC Educational Resources Information Center

    Almeida, Rut; Bruno, Alicia

    2014-01-01

    This paper analyses the strategies used by pre-service primary school teachers for solving simple addition problems involving negative numbers. The findings reveal six different strategies that depend on the difficulty of the problem and, in particular, on the unknown quantity. We note that students use negative numbers in those problems they find…

  20. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    ERIC Educational Resources Information Center

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  1. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    NASA Astrophysics Data System (ADS)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  2. Is Trait Rumination Associated with the Ability to Generate Effective Problem Solving Strategies? Utilizing Two Versions of the Means-Ends Problem-Solving Test.

    PubMed

    Hasegawa, Akira; Nishimura, Haruki; Mastuda, Yuko; Kunisato, Yoshihiko; Morimoto, Hiroshi; Adachi, Masaki

    This study examined the relationship between trait rumination and the effectiveness of problem solving strategies as assessed by the Means-Ends Problem-Solving Test (MEPS) in a nonclinical population. The present study extended previous studies in terms of using two instructions in the MEPS: the second-person, actual strategy instructions, which has been utilized in previous studies on rumination, and the third-person, ideal-strategy instructions, which is considered more suitable for assessing the effectiveness of problem solving strategies. We also replicated the association between rumination and each dimension of the Social Problem-Solving Inventory-Revised Short Version (SPSI-R:S). Japanese undergraduate students ( N  = 223) completed the Beck Depression Inventory-Second Edition, Ruminative Responses Scale (RRS), MEPS, and SPSI-R:S. One half of the sample completed the MEPS with the second-person, actual strategy instructions. The other participants completed the MEPS with the third-person, ideal-strategy instructions. The results showed that neither total RRS score, nor its subscale scores were significantly correlated with MEPS scores under either of the two instructions. These findings taken together with previous findings indicate that in nonclinical populations, trait rumination is not related to the effectiveness of problem solving strategies, but that state rumination while responding to the MEPS deteriorates the quality of strategies. The correlations between RRS and SPSI-R:S scores indicated that trait rumination in general, and its brooding subcomponent in particular are parts of cognitive and behavioral responses that attempt to avoid negative environmental and negative private events. Results also showed that reflection is a part of active problem solving.

  3. Solving inversion problems with neural networks

    NASA Technical Reports Server (NTRS)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  4. Models of resource allocation optimization when solving the control problems in organizational systems

    NASA Astrophysics Data System (ADS)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  5. Goals and everyday problem solving: manipulating goal preferences in young and older adults.

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2010-11-01

    In the present study, we examined the link between goal and problem-solving strategy preferences in 130 young and older adults using hypothetical family problem vignettes. At baseline, young adults preferred autonomy goals, whereas older adults preferred generative goals. Imagining an expanded future time perspective led older adults to show preferences for autonomy goals similar to those observed in young adults but did not eliminate age differences in generative goals. Autonomy goals were associated with more self-focused instrumental problem solving, whereas generative goals were related to more other-focused instrumental problem solving in the no-instruction and instruction conditions. Older adults were better at matching their strategies to their goals than young adults were. This suggests that older adults may become better at selecting their strategies in accordance with their goals. Our findings speak to a contextual approach to everyday problem solving by showing that goals are associated with the selection of problem-solving strategies.

  6. A Confidant Support and Problem Solving Model of Divorced Fathers’ Parenting

    PubMed Central

    DeGarmo, David S.; Forgatch, Marion S.

    2011-01-01

    This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers’ parenting. Fathers’ parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children’s reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers’ antisociality was associated with confidant antisociality but only fathers’ antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support. PMID:21541814

  7. A Cognitive Simulator for Learning the Nature of Human Problem Solving

    NASA Astrophysics Data System (ADS)

    Miwa, Kazuhisa

    Problem solving is understood as a process through which states of problem solving are transferred from the initial state to the goal state by applying adequate operators. Within this framework, knowledge and strategies are given as operators for the search. One of the most important points of researchers' interest in the domain of problem solving is to explain the performance of problem solving behavior based on the knowledge and strategies that the problem solver has. We call the interplay between problem solvers' knowledge/strategies and their behavior the causal relation between mental operations and behavior. It is crucially important, we believe, for novice learners in this domain to understand the causal relation between mental operations and behavior. Based on this insight, we have constructed a learning system in which learners can control mental operations of a computational agent that solves a task, such as knowledge, heuristics, and cognitive capacity, and can observe its behavior. We also introduce this system to a university class, and discuss which findings were discovered by the participants.

  8. A confidant support and problem solving model of divorced fathers' parenting.

    PubMed

    Degarmo, David S; Forgatch, Marion S

    2012-03-01

    This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers' parenting. Fathers' parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children's reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers' antisociality was associated with confidant antisociality but only fathers' antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support.

  9. More than just fun and games: the longitudinal relationships between strategic video games, self-reported problem solving skills, and academic grades.

    PubMed

    Adachi, Paul J C; Willoughby, Teena

    2013-07-01

    Some researchers have proposed that video games possess good learning principles and may promote problem solving skills. Empirical research regarding this relationship, however, is limited. The goal of the presented study was to examine whether strategic video game play (i.e., role playing and strategy games) predicted self-reported problem solving skills among a sample of 1,492 adolescents (50.8 % female), over the four high school years. The results showed that more strategic video game play predicted higher self-reported problem solving skills over time than less strategic video game play. In addition, the results showed support for an indirect association between strategic video game play and academic grades, in that strategic video game play predicted higher self-reported problem solving skills, and, in turn, higher self-reported problem solving skills predicted higher academic grades. The novel findings that strategic video games promote self-reported problem solving skills and indirectly predict academic grades are important considering that millions of adolescents play video games every day.

  10. Problem-Solving Skills Appraisal Mediates Hardiness and Suicidal Ideation among Malaysian Undergraduate Students

    PubMed Central

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229

  11. An evaluation of the problem-solving ability of diplomates from a comprehensive nursing programme.

    PubMed

    Makhathini, J T; Uys, L R

    1996-10-01

    The aim of this South African study was to obtain a measurement of the problem-solving ability of diplomates from a basic nursing programme with this skill included in its programme objectives. The problem-solving skills of diplomates from this programme were compared with those of first years to determine if there is an improvement in the problem-solving skills. A comparison was also made with a different basic programmes not claiming to teach problem-solving. The research design selected for this study was the ex post facto design. Data were collected using the Triple Jump Method which is an interview technique. The findings suggested that the level of the problem-solving skills of the comprehensive nursing programme diplomate is not satisfactory. There was, however, some improvement in the problem-solving ability from the first to the fourth year. The level of performance of the fourth years was slightly higher than that of the third years of the three-year nursing programme, who were used as the control group. Recommendations on selection teaching and evaluation of students, as well as further research, were made.

  12. Multiple representations and free-body diagrams: Do students benefit from using them?

    NASA Astrophysics Data System (ADS)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.

  13. On a numerical solving of random generated hexamatrix games

    NASA Astrophysics Data System (ADS)

    Orlov, Andrei; Strekalovskiy, Alexander

    2016-10-01

    In this paper, we develop a global search method for finding a Nash equilibrium in a hexamatrix game (polymatrix game of three players). The method, on the one hand, is based on the equivalence theorem of the problem of finding a Nash equilibrium in the game and a special mathematical optimization problem, and, on the other hand, on the usage of Global Search Theory for solving the latter problem. The efficiency of this approach is demonstrated by the results of computational testing.

  14. Differential contributions of executive and episodic memory functions to problem solving in younger and older adults.

    PubMed

    Vandermorris, Susan; Sheldon, Signy; Winocur, Gordon; Moscovitch, Morris

    2013-11-01

    The relationship of higher order problem solving to basic neuropsychological processes likely depends on the type of problems to be solved. Well-defined problems (e.g., completing a series of errands) may rely primarily on executive functions. Conversely, ill-defined problems (e.g., navigating socially awkward situations) may, in addition, rely on medial temporal lobe (MTL) mediated episodic memory processes. Healthy young (N = 18; M = 19; SD = 1.3) and old (N = 18; M = 73; SD = 5.0) adults completed a battery of neuropsychological tests of executive and episodic memory function, and experimental tests of problem solving. Correlation analyses and age group comparisons demonstrated differential contributions of executive and autobiographical episodic memory function to well-defined and ill-defined problem solving and evidence for an episodic simulation mechanism underlying ill-defined problem solving efficacy. Findings are consistent with the emerging idea that MTL-mediated episodic simulation processes support the effective solution of ill-defined problems, over and above the contribution of frontally mediated executive functions. Implications for the development of intervention strategies that target preservation of functional independence in older adults are discussed.

  15. Pre-Service Teachers' Flexibility with Referent Units in Solving a Fraction Division Problem

    ERIC Educational Resources Information Center

    Lee, Mi Yeon

    2017-01-01

    This study investigated 111 pre-service teachers' (PSTs') flexibility with referent units in solving a fraction division problem using a length model. Participants' written solutions to a measurement fraction division problem were analyzed in terms of strategies and types of errors, using an inductive content analysis approach. Findings suggest…

  16. Applying an Information Problem-Solving Model to Academic Reference Work: Findings and Implications.

    ERIC Educational Resources Information Center

    Cottrell, Janet R.; Eisenberg, Michael B.

    2001-01-01

    Examines the usefulness of the Eisenberg-Berkowitz Information Problem-Solving model as a categorization for academic reference encounters. Major trends in the data include a high proportion of questions about location and access of sources, lack of synthesis or production activities, and consistent presence of system problems that impede the…

  17. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  18. How Children Solve Environmental Problems: Using Computer Simulations To Investigate Systems Thinking.

    ERIC Educational Resources Information Center

    Sheehy, N. P.; Wylie, J. W.; McGuinness, C.; Orchard, G.

    2000-01-01

    Describes the development and use of two computer simulations for investigating systems thinking and environmental problem-solving in children (n=92). Finds that older children outperformed younger children, who tended to exhibit magical thinking. Suggests that seemingly isomorphic environmental problems may not be interpreted as such by children.…

  19. A problem-solving approach to effective insulin injection for patients at either end of the body mass index.

    PubMed

    Juip, Micki; Fitzner, Karen

    2012-06-01

    People with diabetes require skills and knowledge to adhere to medication regimens and self-manage this complex disease. Effective self-management is contingent upon effective problem solving and decision making. Gaps existed regarding useful approaches to problem solving by individuals with very low and very high body mass index (BMI) who self-administer insulin injections. This article addresses those gaps by presenting findings from a patient survey, a symposium on the topic of problem solving, and recent interviews with diabetes educators to facilitate problem-solving approaches for people with diabetes with high and low BMI who inject insulin and/or other medications. In practice, problem solving involves problem identification, definition, and specification; goal and barrier identification are a prelude to generating a set of potential strategies for problem resolution and applying these strategies to implement a solution. Teaching techniques, such as site rotation and ensuring that people with diabetes use the appropriate equipment, increase confidence with medication adherence. Medication taking is more effective when people with diabetes are equipped with the knowledge, skills, and problem-solving behaviors to effectively self-manage their injections.

  20. Metaphor and analogy in everyday problem solving.

    PubMed

    Keefer, Lucas A; Landau, Mark J

    2016-11-01

    Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  1. Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change

    DTIC Science & Technology

    2013-04-01

    Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change Kathryn Aten and John T. Dillard Naval...Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change...describes the preliminary analysis and findings of our study exploring what drives successful organizational adaptation in the context of technology

  2. Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change

    DTIC Science & Technology

    2013-10-01

    pmlkploba=obmloq=pbofbp= Defense Acquisition and the Case of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a...of the Joint Capabilities Technology Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change 5a. CONTRACT NUMBER 5b. GRANT...findings of our study exploring what drives successful organizational adaptation in the context of technology transition and acquisition within the

  3. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  4. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  5. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    PubMed

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  6. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  8. Problem Solving and Learning

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  9. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  10. The Association of DRD2 with Insight Problem Solving.

    PubMed

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  11. The Association of DRD2 with Insight Problem Solving

    PubMed Central

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings. PMID:27933030

  12. Problem-Solving Skills and Suicidal Ideation Among Malaysian College Students: the Mediating Role of Hopelessness.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2016-04-01

    Recent evidence suggests that suicidal ideation has increased among Malaysian college students over the past two decades; therefore, it is essential to increase our knowledge concerning the etiology of suicidal ideation among Malaysian college students. This study was conducted to examine the relationships between problem-solving skills, hopelessness, and suicidal ideation among Malaysian college students. The participants included 500 undergraduate students from two Malaysian public universities who completed the self-report questionnaires. Structural equation modeling estimated that college students with poor problem-solving confidence, external personal control of emotion, and avoiding style were more likely to report suicidal ideation. Hopelessness partially mediated the relationship between problem-solving skills and suicidal ideation. These findings reinforce the importance of poor problem-solving skills and hopelessness as risk factors for suicidal ideation among college students.

  13. Student’s thinking process in solving word problems in geometry

    NASA Astrophysics Data System (ADS)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  14. Promoting Experimental Problem-Solving Ability in Sixth-Grade Students through Problem-Oriented Teaching of Ecology: Findings of an Intervention Study in a Complex Domain

    ERIC Educational Resources Information Center

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-01-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…

  15. Fostering Modeling Competencies: Benefits of Worked Examples, Problems to Be Solved, and Fading Procedures

    ERIC Educational Resources Information Center

    Große, Cornelia S.

    2015-01-01

    The application of mathematics to real-world problems is moving more and more in the focus of attention of mathematics education; however, many learners experience huge difficulties in relating "pure" mathematics to everyday contents. In order to solve "modeling problems", it is first necessary to find a transition from a…

  16. Superintendents' Group Problem-Solving Processes.

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; And Others

    Findings of a study that examined the collaborative problem-solving processes used by superintendents are presented in this paper. Based on information processing theory, the study utilizes a model composed of the following components: interpretation; goals; principles and values; constraints; solution processes; and mood. Data were derived from…

  17. Racism-related stress, Africultural coping, and religious problem-solving among African Americans.

    PubMed

    Lewis-Coles, Ma'at E Lyris; Constantine, Madonna G

    2006-07-01

    This study explored the extent to which three types of racism-related stress (i.e., individual, institutional, and cultural) would predict the use of specific Africultural coping strategies (i.e., cognitive/emotional debriefing, spiritual-centered, collective, and ritual-centered coping) and religious problem-solving styles (i.e., self-directing, deferring, and collaborative) in a sample of 284 African American men and women. The authors found that higher institutional racism-related stress was associated with greater use of cognitive/emotional debriefing, spiritual-centered, and collective coping in African American women. Findings also indicated that higher cultural racism-related stress was predictive of lower use of self-directing religious problem-solving in African American women. Moreover, higher perceived cultural racism-related stress was related to greater use of collective coping strategies in African American men. Individual racism-related stress was not predictive of any forms of Africultural coping strategies or religious problem-solving. Implications of the findings are discussed.

  18. Understanding catastrophizing from a misdirected problem-solving perspective.

    PubMed

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  19. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    PubMed

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    PubMed

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  1. The profile of conceptual comprehension of pre-service teacher in the mathematical problem solving with low emotional intelligence

    NASA Astrophysics Data System (ADS)

    Prayitno, S. H.; Suwarsono, St.; Siswono, T. Y. E.

    2018-03-01

    Conceptual comprehension in this research is the ability to use the procedures that are owned by pre-service teachers to solve problems by finding the relation of the concept to another, or can be done by identifying the type of problem and associating it with a troubleshooting procedures, or connect the mathematical symbols with mathematical ideas and incorporate them into a series of logical reasoning, or by using prior knowledge that occurred directly, through its conceptual knowledge. The goal of this research is to describe the profile of conceptual comprehensin of pre-service teachers with low emotional intelligence in mathematical problems solving. Through observation and in-depth interview with the research subject the conclusion was that: pre-service teachers with low emotional intelligence pertained to the level of formal understanding in understanding the issues, relatively to the level of intuitive understanding in planning problem solving, to the level of relational understanding in implementing the relational problem solving plan, and pertained to the level of formal understanding in looking back to solve the problem.

  2. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  3. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  4. Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.

    PubMed

    Oldenburg, Nancy L; Hung, Wei-Chen

    2010-04-01

    It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.

  5. Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.

  6. Space colonization as a tool for teaching anthropology

    NASA Astrophysics Data System (ADS)

    Melchionne, Thomas L.; Rosen, Steven L.

    1986-08-01

    One hundred years of anthropological research has sought to discover the properties of human nature. This research bears directly on the problem of creating new societies in alien environments. Space colonization presents theoretical and practical problems which anthropology can help solve. These problems and the attempt to solve them can be used in the classroom as a vehicle for teaching both ethnology and physical anthropology. In such a course students would explore the findings of both cultural and biosocial anthropology, and use these findings to construct a space colony which has reasonable prognosis for survival.

  7. Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

    NASA Astrophysics Data System (ADS)

    Sari, D. P.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe metacognitive experience of mathematics education students with strong, average, and weak intrapersonal intelligence in open start problem solving. Type of this research was qualitative research. The research subject was mathematics education students in Muhammadiyah University of Surakarta in academic year 2017/2018. The selected students consisted of 6 students with details of two students in each intrapersonal intelligence category. The research instruments were questionnaire, open start problem solving task, and interview guidelines. Data validity used time triangulation. Data analyses were done through data collection, data reduction, data presentation, and drawing conclusion. Based on findings, subjects with strong intrapersonal intelligence had high self confidence that they were able to solve problem correctly, able to do planning steps and able to solve the problem appropriately. Subjects with average intrapersonal intelligence had high self-assessment that they were able to solve the problem, able to do planning steps appropriately but they had not maximized in carrying out the plan so that it resulted incorrectness answer. Subjects with weak intrapersonal intelligence had high self confidence in capability of solving math problem, lack of precision in taking plans so their task results incorrectness answer.

  8. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    NASA Astrophysics Data System (ADS)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  9. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.

  10. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation.

    PubMed

    Cross, Fiona R; Jackson, Robert R

    2015-03-01

    Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.

  11. Contribution of problem-solving skills to fear of recurrence in breast cancer survivors.

    PubMed

    Akechi, Tatuo; Momino, Kanae; Yamashita, Toshinari; Fujita, Takashi; Hayashi, Hironori; Tsunoda, Nobuyuki; Iwata, Hiroji

    2014-05-01

    Although fear of recurrence is a major concern among breast cancer survivors after surgery, no standard strategies exist that alleviate their distress. This study examined the association of patients' problem-solving skills and fear of recurrence and psychological distress among breast cancer survivors. Randomly selected, ambulatory, female patients with breast cancer participated in this study. They were asked to complete the Concerns about Recurrence Scale (CARS) and the Hospital Anxiety and Depression Scale. Multiple regression analyses were used to examine their associations. Data were obtained from 317 patients. Patients' problem-solving skills were significantly associated with all subscales of fear of recurrence and overall worries measured by the CARS. In addition, patients' problem-solving skills were significantly associated with both their anxiety and depression. Our findings warrant clinical trials to investigate effectiveness of psychosocial intervention program, including enhancing patients' problem-solving skills and reducing fear of recurrence among breast cancer survivors.

  12. Problem solving and maternal distress at the time of a child's diagnosis of cancer in two-parent versus lone-parent households.

    PubMed

    Iobst, Emily A; Alderfer, Melissa A; Sahler, Olle Jane Z; Askins, Martha A; Fairclough, Diane L; Katz, Ernest R; Butler, Robert W; Dolgin, Michael J; Noll, Robert B

    2009-09-01

    To examine negative affectivity and problem-solving abilities for lone mothers and those who are married/partnered subsequent to a child's diagnosis with cancer. Negative affectivity and problem-solving strategies were assessed for 464 mothers (87 lone and 377 married/partnered) within 2-16 weeks of their child's diagnosis with cancer. The two groups of mothers did not differ significantly on measures of perceived posttraumatic stress or problem-solving; lone mothers reported significantly more symptoms of depression. This difference was no longer significant when maternal education was taken into account. Negative affectivity and problem-solving abilities were similar for lone mothers and those that are married/partnered shortly after their child has been diagnosed with cancer. Findings are discussed within the context of contemporary strategies to assess marital status as proxy variable for various underlying constructs.

  13. The relationship between parental bonding, social problem solving and eating pathology in an anorexic inpatient sample.

    PubMed

    Swanson, Helen; Power, Kevin; Collin, Paula; Deas, Suzanne; Paterson, Gillian; Grierson, David; Yellowlees, Alex; Park, Katy; Taylor, Louise

    2010-01-01

    Parental relationships and maladaptive problem solving have been associated with anorexic symptomatology. This study investigates the relationship between perceived parental bonding, social problem solving and eating psychopathology. Forty three female inpatients with anorexia nervosa and 76 student controls were assessed using the Parental Bonding Instrument, the Social Problem Solving Inventory and the Eating Disorders Examination or the Eating Disorders Examination-Questionnaire. The anorexic group reported significantly lower levels of parental care than the student control group and used more negative and avoidance style coping. In the anorexic group, disordered eating was significantly correlated with low maternal care and high control. Maternal bonding was found to mediate the relationship between avoidance style coping and eating pathology. Findings suggest a relationship between maternal bonding, the use of maladaptive problem solving techniques and eating disorder pathology in inpatients with anorexia nervosa.

  14. Examining problem solving in physics-intensive Ph.D. research

    NASA Astrophysics Data System (ADS)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.

  15. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    NASA Astrophysics Data System (ADS)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  16. Studying PubMed usages in the field for complex problem solving: Implications for tool design

    PubMed Central

    Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2012-01-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists’ behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists’ problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  17. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  18. Autobiographical memory, interpersonal problem solving, and suicidal behavior in adolescent inpatients.

    PubMed

    Arie, Miri; Apter, Alan; Orbach, Israel; Yefet, Yael; Zalsman, Gil; Zalzman, Gil

    2008-01-01

    The aim of the study was to test Williams' (Williams JMG. Depression and the specificity of autobiographical memory. In: Rubin D, ed. Remembering Our Past: Studies in Autobiographical Memory. London: Cambridge University Press; 1996:244-267.) theory of suicidal behavior in adolescents and young adults by examining the relationship among suicidal behaviors, defective ability to retrieve specific autobiographical memories, impaired interpersonal problem solving, negative life events, repression, and hopelessness. Twenty-five suicidal adolescent and young adult inpatients (16.5 y +/- 2.5) were compared with 25 nonsuicidal adolescent and young adult inpatients (16.5 y +/- 2.5) and 25 healthy controls. Autobiographical memory was tested by a word association test; problem solving by the means-ends problem solving technique; negative life events by the Coddington scale; repression by the Life Style Index; hopelessness by the Beck scale; suicidal risk by the Plutchik scale, and suicide attempt by clinical history. Impairment in the ability to produce specific autobiographical memories, difficulties with interpersonal problem solving, negative life events, and repression were all associated with hopelessness and suicidal behavior. There were significant correlations among all the variables except for repression and negative life events. These findings support Williams' notion that generalized autobiographical memory is associated with deficits in interpersonal problem solving, negative life events, hopelessness, and suicidal behavior. The finding that defects in autobiographical memory are associated with suicidal behavior in adolescents and young adults may lead to improvements in the techniques of cognitive behavioral therapy in this age group.

  19. Innovation and behavioral flexibility in wild redfronted lemurs (Eulemur rufifrons).

    PubMed

    Huebner, Franziska; Fichtel, Claudia

    2015-05-01

    Innovations and problem-solving abilities can provide animals with important ecological advantages as they allow individuals to deal with novel social and ecological challenges. Innovation is a solution to a novel problem or a novel solution to an old problem, with the latter being especially difficult. Finding a new solution to an old problem requires individuals to inhibit previously applied solutions to invent new strategies and to behave flexibly. We examined the role of experience on cognitive flexibility to innovate and to find new problem-solving solutions with an artificial feeding task in wild redfronted lemurs (Eulemur rufifrons). Four groups of lemurs were tested with feeding boxes, each offering three different techniques to extract food, with only one technique being available at a time. After the subjects learned a technique, this solution was no longer successful and subjects had to invent a new technique. For the first transition between task 1 and 2, subjects had to rely on their experience of the previous technique to solve task 2. For the second transition, subjects had to inhibit the previously learned technique to learn the new task 3. Tasks 1 and 2 were solved by most subjects, whereas task 3 was solved by only a few subjects. In this task, besides behavioral flexibility, especially persistence, i.e., constant trying, was important for individual success during innovation. Thus, wild strepsirrhine primates are able to innovate flexibly, suggesting a general ecological relevance of behavioral flexibility and persistence during innovation and problem solving across all primates.

  20. What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra

    ERIC Educational Resources Information Center

    Herman, Marlena

    2007-01-01

    This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…

  1. Social problem solving among depressed adolescents is enhanced by structured psychotherapies.

    PubMed

    Dietz, Laura J; Marshal, Michael P; Burton, Chad M; Bridge, Jeffrey A; Birmaher, Boris; Kolko, David; Duffy, Jamira N; Brent, David A

    2014-04-01

    Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents' interpersonal behavior. Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% White) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST) and after 12-16 weeks of treatment. Adolescent involvement, problem solving, and dyadic conflict were examined. Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents' problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents' problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT.

  2. Social problem solving among depressed adolescents is enhanced by structured psychotherapies

    PubMed Central

    Dietz, Laura J.; Marshal, Michael P.; Burton, Chad M.; Bridge, Jeffrey A.; Birmaher, Boris; Kolko, David; Duffy, Jamira N.; Brent, David A.

    2014-01-01

    Objective Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents’ interpersonal behavior. Method Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% Caucasian) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST), and after 12–16 weeks of treatment. Adolescent involvement, problem solving and dyadic conflict were examined. Results Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents’ problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents’ problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Conclusions Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one Pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT. PMID:24491077

  3. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  4. Aiding the search: Examining individual differences in multiply-constrained problem solving.

    PubMed

    Ellis, Derek M; Brewer, Gene A

    2018-07-01

    Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.

  5. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  6. Cognitive Predictors of Everyday Problem Solving across the Lifespan

    PubMed Central

    Chen, Xi; Hertzog, Christopher; Park, Denise C.

    2017-01-01

    Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664

  7. Controlling Uncertainty: A Review of Human Behavior in Complex Dynamic Environments

    ERIC Educational Resources Information Center

    Osman, Magda

    2010-01-01

    Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research…

  8. How Digital Scaffolds in Games Direct Problem-Solving Behaviors

    ERIC Educational Resources Information Center

    Sun, Chuen-Tsai; Wang, Dai-Yi; Chan, Hui-Ling

    2011-01-01

    Digital systems offer computational power and instant feedback. Game designers are using these features to create scaffolding tools to reduce player frustration. However, researchers are finding some unexpected effects of scaffolding on strategy development and problem-solving behaviors. We used a digital Sudoku game named "Professor Sudoku" to…

  9. Early Environmental Support and Elementary School Adjustment as Predictors of School Adjustment in Middle Adolescence.

    ERIC Educational Resources Information Center

    Carlson, Elizabeth A.; Sroufe, L. Alan; Collins, W. Andres; Jimerson, Shane; Weinfield, Nancy; Henninghausen, Katherine; Egeland, Byron; Hyson, Daniel M.; Anderson, Fione; Meyer, Stephanie E.

    1999-01-01

    This longitudinal study examined socioemotional antecedents of adolescent school adjustment. Findings indicated that early and later parental problem-solving support accounted for 13 percent of variance in high school adjustment. Early and later parental problem-solving support, peer competence, externalizing behavior, and emotional…

  10. Gender Differences in the Measurement of Creative Problem-Solving

    ERIC Educational Resources Information Center

    Hardy, Jay H., III; Gibson, Carter

    2017-01-01

    Despite significant scholarly attention, the literature on the existence and direction of gender differences in creativity has produced inconsistent findings. In the present paper, we argue that this lack of consensus may be attributable, at least in part, to gender-specific inconsistencies in the measurement of creative problem-solving. To…

  11. Finding the Optimal Scaffoldings for Learners' Epistemological Beliefs during Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Shin, Suhkyung; Song, Hae-Deok

    2016-01-01

    This study investigates how scaffolding type and learners' epistemological beliefs influence ill-structured problem solving. The independent variables in this study include the type of scaffolding (task-supported, self-monitoring) and the student's epistemological belief level (more advanced, less advanced). The dependent variables include three…

  12. Suicidality, Problem-Solving Skills, Attachment Style, and Hopelessness in Turkish Students

    ERIC Educational Resources Information Center

    Zeyrek, Emek Yuce; Gencoz, Faruk; Bergman, Yoav; Lester, David

    2009-01-01

    Among 180 Turkish university students, the probability of suicide was strongly predicted by both hopelessness and deficiencies in problem solving. In addition, for women, unhealthy attachment styles (preoccupied and dismissing) also predicted suicidality. The clinical implications of these findings are that psychotherapists should focus on helping…

  13. Implementing the Japanese Problem-Solving Lesson Structure

    ERIC Educational Resources Information Center

    Groves, Susie

    2013-01-01

    While there has been worldwide interest in Japanese Lesson Study as a model for teacher professional learning, there has been less research into authentic implementation of the problem-solving lesson structure that underpins mathematics research lessons in Japan. Findings from a Lesson Study project involving teachers from three Victorian primary…

  14. Bringing us back to our creative senses: Fostering creativity in graduate-level nursing education: A literary review.

    PubMed

    Duhamel, Karen V

    2016-10-01

    The purpose of this paper is to explore empirical findings of five studies related to graduate-level nurse educators' and nursing students' perceptions about the roles of creativity and creative problem-solving in traditional and innovative pedagogies, and examines conceptual differences in the value of creativity from teacher and student viewpoints. Five peer-reviewed scholarly articles; professional nursing organizations; conceptual frameworks of noted scholars specializing in creativity and creative problem-solving; business-related sources; primary and secondary sources of esteemed nurse scholars. Quantitative and qualitative studies were examined that used a variety of methodologies, including surveys, focus groups, 1:1 interviews, and convenience sampling of both nursing and non-nursing college students and faculty. Innovative teaching strategies supported student creativity and creative problem-solving development. Teacher personality traits and teaching styles receptive to students' needs led to greater student success in creative development. Adequate time allocation and perceived usefulness of creativity and creative problem-solving by graduate-level nurse educators must be reflected in classroom activities and course design. Findings indicated conservative teaching norms, evident in graduate nursing education today, should be revised to promote creativity and creative problem-solving development in graduate-level nursing students for best practice outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  16. Social problem-solving, perceived stress, negative life events, depression and life satisfaction in psoriasis.

    PubMed

    Eskin, M; Savk, E; Uslu, M; Küçükaydoğan, N

    2014-11-01

    Psoriasis is a chronic dermatosis which may cause significant impairment of the patient's quality of life. The purpose of this study was to investigate the social problem-solving skills, perceived stress, negative life events, depression and life satisfaction in psoriasis patients. Data were gathered by means of questionnaires and clinical evaluations from 51 psoriatic patients and 51 matched healthy controls. Average disease duration was 16.47 years and average Psoriasis Area and Severity Index score was 3.67. Compared with the controls, the patients displayed lower social problem-solving skills. They displayed higher negative problem orientation and impulsive-careless problem-solving style scores than the controls. Patients tended also to show more avoidant problem-solving style and lower life satisfaction than controls. There was no difference between psoriatic patients and controls in terms of depression, perceived stress and negative life events. Higher social problem-solving skills were associated with lower depression, perceived stress and fewer numbers of negative life events but higher level of life satisfaction. The patient group largely included mild and moderate psoriatic cases. The findings of the study suggest that problem-solving training or therapy may be a suitable option for alleviating levels of psychological distress in patients suffering from psoriasis. © 2014 European Academy of Dermatology and Venereology.

  17. Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment.

    PubMed

    Tik, Martin; Sladky, Ronald; Luft, Caroline Di Bernardi; Willinger, David; Hoffmann, André; Banissy, Michael J; Bhattacharya, Joydeep; Windischberger, Christian

    2018-04-17

    Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high-field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. Problem-solving skills and hardiness as protective factors against stress in Iranian nurses.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2014-02-01

    Nursing is a stressful occupation, even when compared with other health professions; therefore, it is necessary to advance our knowledge about the protective factors that can help reduce stress among nurses. The present study sought to investigate the associations among problem-solving skills and hardiness with perceived stress in nurses. The participants, 252 nurses from six private hospitals in Tehran, completed the Personal Views Survey, the Perceived Stress Scale, and the Problem-Solving Inventory. Structural Equation Modeling (SEM) was used to analyse the data and answer the research hypotheses. As expected, greater hardiness was associated with low levels of perceived stress, and nurses low in perceived stress were more likely to be considered approachable, have a style that relied on their own sense of internal personal control, and demonstrate effective problem-solving confidence. These findings reinforce the importance of hardiness and problem-solving skills as protective factors against perceived stress among nurses, and could be important in training future nurses so that hardiness ability and problem-solving skills can be imparted, allowing nurses to have more ability to control their perceived stress.

  19. Modeling visual problem solving as analogical reasoning.

    PubMed

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. The politics of insight

    PubMed Central

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954

  1. The politics of insight.

    PubMed

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.

  2. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  3. Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity.

    PubMed

    Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred

    2016-08-01

    Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.

  4. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  5. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences

    PubMed Central

    Safari, Yahya; Meskini, Habibeh

    2016-01-01

    Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970

  6. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences.

    PubMed

    Safari, Yahya; Meskini, Habibeh

    2015-05-17

    Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.

  7. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  8. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage

    PubMed Central

    Warren, David E.; Kurczek, Jake; Duff, Melissa C.

    2016-01-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N=5) and healthy normal comparison participants (N=5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. PMID:27010751

  9. How to Solve Polyhedron Problem?

    NASA Astrophysics Data System (ADS)

    Wijayanti, A.; Kusumah, Y. S.; Suhendra

    2017-09-01

    The purpose of this research is to know the possible strategies to solve the problem in polyhedron topic with Knilsey’s Learning Model as scaffolding for the student. This research was conducted by using mixed method with sequential explanatory design. Researchers used purposive sampling technique to get two classes for Knisley class and conventional class and an extreme case sampling technique to get interview data. The instruments used are tests, observation sheets and interview guidelines. The result of the research shows that: (1) students’ strategies to solve polyhedron problem were grouped into two steps: by partitioning the problem to find out the solution and make a mathematical model of the mathematical sentence given and then connect it with the concept that the students already know; (2) students ‘mathematical problem solving ability in Knisley class is higher than those in conventional class.

  10. Imitation and Creativity: Beneficial Effects of Propulsion Strategies and Specificity

    ERIC Educational Resources Information Center

    Mecca, Jensen T.; Mumford, Michael D.

    2014-01-01

    Prior studies examining imitation of exemplar solutions have produced a mixed pattern of findings with some studies indicating that exemplar imitation contributes to creative problem-solving and other studies indicating that it may inhibit creative problem-solving. In the present effort, it is argued that the effects of exemplar imitation on…

  11. The Neural Basis of Insight Problem Solving: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Qiu, Jiang; Li, Hong; Yang, Dong; Luo, Yuejia; Li, Ying; Wu, Zhenzhen; Zhang, Qinglin

    2008-01-01

    The electrophysiological correlates of successful insight problem solving (Chinese logogriphs) were studied in 18 healthy subjects using high-density event-related potentials (ERPs). A new experimental paradigm (learning-testing model) was adopted in order to make subjects find a solution on their own initiative rather than receive an answer…

  12. Development of Verbal Thinking and Problem-Solving among TshiVenda-Speaking Primary School Children

    ERIC Educational Resources Information Center

    Muthivhi, Azwihangwisi E.

    2013-01-01

    The paper presents findings of primary school children's performance on classification and generalisation tasks to demonstrate the fundamental connection between their verbal thinking processes and problem-solving, on the one hand, and the practical activities of their society and culture, on the other. The results reveal that, although children…

  13. Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Symons, Duncan; Pierce, Robyn

    2015-01-01

    In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…

  14. Math Teachers' Attitudes towards Photo Math Application in Solving Mathematical Problem Using Mobile Camera

    ERIC Educational Resources Information Center

    Hamadneh, Iyad M.; Al-Masaeed, Aslan

    2015-01-01

    This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…

  15. The Prehistory of Discovery: Precursors of Representational Change in Solving Gear System Problems.

    ERIC Educational Resources Information Center

    Dixon, James A.; Bangert, Ashley S.

    2002-01-01

    This study investigated whether the process of representational change undergoes developmental change or different processes occupy different niches in the course of knowledge acquisition. Subjects--college, third-, and sixth-grade students--solved gear system problems over two sessions. Findings indicated that for all grades, discovery of the…

  16. The Educator's Guide to Preventing and Solving Discipline Problems

    ERIC Educational Resources Information Center

    Boynton, Mark; Boynton, Christine

    2005-01-01

    Because you're unlikely to find the one approach that works for every ill-disciplined student and misbehaving class, this book gives you a comprehensive reference of strategies for preventing and solving discipline problems. The authors--two former teachers and principals--cover virtually every aspect of effective discipline systems, including:…

  17. Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.

    PubMed

    DeCaro, Marci S

    2016-10-01

    An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.

  18. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    PubMed

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  19. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities

    PubMed Central

    Swanson, H. Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803

  20. Undermining belief in false memories leads to less efficient problem-solving behaviour.

    PubMed

    Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia

    2017-08-01

    Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.

  1. Solving the Container Stowage Problem (CSP) using Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Matsaini; Santosa, Budi

    2018-04-01

    Container Stowage Problem (CSP) is a problem of containers arrangement into ships by considering rules such as: total weight, weight of one stack, destination, equilibrium, and placement of containers on vessel. Container stowage problem is combinatorial problem and hard to solve with enumeration technique. It is an NP-Hard Problem. Therefore, to find a solution, metaheuristics is preferred. The objective of solving the problem is to minimize the amount of shifting such that the unloading time is minimized. Particle Swarm Optimization (PSO) is proposed to solve the problem. The implementation of PSO is combined with some steps which are stack position change rules, stack changes based on destination, and stack changes based on the weight type of the stacks (light, medium, and heavy). The proposed method was applied on five different cases. The results were compared to Bee Swarm Optimization (BSO) and heuristics method. PSO provided mean of 0.87% gap and time gap of 60 second. While BSO provided mean of 2,98% gap and 459,6 second to the heuristcs.

  2. A new Euler scheme based on harmonic-polygon approach for solving first order ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah

    2017-10-01

    There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.

  3. Physiological arousal, distress tolerance, and social problem-solving deficits among adolescent self-injurers.

    PubMed

    Nock, Matthew K; Mendes, Wendy Berry

    2008-02-01

    It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However, objective physiological and behavioral data supporting this model are lacking. The authors compared adolescent self-injurers (n = 62) with noninjurers (n = 30) and found that self-injurers showed higher physiological reactivity (skin conductance) during a distressing task, a poorer ability to tolerate this distress, and deficits in several social problem-solving abilities. These findings highlight the importance of attending to increased arousal, distress tolerance, and problem-solving skills in the assessment and treatment of NSSI.

  4. Enhanced algorithms for stochastic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Alamuru S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less

  5. "Comments on Bulterman-Bos": Education Research as a Distributed Activity across Universities

    ERIC Educational Resources Information Center

    Lagemann, Ellen Condliffe

    2008-01-01

    In response to Bulterman-Bos (2008), this article discusses three kinds of research needed in education: problem-finding research, which helps frame good research questions; problem-solving research, which helps illuminate educational problems; and translational work, which transforms the findings of research into tools that practitioners and…

  6. Improving insight and non-insight problem solving with brief interventions.

    PubMed

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  7. A computer program to find the kernel of a polynomial operator

    NASA Technical Reports Server (NTRS)

    Gejji, R. R.

    1976-01-01

    This paper presents a FORTRAN program written to solve for the kernel of a matrix of polynomials with real coefficients. It is an implementation of Sain's free modular algorithm for solving the minimal design problem of linear multivariable systems. The structure of the program is discussed, together with some features as they relate to questions of implementing the above method. An example of the use of the program to solve a design problem is included.

  8. Have I Ever Done Anything Like This Before? Older Adults Solving Ill-Defined Problems in Intensive Volunteering.

    PubMed

    Cheek, Cheryl; Piercy, Kathleen W; Kohlenberg, Meranda

    2015-01-01

    This study examined the ways in which individuals over 50 years old solved problems while volunteering in intensive humanitarian and disaster relief service. Thirty-seven men and women in the sample were sponsored by three religious organizations well known for providing humanitarian and disaster relief service. Semistructured interviews yielded data that were analyzed qualitatively, using McCracken's five-step process for analysis. We found that volunteers used three different abilities to solve problems: drawing upon experience to create strategies, maintaining emotional stability in the midst of trying circumstances, and applying strategies in a context-sensitive manner. These findings illustrate that these factors, which are comparable to those used in solving everyday problems, are unique in the way they are applied to intensive volunteering. The volunteers' sharing of knowledge, experience, and support with each other were also noticeable in their accounts of their service. This sharing contributed strongly to their sense of emotional stability and effectiveness in solving problems. © The Author(s) 2015.

  9. Effect of training problem-solving skill on decision-making and critical thinking of personnel at medical emergencies

    PubMed Central

    Heidari, Mohammad; Shahbazi, Sara

    2016-01-01

    Background: The aim of this study was to determine the effect of problem-solving training on decision-making skill and critical thinking in emergency medical personnel. Materials and Methods: This study is an experimental study that performed in 95 emergency medical personnel in two groups of control (48) and experimental (47). Then, a short problem-solving course based on 8 sessions of 2 h during the term, was performed for the experimental group. Of data gathering was used demographic and researcher made decision-making and California critical thinking skills questionnaires. Data were analyzed using SPSS software. Results: The finding revealed that decision-making and critical thinking score in emergency medical personnel are low and problem-solving course, positively affected the personnel’ decision-making skill and critical thinking after the educational program (P < 0.05). Conclusions: Therefore, this kind of education on problem-solving in various emergency medicine domains such as education, research, and management, is recommended. PMID:28149823

  10. Coping and social problem solving correlates of asthma control and quality of life.

    PubMed

    McCormick, Sean P; Nezu, Christine M; Nezu, Arthur M; Sherman, Michael; Davey, Adam; Collins, Bradley N

    2014-02-01

    In a sample of adults with asthma receiving care and medication in an outpatient pulmonary clinic, this study tested for statistical associations between social problem-solving styles, asthma control, and asthma-related quality of life. These variables were measured cross sectionally as a first step toward more systematic application of social problem-solving frameworks in asthma self-management training. Recruitment occurred during pulmonology clinic service hours. Forty-four adults with physician-confirmed diagnosis of asthma provided data including age, gender, height, weight, race, income, and comorbid conditions. The Asthma Control Questionnaire, the Mini Asthma Quality of Life Questionnaire (Short Form), and peak expiratory force measures offered multiple views of asthma health at the time of the study. Maladaptive coping (impulsive and careless problem-solving styles) based on transactional stress models of health were assessed with the Social Problem-Solving Inventory-Revised: Short Form. Controlling for variance associated with gender, age, and income, individuals reporting higher impulsive-careless scores exhibited significantly lower scores on asthma control (β = 0.70, p = 0.001, confidence interval (CI) [0.37-1.04]) and lower asthma-related quality of life (β = 0.79, p = 0.017, CI [0.15-1.42]). These findings suggest that specific maladaptive problem-solving styles may uniquely contribute to asthma health burdens. Because problem-solving coping strategies are both measureable and teachable, behavioral interventions aimed at facilitating adaptive coping and problem solving could positively affect patient's asthma management and quality of life.

  11. Development of the Metacognitive Skills of Prediction and Evaluation in Children With or Without Math Disability

    PubMed Central

    Garrett, Adia J.; Mazzocco, Michèle M. M.; Baker, Linda

    2009-01-01

    Metacognition refers to knowledge about one’s own cognition. The present study was designed to assess metacognitive skills that either precede or follow task engagement, rather than the processes that occur during a task. Specifically, we examined prediction and evaluation skills among children with (n = 17) or without (n = 179) mathematics learning disability (MLD), from grades 2 to 4. Children were asked to predict which of several math problems they could solve correctly; later, they were asked to solve those problems. They were asked to evaluate whether their solution to each of another set of problems was correct. Children’s ability to evaluate their answers to math problems improved from grade 2 to grade 3, whereas there was no change over time in the children’s ability to predict which problems they could solve correctly. Children with MLD were less accurate than children without MLD in evaluating both their correct and incorrect solutions, and they were less accurate at predicting which problems they could solve correctly. However, children with MLD were as accurate as their peers in correctly predicting that they could not solve specific math problems. The findings have implications for the usefulness of children’s self-review during mathematics problem solving. PMID:20084181

  12. Social problem solving in carers of young people with a first episode of psychosis: a randomized controlled trial.

    PubMed

    McCann, Terence V; Cotton, Sue M; Lubman, Dan I

    2017-08-01

    Caring for young people with first-episode psychosis is difficult and demanding, and has detrimental effects on carers' well-being, with few evidence-based resources available to assist carers to deal with the problems they are confronted with in this situation. We aimed to examine if completion of a self-directed problem-solving bibliotherapy by first-time carers of young people with first-episode psychosis improved their social problem solving compared with carers who only received treatment as usual. A randomized controlled trial was carried out through two early intervention psychosis services in Melbourne, Australia. A sample of 124 carers were randomized to problem-solving bibliotherapy or treatment as usual. Participants were assessed at baseline, 6- and 16-week follow-up. Intent-to-treat analyses were used and showed that recipients of bibliotherapy had greater social problem-solving abilities than those receiving treatment as usual, and these effects were maintained at both follow-up time points. Our findings affirm that bibliotherapy, as a low-cost complement to treatment as usual for carers, had some effects in improving their problem-solving skills when addressing problems related to the care and support of young people with first-episode psychosis. © 2015 The Authors. Early Intervention in Psychiatry published by Wiley Publishing Asia Pty Ltd.

  13. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  14. Junior High School Students’ Perception about Simple Environmental Problem as an Impact of Problem based Learning

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2017-09-01

    Environmental problem is a real problem that occur in student’s daily life. Junior high school students’ perception about environmental problem is interesting to be investigated. The major aim of this study is to explore junior high school students’ perception about environmental problems around them and ways to solve the problem. The subject of this study is 69 Junior High School Students from two Junior High School in Bandung. This study use two open ended question. The core of first question is environmental problem around them (near school or house). The core of second question is the way to prevent or to solve the problem. These two question are as an impact of problem based learning in science learning. There are two major findings in this study. The first finding, based on most students’ perception, plastic waste cause an environmental problem. The second finding, environmental awareness can be a solution to prevent environmental pollution. The third finding, most student can classify environmental pollution into land, water and air pollution. We can conclude that Junior High School Students see the environmental problem as a phenomenon and teacher can explore environmental problem to guide the way of preventing and resolving environmental problem.

  15. The Use of Classroom Assessment to Explore Problem Solving Skills Based on Pre-Service Teachers’ Cognitive Style Dimension in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Rahmawati; Rustaman, Nuryani Y.; Hamidah, Ida; Rusdiana, Dadi

    2017-02-01

    The aim of this study was to explore the use of assessment strategy which can measure problem solving skills of pre-service teachers based on their cognitive style in basic physics course. The sample consisted of 95 persons (male = 15, female = 75). This study used an exploratory research with observation techniques by interview, questionnaire, and test. The results indicated that the lecturer only used paper-pencil test assessment strategy to measure pre-service teachers’ achievement and also used conventional learning strategy. It means that the lecturer did not measure pre-services’ thinking process in learning, like problem solving skills. One of the factors which can influence student problem solving skills is cognitive style as an internal factor. Field Dependent (FD) and Field Independent (FI) are two cognitive styles which were measured with using Group Embedded Figure Test (GEFT) test. The result showed that 82% of pre-service teachers were FD cognitive style and only 18% of pre-service teachers had FI cognitive style. Furthermore, these findings became the fundamental design to develop a problem solving assessment model to measure pre-service teachers’ problem solving skills and process in basic physics course.

  16. Solving the Inverse-Square Problem with Complex Variables

    ERIC Educational Resources Information Center

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  17. Evaluation of the First Year of a Statewide Problem Solving/Response to Intervention Initiative: Preliminary Findings

    ERIC Educational Resources Information Center

    Castillo, Jose Michael

    2009-01-01

    This program evaluation study examined the relationship between Problem Solving/Response to Intervention (PS/RtI) training and technical assistance and educator and implementation outcomes following the first year of a 3-year project. Educators from 40 pilot schools in eight districts participating in the study received ongoing professional…

  18. Solving the Problems of Iowa Food Deserts: Food Insecurity and Civic Structure

    ERIC Educational Resources Information Center

    Morton, Lois Wright; Bitto, Ella Annette; Oakland, Mary Jane; Sand, Mary

    2005-01-01

    Rural regions include places where food sources are not evenly distributed, leading to areas of concentration and food desert--places where few or no grocery stores exist. Individuals are hypothesized to depend on personal connections and the civic structure of where they live to help them solve the problem of food insecurity. We find that…

  19. Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines

    ERIC Educational Resources Information Center

    English, Lyn D.; Hudson, Peter; Dawes, Les

    2013-01-01

    Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…

  20. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    ERIC Educational Resources Information Center

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  1. Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics

    ERIC Educational Resources Information Center

    Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.

    2015-01-01

    Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent…

  2. Clock Buddies: An Accessible, Engaging Problem-Solving Activity with Rich Mathematical Content

    ERIC Educational Resources Information Center

    Borkovitz, Debra K.; Haferd, Thomas

    2017-01-01

    Clock Buddies is our favorite first-day-of-class activity. It starts as a nonthreatening icebreaker activity that helps students learn one another's names, but it soon asks students to find their own strategies for solving a real-world scheduling problem. Even highly math phobic students work with others and succeed. Students gain insight from…

  3. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties.

    PubMed

    Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M

    2008-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.

  4. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties

    PubMed Central

    Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2009-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074

  5. The relationship between everyday problem solving and inconsistency in reaction time in older adults.

    PubMed

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-09-01

    The purpose of the present study was to investigate whether inconsistency in reaction time (RT) is predictive of older adults' ability to solve everyday problems. A sample of 304 community dwelling non-demented older adults, ranging in age from 62 to 92, completed a measure of everyday problem solving, the Everyday Problems Test (EPT). Inconsistency in latencies across trials was assessed on four RT tasks. Performance on the EPT was found to vary according to age and cognitive status. Both mean latencies and inconsistency were significantly associated with EPT performance, such that slower and more inconsistent RTs were associated with poorer everyday problem solving abilities. Even after accounting for age, education, and mean level of performance, inconsistency in reaction time continued to account for a significant proportion of the variance in EPT scores. These findings suggest that indicators of inconsistency in RT may be of functional relevance.

  6. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  7. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  8. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  9. Everyday problem solving in African Americans and European Americans with Alzheimer's disease: an exploratory study.

    PubMed

    Ripich, Danielle N; Fritsch, Thomas; Ziol, Elaine

    2002-03-01

    In this exploratory study, we compared the performance of 10 African American and 26 European American persons with early- to mid-stage Alzheimer's disease (AD) to 20 nondemented elderly (NE), using a shortened version of the Test of Problem Solving (TOPS). The TOPS measures verbal reasoning to solve everyday problems in five areas: explaining inferences, determining causes, answering negative why questions, determining solutions, and avoiding problems. Six linguistic measures were also examined: total utterances, abandoned utterances, length of utterances, maze words, questions, and total words. NE performed better than AD subjects on all but one measure of verbal reasoning ability. AD subjects also showed a trend to use more total utterances and abandoned utterances than NE. For the AD group, no ethnic differences were found for verbal reasoning or linguistic measures. The findings from this preliminary investigation suggest that, compared to European Americans, African American persons with AD demonstrate similar everyday problem solving and linguistic skills. Thus, assessments such as TOPS that examine everyday problem solving may be a useful nonbiased evaluation tool for persons with AD in these two ethnic groups.

  10. The effects of duration of exposure to the REAPS model in developing students' general creativity and creative problem solving in science

    NASA Astrophysics Data System (ADS)

    Alhusaini, Abdulnasser Alashaal F.

    The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general creativity and creative problem solving in science with two durations as independent variables. The long duration of the REAPS model implementation lasted five academic quarters or approximately 10 months; the short duration lasted two quarters or approximately four months. The dependent variables were students' general creativity and creative problem solving in science. The second purpose of the study was to explore which aspects of creative problem solving (i.e., generating ideas, generating different types of ideas, generating original ideas, adding details to ideas, generating ideas with social impact, finding problems, generating and elaborating on solutions, and classifying elements) were most affected by the long duration of the intervention. The REAPS model in conjunction with Amabile's (1983; 1996) model of creative performance provided the theoretical framework for this study. The study was conducted using data from the Project of Differentiation for Diverse Learners in Regular Classrooms (i.e., the Australian Project) in which one public elementary school in the eastern region of Australia cooperated with the DISCOVER research team at the University of Arizona. All students in the school from first to sixth grade participated in the study. The total sample was 360 students, of which 115 were exposed to a long duration and 245 to a short duration of the REAPS model. The principal investigators used a quasi-experimental research design in which all students in the school received the treatment for different durations. Students in both groups completed pre- and posttests using the Test of Creative Thinking-Drawing Production (TCT-DP) and the Test of Creative Problem Solving in Science (TCPS-S). A one-way analysis of covariance (ANCOVA) was conducted to control for differences between the two groups on pretest results. Statistically significant differences were not found between posttest scores on the TCT-DP for the two durations of REAPS model implementation. However, statistically significant differences were found between posttest scores on the TCPS-S. These findings are consistent with Amabile's (1983; 1996) model of creative performance, particularly her explanation that domain-specific creativity requires knowledge such as specific content and technical skills that must be learned prior to being applied creatively. The findings are also consistent with literature in which researchers have found that longer interventions typically result in expected positive growth in domain-specific creativity, while both longer and shorter interventions have been found effective in improving domain-general creativity. Change scores were also calculated between pre- and posttest scores on the 8 aspects of creativity (Maker, Jo, Alfaiz, & Alhusaini, 2015a), and a binary logistic regression was conducted to assess which were the most affected by the long duration of the intervention. The regression model was statistically significant, with aspects of generating ideas, adding details to ideas, and finding problems being the most affected by the long duration of the intervention. Based on these findings, the researcher believes that the REAPS model is a useful intervention to develop students' creativity. Future researchers should implement the model for longer durations if they are interested in developing students' domain-specific creative problem solving ability.

  11. Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study.

    PubMed

    Hao, Xin; Cui, Shuai; Li, Wenfu; Yang, Wenjing; Qiu, Jiang; Zhang, Qinglin

    2013-10-09

    Insight can be the first step toward creating a groundbreaking product. As evident in anecdotes and major inventions in history, heuristic events (heuristic prototypes) prompted inventors to acquire insight when solving problems. Bionic imitation in scientific innovation is an example of this kind of problem solving. In particular, heuristic prototypes (e.g., the lotus effect; the very high water repellence exhibited by lotus leaves) help solve insight problems (e.g., non-stick surfaces). We speculated that the biological functional feature of prototypes is a critical factor in inducing insightful scientific problem solving. In this functional magnetic resonance imaging (fMRI) study, we selected scientific innovation problems and utilized "learning prototypes-solving problems" two-phase paradigm to test the supposition. We also explored its neural mechanisms. Functional MRI data showed that the activation of the middle temporal gyrus (MTG, BA 37) and the middle occipital gyrus (MOG, BA 19) were associated with the highlighted functional feature condition. fMRI data also indicated that the MTG (BA 37) could be responsible for the semantic processing of functional features and for the formation of novel associations based on related functions. In addition, the MOG (BA 19) could be involved in the visual imagery of formation and application of function association between the heuristic prototype and problem. Our findings suggest that both semantic processing and visual imagery could be crucial components underlying scientific problem solving. © 2013 Elsevier B.V. All rights reserved.

  12. Technology--an actor in the ICU: a study in workplace research tradition.

    PubMed

    Wikström, Ann-Charlott; Larsson, Ullabeth Sätterlund

    2004-07-01

    The present study focuses on human-machine interaction in an intensive care unit in the West of Sweden. The aim of the present study was to explore how technology intervenes and challenges the ICU staff's knowing in practice. THEORETICAL PERSPECTIVE: The study's theoretical starting point draws on workplace research tradition. Workplace studies encompass the interaction between the actors' situated activities and the technological tools that make their activities possible. Fieldwork or in situ studies of everyday practice in an intensive care unit documented in written field notes constituted the data. The findings show first how technology intervenes in the division of labour when the taken-for-granted "old" everyday practice is disrupted when a new machine intervenes in the morning's work; secondly, it reveal how technology challenges practical knowing and thirdly, it shows how technology reformulates practice. Staff members' awareness of routine problems is often connected to the ability to see, which is always related to cultural/contextual competence. It is concluded that it is not talk alone that helps the caregivers to "(dis)solve" the problems. The ability to see the problems, the work environment and to find the relevant supporting tools for "(dis)solving" the routine problems is also crucial. But it is not possible to say that it is the skillful work of humans that solve problems, nor do we claim it is the tools that do so. Humans and tools are interwoven in the problem-solving process. Relevance to clinical practice. Routine problems in the intensive care unit are not "(dis)solved" through the cognitive work of individual staff members alone. Problems are also "(dis)solved" jointly with other staff members. Staff members "borrow" the knowing from each other and problems are re-represented through communication. The knowing has to be distributed among the intensive care unit staff to make the everyday work flexible.

  13. Quantum speedup in solving the maximal-clique problem

    NASA Astrophysics Data System (ADS)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  14. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers

    NASA Astrophysics Data System (ADS)

    Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.

    2016-11-01

    Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.

  15. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage.

    PubMed

    Warren, David E; Kurczek, Jake; Duff, Melissa C

    2016-07-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. The Effect of Social Problem Solving Skills in the Relationship between Traumatic Stress and Moral Disengagement among Inner-City African American High School Students

    PubMed Central

    Coker, Kendell L.; Ikpe, Uduakobong N.; Brooks, Jeannie S.; Page, Brian; Sobell, Mark B.

    2014-01-01

    This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided. PMID:25071874

  17. Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique

    NASA Astrophysics Data System (ADS)

    Rakkapao, S.; Pengpan, T.; Srikeaw, S.; Prasitpong, S.

    2014-01-01

    This study aims to investigate the use of the predict-observe-explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials.

  18. Calculation and word problem-solving skills in primary grades - Impact of cognitive abilities and longitudinal interrelations with task-persistent behaviour.

    PubMed

    Jõgi, Anna-Liisa; Kikas, Eve

    2016-06-01

    Primary school math skills form a basis for academic success down the road. Different math skills have different antecedents and there is a reason to believe that more complex math tasks require better self-regulation. The study aimed to investigate longitudinal interrelations of calculation and problem-solving skills, and task-persistent behaviour in Grade 1 and Grade 3, and the effect of non-verbal intelligence, linguistic abilities, and executive functioning on math skills and task persistence. Participants were 864 students (52.3% boys) from 33 different schools in Estonia. Students were tested twice - at the end of Grade1 and at the end of Grade 3. Calculation and problem-solving skills, and teacher-rated task-persistent behaviour were measured at both time points. Non-verbal intelligence, linguistic abilities, and executive functioning were measured in Grade 1. Cross-lagged structural equation modelling indicated that calculation skills depend on previous math skills and linguistic abilities, while problem-solving skills require also non-verbal intelligence, executive functioning, and task persistence. Task-persistent behaviour in Grade 3 was predicted by previous problem-solving skills, linguistic abilities, and executive functioning. Gender and mother's educational level were added as covariates. The findings indicate that math skills and self-regulation are strongly related in primary grades and that solving complex tasks requires executive functioning and task persistence from children. Findings support the idea that instructional practices might benefit from supporting self-regulation in order to gain domain-specific, complex skill achievement. © 2015 The British Psychological Society.

  19. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  20. Ways of problem solving as predictors of relapse in alcohol dependent male inpatients.

    PubMed

    Demirbas, Hatice; Ilhan, Inci Ozgur; Dogan, Yildirim Beyatli

    2012-01-01

    The purpose of this study was to identify how remitters and relapsers view their everyday problem solving strategies. A total of 128 male alcohol dependent male inpatients who were hospitalized at the Ankara University Psychiatry Clinic, Alcohol and Substance Abuse Treatment Unit were recruited for the study. Subjects demographic status and alcohol use histories were assessed by a self-report questionnaire. Also, patients were evaluated with The Coopersmith Self-esteem Inventory (CSI), The Spielberger State-Trait Anxiety Scale (STAI-I-II), and The Problem Solving Inventory (PSI). Patients were followed for six months with monthly intervals after hospital discharge. Drinking status was assessed in terms of abstinence and relapse. Data were assessed with Student t-test, and univariate and multivariate analyses. In the logistic regression analysis, age, marital status, employment status and PSI subscores were taken as the independent variables and drinking state at the end of six months as the dependent variable. There were significant differences in reflective and avoidant styles, and monitoring style of problem solving between abstainers and relapses. It was found that subjects who perceived their problem solving style as less avoidant and less reflective were at greater risk to relapse. The findings demonstrated that active engagement in problem solving like utilizing avoidant and reflective styles of problem solving enhances abstinence. In treatment, expanding the behavior repertoire and increasing the variety of ways of problem solving ways that can be utilized in daily life should be one of the major goals of the treatment program. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The roles of emotional competence and social problem-solving in the relationship between physical abuse and adolescent suicidal ideation in China.

    PubMed

    Kwok, Sylvia Y C L; Yeung, Jerf W K; Low, Andrew Y T; Lo, Herman H M; Tam, Cherry H L

    2015-06-01

    The study investigated the relationship among physical abuse, positive psychological factors including emotional competence and social problem-solving, and suicidal ideation among adolescents in China. The possible moderating effects of emotional competence and social problem-solving in the association between physical abuse and adolescent suicidal ideation were also studied. A cross-sectional survey employing convenience sampling was conducted and self-administered questionnaires were collected from 527 adolescents with mean age of 14 years from the schools in Shanghai. Results showed that physical abuse was significantly and positively related to suicidal ideation in both male and female adolescents. Emotional competence was not found to be significantly associated with adolescent suicidal ideation, but rational problem-solving, a sub-scale of social problem-solving, was shown to be significantly and negatively associated with suicidal ideation for males, but not for females. However, emotional competence and rational problem-solving were shown to be a significant and a marginally significant moderator in the relationship between physical abuse and suicidal ideation in females respectively, but not in males. High rational problem-solving buffered the negative impact of physical abuse on suicidal ideation for females. Interestingly, females with higher empathy and who reported being physically abused by their parents have higher suicidal ideation. Findings are discussed and implications are stated. It is suggested to change the attitudes of parents on the concept of physical abuse, guide them on appropriate attitudes, knowledge and skills in parenting, and enhance adolescents' skills in rational problem-solving. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    NASA Astrophysics Data System (ADS)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  3. Mathematics Skill of Fifteen Years Old Students in Yogyakarta in Solving Problems Like PISA

    ERIC Educational Resources Information Center

    Wulandari, Nidya Ferry; Jailani

    2018-01-01

    The aims of this research were to describe mathematics skill of 8th fifteen-year old students in Yogyakarta in solving problem of PISA. The sampling was combination of stratified and cluster random sampling. The sample consisting of 400 students was selected from fifteen schools. The data collection was by tests. The research finding revealed that…

  4. Problem Solving and Immigrant Student Mathematics and Science Achievement: Multination Findings from the Programme for International Student Assessment (PISA)

    ERIC Educational Resources Information Center

    Martin, Andrew J.; Liem, Gregory A. D.; Mok, Magdalena M. C.; Xu, Jacob

    2012-01-01

    The present study investigates problem-solving skill alongside more widely recognized settlement and sociodemographic factors in first-generation (1G) and second-generation (2G) immigrant students' science and mathematics achievement. A total of 113,767 students (ages 15-16 years) from 17 countries were drawn from the 2003 Programme for…

  5. Systematic Approaches to Experimentation: The Case of Pick's Theorem

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is…

  6. Teachers' Conceptualization and Actual Practice in the Student Evaluation Process at the Upper Secondary School Level in Japan, Focusing on Problem Solving Skills.

    ERIC Educational Resources Information Center

    Wai, Nu Nu; Hirakawa, Yukiko

    2001-01-01

    Studied the participation and performance of upper secondary school teachers in Japan through surveys completed by 360 Geography teachers. Findings suggest that the importance of developing problem-solving skills is widely recognized among these teachers. Implementing training in such skills is much more difficult. Developing effective teaching…

  7. Students' Problem Solving as Mediated by Their Cognitive Tool Use: A Study of Tool Use Patterns

    ERIC Educational Resources Information Center

    Liu, M.; Horton, L. R.; Corliss, S. B.; Svinicki, M. D.; Bogard, T.; Kim, J.; Chang, M.

    2009-01-01

    The purpose of this study was to use multiple data sources, both objective and subjective, to capture students' thinking processes as they were engaged in problem solving, examine the cognitive tool use patterns, and understand what tools were used and why they were used. The findings of this study confirmed previous research and provided clear…

  8. The Relationship between Variations in Patterns of School Leadership and Group Problem-Solving Processes.

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; Steinbach, Rosanne

    Findings of a study that examined the relationship between variations in patterns of school leadership and group problem-solving process are presented in this paper. Interviews were conducted at the beginning and end of the school year with 12 principals in British Columbia who had implemented the Primary Program. The initiative was designed to…

  9. A Study of Multi-Representation of Geometry Problem Solving with Virtual Manipulatives and Whiteboard System

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie

    2009-01-01

    In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…

  10. Methodological and Epistemological Issues on Linear Regression Applied to Psychometric Variables in Problem Solving: Rethinking Variance

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios

    2010-01-01

    The aim of the present paper is two-fold. First, it attempts to support previous findings on the role of some psychometric variables, such as, M-capacity, the degree of field dependence-independence, logical thinking and the mobility-fixity dimension, on students' achievement in chemistry problem solving. Second, the paper aims to raise some…

  11. The Complex Route to Success: Complex Problem-Solving Skills in the Prediction of University Success

    ERIC Educational Resources Information Center

    Stadler, Matthias J.; Becker, Nicolas; Greiff, Samuel; Spinath, Frank M.

    2016-01-01

    Successful completion of a university degree is a complex matter. Based on considerations regarding the demands of acquiring a university degree, the aim of this paper was to investigate the utility of complex problem-solving (CPS) skills in the prediction of objective and subjective university success (SUS). The key finding of this study was that…

  12. Linking Complex Problem Solving and General Mental Ability to Career Advancement: Does a Transversal Skill Reveal Incremental Predictive Validity?

    ERIC Educational Resources Information Center

    Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel

    2015-01-01

    Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…

  13. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    ERIC Educational Resources Information Center

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  14. Effectiveness of Mathematical Word Problem Solving Interventions for Students with Learning Disabilities and Mathematics Difficulties: A Meta-Analysis

    ERIC Educational Resources Information Center

    Lein, Amy E.

    2016-01-01

    This meta-analysis synthesized the findings from 23 published and five unpublished experimental or quasi-experimental group design studies on word problem-solving instruction for K-12 students with learning disabilities (LD) and mathematics difficulties (MD). A secondary purpose of this meta-analysis was to analyze the relation between treatment…

  15. Disfluent fonts don't help people solve math problems.

    PubMed

    Meyer, Andrew; Frederick, Shane; Burnham, Terence C; Guevara Pinto, Juan D; Boyer, Ty W; Ball, Linden J; Pennycook, Gordon; Ackerman, Rakefet; Thompson, Valerie A; Schuldt, Jonathon P

    2015-04-01

    Prior research suggests that reducing font clarity can cause people to consider printed information more carefully. The most famous demonstration showed that participants were more likely to solve counterintuitive math problems when they were printed in hard-to-read font. However, after pooling data from that experiment with 16 attempts to replicate it, we find no effect on solution rates. We examine potential moderating variables, including cognitive ability, presentation format, and experimental setting, but we find no evidence of a disfluent font benefit under any conditions. More generally, though disfluent fonts slightly increase response times, we find little evidence that they activate analytic reasoning. (c) 2015 APA, all rights reserved).

  16. Quality improvement--boon or boondoggle?

    PubMed

    Paterson, M A; Wendel, J

    1994-01-01

    Is quality improvement (QI) reducing healthcare costs while improving patient care? Researchers find that QI has improved employee satisfaction and morale, but it was designed to do more. One solution is to use problem-solving techniques to help teams identify the level at which they want to address a problem, whether that be the subinstitutional, institutional, or system level. If QI is to fulfill its promise, skilled managers must create effective teams capable of defining and solving complex problems.

  17. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.

  18. Construct Validation of the Physics Metacognition Inventory

    NASA Astrophysics Data System (ADS)

    Taasoobshirazi, Gita; Farley, John

    2013-02-01

    The 24-item Physics Metacognition Inventory was developed to measure physics students' metacognition for problem solving. Items were classified into eight subcomponents subsumed under two broader components: knowledge of cognition and regulation of cognition. The students' scores on the inventory were found to be reliable and related to students' physics motivation and physics grade. An exploratory factor analysis provided evidence of construct validity, revealing six components of students' metacognition when solving physics problems including: knowledge of cognition, planning, monitoring, evaluation, debugging, and information management. Although women and men differed on the components, they had equivalent overall metacognition for problem solving. The implications of these findings for future research are discussed.

  19. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  20. Aiming to complete the matrix: Eye-movement analysis of processing strategies in children's relational thinking.

    PubMed

    Chen, Zhe; Honomichl, Ryan; Kennedy, Diane; Tan, Enda

    2016-06-01

    The present study examines 5- to 8-year-old children's relation reasoning in solving matrix completion tasks. This study incorporates a componential analysis, an eye-tracking method, and a microgenetic approach, which together allow an investigation of the cognitive processing strategies involved in the development and learning of children's relational thinking. Developmental differences in problem-solving performance were largely due to deficiencies in engaging the processing strategies that are hypothesized to facilitate problem-solving performance. Feedback designed to highlight the relations between objects within the matrix improved 5- and 6-year-olds' problem-solving performance, as well as their use of appropriate processing strategies. Furthermore, children who engaged the processing strategies early on in the task were more likely to solve subsequent problems in later phases. These findings suggest that encoding relations, integrating rules, completing the model, and generalizing strategies across tasks are critical processing components that underlie relational thinking. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Complex collaborative problem-solving processes in mission control.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo

    2014-04-01

    NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.

  2. Quality Tools and TRIZ Based Quality Improvement Case Study at PT ‘X’ A Plastic Moulding Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Wirawan, Christina; Chandra, Fory

    2016-02-01

    Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.

  3. Aptitude-treatment interactions revisited: effect of metacognitive intervention on subtypes of written expression in elementary school students.

    PubMed

    Hooper, Stephen R; Wakely, Melissa B; de Kruif, Renee E L; Swartz, Carl W

    2006-01-01

    We examined the effectiveness of a metacognitive intervention for written language performance, based on the Hayes model of written expression, for 73 fourth-grade (n = 38) and fifth-grade (n = 35) students. The intervention consisted of twenty 45-min writing lessons designed to improve their awareness of writing as a problem-solving process. Each of the lessons addressed some aspect of planning, translating, and reflecting on written products; their self-regulation of these processes; and actual writing practice. All instruction was conducted in intact classrooms. Prior to the intervention, all students received a battery of neurocognitive tests measuring executive functions, attention, and language. In addition, preintervention writing samples were obtained and analyzed holistically and for errors in syntax, semantics, and spelling. Following the intervention, the writing tasks were readministered and cluster analysis of the neurocognitive data was conducted. Cluster analytic procedures yielded 7 reliable clusters: 4 normal variants, 1 Problem Solving weakness, 1 Problem Solving Language weaknesses, and 1 Problem Solving strength. The response to the single treatment by these various subtypes revealed positive but modest findings. Significant group differences were noted for improvement in syntax errors and spelling, with only spelling showing differential improvement for the Problem Solving Language subtype. In addition, there was a marginally significant group effect for holistic ratings. These findings provide initial evidence that Writing Aptitude (subtype) x Single Treatment interactions exist in writing, but further research is needed with other classification schemes and interventions.

  4. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies for future investigation.

  5. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  6. The effect of problem structure on problem-solving: an fMRI study of word versus number problems.

    PubMed

    Newman, Sharlene D; Willoughby, Gregory; Pruce, Benjamin

    2011-09-02

    It has long been thought that word problems are more difficult to solve than number/equation problems. However, recent findings have begun to bring this broadly believed idea into question. The current study examined the processing differences between these two types of problems. The behavioral results presented here failed to show an overwhelming advantage for number problems. In fact, there were more errors for the number problems than the word problems. The neuroimaging results reported demonstrate that there is significant overlap in the processing of what, on the surface, appears to be completely different problems that elicit different problem-solving strategies. Word and number problems rely on a general network responsible for problem-solving that includes the superior posterior parietal cortex, the horizontal segment of the intraparietal sulcus which is hypothesized to be involved in problem representation and calculation as well as the regions that have been linked to executive aspects of working memory such as the pre-SMA and basal ganglia. While overlap was observed, significant differences were also found primarily in language processing regions such as Broca's and Wernicke's areas for the word problems and the horizontal segment of the intraparietal sulcus for the number problems. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Memory inhibition as a critical factor preventing creative problem solving.

    PubMed

    Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel

    2017-06-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi

    PubMed Central

    Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni

    2016-01-01

    How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a “specialized” domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the “community structure” of the ToH and their difficulties in executing so-called “counterintuitive” movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand—a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits. PMID:27074140

  9. Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi.

    PubMed

    Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni

    2016-04-01

    How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits.

  10. The Normals to a Parabola and the Real Roots of a Cubic

    ERIC Educational Resources Information Center

    Bains, Majinder S.; Thoo, J. B.

    2007-01-01

    The geometric problem of finding the number of normals to the parabola y = x[squared] through a given point is equivalent to the algebraic problem of finding the number of distinct real roots of a cubic equation. Apollonius solved the former problem, and Cardano gave a solution to the latter. The two problems are bridged by Neil's (semi-cubical)…

  11. Investigating the effect of mental set on insight problem solving.

    PubMed

    Ollinger, Michael; Jones, Gary; Knoblich, Günther

    2008-01-01

    Mental set is the tendency to solve certain problems in a fixed way based on previous solutions to similar problems. The moment of insight occurs when a problem cannot be solved using solution methods suggested by prior experience and the problem solver suddenly realizes that the solution requires different solution methods. Mental set and insight have often been linked together and yet no attempt thus far has systematically examined the interplay between the two. Three experiments are presented that examine the extent to which sets of noninsight and insight problems affect the subsequent solutions of insight test problems. The results indicate a subtle interplay between mental set and insight: when the set involves noninsight problems, no mental set effects are shown for the insight test problems, yet when the set involves insight problems, both facilitation and inhibition can be seen depending on the type of insight problem presented in the set. A two process model is detailed to explain these findings that combines the representational change mechanism with that of proceduralization.

  12. The influence of open goals on the acquisition of problem-relevant information.

    PubMed

    Moss, Jarrod; Kotovsky, Kenneth; Cagan, Jonathan

    2007-09-01

    There have been a number of recent findings indicating that unsolved problems, or open goals more generally, influence cognition even when the current task has no relation to the task in which the goal was originally set. It was hypothesized that open goals would influence what information entered the problem-solving process. Three studies were conducted to establish the effect of open goals on the acquisition of problem-relevant information. It was found that problem-relevant information, or hints, presented implicitly in a 2nd task in between attempts at solving problems aided problem solving. This effect cannot be attributed to strategic behavior after participants caught on to the manipulation, as most participants were not aware of the relationship. The implications of this research are discussed, including potential contributions to our understanding of insight, incubation, transfer, and creativity. 2007 APA

  13. Developing material for promoting problem-solving ability through bar modeling technique

    NASA Astrophysics Data System (ADS)

    Widyasari, N.; Rosiyanti, H.

    2018-01-01

    This study aimed at developing material for enhancing problem-solving ability through bar modeling technique with thematic learning. Polya’s steps of problem-solving were chosen as the basis of the study. The methods of the study were research and development. The subject of this study were five teen students of the fifth grade of Lab-school FIP UMJ elementary school. Expert review and student’ response analysis were used to collect the data. Furthermore, the data were analyzed using qualitative descriptive and quantitative. The findings showed that material in theme “Selalu Berhemat Energi” was categorized as valid and practical. The validity was measured by using the aspect of language, contents, and graphics. Based on the expert comments, the materials were easy to implement in the teaching-learning process. In addition, the result of students’ response showed that material was both interesting and easy to understand. Thus, students gained more understanding in learning problem-solving.

  14. Experimental realization of a one-way quantum computer algorithm solving Simon's problem.

    PubMed

    Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G

    2014-11-14

    We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

  15. Cognitive functioning and everyday problem solving in older adults.

    PubMed

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2006-09-01

    The relationship between cognitive functioning and a performance-based measure of everyday problem-solving, the Everyday Problems Test (EPT), thought to index instrumental activities of daily living (IADL), was examined in 291 community-dwelling non-demented older adults. Performance on the EPT was found to vary according to age, cognitive status, and education. Hierarchical regression analyses revealed that, after adjusting for demographic and health variables, measures of cognitive functioning accounted for 23.6% of the variance in EPT performance. In particular, measures of global cognitive status, cognitive decline, speed of processing, executive functioning, episodic memory, and verbal ability were significant predictors of EPT performance. These findings suggest that cognitive functioning along with demographic variables are important determinants of everyday problem-solving.

  16. Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.

    PubMed

    Esau, Michael; Rozema, Mark; Zhang, Tuo Huang; Zeng, Dawson; Chiu, Stephanie; Kwan, Rachel; Moorhouse, Cadence; Murray, Cameron; Tseng, Nien-Tsu; Ridgway, Doug; Sauvageau, Dominic; Ellison, Michael

    2014-12-19

    The Traveling Salesman Problem involves finding the shortest possible route visiting all destinations on a map only once before returning to the point of origin. The present study demonstrates a strategy for solving Traveling Salesman Problems using modified E. coli cells as processors for massively parallel computing. Sequential, combinatorial DNA assembly was used to generate routes, in the form of plasmids made up of marker genes, each representing a path between destinations, and short connecting linkers, each representing a given destination. Upon growth of the population of modified E. coli, phenotypic selection was used to eliminate invalid routes, and statistical analysis was performed to successfully identify the optimal solution. The strategy was successfully employed to solve a four-destination test problem.

  17. Review on solving the forward problem in EEG source analysis

    PubMed Central

    Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace

    2007-01-01

    Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144

  18. Principle of serviceability and gratuitousness in transplantation?

    PubMed

    Pashkov, Vitaliy M; Golovanova, Iryna A; Noha, Petro P

    the issue of commercialization of transplantation analyses in the article. Attention is paid to the importance of transplantation as a method of treatment and saving human lives. the clarify the feasibility of the introduction of donation commercialization as an avenue to solve the shortage of donor organs and means of combating with black organ market and finding alternative avenues solving these problems, which are more morally acceptable for society is the aim of this article. the experience of foreign countries has been analyses in the research. Additionally, we used data from international organizations, conclusions scientists and report of Global Financial Integrity in the research. it is impossible to solve most problems by means of paid donation. therapeutic organ and tissue cloning based on genetic technology is the best way out and solving ethical transplantation problems.

  19. Subspace projection method for unstructured searches with noisy quantum oracles using a signal-based quantum emulation device

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Ostrove, Corey I.

    2017-01-01

    This paper describes a novel approach to solving unstructured search problems using a classical, signal-based emulation of a quantum computer. The classical nature of the representation allows one to perform subspace projections in addition to the usual unitary gate operations. Although bandwidth requirements will limit the scale of problems that can be solved by this method, it can nevertheless provide a significant computational advantage for problems of limited size. In particular, we find that, for the same number of noisy oracle calls, the proposed subspace projection method provides a higher probability of success for finding a solution than does an single application of Grover's algorithm on the same device.

  20. After Being Challenged by a Video Game Problem, Sleep Increases the Chance to Solve It

    PubMed Central

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events. PMID:24416219

  1. After being challenged by a video game problem, sleep increases the chance to solve it.

    PubMed

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  2. Solving Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) using BRKGA with local search

    NASA Astrophysics Data System (ADS)

    Prasetyo, H.; Alfatsani, M. A.; Fauza, G.

    2018-05-01

    The main issue in vehicle routing problem (VRP) is finding the shortest route of product distribution from the depot to outlets to minimize total cost of distribution. Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) is one of the variants of VRP that accommodates vehicle capacity and distribution period. Since the main problem of CCVRPTW is considered a non-polynomial hard (NP-hard) problem, it requires an efficient and effective algorithm to solve the problem. This study was aimed to develop Biased Random Key Genetic Algorithm (BRKGA) that is combined with local search to solve the problem of CCVRPTW. The algorithm design was then coded by MATLAB. Using numerical test, optimum algorithm parameters were set and compared with the heuristic method and Standard BRKGA to solve a case study on soft drink distribution. Results showed that BRKGA combined with local search resulted in lower total distribution cost compared with the heuristic method. Moreover, the developed algorithm was found to be successful in increasing the performance of Standard BRKGA.

  3. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  4. The Role of Arts-Related Information and Communication Technology Use in Problem Solving and Achievement: Findings from the Programme for International Student Assessment

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; Martin, Andrew J.; Anderson, Michael; Gibson, Robyn; Sudmalis, David

    2014-01-01

    Drawing on the Programme for International Student Assessment 2003 data set comprising over 190,000 15-year-old students in 25 countries, the current study sought to examine the role of arts-related information and communication technology (ICT) use in students' problem-solving skill and science and mathematics achievement. Structural equation…

  5. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1990-09-18

    to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the

  6. Perspectives about Living on the Horns of Dilemmas: An Analysis of Gender Factors Related to Superintendent Decision-Making and Problem-Solving

    ERIC Educational Resources Information Center

    Polka, Walter S.; Litchka, Peter R.; Calzi, Frank F.; Denig, Stephen J.; Mete, Rosina E.

    2014-01-01

    The major focus of this paper is a gender-based analysis of school superintendent decision-making and problem-solving as well as an investigation of contemporary leadership dilemmas. The findings are based on responses from 258 superintendents of K-12 school districts in Delaware, Maryland, New Jersey, New York, and Pennsylvania collected over a…

  7. The Nature of Problem Solving: Using Research to Inspire 21st Century Learning

    ERIC Educational Resources Information Center

    Csapó, Beno, Ed.; Funke, Joachim, Ed.

    2017-01-01

    Solving non-routine problems is a key competence in a world full of changes, uncertainty and surprise where we strive to achieve so many ambitious goals. But the world is also full of solutions because of the extraordinary competences of humans who search for and find them. We must explore the world around us in a thoughtful way, acquire knowledge…

  8. Learning theoretical knowledge doesn't have to be boring.

    PubMed

    2014-11-29

    Marta Kankofer was one of a small team that developed teaching materials for veterinary students to allow them to use their cognitive abilities to solve virtual problems. The VetVIP project promotes self-study based on solving problems and aims to increase satisfaction and motivation among second-year students, who find themselves in a theory-heavy stage of the veterinary course. British Veterinary Association.

  9. Student Teachers' Mathematics Attitudes, Authentic Investigations and Use of Metacognitive Tools

    ERIC Educational Resources Information Center

    Afamasaga-Fuata'i, Karoline; Sooaemalelagi, Lumaava

    2014-01-01

    Based on findings from a semester-long study, this article examines the development of Samoan prospective teachers' mathematical understandings and mathematics attitudes when investigating authentic contexts and applying working mathematically processes, mental computations and problem-solving strategies to find solutions of problems. The…

  10. Effects of an explicit problem-solving skills training program using a metacomponential approach for outpatients with acquired brain injury.

    PubMed

    Fong, Kenneth N K; Howie, Dorothy R

    2009-01-01

    We investigated the effects of an explicit problem-solving skills training program using a metacomponential approach with 33 outpatients with moderate acquired brain injury, in the Hong Kong context. We compared an experimental training intervention with this explicit problem-solving approach, which taught metacomponential strategies, with a conventional cognitive training approach that did not have this explicit metacognitive training. We found significant advantages for the experimental group on the Metacomponential Interview measure in association with the explicit metacomponential training, but transfer to the real-life problem-solving measures was not evidenced in statistically significant findings. Small sample size, limited time of intervention, and some limitations with these tools may have been contributing factors to these results. The training program was demonstrated to have a significantly greater effect than the conventional training approach on metacomponential functioning and the component of problem representation. However, these benefits were not transferable to real-life situations.

  11. Problem-solving therapy and supportive therapy in older adults with major depression and executive dysfunction.

    PubMed

    Areán, Patricia A; Raue, Patrick; Mackin, R Scott; Kanellopoulos, Dora; McCulloch, Charles; Alexopoulos, George S

    2010-11-01

    The purpose of this study was to determine whether problem-solving therapy is an effective treatment in older patients with depression and executive dysfunction, a population likely to be resistant to antidepressant drugs. Participants were adults age 60 and older with major depression and executive dysfunction. Problem-solving therapy was modified to be accessible to this population. Participants were randomly assigned to 12 weekly sessions of problem-solving therapy or supportive therapy and assessed at weeks 3, 6, 9, and 12. Of the 653 individuals referred for this study, 221 met selection criteria and were enrolled in the study. Reduction of depressive symptom severity was comparable for the two treatment groups during the first 6 weeks of treatment, but at weeks 9 and 12 the problem-solving therapy group had a greater reduction in symptom severity, a greater response rate, and a greater remission rate than the supportive therapy group (response rates at week 9: 47.1% and 29.3%; at week 12:56.7% and 34.0%; remission rates at week 9: 37.9% and 21.7%; at week 12: 45.6% and 27.8%). Problem-solving therapy yielded one additional response or remission over supportive therapy for every 4.4-5.6 patients by the end of the trial. These results suggest that problem-solving therapy is effective in reducing depressive symptoms and leading to treatment response and remission in a considerable number of older patients with major depression and executive dysfunction. The clinical value of this finding is that problem-solving therapy may be a treatment alternative in an older patient population likely to be resistant to pharmacotherapy.

  12. Exploring students’ perceived and actual ability in solving statistical problems based on Rasch measurement tools

    NASA Astrophysics Data System (ADS)

    Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati

    2017-09-01

    One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.

  13. A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks.

    PubMed

    van Horik, Jayden O; Madden, Joah R

    2016-04-01

    Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus , and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes.

  14. A problem with problem solving: motivational traits, but not cognition, predict success on novel operant foraging tasks

    PubMed Central

    van Horik, Jayden O.; Madden, Joah R.

    2016-01-01

    Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus, and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes. PMID:27122637

  15. Metacognitive skills and students' motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin

    NASA Astrophysics Data System (ADS)

    Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani

    2017-12-01

    The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning device, such as student worksheet, to help students use their metacognitive skills in solving problems, particularly on chemistry subject.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo -Ling; Mehrotra, Sanjay

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  17. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  18. Problem solving in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii): the effect of visual feedback.

    PubMed

    Völter, Christoph J; Call, Josep

    2012-09-01

    What kind of information animals use when solving problems is a controversial topic. Previous research suggests that, in some situations, great apes prefer to use causally relevant cues over arbitrary ones. To further examine to what extent great apes are able to use information about causal relations, we presented three different puzzle box problems to the four nonhuman great ape species. Of primary interest here was a comparison between one group of apes that received visual access to the functional mechanisms of the puzzle boxes and one group that did not. Apes' performance in the first two, less complex puzzle boxes revealed that they are able to solve such problems by means of trial-and-error learning, requiring no information about the causal structure of the problem. However, visual inspection of the functional mechanisms of the puzzle boxes reduced the amount of time needed to solve the problems. In the case of the most complex problem, which required the use of a crank, visual feedback about what happened when the handle of the crank was turned was necessary for the apes to solve the task. Once the solution was acquired, however, visual feedback was no longer required. We conclude that visual feedback about the consequences of their actions helps great apes to solve complex problems. As the crank task matches the basic requirements of vertical string pulling in birds, the present results are discussed in light of recent findings with corvids.

  19. Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.

    2013-11-01

    This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.

  20. Testing a model of depression among Thai adolescents.

    PubMed

    Vatanasin, Duangjai; Thapinta, Darawan; Thompson, Elaine Adams; Thungjaroenkul, Petsunee

    2012-11-01

    This predictive correlational study was designed to test a comprehensive model of depression for Thai adolescents. This sample included 800 high school students in Chiang Mai, Thailand. Data were collected using self-reported measures of depression, negative automatic thoughts, effective social problem solving, ineffective social problem solving, rumination, parental care, parental overprotection, and negative life events. Structural equation modeling revealed that negative automatic thoughts, effective and ineffective social problem solving mediated the effects of rumination, negative life events, and parental care and overprotection on adolescent depression. These findings provide new knowledge about identified factors and the mechanisms of their influence on depression among Thai adolescents, which are appropriate for targeting preventive interventions. © 2012 Wiley Periodicals, Inc.

  1. The relationship between two-dimensional self-esteem and problem solving style in an anorexic inpatient sample.

    PubMed

    Paterson, Gillian; Power, Kevin; Yellowlees, Alex; Park, Katy; Taylor, Louise

    2007-01-01

    Research examining cognitive and behavioural determinants of anorexia is currently lacking. This has implications for the success of treatment programmes for anorexics, particularly, given the high reported dropout rates. This study examines two-dimensional self-esteem (comprising of self-competence and self-liking) and social problem-solving in an anorexic population and predicts that self-esteem will mediate the relationship between problem-solving and eating pathology by facilitating/inhibiting use of faulty/effective strategies. Twenty-seven anorexic inpatients and 62 controls completed measures of social problem solving and two-dimensional self-esteem. Anorexics scored significantly higher than the non-clinical group on measures of eating pathology, negative problem orientation, impulsivity/carelessness and avoidance and significantly lower on positive problem orientation and both self-esteem components. In the clinical sample, disordered eating correlated significantly with self-competence, negative problem-orientation and avoidance. Associations between disordered eating and problem solving lost significance when self-esteem was controlled in the clinical group only. Self-competence was found to be the main predictor of eating pathology in the clinical sample while self-liking, impulsivity and negative and positive problem orientation were main predictors in the non-clinical sample. Findings support the two-dimensional self-esteem theory with self-competence only being relevant to the anorexic population and support the hypothesis that self-esteem mediates the relationship between disordered eating and problem solving ability in an anorexic sample. Treatment implications include support for programmes emphasising increasing self-appraisal and self-efficacy. 2006 John Wiley & Sons, Ltd and Eating Disorders Association

  2. In search of the 'Aha!' experience: Elucidating the emotionality of insight problem-solving.

    PubMed

    Shen, Wangbing; Yuan, Yuan; Liu, Chang; Luo, Jing

    2016-05-01

    Although the experience of insight has long been noted, the essence of the 'Aha!' experience, reflecting a sudden change in the brain that accompanies an insight solution, remains largely unknown. This work aimed to uncover the mystery of the 'Aha!' experience through three studies. In Study 1, participants were required to solve a set of verbal insight problems and then subjectively report their affective experience when solving the problem. The participants were found to have experienced many types of emotions, with happiness the most frequently reported one. Multidimensional scaling was employed in Study 2 to simplify the dimensions of these reported emotions. The results showed that these different types of emotions could be clearly placed in two-dimensional space and that components constituting the 'Aha!' experience mainly reflected positive emotion and approached cognition. To validate previous findings, in Study 3, participants were asked to select the most appropriate emotional item describing their feelings at the time the problem was solved. The results of this study replicated the multidimensional construct consisting of approached cognition and positive affect. These three studies provide the first direct evidence of the essence of the 'Aha!' The potential significance of the findings was discussed. © 2015 The British Psychological Society.

  3. Very Large Scale Optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)

    2002-01-01

    The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.

  4. An Analysis of Looking Back Method in Problem-Based Learning: Case Study on Congruence and Similarity in Junior High School

    NASA Astrophysics Data System (ADS)

    Kosasih, U.; Wahyudin, W.; Prabawanto, S.

    2017-09-01

    This study aims to understand how learners do look back their idea of problem solving. This research is based on qualitative approach with case study design. Participants in this study were xx students of Junior High School, who were studying the material of congruence and similarity. The supporting instruments in this research are test and interview sheet. The data obtained were analyzed by coding and constant-comparison. The analysis find that there are three ways in which the students review the idea of problem solving, which is 1) carried out by comparing answers to the completion measures exemplified by learning resources; 2) carried out by examining the logical relationship between the solution and the problem; and 3) carried out by means of confirmation to the prior knowledge they have. This happens because most students learn in a mechanistic way. This study concludes that students validate the idea of problem solving obtained, influenced by teacher explanations, learning resources, and prior knowledge. Therefore, teacher explanations and learning resources contribute to the success or failure of students in solving problems.

  5. The efficacy of problem solving therapy to reduce post stroke emotional distress in younger (18-65) stroke survivors.

    PubMed

    Chalmers, Charlotte; Leathem, Janet; Bennett, Simon; McNaughton, Harry; Mahawish, Karim

    2017-11-26

    To investigate the efficacy of problem solving therapy for reducing the emotional distress experienced by younger stroke survivors. A non-randomized waitlist controlled design was used to compare outcome measures for the treatment group and a waitlist control group at baseline and post-waitlist/post-therapy. After the waitlist group received problem solving therapy an analysis was completed on the pooled outcome measures at baseline, post-treatment, and three-month follow-up. Changes on outcome measures between baseline and post-treatment (n = 13) were not significantly different between the two groups, treatment (n = 13), and the waitlist control group (n = 16) (between-subject design). The pooled data (n = 28) indicated that receiving problem solving therapy significantly reduced participants levels of depression and anxiety and increased quality of life levels from baseline to follow up (within-subject design), however, methodological limitations, such as the lack of a control group reduce the validity of this finding. The between-subject results suggest that there was no significant difference between those that received problem solving therapy and a waitlist control group between baseline and post-waitlist/post-therapy. The within-subject design suggests that problem solving therapy may be beneficial for younger stroke survivors when they are given some time to learn and implement the skills into their day to day life. However, additional research with a control group is required to investigate this further. This study provides limited evidence for the provision of support groups for younger stroke survivors post stroke, however, it remains unclear about what type of support this should be. Implications for Rehabilitation Problem solving therapy is no more effective for reducing post stroke distress than a wait-list control group. Problem solving therapy may be perceived as helpful and enjoyable by younger stroke survivors. Younger stroke survivors may use the skills learnt from problem solving therapy to solve problems in their day to day lives. Younger stroke survivors may benefit from age appropriate psychological support; however, future research is needed to determine what type of support this should be.

  6. A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems.

    PubMed

    Gong, Pinghua; Zhang, Changshui; Lu, Zhaosong; Huang, Jianhua Z; Ye, Jieping

    2013-01-01

    Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A commonly used approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the original non-convex problem to a sequence of convex problems. This approach is usually not very practical for large-scale problems because its computational cost is a multiple of solving a single convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-form solution for many commonly used penalties. At each outer iteration of the algorithm, we use a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data sets.

  7. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  8. Students’ Covariational Reasoning in Solving Integrals’ Problems

    NASA Astrophysics Data System (ADS)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  9. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  10. Trimodal interpretation of constraints for planning

    NASA Technical Reports Server (NTRS)

    Krieger, David; Brown, Richard

    1987-01-01

    Constraints are used in the CAMPS knowledge based planning system to represent those propositions that must be true for a plan to be acceptable. CAMPS introduces the make-mode for interpreting a constraint. Given an unsatisfied constraint, make evaluation mode suggests planning actions which, if taken, would result in a modified plan in which the constraint in question may be satisfied. These suggested planning actions, termed delta-tuples, are the raw material of intelligent plan repair. They are used both in debugging an almost-right plan and in replanning due to changing situations. Given a defective plan in which some set of constraints are violated, a problem solving strategy selects one or more constraints as a focus of attention. These selected constraints are evaluated in the make-mode to produce delta-tuples. The problem solving strategy then reviews the delta-tuples according to its application and problem-specific criteria to find the most acceptable change in terms of success likelihood and plan disruption. Finally, the problem solving strategy makes the suggested alteration to the plan and then rechecks constraints to find any unexpected consequences.

  11. Inequalities, assessment and computer algebra

    NASA Astrophysics Data System (ADS)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  12. A comparative study of the effects of problem-solving skills training and relaxation on the score of self-esteem in women with postpartum depression

    PubMed Central

    Nasiri, Saeideh; Kordi, Masoumeh; Gharavi, Morteza Modares

    2015-01-01

    Background: Self-esteem is a determinant factor of mental health. Individuals with low self-esteem have depression, and low self-esteem is one of main symptoms of depression. Aim of this study is to compare the effects of problem-solving skills and relaxation on the score of self-esteem in women with postpartum depression. Materials and Methods: This clinical trial was performed on 80 women. Sampling was done in Mashhad healthy centers from December 2009 to June 2010. Women were randomly divided and assigned to problem-solving skills (n = 26), relaxation (n = 26), and control groups (n = 28). Interventions were implemented for 6 weeks and the subjects again completed Eysenck self-esteem scale 9 weeks after delivery. Data analysis was done by descriptive statistics, Kruskal–Wallis test, and analysis of variance (ANOVA) test by SPSS software. Results: The findings showed that the mean of self-esteem scale scores was 117.9 ± 9.7 after intervention in the problem-solving group, 117.0 ± 11.8 in the relaxation group, and 113.5 ± 10.4 in the control group and there was significant difference between the groups of relaxation and problem solving, and also between intervention groups and control group. Conclusions: According to the results, problem-solving skills and relaxation can be used to prevent and recover from postpartum depression. PMID:25709699

  13. Urban African American Pre-Adolescent Social Problem Solving Skills: Family Influences and Association with Exposure to Situations of Sexual Possibility

    PubMed Central

    Traube, Dorian E.; Chasse, Kelly Taber; McKay, Mary M.; Bhorade, Anjali M.; Paikoff, Roberta; Young, Stacie D.

    2010-01-01

    SUMMARY The results of two studies focusing on the social problem solving skills of African American preadolescent youth are detailed. In the first study data from a sample of 150 African American children, ages 9 to 11 years, was used to examine the association between type of youth social problem solving approaches applied to hypothetical risk situations and time spent in unsupervised peer situations of sexual possibility. Findings revealed that children with more exposure to sexual possibility situations generated a wider range of social problem solving strategies, but these approaches tended to be unrealistic and ambiguous. Further, there was a positive association between the amount of time spent unsupervised and youth difficulty formulating a definitive response to hypothetical peer pressure situations. Children with less exposure to sexual possibility situations tended to be more aggressive when approaching situations of peer pressure. In the second study, data from a non-overlapping sample of 164 urban, African American adult caregivers and their 9 to 11 year old children was examined in order to explore the associations between child gender, family-level factors including family communication frequency and intensity, time spent in situations of sexual possibility, and youth social problem solving approaches. Results revealed that children were frequently using constructive problem solving and help seeking behaviors when confronted by difficult social situations and that there was a significant relationship between the frequency and intensity of parent child communication and youth help seeking social problem solving approaches. Implications for research and family-based interventions are highlighted. PMID:20871790

  14. Social problem-solving, perceived stress, depression and life-satisfaction in patients suffering from tension type and migraine headaches.

    PubMed

    Eskin, Mehmet; Akyol, Ali; Çelik, Emine Yilmaz; Gültekin, Bülent Kadri

    2013-08-01

    This study aimed at investigating social problem solving, perceived stress, depression, and life-satisfaction in patients with tension type and migraine headaches. Forty-nine migraine and 42 tension type headache patients (n = 91) consenting to participate were compared to a total of 49 matched healthy control group. Participants filled in a questionnaire consisting self-report measures of problem solving, perceived stress, depression and life satisfaction. They were also asked about headache duration, frequency, pain severity, psychiatric treatment and sense of control in one's life. T-tests, chi-square, analysis of variance, logistic regression analysis and Pearson product moment correlation coefficient procedures were used to analyze the data. Tension type headache patients reported having had more frequent headaches than the migraine patients but migraine patients reported having had more intense pain than the tension type headache patients. Instances of psychiatric treatment were more common among tension type headache patients than the migraine and the control group. Compared to the healthy controls, headache patients displayed a deficiency in problem solving, higher levels of perceived stress and depression. Levels of problem solving skills in headache patients were related inversely to depression, perceived stress and the number of negative life events but problem solving skills of headache patients was related positively to life-satisfaction. The findings from this study suggested that cognitive behavioral problem solving therapy or training might be a viable option for reducing levels of stress and depression, and to increase life-satisfaction in patients suffering from primary headache. © 2013 The Scandinavian Psychological Associations.

  15. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  16. The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition

    NASA Astrophysics Data System (ADS)

    Çiğdem Özcan, Zeynep

    2016-04-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students' homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students' mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).

  17. A Case Study in Mathematics--The Cone Problem

    ERIC Educational Resources Information Center

    Damaskos, Nickander J.

    1969-01-01

    A case study in mathematics designed to illustrate how the computer may be instructed to solve complicated problems. The problem is to find the volume of a right truncated cone given the altitude and a half angle or the base radius. (RP)

  18. Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avron, Haim; Ng, Esmond G.; Toledo, Sivan

    2008-03-21

    We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we canmore » drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.« less

  19. Cognitive, emotive, and cognitive-behavioral correlates of suicidal ideation among Chinese adolescents in Hong Kong.

    PubMed

    Kwok, Sylvia Lai Yuk Ching; Shek, Daniel Tan Lei

    2010-03-05

    Utilizing Daniel Goleman's theory of emotional competence, Beck's cognitive theory, and Rudd's cognitive-behavioral theory of suicidality, the relationships between hopelessness (cognitive component), social problem solving (cognitive-behavioral component), emotional competence (emotive component), and adolescent suicidal ideation were examined. Based on the responses of 5,557 Secondary 1 to Secondary 4 students from 42 secondary schools in Hong Kong, results showed that suicidal ideation was positively related to adolescent hopelessness, but negatively related to emotional competence and social problem solving. While standard regression analyses showed that all the above variables were significant predictors of suicidal ideation, hierarchical regression analyses showed that hopelessness was the most important predictor of suicidal ideation, followed by social problem solving and emotional competence. Further regression analyses found that all four subscales of emotional competence, i.e., empathy, social skills, self-management of emotions, and utilization of emotions, were important predictors of male adolescent suicidal ideation. However, the subscale of social skills was not a significant predictor of female adolescent suicidal ideation. Standard regression analysis also revealed that all three subscales of social problem solving, i.e., negative problem orientation, rational problem solving, and impulsiveness/carelessness style, were important predictors of suicidal ideation. Theoretical and practice implications of the findings are discussed.

  20. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  1. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.

  2. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  3. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  4. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  5. Extension of the firefly algorithm and preference rules for solving MINLP problems

    NASA Astrophysics Data System (ADS)

    Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2017-07-01

    An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.

  6. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  7. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  8. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

    DOE PAGES

    Huang, Kuo -Ling; Mehrotra, Sanjay

    2016-11-08

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  9. Self-Regulation in the Midst of Complexity: A Case Study of High School Physics Students Engaged in Ill-Structured Problem Solving

    NASA Astrophysics Data System (ADS)

    Milbourne, Jeffrey David

    The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in the natural sciences, the 'problems' consisted of scientific research projects that students completed under the supervision of a faculty mentor. Zimmerman and Campillo's (2003) self-regulatory framework of problem solving provided a holistic guide to data collection and analysis of this multi-case study, with five individual student cases. The study's results are explored in two manuscripts, each targeting a different audience. The first manuscript, intended for the Science Education Research community, presents a thick, rich description of the students' project experiences, consistent with a qualitative, case study analysis. Findings suggest that intrinsic interest was an important self-regulatory factor that helped motivate students throughout their project work, and that the self-regulatory cycle of forethought, performance monitoring, and self-reflection was an important component of the problem-solving process. Findings also support the application of Zimmerman and Campillo's framework to complex, ill-structured problems, particularly the cyclical nature of the framework. Finally, this study suggests that scientific research projects, with the appropriate support, can be a mechanism for improving students' selfregulatory behavior. The second manuscript, intended for Physics practitioners, combines the findings of the first manuscript with the perspectives of the primary, on-site research mentor, who has over a decade's worth of experience mentoring students doing physics research. His experience suggests that a successful research experience requires certain characteristics, including: a slow, 'on-ramp' to the research experience, space to experience productive failure, and an opportunity to enjoy the work they are doing.

  10. Critical thinking level in geometry based on self-regulated learning

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-03-01

    Critical thinking ability of mathematics students affected by the student’s ability in solving a specific problem. This research aims to determine the level of critical thinking (LCT) students in solving problems of geometry regarding self-regulated learning (SRL) students. This is a qualitative descriptive study with the purpose to analyze the level of Junior High School student’s critical thinking in the Regency of Banyumas. The subject is taken one student from each category SRL (high, medium and low). Data collection is given problem-solving tests to find out the level of critical thinking student, questionnaire, interview and documentation. The result of the research shows that student with SRL high is at the level of critical thinking 2, then a student with SRL medium is at the level of critical thinking 1 and student with SRL low is at the level of critical thinking 0. So students with SRL high, medium or low can solve math problems based on the critical thinking level of each student.

  11. Promoting students’ mathematical problem-solving skills through 7e learning cycle and hypnoteaching model

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Suryadi, D.; Dahlan, J. A.

    2018-01-01

    The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).

  12. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  13. The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving

    NASA Astrophysics Data System (ADS)

    Huda, Nizlel; Sutawidjaja, Akbar; Subanji; Rahardjo, Swasono

    2018-04-01

    Metacognitive activity is very important in mathematical problems solving. Metacognitive activity consists of metacognitive awareness, metacognitive evaluation and metacognitive regulation. This study aimed to reveal the errors of metacognitive evaluation in students’ metacognitive failure in solving mathematical problems. 20 students taken as research subjects were grouped into three groups: the first group was students who experienced one metacognitive failure, the second group was students who experienced two metacognitive failures and the third group was students who experienced three metacognitive failures. One person was taken from each group as the reasearch subject. The research data was collected from worksheets done using think aload then followed by interviewing the research subjects based on the results’ of subject work. The findings in this study were students who experienced metacognitive failure in solving mathematical problems tends to miscalculate metacognitive evaluation in considering the effectiveness and limitations of their thinking and the effectiveness of their chosen strategy of completion.

  14. A study of the performance of patients with frontal lobe lesions in a financial planning task.

    PubMed

    Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D

    1997-10-01

    It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.

  15. A complexity theory model in science education problem solving: random walks for working memory and mental capacity.

    PubMed

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2003-07-01

    The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.

  16. Cultural variation in the social organization of problem solving among African American and European American siblings.

    PubMed

    Budak, Daniel; Chavajay, Pablo

    2012-07-01

    This study examined the social organization of a problem-solving task among 15 African American and 15 European American sibling pairs. The 30 sibling pairs between the ages of 6 and 12 were video recorded constructing a marble track together during a home visit. African American siblings were observed to collaborate more often than European American siblings who were more likely to divide up the labor and direct each other in constructing the marble track. In addition, older European American siblings made more proposals of step plans than older African American siblings. The findings provide insights into the cultural basis of the social organization of problem solving across African American and European American siblings.

  17. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  18. Junior high school students' cognitive process in solving the developed algebraic problems based on information processing taxonomy model

    NASA Astrophysics Data System (ADS)

    Purwoko, Saad, Noor Shah; Tajudin, Nor'ain Mohd

    2017-05-01

    This study aims to: i) develop problem solving questions of Linear Equations System of Two Variables (LESTV) based on levels of IPT Model, ii) explain the level of students' skill of information processing in solving LESTV problems; iii) explain students' skill in information processing in solving LESTV problems; and iv) explain students' cognitive process in solving LESTV problems. This study involves three phases: i) development of LESTV problem questions based on Tessmer Model; ii) quantitative survey method on analyzing students' skill level of information processing; and iii) qualitative case study method on analyzing students' cognitive process. The population of the study was 545 eighth grade students represented by a sample of 170 students of five Junior High Schools in Hilir Barat Zone, Palembang (Indonesia) that were chosen using cluster sampling. Fifteen students among them were drawn as a sample for the interview session with saturated information obtained. The data were collected using the LESTV problem solving test and the interview protocol. The quantitative data were analyzed using descriptive statistics, while the qualitative data were analyzed using the content analysis. The finding of this study indicated that students' cognitive process was just at the step of indentifying external source and doing algorithm in short-term memory fluently. Only 15.29% students could retrieve type A information and 5.88% students could retrieve type B information from long-term memory. The implication was the development problems of LESTV had validated IPT Model in modelling students' assessment by different level of hierarchy.

  19. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  20. Metaphors we think with: the role of metaphor in reasoning.

    PubMed

    Thibodeau, Paul H; Boroditsky, Lera

    2011-02-23

    The way we talk about complex and abstract ideas is suffused with metaphor. In five experiments, we explore how these metaphors influence the way that we reason about complex issues and forage for further information about them. We find that even the subtlest instantiation of a metaphor (via a single word) can have a powerful influence over how people attempt to solve social problems like crime and how they gather information to make "well-informed" decisions. Interestingly, we find that the influence of the metaphorical framing effect is covert: people do not recognize metaphors as influential in their decisions; instead they point to more "substantive" (often numerical) information as the motivation for their problem-solving decision. Metaphors in language appear to instantiate frame-consistent knowledge structures and invite structurally consistent inferences. Far from being mere rhetorical flourishes, metaphors have profound influences on how we conceptualize and act with respect to important societal issues. We find that exposure to even a single metaphor can induce substantial differences in opinion about how to solve social problems: differences that are larger, for example, than pre-existing differences in opinion between Democrats and Republicans.

  1. It's a kind of magic-what self-reports can reveal about the phenomenology of insight problem solving.

    PubMed

    Danek, Amory H; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Öllinger, Michael

    2014-01-01

    Magic tricks usually remain a mystery to the observer. For the sake of science, we offered participants the opportunity to discover the magician's secret method by repeatedly presenting the same trick and asking them to find out how the trick worked. In the context of insightful problem solving, the present work investigated the emotions that participants experience upon solving a magic trick. We assumed that these emotions form the typical "Aha! experience" that accompanies insightful solutions to difficult problems. We aimed to show that Aha! experiences can be triggered by magic tricks and to systematically explore the phenomenology of the Aha! experience by breaking it down into five previously postulated dimensions. 34 video clips of different magic tricks were presented up to three times to 50 participants who had to find out how the trick was accomplished, and to indicate whether they had experienced an Aha! during the solving process. Participants then performed a comprehensive quantitative and qualitative assessment of their Aha! experiences which was repeated after 14 days to control for its reliability. 41% of all suggested solutions were accompanied by an Aha! experience. The quantitative assessment remained stable across time in all five dimensions. Happiness was rated as the most important dimension. This primacy of positive emotions was also reflected in participants' qualitative self-reports which contained more emotional than cognitive aspects. Implementing magic tricks as problem solving task, we could show that strong Aha! experiences can be triggered if a trick is solved. We could at least partially capture the phenomenology of Aha! by identifying one prevailing aspect (positive emotions), a new aspect (release of tension upon gaining insight into a magic trick) and one less important aspect (impasse).

  2. It's a kind of magic—what self-reports can reveal about the phenomenology of insight problem solving

    PubMed Central

    Danek, Amory H.; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Öllinger, Michael

    2014-01-01

    Magic tricks usually remain a mystery to the observer. For the sake of science, we offered participants the opportunity to discover the magician's secret method by repeatedly presenting the same trick and asking them to find out how the trick worked. In the context of insightful problem solving, the present work investigated the emotions that participants experience upon solving a magic trick. We assumed that these emotions form the typical “Aha! experience” that accompanies insightful solutions to difficult problems. We aimed to show that Aha! experiences can be triggered by magic tricks and to systematically explore the phenomenology of the Aha! experience by breaking it down into five previously postulated dimensions. 34 video clips of different magic tricks were presented up to three times to 50 participants who had to find out how the trick was accomplished, and to indicate whether they had experienced an Aha! during the solving process. Participants then performed a comprehensive quantitative and qualitative assessment of their Aha! experiences which was repeated after 14 days to control for its reliability. 41% of all suggested solutions were accompanied by an Aha! experience. The quantitative assessment remained stable across time in all five dimensions. Happiness was rated as the most important dimension. This primacy of positive emotions was also reflected in participants' qualitative self-reports which contained more emotional than cognitive aspects. Implementing magic tricks as problem solving task, we could show that strong Aha! experiences can be triggered if a trick is solved. We could at least partially capture the phenomenology of Aha! by identifying one prevailing aspect (positive emotions), a new aspect (release of tension upon gaining insight into a magic trick) and one less important aspect (impasse). PMID:25538658

  3. Mechanical problem-solving strategies in Alzheimer's disease and semantic dementia.

    PubMed

    Lesourd, Mathieu; Baumard, Josselin; Jarry, Christophe; Etcharry-Bouyx, Frédérique; Belliard, Serge; Moreaud, Olivier; Croisile, Bernard; Chauviré, Valérie; Granjon, Marine; Le Gall, Didier; Osiurak, François

    2016-07-01

    The goal of this study was to explore whether the tool-use disorders observed in Alzheimer's disease (AD) and semantic dementia (SD) are of the same nature as those observed in left brain-damaged (LBD) patients. Recent evidence indicates that LBD patients with apraxia of tool use encounter difficulties in solving mechanical problems, characterized by the absence of specific strategies. This pattern may show the presence of impaired mechanical knowledge, critical for both familiar and novel tool use. So, we explored the strategies followed by AD and SD patients in mechanical problem-solving tasks in order to determine whether mechanical knowledge is also impaired in these patients. We used a mechanical problem-solving task in both choice (i.e., several tools were proposed) and no-choice (i.e., only 1 tool was proposed) conditions. We analyzed quantitative data and strategy profiles. AD patients but not SD patients met difficulties in solving mechanical problem-solving tasks. However, the key finding is that AD patients, despite their difficulties, showed strategy profiles that are similar to that of SD patients or controls. Moreover, AD patients exhibited a strategy profile distinct from the one previously observed in LBD patients. Those observations lead us to consider that difficulties met by AD patients to solve mechanical problems or even to use familiar tools may not be caused by mechanical knowledge impairment per se. In broad terms, what we call apraxia of tool use in AD is certainly not the same as apraxia of tool use observed in LBD patients. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Role of multiple representations in physics problem solving

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role in the initial stages of conceptual analysis and planning of the problem solution. Findings suggest that students who draw productive diagrams are more successful problem solvers even if their approach is primarily mathematical. Furthermore, students provided with a diagram of the physical situation presented in a problem sometimes exhibited deteriorated performance. Think-aloud interviews suggest that this deteriorated performance is in part due to reduced conceptual planning time which caused students to jump to the implementation stage without fully understanding the problem and planning problem solution. Another study investigated two interventions aimed at improving introductory students' representational consistency between mathematical and graphical representations and revealed that excessive scaffolding can have a detrimental effect. The detrimental effect was partly due to increased cognitive load brought on by the additional steps and instructions. Moreover, students who exhibited representational consistency also showed improved problem solving performance. The final investigation is centered on a problem solving task designed to provide information about the pedagogical content knowledge (PCK) of graduate student teaching assistants (TAs). In particular, the TAs identified what they considered to be the most common difficulties of introductory physics students related to graphical representations of kinematics concepts as they occur in the Test of Understanding Graphs in Kinematics (TUG-K). As an extension, the Force Concept Inventory (FCI) was also used to assess this aspect of PCK related to knowledge of student difficulties of both physics instructors and TAs. We find that teaching an independent course and recent teaching experience do not correlate with improved PCK. In addition, the performance of American TAs, Chinese TAs and other foreign TAs in identifying common student difficulties both in the context of the TUG-K and in the context of the FCI is similar. Moreover, there were many common difficulties of introductory physics students that were not identified by many instructors and TAs.

  5. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    PubMed

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p < .001) and higher levels of social problem solving (p < .01). Higher chronic anxiety was related to lower social problem solving (p < .001). A test of mediation showed that chronic anxiety mediates the relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less involvement in health-comprising behaviors and increased academic engagement.

  6. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    NASA Astrophysics Data System (ADS)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  7. First Responder Problem Solving and Decision Making in Today’s Asymmetrical Environment

    DTIC Science & Technology

    2008-03-01

    Scenario: Earthquake 4 It is January 2, 2008, and you are working a day-tour in Ladder Company 999 located in Queens, New York. • Ladder 999’s...able to perform both. 121 Scenario: Earthquake 4 You find out that at approximately 8:58 am, the New York City area...RESPONDER PROBLEM SOLVING AND DECISION MAKING IN TODAY’S ASYMMETRICAL ENVIRONMENT Neil R. Hintze Battalion Chief, New York City Fire Department B.A

  8. Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue.

    PubMed

    Querstret, Dawn; Cropley, Mark

    2012-07-01

    This study examined the association among three conceptualizations of work-related rumination (affective rumination, problem-solving pondering, and detachment) with sleep quality and work-related fatigue. It was hypothesized that affective rumination and poor sleep quality would be associated with increased fatigue and that problem-solving pondering and detachment would be associated with decreased fatigue. The mediating effect of sleep quality on the relationship between work-related rumination and fatigue was also tested. An online questionnaire was completed by a heterogeneous sample of 719 adult workers in diverse occupations. The following variables were entered as predictors in a regression model: affective rumination, problem-solving pondering, detachment, and sleep quality. The dependent variables were chronic work-related fatigue (CF) and acute work-related fatigue (AF). Affective rumination was the strongest predictor of increased CF and AF. Problem-solving pondering was a significant predictor of decreased CF and AF. Poor sleep quality was predictive of increased CF and AF. Detachment was significantly negatively predictive for AF. Sleep quality partially mediated the relationship between affective rumination and fatigue and between problem-solving pondering and fatigue. Work-related affective rumination appears more detrimental to an individual's ability to recover from work than problem-solving pondering. In the context of identifying mechanisms by which demands at work are translated into ill-health, this appears to be a key finding and suggests that it is the type of work-related rumination, not rumination per se, that is important.

  9. The impact of training problem-solving skills on self-esteem and behavioral adjustment in teenage girls who have irresponsible parents or no parents.

    PubMed

    Shahgholy Ghahfarokhi, F; Moradi, N; Alborzkouh, P; Radmehr, S; Zainali, M

    2015-01-01

    Proper psychological interventions are of great importance because they help enhancing psychological and public health in adolescents with irresponsible parents or no parents. The current research aimed to examine the impact of training problem-solving experiment on self-esteem and behavioral adjustment in teenage girls with irresponsible parents or no parents. Methodology: The approach of the present research was a semi-test via a post-test-pre-test model and a check team. Hence, in Tehran, 40 girls with irresponsible parents or no parents were chosen by using the Convenience modeling, and they were classified into 2 teams: control and experiment. Both groups were pre-tested by using a demography questionnaire, Rosenberg's self-esteem scale, and a behavioral adjustment questionnaire. Afterwards, both groups were post-tested, and the obtained data were examined by using inferential and descriptive methods through SPSS 21. Findings: Findings indicated that the training problem-solving skills significantly increased the self-esteem and the behavioral adjustment in teenage girls with irresponsible parents or no parents (P < 0/ 001). Conclusion: The conclusion of this research was that training problem-solving methods greatly helps endangered people such as teenage girls with irresponsible parents or no parents, because these methods are highly efficient especially when they are performed in groups, as they are cheap and accepted by different people.

  10. The impact of training problem-solving skills on self-esteem and behavioral adjustment in teenage girls who have irresponsible parents or no parents

    PubMed Central

    Shahgholy Ghahfarokhi, F; Moradi, N; Alborzkouh, P; Radmehr, S; Zainali, M

    2015-01-01

    Proper psychological interventions are of great importance because they help enhancing psychological and public health in adolescents with irresponsible parents or no parents. The current research aimed to examine the impact of training problem-solving experiment on self-esteem and behavioral adjustment in teenage girls with irresponsible parents or no parents. Methodology: The approach of the present research was a semi-test via a post-test-pre-test model and a check team. Hence, in Tehran, 40 girls with irresponsible parents or no parents were chosen by using the Convenience modeling, and they were classified into 2 teams: control and experiment. Both groups were pre-tested by using a demography questionnaire, Rosenberg’s self-esteem scale, and a behavioral adjustment questionnaire. Afterwards, both groups were post-tested, and the obtained data were examined by using inferential and descriptive methods through SPSS 21. Findings: Findings indicated that the training problem-solving skills significantly increased the self-esteem and the behavioral adjustment in teenage girls with irresponsible parents or no parents (P < 0/ 001). Conclusion: The conclusion of this research was that training problem-solving methods greatly helps endangered people such as teenage girls with irresponsible parents or no parents, because these methods are highly efficient especially when they are performed in groups, as they are cheap and accepted by different people. PMID:28316718

  11. Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem

    NASA Astrophysics Data System (ADS)

    Skakov, E. S.; Malysh, V. N.

    2018-03-01

    The aim of the work is to create an evolutionary method for optimizing the values of the control parameters of metaheuristics of solving the NP-hard facility location problem. A system analysis of the tuning process of optimization algorithms parameters is carried out. The problem of finding the parameters of a metaheuristic algorithm is formulated as a meta-optimization problem. Evolutionary metaheuristic has been chosen to perform the task of meta-optimization. Thus, the approach proposed in this work can be called “meta-metaheuristic”. Computational experiment proving the effectiveness of the procedure of tuning the control parameters of metaheuristics has been performed.

  12. A Conceptual Model for Solving Percent Problems.

    ERIC Educational Resources Information Center

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  13. Students’ metacognitive activities in solving the combinatorics problem: the experience of students with holist-serialist cognitive style

    NASA Astrophysics Data System (ADS)

    Trisna, B. N.; Budayasa, I. K.; Siswono, T. Y. E.

    2018-01-01

    Metacognition is related to improving student learning outcomes. This study describes students’ metacognitive activities in solving the combinatorics problem. Two undergraduate students of mathematics education from STKIP PGRI Banjarmasin were selected as the participants of the study, one person has a holist cognitive style and the other a serialist. Data were collected by task-based interviews where the task contains a combinatorial problem. The interviews were conducted twice using equivalent problem at two different times. The study found that the participants showed metacognitive awareness (A), metacognitive evaluation (E), and metacognitive regulation (R) that operated as pathways from one function to another. Both, holist and serialist, have metacognitive activities in different pathway. The path of metacognitive activities of the holist is AERCAE-AAEER-ACRECCECC-AREERCE with the AERAE-AER-ARE-ARERE pattern, while the path of metacognitive activities of the serialist is AERCA-AAER-ACRERCERC-AREEEE with the AERA-AER-ARERER-ARE pattern. As an implication of these findings, teachers/lecturers need to pay attention to metacognitive awareness when they begin a stage in mathematical problem solving. Teachers/lecturers need to emphasize to students that in mathematical problem solving, processes and results are equally important.

  14. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  15. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.

    2016-01-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230

  16. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C

    2015-03-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.

  17. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  18. The efficacy of problem-solving treatments after deliberate self-harm: meta-analysis of randomized controlled trials with respect to depression, hopelessness and improvement in problems.

    PubMed

    Townsend, E; Hawton, K; Altman, D G; Arensman, E; Gunnell, D; Hazell, P; House, A; Van Heeringen, K

    2001-08-01

    Brief problem-solving therapy is regarded as a pragmatic treatment for deliberate self-harm (DSH) patients. A recent meta-analysis of randomized controlled trials (RCTs) evaluating this approach indicated a trend towards reduced repetition of DSH but the pooled odds ratio was not statistically significant. We have now examined other important outcomes using this procedure, namely depression, hopelessness and improvement in problems. Six trials in which problem-solving therapy was compared with control treatment were identified from an extensive literature review of RCTs of treatments for DSH patients. Data concerning depression, hopelessness and improvement in problems were extracted. Where relevant statistical data (e.g. standard deviations) were missing these were imputed using various statistical methods. Results were pooled using meta-analytical procedures. At follow-up, patients who were offered problem-solving therapy had significantly greater improvement in scores for depression (standardized mean difference = -0.36; 95% CI -0.61 to -0.11) and hopelessness (weighted mean difference =-3.2; 95% CI -4.0 to -2.41), and significantly more reported improvement in their problems (odds ratio = 2.31; 95% CI 1.29 to 4.13), than patients who were in the control treatment groups. Problem-solving therapy for DSH patients appears to produce better results than control treatment with regard to improvement in depression, hopelessness and problems. It is desirable that this finding is confirmed in a large trial, which will also allow adequate testing of the impact of this treatment on repetition of DSH.

  19. Working memory, worry, and algebraic ability.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-05-01

    Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Use of multilevel modeling for determining optimal parameters of heat supply systems

    NASA Astrophysics Data System (ADS)

    Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.

    2017-07-01

    The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in St. Petersburg, the city of Bratsk, and the Magistral'nyi settlement.

  1. Demonstration of quantum advantage in machine learning

    NASA Astrophysics Data System (ADS)

    Ristè, Diego; da Silva, Marcus P.; Ryan, Colm A.; Cross, Andrew W.; Córcoles, Antonio D.; Smolin, John A.; Gambetta, Jay M.; Chow, Jerry M.; Johnson, Blake R.

    2017-04-01

    The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, limiting the obtained advantage. Here we solve an oracle-based problem, known as learning parity with noise, on a five-qubit superconducting processor. Executing classical and quantum algorithms using the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a significant quantum advantage already emerges in existing noisy systems.

  2. Family problem solving interactions and 6-month symptomatic and functional outcomes in youth at ultra-high risk for psychosis and with recent onset psychotic symptoms: a longitudinal study.

    PubMed

    O'Brien, Mary P; Zinberg, Jamie L; Ho, Lorena; Rudd, Alexandra; Kopelowicz, Alex; Daley, Melita; Bearden, Carrie E; Cannon, Tyrone D

    2009-02-01

    This study prospectively examined the relationship between social problem solving behavior exhibited by youths at ultra-high risk for psychosis (UHR) and with recent onset psychotic symptoms and their parents during problem solving discussions, and youths' symptoms and social functioning six months later. Twenty-seven adolescents were administered the Structured Interview for Prodromal Syndromes and the Strauss-Carpenter Social Contact Scale at baseline and follow-up assessment. Primary caregivers participated with youth in a ten minute discussion that was videotaped, transcribed, and coded for how skillful participants were in defining problems, generating solutions, and reaching resolution, as well as how constructive and/or conflictual they were during the interaction. Controlling for social functioning at baseline, adolescents' skillful problem solving and constructive communication, and parents' constructive communication, were associated with youths' enhanced social functioning six months later. Controlling for symptom severity at baseline, we found that there was a positive association between adolescents' conflictual communications at baseline and an increase in positive symptoms six months later. Taken together, findings from this study provide support for further research into the possibility that specific family interventions, such as problem solving and communication skills training, may improve the functional prognosis of at-risk youth, especially in terms of their social functioning.

  3. Family problem solving interactions and 6-month symptomatic and functional outcomes in youth at ultra-high risk for psychosis and with recent onset psychotic symptoms: A longitudinal study

    PubMed Central

    O'Brien, Mary P.; Zinberg, Jamie L.; Ho, Lorena; Rudd, Alexandra; Kopelowicz, Alex; Daley, Melita; Bearden, Carrie E.; Cannon, Tyrone D.

    2009-01-01

    This study prospectively examined the relationship between social problem solving behavior exhibited by youths at ultra-high risk for psychosis (UHR) and with recent onset psychotic symptoms and their parents during problem solving discussions, and youths' symptoms and social functioning six months later. Twenty-seven adolescents were administered the Structured Interview for Prodromal Syndromes and the Strauss-Carpenter Social Contact Scale at baseline and follow-up assessment. Primary caregivers participated with youth in a ten minute discussion that was videotaped, transcribed, and coded for how skillful participants were in defining problems, generating solutions, and reaching resolution, as well as how constructive and/or conflictual they were during the interaction. Controlling for social functioning at baseline, adolescents' skillful problem solving and constructive communication, and parents' constructive communication, were associated with youths' enhanced social functioning six months later. Controlling for symptom severity at baseline, we found that there was a positive association between adolescents' conflictual communications at baseline and an increase in positive symptoms six months later. Taken together, findings from this study provide support for further research into the possibility that specificfamily interventions, such as problem solving and communication skills training, may improve the functional prognosis of at-risk youth, especially in terms of their social functioning. PMID:18996681

  4. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciążek, Tomasz; Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa; Oszmaniec, Michał

    2013-09-15

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure.

  5. Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling

    NASA Astrophysics Data System (ADS)

    Meika, I.; Suryadi, D.; Darhim

    2018-01-01

    This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.

  6. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  7. Problem solving of student with visual impairment related to mathematical literacy problem

    NASA Astrophysics Data System (ADS)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  8. Evaluating the Suitability of Mathematical Thinking Problems for Senior High-School Students by Including Mathematical Sense Making and Global Planning

    ERIC Educational Resources Information Center

    van Velzen, Joke H.

    2016-01-01

    The mathematics curriculum often provides for relatively few mathematical thinking problems or non-routine problems that focus on a deepening of understanding mathematical concepts and the problem-solving process. To develop such problems, methods are required to evaluate their suitability. The purpose of this preliminary study was to find such an…

  9. Problems and solutions for patients with fibromyalgia: Building new helping relationships.

    PubMed

    Montesó-Curto, Pilar; García-Martinez, Montserrat; Romaguera, Sara; Mateu, María Luisa; Cubí-Guillén, María Teresa; Sarrió-Colas, Lidia; Llàdser, Anna Núria; Bradley, Stephen; Panisello-Chavarria, María Luisa

    2018-02-01

    The aim of this study was to identify the main biological, psychological and sociological problems and potential solutions for patients diagnosed with fibromyalgia by use of Group Problem-Solving Therapy. Group Problem-Solving Therapy is a technique for identifying and solving problems, increasing assertiveness, self-esteem and eliminating negative thoughts. Qualitative phenomenological interpretive design: Group Problem-Solving Therapy sessions conducted with patients suffering fibromyalgia were studied; participants recruited via the Rheumatology Department at a general hospital and associations in Catalonia, Spain with sessions conducted in nearby university setting. The study included 44 people diagnosed with fibromyalgia (43 female, 1 male) from 6 Group Problem-Solving Therapy sessions. Data collected from March-June 2013. A total of 24 sessions were audio recorded, all with prior informed consent. Data were transcribed and then analysed in accordance with established methods of inductive thematic analysis, via a process of reduction to manage and classify data. Five themes were identified: (1) Current problems are often related to historical trauma; (2) There are no "one size fits all" solutions; (3) Fibromyalgia is life-changing; (4) Fibromyalgia is widely misunderstood; (5) Statistically Significant impacts on physical, psychological and social are described. The majority of patients' problems were associated with their previous history and the onset of fibromyalgia; which may be related to trauma in adolescence, early adulthood or later. The solutions provided during the groups appeared to be accepted by the participants. These findings can improve the self-management of fibromyalgia patients by helping to enhance adaptive behaviours and incorporating the female gender approach. © 2017 John Wiley & Sons Ltd.

  10. Traveling Salesman Problem: A Foveating Pyramid Model

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt; Stefanov, Emil; Saalweachter, John; Li, Zheng; Haxhimusa, Yll; Kropatsch, Walter G.

    2006-01-01

    We tested human performance on the Euclidean Traveling Salesman Problem using problems with 6-50 cities. Results confirmed our earlier findings that: (a) the time of solving a problem is proportional to the number of cities, and (b) the solution error grows very slowly with the number of cities. We formulated a new version of a pyramid model. The…

  11. Use of a Colony of Cooperating Agents and MAPLE To Solve the Traveling Salesman Problem.

    ERIC Educational Resources Information Center

    Guerrieri, Bruno

    This paper reviews an approach for finding optimal solutions to the traveling salesman problem, a well-known problem in combinational optimization, and describes implementing the approach using the MAPLE computer algebra system. The method employed in this approach to the problem is similar to the way ant colonies manage to establish shortest…

  12. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  13. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  14. Novel approaches for road congestion mitigation.

    DOT National Transportation Integrated Search

    2012-07-02

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  15. Novel approaches for road congestion minimization.

    DOT National Transportation Integrated Search

    2012-07-01

    Transportation planning is usually aiming to solve two problems: the traffic assignment and the toll pricing problems. The latter one utilizes information from the first one, in order to find the optimal set of tolls that is the set of tolls that lea...

  16. Problem Solvers' Conceptions about Osmosis.

    ERIC Educational Resources Information Center

    Zuckerman, June T.

    1994-01-01

    Discusses the scheme and findings of a study designed to identify the conceptual knowledge used by high school students to solve a significant problem related to osmosis. Useful tips are provided to teachers to aid students in developing constructs that maximize understanding. (ZWH)

  17. Problem solving ability in children with intellectual disability as measured by the Raven's colored progressive matrices.

    PubMed

    Goharpey, Nahal; Crewther, David P; Crewther, Sheila G

    2013-12-01

    This study investigated the developmental trajectory of problem solving ability in children with intellectual disability (ID) of different etiologies (Down Syndrome, Idiopathic ID or low functioning Autism) as measured on the Raven's Colored Progressive Matrices test (RCPM). Children with typical development (TD) and children with ID were matched on total correct performance (i.e., non-verbal mental age) on the RCPM. RCPM total correct performance and the sophistication of error types were found to be associated with receptive vocabulary in all participants, suggesting that verbal ability plays a role in more sophisticated problem solving tasks. Children with ID made similar errors on the RCPM as younger children with TD as well as more positional error types. This result suggests that children with ID who are deficient in their cognitive processing resort to developmentally immature problem solving strategies when unable to determine the correct answer. Overall, the findings support the use of RCPM as a valid means of matching intellectual capacity of children with TD and ID. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Do New Caledonian crows solve physical problems through causal reasoning?

    PubMed Central

    Taylor, A.H.; Hunt, G.R.; Medina, F.S.; Gray, R.D.

    2008-01-01

    The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow's exceptional tool skills. PMID:18796393

  19. Gas Permeation Computations with Mathematica

    ERIC Educational Resources Information Center

    Binous, Housam

    2006-01-01

    We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…

  20. Undergraduate Performance in Solving Ill-Defined Biochemistry Problems

    PubMed Central

    Sensibaugh, Cheryl A.; Madrid, Nathaniel J.; Choi, Hye-Jeong; Anderson, William L.; Osgood, Marcy P.

    2017-01-01

    With growing interest in promoting skills related to the scientific process, we studied performance in solving ill-defined problems demonstrated by graduating biochemistry majors at a public, minority-serving university. As adoption of techniques for facilitating the attainment of higher-order learning objectives broadens, so too does the need to appropriately measure and understand student performance. We extended previous validation of the Individual Problem Solving Assessment (IPSA) and administered multiple versions of the IPSA across two semesters of biochemistry courses. A final version was taken by majors just before program exit, and student responses on that version were analyzed both quantitatively and qualitatively. This mixed-methods study quantifies student performance in scientific problem solving, while probing the qualitative nature of unsatisfactory solutions. Of the five domains measured by the IPSA, we found that average graduates were only successful in two areas: evaluating given experimental data to state results and reflecting on performance after the solution to the problem was provided. The primary difficulties in each domain were quite different. The most widespread challenge for students was to design an investigation that rationally aligned with a given hypothesis. We also extend the findings into pedagogical recommendations. PMID:29180350

  1. Breast MRI: patterns of utilization and impact on patient management in the community hospital setting.

    PubMed

    Lobrano, Mary Beth; Stolier, Alan; L'Hoste, Robert; Luttrell, Carol Anne

    2012-01-01

    The objective of our study was to investigate the indications for breast magnetic resonance imaging, or MRI, in our community hospital, determine how many probably benign MRI findings were malignant at follow-up, determine how many cancers were identified by MRI in screening patients, and evaluate the utility of MRI for surgical planning and problem-solving. Five hundred twenty-eight contrast-enhanced MRI's of the breast in 434 patients were retrospectively reviewed. MRI images/reports were compared to surgical pathology reports and the results of follow-up studies. Screening was the most common indication for breast MRI in our patient population. Five percent of findings termed "probably benign" on MRI proved to be malignant at follow-up. Eight malignancies were detected in six of 202 screened patients. Ten malignancies were diagnosed in 66 patients referred to MRI for problem-solving. In two of 74 patients with known breast cancer, an unsuspected ipsilateral cancer was identified on MRI. MRI proved useful in the community hospital setting for screening high-risk patients and problem-solving. The rate of malignancy in probably benign MRI findings was higher than the corresponding rate in mammography. The detection of additional ipsilateral and contralateral cancers in pre-operative patients with known breast cancer was not as high as expected, based on prior studies.

  2. The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children.

    PubMed

    Träff, Ulf

    2013-10-01

    This study examined the relative contributions of general cognitive abilities and number abilities to word problem solving, calculation, and arithmetic fact retrieval in a sample of 134 children aged 10 to 13 years. The following tasks were administered: listening span, visual matrix span, verbal fluency, color naming, Raven's Progressive Matrices, enumeration, number line estimation, and digit comparison. Hierarchical multiple regressions demonstrated that number abilities provided an independent contribution to fact retrieval and word problem solving. General cognitive abilities contributed to problem solving and calculation. All three number tasks accounted for a similar amount of variance in fact retrieval, whereas only the number line estimation task contributed unique variance in word problem solving. Verbal fluency and Raven's matrices accounted for an equal amount of variance in problem solving and calculation. The current findings demonstrate, in accordance with Fuchs and colleagues' developmental model of mathematical learning (Developmental Psychology, 2010, Vol. 46, pp. 1731-1746), that both number abilities and general cognitive abilities underlie 10- to 13-year-olds' proficiency in problem solving, whereas only number abilities underlie arithmetic fact retrieval. Thus, the amount and type of cognitive contribution to arithmetic proficiency varies between the different aspects of arithmetic. Furthermore, how closely linked a specific aspect of arithmetic is to the whole number representation systems is not the only factor determining the amount and type of cognitive contribution in 10- to 13-year-olds. In addition, the mathematical complexity of the task appears to influence the amount and type of cognitive support. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cross-Field Differences in Creative Problem-Solving Skills: A Comparison of Health, Biological, and Social Sciences

    PubMed Central

    Mumford, Michael D.; Antes, Alison L.; Caughron, Jared J.; Connelly, Shane; Beeler, Cheryl

    2010-01-01

    In the present study, 258 doctoral students working in the health, biological, and social sciences were asked to solve a series of field-relevant problems calling for creative thought. Proposed solutions to these problems were scored with respect to critical creative thinking skills such as problem definition, conceptual combination, and idea generation. Results indicated that health, biological, and social scientists differed with respect to their skill in executing various operations, or processes, involved in creative thought. Interestingly, no differences were observed as a function of the students’ level of experience. The implications of these findings for understanding cross-field, and cross-experience level, differences in creative thought are discussed. PMID:20936085

  4. Characterizing L1-norm best-fit subspaces

    NASA Astrophysics Data System (ADS)

    Brooks, J. Paul; Dulá, José H.

    2017-05-01

    Fitting affine objects to data is the basis of many tools and methodologies in statistics, machine learning, and signal processing. The L1 norm is often employed to produce subspaces exhibiting a robustness to outliers and faulty observations. The L1-norm best-fit subspace problem is directly formulated as a nonlinear, nonconvex, and nondifferentiable optimization problem. The case when the subspace is a hyperplane can be solved to global optimality efficiently by solving a series of linear programs. The problem of finding the best-fit line has recently been shown to be NP-hard. We present necessary conditions for optimality for the best-fit subspace problem, and use them to characterize properties of optimal solutions.

  5. Visual thinking networking promotes long-term meaningful learning and achievement for 9th grade earth science students

    NASA Astrophysics Data System (ADS)

    Longo, Palma Joni

    2001-12-01

    An experimental and interview-based design was used to test the efficacy of visual thinking networking (VTN), a new generation of metacognitive learning strategies. Students constructed network diagrams using semantic and figural elements to represent knowledge relationships. The findings indicated the importance of using color in VTN strategies. The use of color promoted the encoding and reconstruction of earth science knowledge in memory and enhanced higher order thinking skills of problem solving. Fifty-six ninth grade earth science students (13--15 years of age) in a suburban school district outside New York City were randomly assigned to three classes with the same instructor. Five major positive findings emerged in the areas of problem solving achievement, organization of knowledge in memory, problem solving strategy dimensionality, conceptual understanding, and gender differences. A multi-covariate analysis was conducted on the pre-post gain scores of the AGI/NSTA Earth Science Examination (Part 1). Students who used the color VTN strategies had a significantly higher mean gain score on the problem solving criterion test items than students who used the black/white VTN (p = .003) and the writing strategies for learning science (p < .001). During a think-out-loud problem solving interview, students who used the color VTN strategies: (1) significantly recalled more earth science knowledge than students who used the black/white VTN (p = .021) and the writing strategies (p < .001); (2) significantly recalled more interrelated earth science knowledge than students who used black/white VTN strategies (p = .048) and the writing strategy (p < .001); (3) significantly used a greater number of action verbs than students who used the writing strategy (p = .033). Students with low abstract reasoning aptitude who used the color VTNs had a significantly higher mean number of conceptually accurate propositions than students who used the black/white VTN (p = .018) and the writing strategies (p = .010). Gender influenced the choice of VTN strategy. Females used significantly more color VTN strategies, while males used predominately black/white VTN strategies (p = .01). A neurocognitive model, the encoding activation theory of the anterior cingulate (ENACT-AC), is proposed as an explanation for these findings.

  6. Manage Your Life Online (MYLO): a pilot trial of a conversational computer-based intervention for problem solving in a student sample.

    PubMed

    Gaffney, Hannah; Mansell, Warren; Edwards, Rachel; Wright, Jason

    2014-11-01

    Computerized self-help that has an interactive, conversational format holds several advantages, such as flexibility across presenting problems and ease of use. We designed a new program called MYLO that utilizes the principles of METHOD of Levels (MOL) therapy--based upon Perceptual Control Theory (PCT). We tested the efficacy of MYLO, tested whether the psychological change mechanisms described by PCT mediated its efficacy, and evaluated effects of client expectancy. Forty-eight student participants were randomly assigned to MYLO or a comparison program ELIZA. Participants discussed a problem they were currently experiencing with their assigned program and completed measures of distress, resolution and expectancy preintervention, postintervention and at 2-week follow-up. MYLO and ELIZA were associated with reductions in distress, depression, anxiety and stress. MYLO was considered more helpful and led to greater problem resolution. The psychological change processes predicted higher ratings of MYLO's helpfulness and reductions in distress. Positive expectancies towards computer-based problem solving correlated with MYLO's perceived helpfulness and greater problem resolution, and this was partly mediated by the psychological change processes identified. The findings provide provisional support for the acceptability of the MYLO program in a non-clinical sample although its efficacy as an innovative computer-based aid to problem solving remains unclear. Nevertheless, the findings provide tentative early support for the mechanisms of psychological change identified within PCT and highlight the importance of client expectations on predicting engagement in computer-based self-help.

  7. Exploring the Use of Electroencephalography to Gather Objective Evidence of Cognitive Processing During Problem Solving

    NASA Astrophysics Data System (ADS)

    Delahunty, Thomas; Seery, Niall; Lynch, Raymond

    2018-04-01

    Currently, there is significant interest being directed towards the development of STEM education to meet economic and societal demands. While economic concerns can be a powerful driving force in advancing the STEM agenda, care must be taken that such economic imperative does not promote research approaches that overemphasize pragmatic application at the expense of augmenting the fundamental knowledge base of the discipline. This can be seen in the predominance of studies investigating problem solving approaches and procedures, while neglecting representational and conceptual processes, within the literature. Complementing concerns about STEM graduates' problem solving capabilities, raised within the pertinent literature, this paper discusses a novel methodological approach aimed at investigating the cognitive elements of problem conceptualization. The intention is to demonstrate a novel method of data collection that overcomes some of the limitations cited in classic problem solving research while balancing a search for fundamental understanding with the possibility of application. The methodology described in this study employs an electroencephalographic (EEG) headset, as part of a mixed methods approach, to gather objective evidence of students' cognitive processing during problem solving epochs. The method described provides rich evidence of students' cognitive representations of problems during episodes of applied reasoning. The reliability and validity of the EEG method is supported by the stability of the findings across the triangulated data sources. The paper presents a novel method in the context of research within STEM education and demonstrates an effective procedure for gathering rich evidence of cognitive processing during the early stages of problem conceptualization.

  8. An Examination of High School Students' Online Engagement in Mathematics Problems

    ERIC Educational Resources Information Center

    Lim, Woong; Son, Ji-Won; Gregson, Susan; Kim, Jihye

    2018-01-01

    This article examines high school students' engagement in a set of trigonometry problems. Students completed this task independently in an online environment with access to Internet search engines, online textbooks, and YouTube videos. The findings imply that students have the resourcefulness to solve procedure-based mathematics problems in an…

  9. Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne

    2010-01-01

    Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…

  10. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  11. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  12. Using Reflection with Peers to Help Students Learn Effective Problem Solving Strategies

    NASA Astrophysics Data System (ADS)

    Mason, Andrew; Singh, Chandralekha

    2010-10-01

    We describe a study in which introductory physics students engage in reflection with peers about problem solving. The recitations for an introductory physics course with 200 students were broken into the "Peer Reflection" (PR) group and the traditional group. Each week in recitation, students in the PR group reflected in small teams on selected problems from the homework. The graduate and undergraduate teaching assistants (TAs) in the PR group recitations provided guidance and coaching to help students learn effective problem solving heuristics. In the recitations for the traditional group, students had the opportunity to ask the graduate TA questions about the homework before they took a weekly quiz. On the final exam with only multiple-choice questions, the PR group drew diagrams on more problems than the traditional group, even when there was no external reward for doing so. Since there was no partial credit for drawing the diagrams on the scratch books, students did not draw diagrams simply to get credit for the effort shown and must value the use of diagrams for solving problems if they drew them. We also find that, regardless of whether the students belonged to the traditional or PR groups, those who drew more diagrams for the multiple-choice questions outperformed those who did not draw them.

  13. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  14. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound

    NASA Astrophysics Data System (ADS)

    Saad, Shakila; Wan Jaafar, Wan Nurhadani; Jamil, Siti Jasmida

    2013-04-01

    The standard Traveling Salesman Problem (TSP) is the classical Traveling Salesman Problem (TSP) while Multiple Traveling Salesman Problem (MTSP) is an extension of TSP when more than one salesman is involved. The objective of MTSP is to find the least costly route that the traveling salesman problem can take if he wishes to visit exactly once each of a list of n cities and then return back to the home city. There are a few methods that can be used to solve MTSP. The objective of this research is to implement an exact method called Branch-and-Bound (B&B) algorithm. Briefly, the idea of B&B algorithm is to start with the associated Assignment Problem (AP). A branching strategy will be applied to the TSP and MTSP which is Breadth-first-Search (BFS). 11 nodes of cities are implemented for both problem and the solutions to the problem are presented.

  15. Gender influences on preschool children's social problem-solving strategies.

    PubMed

    Walker, Sue; Irving, Kym; Berthelsen, Donna

    2002-06-01

    The authors investigated gender influences on the nature and competency of preschool children's social problem-solving strategies. Preschool-age children (N = 179; 91 boys, 88 girls) responded to hypothetical social situations designed to assess their social problem-solving skills in the areas of provocation, peer group entry, and sharing or taking turns. Results indicated that, overall, girls' responses were more competent (i.e., reflective of successful functioning with peers) than those of boys, and girls' strategies were less likely to involve retaliation or verbal or physical aggression. The competency of the children's responses also varied with the gender of the target child. Findings are discussed in terms of the influence of gender-related social experiences on the types of strategies and behaviors that may be viewed as competent for boys and girls of preschool age.

  16. An Approach to Management of Critical Indoor Air Problems in School Buildings.

    ERIC Educational Resources Information Center

    Haverinen, Ulla; Husman, Tuula; Toivola, Mika; Suonketo, Jommi; Pentti, Matti; Lindberg, Ralf; Leinonen, Jouni; Hyvarinen, Anne; Meklin, Teija; Nevalainen, Aino

    1999-01-01

    This study was conducted in a school center in Finland that had been the focus of intense public concern over 2 years because of suspected mold and health problems. Because several attempts to find solutions to the problem within the community were not satisfactory, outside specialists were needed for support in solving the problem. The study…

  17. Primer on clinical acid-base problem solving.

    PubMed

    Whittier, William L; Rutecki, Gregory W

    2004-03-01

    Acid-base problem solving has been an integral part of medical practice in recent generations. Diseases discovered in the last 30-plus years, for example, Bartter syndrome and Gitelman syndrome, D-lactic acidosis, and bulimia nervosa, can be diagnosed according to characteristic acid-base findings. Accuracy in acid-base problem solving is a direct result of a reproducible, systematic approach to arterial pH, partial pressure of carbon dioxide, bicarbonate concentration, and electrolytes. The 'Rules of Five' is one tool that enables clinicians to determine the cause of simple and complex disorders, even triple acid-base disturbances, with consistency. In addition, other electrolyte abnormalities that accompany acid-base disorders, such as hypokalemia, can be incorporated into algorithms that complement the Rules and contribute to efficient problem solving in a wide variety of diseases. Recently urine electrolytes have also assisted clinicians in further characterizing select disturbances. Acid-base patterns, in many ways, can serve as a 'common diagnostic pathway' shared by all subspecialties in medicine. From infectious disease (eg, lactic acidemia with highly active antiviral therapy therapy) through endocrinology (eg, Conn's syndrome, high urine chloride alkalemia) to the interface between primary care and psychiatry (eg, bulimia nervosa with multiple potential acid-base disturbances), acid-base problem solving is the key to unlocking otherwise unrelated diagnoses. Inasmuch as the Rules are clinical tools, they are applied throughout this monograph to diverse pathologic conditions typical in contemporary practice.

  18. Evaluation of the Effectiveness of a Problem-Solving Intervention Addressing Barriers to Cardiovascular Disease Prevention Behaviors in 3 Underserved Populations: Colorado, North Carolina, West Virginia, 2009

    PubMed Central

    Bryant, Lucinda L.; Leary, Janie M.; Vu, Maihan B.; Hill-Briggs, Felicia; Samuel-Hodge, Carmen D.; McMilin, Colleen R.; Keyserling, Thomas C.

    2014-01-01

    Introduction In low-income and underserved populations, financial hardship and multiple competing roles and responsibilities lead to difficulties in lifestyle change for cardiovascular disease (CVD) prevention. To improve CVD prevention behaviors, we adapted, pilot-tested, and evaluated a problem-solving intervention designed to address barriers to lifestyle change. Methods The sample consisted of 81 participants from 3 underserved populations, including 28 Hispanic or non-Hispanic white women in a western community (site 1), 31 African-American women in a semirural southern community (site 2), and 22 adults in an Appalachian community (site 3). Incorporating focus group findings, we assessed a standardized intervention involving 6-to-8 week group sessions devoted to problem-solving in the fall of 2009. Results Most sessions were attended by 76.5% of participants, demonstrating participant adoption and engagement. The intervention resulted in significant improvement in problem-solving skills (P < .001) and perceived stress (P < .05). Diet, physical activity, and weight remained stable, although 72% of individuals reported maintenance or increase in daily fruit and vegetable intake, and 67% reported maintenance or increase in daily physical activity. Conclusion Study results suggest the intervention was acceptable to rural, underserved populations and effective in training them in problem-solving skills and stress management for CVD risk reduction. PMID:24602586

  19. An analytically iterative method for solving problems of cosmic-ray modulation

    NASA Astrophysics Data System (ADS)

    Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian

    2017-09-01

    The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.

  20. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types.

    PubMed

    Webb, Margaret E; Little, Daniel R; Cropper, Simon J

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions.

  1. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types

    PubMed Central

    Webb, Margaret E.; Little, Daniel R.; Cropper, Simon J.

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions. PMID:27725805

  2. A Double Layer Model of the Electromagnetic and Thermal Processes in Induction Heating of Ferromagnetic Material

    NASA Astrophysics Data System (ADS)

    Gilev, B.; Kraev, G.; Venkov, G. I.

    2007-10-01

    This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.

  3. General-purpose abductive algorithm for interpretation

    NASA Astrophysics Data System (ADS)

    Fox, Richard K.; Hartigan, Julie

    1996-11-01

    Abduction, inference to the best explanation, is an information-processing task that is useful for solving interpretation problems such as diagnosis, medical test analysis, legal reasoning, theory evaluation, and perception. The task is a generative one in which an explanation comprising of domain hypotheses is assembled and used to account for given findings. The explanation is taken to be an interpretation as to why the findings have arisen within the given situation. Research in abduction has led to the development of a general-purpose computational strategy which has been demonstrated on all of the above types of problems. This abduction strategy can be performed in layers so that different types of knowledge can come together in deriving an explanation at different levels of description. Further, the abduction strategy is tractable and offers a very useful tradeoff between confidence in the explanation and completeness of the explanation. This paper will describe this computational strategy for abduction and demonstrate its usefulness towards perceptual problems by examining problem-solving systems in speech recognition and natural language understanding.

  4. Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem

    NASA Astrophysics Data System (ADS)

    Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III

    2018-04-01

    NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.

  5. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  6. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  7. Optimal matching for prostate brachytherapy seed localization with dimension reduction.

    PubMed

    Lee, Junghoon; Labat, Christian; Jain, Ameet K; Song, Danny Y; Burdette, Everette C; Fichtinger, Gabor; Prince, Jerry L

    2009-01-01

    In prostate brachytherapy, x-ray fluoroscopy has been used for intra-operative dosimetry to provide qualitative assessment of implant quality. More recent developments have made possible 3D localization of the implanted radioactive seeds. This is usually modeled as an assignment problem and solved by resolving the correspondence of seeds. It is, however, NP-hard, and the problem is even harder in practice due to the significant number of hidden seeds. In this paper, we propose an algorithm that can find an optimal solution from multiple projection images with hidden seeds. It solves an equivalent problem with reduced dimensional complexity, thus allowing us to find an optimal solution in polynomial time. Simulation results show the robustness of the algorithm. It was validated on 5 phantom and 18 patient datasets, successfully localizing the seeds with detection rate of > or = 97.6% and reconstruction error of < or = 1.2 mm. This is considered to be clinically excellent performance.

  8. Pleasures of the Mind: What Makes Jokes and Insight Problems Enjoyable

    PubMed Central

    Canestrari, Carla; Branchini, Erika; Bianchi, Ivana; Savardi, Ugo; Burro, Roberto

    2018-01-01

    In this paper, a parallel analysis of the enjoyment derived from humor and insight problem solving is presented with reference to a “general” Theory of the Pleasures of the Mind (TPM) (Kubovy, 1999) rather than to “local” theories regarding what makes humor and insight problem solving enjoyable. The similarity of these two cognitive activities has already been discussed in previous literature in terms of the cognitive mechanisms which underpin getting a joke or having an insight experience in a problem solving task. The paper explores whether we can learn something new about the similarities and differences between humor and problem solving by means of an investigation of what makes them pleasurable. In the first part of the paper, the framework for this joint analysis is set. Two descriptive studies are then presented in which the participants were asked to report on their experiences relating to solving visuo-spatial insight problems (Study 1) or understanding cartoons (Study 2) in terms of whether they were enjoyable or otherwise. In both studies, the responses were analyzed with reference to a set of categories inspired by the TPM. The results of Study 1 demonstrate that finding the solution to a problem is associated with a positive evaluation, and the most frequent explanations for this were reported as being Curiosity, Virtuosity and Violation of expectations. The results of Study 2 suggest that understanding a joke (Joy of verification) and being surprised by it (Feeling of surprise) were two essential conditions: when they were not present, the cartoons were perceived as not enjoyable. However, this was not enough to explain the motivations for the choice of the most enjoyable cartoons. Recognizing a Violation of expectations and experiencing a Diminishment in the cleverness or awareness initially attributed to the characters in the cartoon were the aspects which were most frequently indicated by the participants to explain why they enjoyed the joke. These findings are evaluated in the final discussion, together with their limitations and potential future developments. PMID:29416518

  9. Schizophrenia, narrative, and neurocognition: The utility of life-stories in understanding social problem-solving skills.

    PubMed

    Moe, Aubrey M; Breitborde, Nicholas J K; Bourassa, Kyle J; Gallagher, Colin J; Shakeel, Mohammed K; Docherty, Nancy M

    2018-06-01

    Schizophrenia researchers have focused on phenomenological aspects of the disorder to better understand its underlying nature. In particular, development of personal narratives-that is, the complexity with which people form, organize, and articulate their "life stories"-has recently been investigated in individuals with schizophrenia. However, less is known about how aspects of narrative relate to indicators of neurocognitive and social functioning. The objective of the present study was to investigate the association of linguistic complexity of life-story narratives to measures of cognitive and social problem-solving abilities among people with schizophrenia. Thirty-two individuals with a diagnosis of schizophrenia completed a research battery consisting of clinical interviews, a life-story narrative, neurocognitive testing, and a measure assessing multiple aspects of social problem solving. Narrative interviews were assessed for linguistic complexity using computerized technology. The results indicate differential relationships of linguistic complexity and neurocognition to domains of social problem-solving skills. More specifically, although neurocognition predicted how well one could both describe and enact a solution to a social problem, linguistic complexity alone was associated with accurately recognizing that a social problem had occurred. In addition, linguistic complexity appears to be a cognitive factor that is discernible from other broader measures of neurocognition. Linguistic complexity may be more relevant in understanding earlier steps of the social problem-solving process than more traditional, broad measures of cognition, and thus is relevant in conceptualizing treatment targets. These findings also support the relevance of developing narrative-focused psychotherapies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    PubMed

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  11. Completing the physical representation of quantum algorithms provides a retrocausal explanation of the speedup

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2017-05-01

    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete as it lacks the initial measurement. We extend it to the process of setting the problem. An initial measurement selects a problem setting at random, and a unitary transformation sends it into the desired setting. The extended representation must be with respect to Bob, the problem setter, and any external observer. It cannot be with respect to Alice, the problem solver. It would tell her the problem setting and thus the solution of the problem implicit in it. In the representation to Alice, the projection of the quantum state due to the initial measurement should be postponed until the end of the quantum algorithm. In either representation, there is a unitary transformation between the initial and final measurement outcomes. As a consequence, the final measurement of any ℛ-th part of the solution could select back in time a corresponding part of the random outcome of the initial measurement; the associated projection of the quantum state should be advanced by the inverse of that unitary transformation. This, in the representation to Alice, would tell her, before she begins her problem solving action, that part of the solution. The quantum algorithm should be seen as a sum over classical histories in each of which Alice knows in advance one of the possible ℛ-th parts of the solution and performs the oracle queries still needed to find it - this for the value of ℛ that explains the algorithm's speedup. We have a relation between retrocausality ℛ and the number of oracle queries needed to solve an oracle problem quantumly. All the oracle problems examined can be solved with any value of ℛ up to an upper bound attained by the optimal quantum algorithm. This bound is always in the vicinity of 1/2 . Moreover, ℛ =1/2 always provides the order of magnitude of the number of queries needed to solve the problem in an optimal quantum way. If this were true for any oracle problem, as plausible, it would solve the quantum query complexity problem.

  12. Efficient solution for finding Hamilton cycles in undirected graphs.

    PubMed

    Alhalabi, Wadee; Kitanneh, Omar; Alharbi, Amira; Balfakih, Zain; Sarirete, Akila

    2016-01-01

    The Hamilton cycle problem is closely related to a series of famous problems and puzzles (traveling salesman problem, Icosian game) and, due to the fact that it is NP-complete, it was extensively studied with different algorithms to solve it. The most efficient algorithm is not known. In this paper, a necessary condition for an arbitrary un-directed graph to have Hamilton cycle is proposed. Based on this condition, a mathematical solution for this problem is developed and several proofs and an algorithmic approach are introduced. The algorithm is successfully implemented on many Hamiltonian and non-Hamiltonian graphs. This provides a new effective approach to solve a problem that is fundamental in graph theory and can influence the manner in which the existing applications are used and improved.

  13. On two mathematical problems of canonical quantization. IV

    NASA Astrophysics Data System (ADS)

    Kirillov, A. I.

    1992-11-01

    A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman-Kac measure of the sine-Gordon and λφ2n/(1 + K2φ2n)-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.

  14. The Influence of Open Goals on the Acquisition of Problem-Relevant Information

    ERIC Educational Resources Information Center

    Moss, Jarrod; Kotovsky, Kenneth; Cagan, Jonathan

    2007-01-01

    There have been a number of recent findings indicating that unsolved problems, or open goals more generally, influence cognition even when the current task has no relation to the task in which the goal was originally set. It was hypothesized that open goals would influence what information entered the problem-solving process. Three studies were…

  15. Spatial problem-solving strategies of middle school students: Wayfinding with geographic information systems

    NASA Astrophysics Data System (ADS)

    Wigglesworth, John C.

    2000-06-01

    Geographic Information Systems (GIS) is a powerful computer software package that emphasizes the use of maps and the management of spatially referenced environmental data archived in a systems data base. Professional applications of GIS have been in place since the 1980's, but only recently has GIS gained significant attention in the K--12 classroom. Students using GIS are able to manipulate and query data in order to solve all manners of spatial problems. Very few studies have examined how this technological innovation can support classroom learning. In particular, there has been little research on how experience in using the software correlates with a child's spatial cognition and his/her ability to understand spatial relationships. This study investigates the strategies used by middle school students to solve a wayfinding (route-finding) problem using the ArcView GIS software. The research design combined an individual background questionnaire, results from the Group Assessment of Logical Thinking (GALT) test, and analysis of reflective think-aloud sessions to define the characteristics of the strategies students' used to solve this particular class of spatial problem. Three uniquely different spatial problem solving strategies were identified. Visual/Concrete Wayfinders used a highly visual strategy; Logical/Abstract Wayfinders used GIS software tools to apply a more analytical and systematic approach; Transitional Wayfinders used an approach that showed evidence of one that was shifting from a visual strategy to one that was more analytical. The triangulation of data sources indicates that this progression of wayfinding strategy can be correlated both to Piagetian stages of logical thought and to experience with the use of maps. These findings suggest that GIS teachers must be aware that their students' performance will lie on a continuum that is based on cognitive development, spatial ability, and prior experience with maps. To be most effective, GIS teaching strategies and curriculum development should also represent a progression that correlates to the learners' current skills and experience.

  16. 3 Tesla breast MR imaging as a problem-solving tool: Diagnostic performance and incidental lesions

    PubMed Central

    Spick, Claudio; Szolar, Dieter H. M.; Preidler, Klaus W.; Reittner, Pia; Rauch, Katharina; Brader, Peter; Tillich, Manfred

    2018-01-01

    Purpose To investigate the diagnostic performance and incidental lesion yield of 3T breast MRI if used as a problem-solving tool. Methods This retrospective, IRB-approved, cross-sectional, single-center study comprised 302 consecutive women (mean: 50±12 years; range: 20–79 years) who were undergoing 3T breast MRI between 03/2013-12/2014 for further workup of conventional and clinical breast findings. Images were read by experienced, board-certified radiologists. The reference standard was histopathology or follow-up ≥ two years. Sensitivity, specificity, PPV, and NPV were calculated. Results were stratified by conventional and clinical breast findings. Results The reference standard revealed 53 true-positive, 243 true-negative, 20 false-positive, and two false-negative breast MRI findings, resulting in a sensitivity, specificity, PPV, and NPV of 96.4% (53/55), 92.4% (243/263), 72.6% (53/73), and 99.2% (243/245), respectively. In 5.3% (16/302) of all patients, incidental MRI lesions classified BI-RADS 3–5 were detected, 37.5% (6/16) of which were malignant. Breast composition and the imaging findings that had led to referral had no significant influence on the diagnostic performance of breast MR imaging (p>0.05). Conclusion 3T breast MRI yields excellent diagnostic results if used as a problem-solving tool independent of referral reasons. The number of suspicious incidental lesions detected by MRI is low, but is associated with a substantial malignancy rate. PMID:29293582

  17. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  18. The Value of Removing Daily Obstacles via Everyday Problem-Solving Theory: Developing an Applied Novel Procedure to Increase Self-Efficacy for Exercise

    PubMed Central

    Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina

    2012-01-01

    The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one’s ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed. PMID:23372560

  19. A controlled trial of trauma-focused therapy versus problem-solving in Islamic children affected by civil conflict and disaster in Aceh, Indonesia.

    PubMed

    Dawson, Katie; Joscelyne, Amy; Meijer, Catherine; Steel, Zachary; Silove, Derrick; Bryant, Richard A

    2018-03-01

    To evaluate the relative efficacies of trauma-focused cognitive behavior therapy and problem-solving therapy in treating post-traumatic stress disorder in children affected by civil conflict in Aceh, Indonesia. A controlled trial of children with post-traumatic stress disorder ( N = 64) randomized children to either five individual weekly sessions of trauma-focused cognitive behavior therapy or problem-solving therapy provided by lay-counselors who were provided with brief training. Children were assessed by blind independent assessors at pretreatment, posttreatment and 3-month follow-up on post-traumatic stress disorder, depression and anger, as well as caregiver ratings of the child's post-traumatic stress disorder levels. Intent-to-treat analyses indicated no significant linear time × treatment condition interaction effects for post-traumatic stress disorder at follow-up ( t(129.05) = -0.55, p = 0.58), indicating the two conditions did not differ. Across both conditions, there were significant reductions in post-traumatic stress disorder on self-reported ( t(131.26) = -9.26, p < 0.001) and caregiver-reported ( t(170.65) = 3.53, p = 0.001) measures and anger ( t(127.66) = -7.14, p < 0.001). Across both conditions, there was a large effect size for self-reported post-traumatic stress disorder (cognitive behavior therapy: 3.73, 95% confidence interval = [2.75, 3.97]; problem-solving: 2.68, 95% confidence interval = [2.07, 3.29]). These findings suggest that trauma-focused cognitive behavior therapy and problem-solving approaches are comparably successful in reducing post-traumatic stress disorder and anger in treating mental health in children in a post-conflict setting. This pattern may reflect the benefits of non-specific therapy effects or gains associated with trauma-focused or problem-solving approaches.

  20. The Value of Removing Daily Obstacles via Everyday Problem-Solving Theory: Developing an Applied Novel Procedure to Increase Self-Efficacy for Exercise.

    PubMed

    Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina

    2013-01-01

    The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one's ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed.

  1. Recovery after Work: The Role of Work Beliefs in the Unwinding Process

    PubMed Central

    Zoupanou, Zoe; Cropley, Mark; Rydstedt, Leif W.

    2013-01-01

    According to the Effort-Recovery model, mental or physical detachment from work is an important mechanism of work related recovery, as delayed recovery has been associated with range of negative health symptoms. In this paper, we examine whether recovery from work (in the form of mentally disengagement from work) is affected by the concept of ‘work ethic’, which refers to beliefs workers hold about their work and leisure and the effects of experiencing interruptions at work. Two indices of post-work recovery were utilized: problem solving pondering and psychological detachment. The study was conducted with 310 participants employed from diverse occupational sectors. Main effects of positive and negative appraisal of work interruption and beliefs were analysed using mediated and moderated regression analysis on problem-solving pondering and detachment. Weakened belief in wasted time as a partial mediator, reduced problem-solving pondering post work when interruptions were appraised as positive, and a high evaluation of leisure partially mediated problem-solving pondering when interruptions were appraised as positive. The results also showed that a high evaluation of centrality of work and leisure moderated the effect of negative appraisal of work interruption on elevated problem-solving pondering. Positive appraisal of work interruption was related to problem-solving pondering, and the strength of this association was further moderated by a strong belief in delay of gratification. In addition, employees' positive appraisal of work interruption was related to work detachment, and the strength of this association was further moderated by strong beliefs in hard work and self-reliance. These findings are discussed in terms of their theoretical and practical implications for employees who are strongly influenced by such work beliefs. PMID:24349060

  2. Recovery after work: the role of work beliefs in the unwinding process.

    PubMed

    Zoupanou, Zoe; Cropley, Mark; Rydstedt, Leif W

    2013-01-01

    According to the Effort-Recovery model, mental or physical detachment from work is an important mechanism of work related recovery, as delayed recovery has been associated with range of negative health symptoms. In this paper, we examine whether recovery from work (in the form of mentally disengagement from work) is affected by the concept of 'work ethic', which refers to beliefs workers hold about their work and leisure and the effects of experiencing interruptions at work. Two indices of post-work recovery were utilized: problem solving pondering and psychological detachment. The study was conducted with 310 participants employed from diverse occupational sectors. Main effects of positive and negative appraisal of work interruption and beliefs were analysed using mediated and moderated regression analysis on problem-solving pondering and detachment. Weakened belief in wasted time as a partial mediator, reduced problem-solving pondering post work when interruptions were appraised as positive, and a high evaluation of leisure partially mediated problem-solving pondering when interruptions were appraised as positive. The results also showed that a high evaluation of centrality of work and leisure moderated the effect of negative appraisal of work interruption on elevated problem-solving pondering. Positive appraisal of work interruption was related to problem-solving pondering, and the strength of this association was further moderated by a strong belief in delay of gratification. In addition, employees' positive appraisal of work interruption was related to work detachment, and the strength of this association was further moderated by strong beliefs in hard work and self-reliance. These findings are discussed in terms of their theoretical and practical implications for employees who are strongly influenced by such work beliefs.

  3. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  4. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  5. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  6. Hippocampal-neocortical functional reorganization underlies children's cognitive development

    PubMed Central

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod

    2014-01-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076

  7. Writing Plays Using Creative Problem-Solving.

    ERIC Educational Resources Information Center

    Raiser, Lynne; Hinson, Shirley

    1995-01-01

    This article describes a project which involved inner city elementary grade children with disabilities in writing and performing their own plays. A four-step playwriting process focuses on theme and character development, problem finding, and writing dialogue. The project has led to improved reading skills, attention, memory skills,…

  8. Mastery Multiplied

    ERIC Educational Resources Information Center

    Shumway, Jessica F.; Kyriopoulos, Joan

    2014-01-01

    Being able to find the correct answer to a math problem does not always indicate solid mathematics mastery. A student who knows how to apply the basic algorithms can correctly solve problems without understanding the relationships between numbers or why the algorithms work. The Common Core standards require that students actually understand…

  9. Thinking: How Do We Know Students Are Getting Better At It?

    ERIC Educational Resources Information Center

    Costa, Arthur L.

    1984-01-01

    Since thinking is most often performed in problem-solving situations, teachers can become observers by providing situations in which students can practice and demonstrate intelligent behaviors. Some indicators include: perseverance, precision of language, problem finding, decreased impulsivity, metacognition, checking for accuracy, transference,…

  10. A two-dimensional approach to relationship conflict: meta-analytic findings.

    PubMed

    Woodin, Erica M

    2011-06-01

    This meta-analysis of 64 studies (5,071 couples) used a metacoding system to categorize observed couple conflict behaviors into categories differing in terms of valence (positive to negative) and intensity (high to low) and resulting in five behavioral categories: hostility, distress, withdrawal, problem solving, and intimacy. Aggregate effect sizes indicated that women were somewhat more likely to display hostility, distress, and intimacy during conflict, whereas men were somewhat more likely to display withdrawal and problem solving. Gender differences were of a small magnitude. For both men and women, hostility was robustly associated with lower relationship satisfaction (medium effect), distress and withdrawal were somewhat associated (small effect), and intimacy and problem solving were both closely associated with relationship satisfaction (medium effect). Effect sizes were moderated in several cases by study characteristics including year of publication, developmental period of the sample, recruitment design, duration of observed conflict, method used to induce conflict, and type of coding system used. Findings from this meta-analysis suggest that high-intensity conflict behaviors of both a positive and negative nature are important correlates of relationship satisfaction and underscore the relatively small gender differences in many conflict behaviors. 2011 APA, all rights reserved

  11. A Collaborative Problem-solving Process Through Environmental Field Studies

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Teck Tan, Hoe

    2013-02-01

    This study explored and documented students' responses to opportunities for collective knowledge building and collaboration in a problem-solving process within complex environmental challenges and pressing issues with various dimensions of knowledge and skills. Middle-school students (n = 16; age 14) and high-school students (n = 16; age 17) from two Singapore public institutions participated in an environmental science field study to experience knowledge integration and a decision-making process. Students worked on six research topics to understand the characteristics of an organic farm and plan for building an ecological village. Students collected and analysed data from the field and shared their findings. Their field work and discussions were video-recorded, and their reflective notes and final reports were collected for data coding and interpretation. The results revealed that throughout the study, students experienced the needs and development of integrated knowledge, encountered the challenges of knowledge sharing and communication during their collaboration, and learned how to cope with the difficulties. Based on research findings, this study further discusses students' learning through a collaborative problem-solving process, including the interdependence of knowledge and the development of mutual relationships such as respect and care for others' knowledge and learning.

  12. Collaborative learning in networks.

    PubMed

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  13. Marital conflict management skills, parenting style, and early-onset conduct problems: processes and pathways.

    PubMed

    Webster-Stratton, C; Hammond, M

    1999-09-01

    This study examined whether the link between marital conflict management style and child conduct problems with peers and parents is direct or mediated by mothers' and fathers' parenting style (critical parenting and low emotional responsivity). One hundred and twenty children, aged 4 to 7 years, were observed interacting in our laboratory playroom solving a problem with their best friend as well as at home with their parents. In addition, all the children's parents were observed in our laboratory trying to solve two family problems as well as at home interacting under more natural conditions with each other and with their children. Mothers and fathers completed questionnaires assessing marital problem solving as well as reports of their children's behavior problems. Results indicated that a negative marital conflict management style had direct links with children's conduct problems. In addition, the linkage between negative marital conflict management and children's interactions with parents and peers was found to be mediated by both mothers' and fathers' critical parenting and low emotional responsivity, thereby supporting the indirect as well as the direct model of negative family interactions. The findings are discussed in relation to the implications for treatment.

  14. Collaborative learning in networks

    PubMed Central

    Mason, Winter; Watts, Duncan J.

    2012-01-01

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216

  15. A sequential solution for anisotropic total variation image denoising with interval constraints

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Noo, Frédéric

    2017-09-01

    We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.

  16. Mothers' problem-solving skill and use of help with infant-related issues: the role of importance and need for action.

    PubMed

    Pridham, K F; Chang, A S; Hansen, M F

    1987-08-01

    Examination was made of the relationship of mothers' appraisal of the importance of and need for action around infant-related issues to maternal experience (parity and time since birth), use of help, and perceived problem-solving competence. Sixty-two mothers (38 primiparae and 24 multiparae) kept for 90 days post-birth a daily log of issues, rated for importance and for need for action, and of help used. Mothers also reported perceived problem-solving competence on an 11-item scale. Findings indicated tentativeness in ratings of importance and action. Ratings of importance were associated with action ratings, except for temperament issues. Action ratings for baby care and illness issues decreased significantly with time. Otherwise, maternal experience had no effect on ratings. More of the variance in perceived competence than use of help was explained by action and importance ratings.

  17. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a generic framework for solving the network planning problem under uncertainties. In addition to reviewing the various network planning problems involving uncertainties, we also propose that a unified framework based on robust optimization can be used to solve a rather large segment of network planning problem under uncertainties. Robust optimization is first introduced in the operations research literature and is a framework that incorporates information about the uncertainty sets for the parameters in the optimization model. Even though robust optimization is originated from tackling the uncertainty in the optimization process, it can serve as a comprehensive and suitable framework for tackling generic network planning problems under uncertainties. In this paper, we begin by explaining the main ideas behind the robust optimization approach. Then we demonstrate the capabilities of the proposed framework by giving out some examples of how the robust optimization framework can be applied to the current common network planning problems under uncertain environments. Next, we list some practical considerations for solving the network planning problem under uncertainties with the proposed framework. Finally, we conclude this article with some thoughts on the future directions for applying this framework to solve other network planning problems.

  18. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  19. An investigation of aviator problem-solving skills as they relate to amount of total flight time

    NASA Astrophysics Data System (ADS)

    Guilkey, James Elwood, Jr.

    As aircraft become increasingly more reliable, safety issues have shifted towards the human component of flight, the pilot. Jensen (1995) indicated that 80% of all General Aviation (GA) accidents are the result, at least in part, of errors committed by the aviator. One major focus of current research involves aviator decision making (ADM). ADM combines a broad range of psychological factors including personality, attitude, and motivation. This approach fails to isolate certain key components such as aviator problem-solving (APS) which are paramount to safe operations. It should be noted that there is a clear delineation between problem-solving and decision making and not assume that they are homogenous. For years, researchers, industry, and the Federal Aviation Administration (FAA) have depended on total flight hours as the standard by which to judge aviator expertise. A pilot with less than a prescribed number of hours is considered a novice while those above that mark are considered experts. The reliance on time as a predictor of performance may be accurate when considering skills which are required on every flight (i.e., takeoff and landing) but we can't assume that this holds true for all aspects of aviator expertise. Complex problem-solving for example, is something that is rarely faced during the normal course of flying. In fact, there are a myriad of procedures and FAA mandated regulations designed to assist pilots in avoiding problems. Thus, one should not assume that aviator problem-solving skills will increase over time. This study investigated the relationship between problem-solving skills of general aviation pilots and total number of flight hours. It was discovered that flight time is not a good predictor of problem-solving performance. There were two distinct strategies that were identified in the study. The first, progressive problem solving (PPS) was characterized by a stepwise method in which pilots gathered information, formulated hypotheses, and evaluated outcomes. Both high time as well as low time pilots demonstrated this approach. The second method, termed knee-jerk decision making was distinguished by a lack of problem-solving abilities and involved an almost immediate decision with little if any supporting information. Again both high and low time pilots performed in this manner. The result of these findings is a recommendation that the FAA adopt new training methods which will allow pilots to develop the skills required to handle critical inflight situations.

  20. OTIS 3.2 Software Released

    NASA Technical Reports Server (NTRS)

    Riehl, John P.; Sjauw, Waldy K.

    2004-01-01

    Trajectory, mission, and vehicle engineers concern themselves with finding the best way for an object to get from one place to another. These engineers rely upon special software to assist them in this. For a number of years, many engineers have used the OTIS program for this assistance. With OTIS, an engineer can fully optimize trajectories for airplanes, launch vehicles like the space shuttle, interplanetary spacecraft, and orbital transfer vehicles. OTIS provides four modes of operation, with each mode providing successively stronger optimization capability. The most powerful mode uses a mathematical method called implicit integration to solve what engineers and mathematicians call the optimal control problem. OTIS 3.2, which was developed at the NASA Glenn Research Center, is the latest release of this industry workhorse and features new capabilities for parameter optimization and mission design. OTIS stands for Optimal Control by Implicit Simulation, and it is implicit integration that makes OTIS so powerful at solving trajectory optimization problems. Why is this so important? The optimization process not only determines how to get from point A to point B, but it can also determine how to do this with the least amount of propellant, with the lightest starting weight, or in the fastest time possible while avoiding certain obstacles along the way. There are numerous conditions that engineers can use to define optimal, or best. OTIS provides a framework for defining the starting and ending points of the trajectory (point A and point B), the constraints on the trajectory (requirements like "avoid these regions where obstacles occur"), and what is being optimized (e.g., minimize propellant). The implicit integration method can find solutions to very complicated problems when there is not a lot of information available about what the optimal trajectory might be. The method was first developed for solving two-point boundary value problems and was adapted for use in OTIS. Implicit integration usually allows OTIS to find solutions to problems much faster than programs that use explicit integration and parametric methods. Consequently, OTIS is best suited to solving very complicated and highly constrained problems.

  1. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  2. Transfer of Problem Solving Skills from Touchscreen to 3D Model by 3- to 6-Year-Olds

    PubMed Central

    Tarasuik, Joanne; Demaria, Ana; Kaufman, Jordy

    2017-01-01

    Although much published research purports that young children struggle to solve problems from screen-based media and to transfer learning from a virtual to a physical modality, Huber et al. (2016)’s recent study on children solving the Tower of Hanoi (ToH) problem on a touchscreen app offers a clear counter example. Huber et al. (2016) reported that children transferred learning from media to the physical world. As this finding arguably differs from that of prior research in this area, the current study tests whether the Huber et al. (2016) results could be replicated. Additionally, we extended the scope of the Huber et al. (2016) work by testing a broader age range, including children as young as 3 years, and using a culturally distinct participant pool. The results of the current study verified Huber et al.’s (2016) conclusion that 4- to 6-year-old children are capable of transferring the ToH learning from touchscreen devices to the physical version of the puzzle. Children under 4 years of age, in contrast, showed little ability to improve at the ToH problem regardless of the practice modality—suggesting that a different problem-solving task is required to probe very young children’s ability to learn from touchscreen apps. PMID:28979222

  3. The Effects of Schema-Based Instruction on the Proportional Thinking of Students With Mathematics Difficulties With and Without Reading Difficulties.

    PubMed

    Jitendra, Asha K; Dupuis, Danielle N; Star, Jon R; Rodriguez, Michael C

    2016-07-01

    This study examined the effect of schema-based instruction (SBI) on the proportional problem-solving performance of students with mathematics difficulties only (MD) and students with mathematics and reading difficulties (MDRD). Specifically, we examined the responsiveness of 260 seventh grade students identified as MD or MDRD to a 6-week treatment (SBI) on measures of proportional problem solving. Results indicated that students in the SBI condition significantly outperformed students in the control condition on a measure of proportional problem solving administered at posttest (g = 0.40) and again 6 weeks later (g = 0.42). The interaction between treatment group and students' difficulty status was not significant, which indicates that SBI was equally effective for both students with MD and those with MDRD. Further analyses revealed that SBI was particularly effective at improving students' performance on items related to percents. Finally, students with MD significantly outperformed students with MDRD on all measures of proportional problem solving. These findings suggest that interventions designed to include effective instructional features (e.g., SBI) promote student understanding of mathematical ideas. © Hammill Institute on Disabilities 2014.

  4. Within Your Control? When Problem Solving May Be Most Helpful.

    PubMed

    Sarfan, Laurel D; Gooch, Peter; Clerkin, Elise M

    2017-08-01

    Emotion regulation strategies have been conceptualized as adaptive or maladaptive, but recent evidence suggests emotion regulation outcomes may be context-dependent. The present study tested whether the adaptiveness of a putatively adaptive emotion regulation strategy-problem solving-varied across contexts of high and low controllability. The present study also tested rumination, suggested to be one of the most putatively maladaptive strategies, which was expected to be associated with negative outcomes regardless of context. Participants completed an in vivo speech task, in which they were randomly assigned to a controllable ( n = 65) or an uncontrollable ( n = 63) condition. Using moderation analyses, we tested whether controllability interacted with emotion regulation use to predict negative affect, avoidance, and perception of performance. Partially consistent with hypotheses, problem solving was associated with certain positive outcomes (i.e., reduced behavioral avoidance) in the controllable (vs. uncontrollable) condition. Consistent with predictions, rumination was associated with negative outcomes (i.e., desired avoidance, negative affect, negative perception of performance) in both conditions. Overall, findings partially support contextual models of emotion regulation, insofar as the data suggest that the effects of problem solving may be more adaptive in controllable contexts for certain outcomes, whereas rumination may be maladaptive regardless of context.

  5. Metacognition Difficulty of Students with Visual-Spatial Intelligence during Solving Open-Ended Problem

    NASA Astrophysics Data System (ADS)

    Rimbatmojo, S.; Kusmayadi, T. A.; Riyadi, R.

    2017-09-01

    This study aims to find out students metacognition difficulty during solving open-ended problem in mathematics. It focuses on analysing the metacognition difficulty of students with visual-spatial intelligence in solving open-ended problem. A qualitative research with case study strategy is used in this study. Data in the form of visual-spatial intelligence test result and recorded interview during solving open-ended problems were analysed qualitatively. The results show that: (1) students with high visual-spatial intelligence have no difficulty on each metacognition aspects, (2) students with medium visual-spatial intelligence have difficulty on knowledge aspect on strategy and cognitive tasks, (3) students with low visual-spatial intelligence have difficulty on three metacognition aspects, namely knowledge on strategy, cognitive tasks and self-knowledge. Even though, several researches about metacognition process and metacognition literature recommended the steps to know the characteristics. It is still important to discuss that the difficulties of metacognitive is happened because of several factors, one of which on the characteristics of student’ visual-spatial intelligence. Therefore, it is really important for mathematics educators to consider and pay more attention toward students’ visual-spatial intelligence and metacognition difficulty in designing better mathematics learning.

  6. Insight and search in Katona's five-square problem.

    PubMed

    Ollinger, Michael; Jones, Gary; Knoblich, Günther

    2014-01-01

    Insights are often productive outcomes of human thinking. We provide a cognitive model that explains insight problem solving by the interplay of problem space search and representational change, whereby the problem space is constrained or relaxed based on the problem representation. By introducing different experimental conditions that either constrained the initial search space or helped solvers to initiate a representational change, we investigated the interplay of problem space search and representational change in Katona's five-square problem. Testing 168 participants, we demonstrated that independent hints relating to the initial search space and to representational change had little effect on solution rates. However, providing both hints caused a significant increase in solution rates. Our results show the interplay between problem space search and representational change in insight problem solving: The initial problem space can be so large that people fail to encounter impasse, but even when representational change is achieved the resulting problem space can still provide a major obstacle to finding the solution.

  7. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    PubMed Central

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-01-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879

  8. Testing the effectiveness of problem-based learning with learning-disabled students in biology

    NASA Astrophysics Data System (ADS)

    Guerrera, Claudia Patrizia

    The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.

  9. Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content

    ERIC Educational Resources Information Center

    Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria

    2015-01-01

    Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…

  10. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  11. Promoting Experimental Problem-solving Ability in Sixth-grade Students Through Problem-oriented Teaching of Ecology: Findings of an intervention study in a complex domain

    NASA Astrophysics Data System (ADS)

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-03-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.

  12. Metacognition for strategy selection during arithmetic problem-solving in young and older adults.

    PubMed

    Geurten, Marie; Lemaire, Patrick

    2018-04-19

    We examined participants' strategy choices and metacognitive judgments during arithmetic problem-solving. Metacognitive judgments were collected either prospectively or retrospectively. We tested whether metacognitive judgments are related to strategy choices on the current problems and on the immediately following problems, and age-related differences in relations between metacognition and strategy choices. Data showed that both young and older adults were able to make accurate retrospective, but not prospective, judgments. Moreover, the accuracy of retrospective judgments was comparable in young and older adults when participants had to select and execute the better strategy. Metacognitive accuracy was even higher in older adults when participants had to only select the better strategy. Finally, low-confidence judgments on current items were more frequently followed by better strategy selection on immediately succeeding items than high-confidence judgments in both young and older adults. Implications of these findings to further our understanding of age-related differences and similarities in adults' metacognitive monitoring and metacognitive regulation for strategy selection in the context of arithmetic problem solving are discussed.

  13. Worrying about the Future: An Episodic Specificity Induction Impacts Problem Solving, Reappraisal, and Well-Being

    PubMed Central

    Jing, Helen G.; Madore, Kevin P.; Schacter, Daniel L.

    2015-01-01

    Previous research has demonstrated that an episodic specificity induction – brief training in recollecting details of a recent experience – enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants’ performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. PMID:26820166

  14. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  15. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  16. Think Inside the Box

    ERIC Educational Resources Information Center

    Spencer, John

    2017-01-01

    Besides "thinking outside the box," the creativity needed to solve problems often involves thinking differently about the box, finding a new approach or off-beat way to use the materials, conditions, and even constraints that one has. Spencer discusses creative constraint--what happens when a problem solver runs into barriers that make…

  17. Modelling Mathematical Reasoning in Physics Education

    ERIC Educational Resources Information Center

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche

    2012-01-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…

  18. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  19. Remote sensing of the Earth from Space: A program in crisis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.

  20. Individual Differences in Optimization Problem Solving: Reconciling Conflicting Results

    ERIC Educational Resources Information Center

    Chronicle, Edward P.; MacGregor, James N.; Lee, Michael; Ormerod, Thomas C.; Hughes, Peter

    2008-01-01

    Results on human performance on the Traveling Salesman Problem (TSP) from different laboratories show high consistency. However, one exception is in the area of individual differences. While one research group has consistently failed to find systematic individual differences across instances of TSPs (Chronicle, MacGregor and Ormerod), another…

  1. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.

  2. Cognition-emotion interactions: patterns of change and implications for math problem solving

    PubMed Central

    Trezise, Kelly; Reeve, Robert A.

    2014-01-01

    Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830

  3. Using Verbal Protocol Data to Reflect the Quality of Problem Representation in Solving Algebra Word Problems.

    ERIC Educational Resources Information Center

    Bull, Elizabeth Kay

    The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…

  4. A case study of hospital operations management.

    PubMed

    Cheng, T C

    1987-12-01

    This paper discusses a study to investigate various operations management problems in a newly opened, modern regional hospital in Hong Kong. The findings of the study reveal that there exist in the hospital a number of current and potential problem areas. Recommendations for solving these problems are suggested with a view to improving the overall operational efficiency and effectiveness of the hospital.

  5. Building a Career Mathematics File: Challenging Students to Find the Importance of Mathematics in a Variety of Occupations

    ERIC Educational Resources Information Center

    Keleher, Lori A.

    2006-01-01

    The Career Mathematics file is an occupational problem-solving system, which includes a wide range of mathematical problems and solutions, collected from various resources and helps students establish connections between mathematics and their environment. The study shows that the problems given can be used as realistic examples to study and…

  6. Application of cellular automatons and ant algorithms in avionics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.

    2018-03-01

    The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.

  7. Combining constraint satisfaction and local improvement algorithms to construct anaesthetists' rotas

    NASA Technical Reports Server (NTRS)

    Smith, Barbara M.; Bennett, Sean

    1992-01-01

    A system is described which was built to compile weekly rotas for the anaesthetists in a large hospital. The rota compilation problem is an optimization problem (the number of tasks which cannot be assigned to an anaesthetist must be minimized) and was formulated as a constraint satisfaction problem (CSP). The forward checking algorithm is used to find a feasible rota, but because of the size of the problem, it cannot find an optimal (or even a good enough) solution in an acceptable time. Instead, an algorithm was devised which makes local improvements to a feasible solution. The algorithm makes use of the constraints as expressed in the CSP to ensure that feasibility is maintained, and produces very good rotas which are being used by the hospital involved in the project. It is argued that formulation as a constraint satisfaction problem may be a good approach to solving discrete optimization problems, even if the resulting CSP is too large to be solved exactly in an acceptable time. A CSP algorithm may be able to produce a feasible solution which can then be improved, giving a good, if not provably optimal, solution.

  8. The way adults with orientation to mathematics teaching cope with the solution of everyday real-world problems

    NASA Astrophysics Data System (ADS)

    Gazit, Avikam; Patkin, Dorit

    2012-03-01

    The article aims to check the way adults, some who are practicing mathematics teachers at elementary school, some who are academicians making a career change to mathematics teachers at junior high school and the rest who are pre-service mathematics teachers at elementary school, cope with the solution of everyday real-world problems of buying and selling. The findings show that even adults with mathematical background tend to make mistakes in solving everyday real-world problems. Only about 70% of the adults who have an orientation to mathematics solved the sample problem correctly. The lowest percentage of success was demonstrated by the academicians making a career change to junior high school mathematics teachers whereas the highest percentage of success was manifested by pre-service elementary school mathematics teachers. Moreover, the findings illustrate that life experience of the practicing mathematics teachers and, mainly, of the academicians making a career change, who were older than the pre-service teachers, did not facilitate the solution of such a real-world problem. Perhaps the reason resides in the process of mathematics teaching at school, which does not put an emphasis on the solution of everyday real-world problems.

  9. Applications of artificial intelligence to digital photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kretsch, J.L.

    1988-01-01

    The aim of this research was to explore the application of expert systems to digital photogrammetry, specifically to photogrammetric triangulation, feature extraction, and photogrammetric problem solving. In 1987, prototype expert systems were developed for doing system startup, interior orientation, and relative orientation in the mensuration stage. The system explored means of performing diagnostics during the process. In the area of feature extraction, the relationship of metric uncertainty to symbolic uncertainty was the topic of research. Error propagation through the Dempster-Shafer formalism for representing evidence was performed in order to find the variance in the calculated belief values due to errorsmore » in measurements made together the initial evidence needed to being labeling of observed image features with features in an object model. In photogrammetric problem solving, an expert system is under continuous development which seeks to solve photogrammetric problems using mathematical reasoning. The key to the approach used is the representation of knowledge directly in the form of equations, rather than in the form of if-then rules. Then each variable in the equations is treated as a goal to be solved.« less

  10. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  11. Applying Cases to Solve Ethical Problems: The Significance of Positive and Process-Oriented Reflection

    PubMed Central

    Antes, Alison L.; Thiel, Chase E.; Martin, Laura E.; Stenmark, Cheryl K.; Connelly, Shane; Devenport, Lynn D.; Mumford, Michael D.

    2015-01-01

    This study examined the role of reflection on personal cases for making ethical decisions with regard to new ethical problems. Participants assumed the position of a business manager in a hypothetical organization and solved ethical problems that might be encountered. Prior to making a decision for the business problems, participants reflected on a relevant ethical experience. The findings revealed that application of material garnered from reflection on a personal experience was associated with decisions of higher ethicality. However, whether the case was viewed as positive or negative, and whether the outcomes, process, or outcomes and processes embedded in the experience were examined, influenced the application of case material to the new problem. As expected, examining positive experiences and the processes involved in those positive experiences resulted in greater application of case material to new problems. Future directions and implications for understanding ethical decision-making are discussed. PMID:26257506

  12. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    PubMed

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  13. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  14. Cuckoo search via Levy flights applied to uncapacitated facility location problem

    NASA Astrophysics Data System (ADS)

    Mesa, Armacheska; Castromayor, Kris; Garillos-Manliguez, Cinmayii; Calag, Vicente

    2017-11-01

    Facility location problem (FLP) is a mathematical way to optimally locate facilities within a set of candidates to satisfy the requirements of a given set of clients. This study addressed the uncapacitated FLP as it assures that the capacity of every selected facility is finite. Thus, even if the demand is not known, which often is the case, in reality, organizations may still be able to take strategic decisions such as locating the facilities. There are different approaches relevant to the uncapacitated FLP. Here, the cuckoo search via Lévy flight (CS-LF) was used to solve the problem. Though hybrid methods produce better results, this study employed CS-LF to determine first its potential in finding solutions for the problem, particularly when applied to a real-world problem. The method was applied to the data set obtained from a department store in Davao City, Philippines. Results showed that applying CS-LF yielded better facility locations compared to particle swarm optimization and other existing algorithms. Although these results showed that CS-LF is a promising method to solve this particular problem, further studies on other FLP are recommended to establish a strong foundation of the capability of CS-LF in solving FLP.

  15. The Underlying Message in LD Intervention Research: Findings from Research Syntheses.

    ERIC Educational Resources Information Center

    Vaughn, Sharon; Gersten, Russell; Chard, David J.

    2000-01-01

    This article summarizes the critical findings of recent research syntheses concerning intervention with students who have learning disabilities. The syntheses examined research on higher-order processing and problem- solving, reading comprehension, written expression, and grouping practices associated with improved outcomes in reading. Principles…

  16. Solving lot-sizing problem with quantity discount and transportation cost

    NASA Astrophysics Data System (ADS)

    Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei

    2013-04-01

    Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.

  17. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.

    PubMed

    Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei

    2013-10-01

    The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. An accelerated lambda iteration method for multilevel radiative transfer. I - Non-overlapping lines with background continuum

    NASA Technical Reports Server (NTRS)

    Rybicki, G. B.; Hummer, D. G.

    1991-01-01

    A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.

  19. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  20. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  1. Co-rumination and co-problem solving in the daily lives of adolescents with major depressive disorder.

    PubMed

    Waller, Jennifer M; Silk, Jennifer S; Stone, Lindsey B; Dahl, Ronald E

    2014-08-01

    This study examines differences in the prevalence and nature of co-rumination during real-world social interactions with peers and parents among adolescents with major depressive disorder (MDD) compared to healthy controls. A total of 60 youth (29 with current MDD and 31 controls without psychopathology) completed a self-report measure of co-rumination and a 3-week ecological momentary assessment (EMA) protocol that measured the nature of face-to-face social interactions with peers and parents after a negative event in the adolescents' daily lives. Specifically, EMA was used to assess rates of problem talk, including both co-rumination and co-problem solving. Group differences in self-report and EMA measures were examined. Adolescents with MDD reported co-ruminating more often than adolescents with no Axis 1 disorders during daily interactions with both parents (Cohen's d = 0.78) and peers (d = 1.14), and also reported more co-rumination via questionnaire (d = 0.58). Adolescents with MDD engaged in co-problem solving with peers less often than did healthy controls (d = 0.78), but no group differences were found for rates of co-problem solving with parents. Results are consistent with previous research linking co-rumination and depression in adolescence and extend these self-report-based findings to assessment in an ecologically valid context. Importantly, the results support that MDD youth tend to co-ruminate more and to problem-solve less with peers in their daily lives compared to healthy youth, and that co-rumination also extends to parental relationships. Interventions focused on decreasing co-rumination with peers and parents and improving problem-solving skills with peers may be helpful for preventing and treating adolescent depression. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Singularity free N-body simulations called 'Dynamic Universe Model' don't require dark matter

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-accelaration for their masses, considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy centre and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. Singularity free Newtonian N-body simulations Historically, King Oscar II of Sweden an-nounced a prize to a solution of N-body problem with advice given by Güsta Mittag-Leffler in 1887. He announced `Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.'[This is taken from Wikipedia]. The announced dead line that time was1st June 1888. And after that dead line, on 21st January 1889, Great mathematician Poincaré claimed that prize. Later he himself sent a telegram to journal Acta Mathematica to stop printing the special issue after finding the error in his solution. Yet for such a man of science reputation is important than money. [ Ref Book `Celestial mechanics: the waltz of the planets' By Alessandra Celletti, Ettore Perozzi, page 27]. He realized that he has been wrong in his general stability result! But till now nobody could solve that problem or claimed that prize. Later all solutions resulted in singularities and collisions of masses, given by many people . . . . . . . . . . . . . . . . . . . . . . . . .. Now I can say that the Dynamic Universe Model solves this classical N-body problem where only Newtonian Gravi-tation law and classical Physics were used. The solution converges at all points. There are no multiple values, diverging solutions or divided by zero singularities. Collisions of masses depend on physical values of masses and their space distribution only. These collisions do not happen due to internal inherent problems of Dynamic universe Model. If the mass distribution is homogeneous and isotropic, the masses will colloid. If the mass distribution is heterogeneous and anisotropic, they do not colloid. This approach solves many problems which otherwise can not be solved by General relativity, Steady state universe model etc. . .

  3. Effects of strategy sequences and response-stimulus intervals on children's strategy selection and strategy execution: a study in computational estimation.

    PubMed

    Lemaire, Patrick; Brun, Fleur

    2014-07-01

    The present study investigates how children's better strategy selection and strategy execution on a given problem are influenced by which strategy was used on the immediately preceding problem and by the duration between their answer to the previous problem and current problem display. These goals are pursued in the context of an arithmetic problem solving task. Third and fifth graders were asked to select the better strategy to find estimates to two-digit addition problems like 36 + 78. On each problem, children could choose rounding-down (i.e., rounding both operands down to the closest smaller decades, like doing 40 + 60 to solve 42 + 67) or rounding-up strategies (i.e., rounding both operands up to the closest larger decades, like doing 50 + 70 to solve 42 + 67). Children were tested under a short RSI condition (i.e., the next problem was displayed 900 ms after participants' answer) or under a long RSI condition (i.e., the next problem was displayed 1,900 ms after participants' answer). Results showed that both strategy selection (e.g., children selected the better strategy more often under long RSI condition and after selecting the poorer strategy on the immediately preceding problem) and strategy execution (e.g., children executed strategy more efficiently under long RSI condition and were slower when switching strategy over two consecutive problems) were influenced by RSI and which strategy was used on the immediately preceding problem. Moreover, data showed age-related changes in effects of RSI and strategy sequence on mean percent better strategy selection and on strategy performance. The present findings have important theoretical and empirical implications for our understanding of general and specific processes involved in strategy selection, strategy execution, and strategic development.

  4. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    NASA Astrophysics Data System (ADS)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.

  5. What Is the Best Route? Route-Finding Strategies of Middle School Students Using GIS

    ERIC Educational Resources Information Center

    Wigglesivorth, John C.

    2003-01-01

    This paper summarizes a research project conducted to investigate the strategies developed by middle school students to solve a route-finding problem using Arc View GIS software. Three different types of route-finding strategies were identified. Some students were visual route-finders and used a highly visual strategy; others were logical route…

  6. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  7. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  8. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  9. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  10. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  11. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  12. Age-related differences in strategic monitoring during arithmetic problem solving.

    PubMed

    Geurten, Marie; Lemaire, Patrick

    2017-10-01

    We examined the role of metacognitive monitoring in strategic behavior during arithmetic problem solving, a process that is expected to shed light on age-related differences in strategy selection. Young and older adults accomplished better strategy-judgment, better strategy-selection, and strategy-execution tasks. Data showed that participants made better strategy judgments when problems were problems with homogeneous unit digits (i.e., problems with both unit digits smaller or larger than 5; 31×62) relative to problems with heterogeneous unit digits (i.e., problems with one unit digit smaller or larger than 5; 31×67) and when the better strategy was cued on rounding-up problems (e.g., 68×23) compared to rounding-down problems (e.g., 36×53). Results also indicated higher rates of better strategy judgment in young than in older adults. These aging effects differed across problem types. Older adults made more accurate judgments on rounding-up problems than on rounding-down problems when the cued strategy was rounding-up, while young adults did not show such problem-related differences. Moreover, strategy selection correlated with strategy judgment, and even more so in older adults than in young adults. To discuss the implications of these findings, we propose a theoretical framework of how strategy judgments occur in young and older adults and discuss how this framework enables to understand relationships between metacognitive monitoring and strategic behaviors when participants solve arithmetic problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Finding the Optimal Guidance for Enhancing Anchored Instruction

    ERIC Educational Resources Information Center

    Zydney, Janet Mannheimer; Bathke, Arne; Hasselbring, Ted S.

    2014-01-01

    This study investigated the effect of different methods of guidance with anchored instruction on students' mathematical problem-solving performance. The purpose of this research was to iteratively design a learning environment to find the optimal level of guidance. Two iterations of the software were compared. The first iteration used explicit…

  14. Measures of Potential Flexibility and Practical Flexibility in Equation Solving.

    PubMed

    Xu, Le; Liu, Ru-De; Star, Jon R; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance-has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed.

  15. Measures of Potential Flexibility and Practical Flexibility in Equation Solving

    PubMed Central

    Xu, Le; Liu, Ru-De; Star, Jon R.; Wang, Jia; Liu, Ying; Zhen, Rui

    2017-01-01

    Researchers interested in mathematical proficiency have recently begun to explore the development of strategic flexibility, where flexibility is defined as knowledge of multiple strategies for solving a problem and the ability to implement an innovative strategy for a given problem solving circumstance. However, anecdotal findings from this literature indicate that students do not consistently use an innovative strategy for solving a given problem, even when these same students demonstrate knowledge of innovative strategies. This distinction, sometimes framed in the psychological literature as competence vs. performance—has not been previously studied for flexibility. In order to explore the competence/performance distinction in flexibility, this study developed and validated measures for potential flexibility (e.g., competence, or knowledge of multiple strategies) and practical flexibility (e.g., performance, use of innovative strategies) for solving equations. The measures were administrated to a sample of 158 Chinese middle school students through a Tri-Phase Flexibility Assessment, in which the students were asked to solve each equation, generate additional strategies, and evaluate own multiple strategies. Confirmatory factor analysis supported a two-factor model of potential and practical flexibility. Satisfactory internal consistency was found for the measures. Additional validity evidence included the significant association with flexibility measured with the previous method. Potential flexibility and practical flexibility were found to be distinct but related. The theoretical and practical implications of the concepts and their measures of potential flexibility and practical flexibility are discussed. PMID:28848481

  16. From Research to Practice in Adult Basic Education. Final Project Report.

    ERIC Educational Resources Information Center

    Schroeder, Wayne L., Comp.; Divita, Charles, Jr., Comp.

    The strategies whereby relevant findings and implications of empirical research could become known to and employed by adult basic education practitioners in solving their problems are demonstrated. Efforts were made to: (1) Identify significant problems in the practice of adult basic education; (2) Conduct a thorough search of the research…

  17. Developing Creative Materials for Teaching the Culturally Different Child.

    ERIC Educational Resources Information Center

    Lindberg, Dormalee H.; Swick, Kevin J.

    A persistent problem confronting the teacher of the culturally different child is the need for finding learning materials that the child can relate to and utilize in his learning situation. The increasing availability of mass-produced learning materials for these children, although helpful, has not solved the problem of providing socioeconomically…

  18. Understanding Student Use of Differentials in Physics Integration Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In this…

  19. The Likelihood of Use of Social Power Strategies by School Psychologists when Consulting with Teachers

    ERIC Educational Resources Information Center

    Wilson, Kristen E.; Erchul, William P.; Raven, Bertram H.

    2008-01-01

    The Interpersonal Power Inventory (IPI) has been applied previously to investigate school psychologists engaged in problem-solving consultation with teachers concerning students having various learning and adjustment problems. Relevant prior findings include (a) consultants and teachers both perceive soft power strategies as more effective than…

  20. Who's in the Mirror? Finding the Real Me.

    ERIC Educational Resources Information Center

    Herron, Ron; Peter, Val J.

    This book teaches adolescents problem solving techniques to help them as they strive for independence and struggle with responsibility. Each issue is introduced by a story involving a teen dealing with the problem or issue to be discussed. The book discusses eight ways that adolescents can get along better with their parents, thus gaining their…

Top