Sample records for problem solving instruction

  1. A Comparison of the Effects of Lego TC Logo and Problem Solving Software on Elementary Students' Problem Solving Skills.

    ERIC Educational Resources Information Center

    Palumbo, Debra L; Palumbo, David B.

    1993-01-01

    Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…

  2. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  3. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  4. A Comparison of the Effects of LOGO Use and Teacher-Directed Problem-Solving Instruction on the Problem-Solving Skills, Achievement, and Attitudes of Low, Average, and High Achieving Junior High School Learners.

    ERIC Educational Resources Information Center

    Dalton, David W.

    This comparison of the effects of LOGO use with the use of teacher-directed problem-solving instruction, and with conventional mathematics instruction, focused on the problem-solving ability, basic skills achievement, and attitudes of junior high school learners. Students (N=97) in five seventh grade mathematics classes were systematically…

  5. Effects of Instructional Preparation Strategies on Problem Solving in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2010-01-01

    This study reports the effects of different types of instructional preparation strategies on the problem solving performance of college students taking an introductory physics class. Students were divided into four equally skilled groups and solved the same physics problems after receiving different instructional preparations (engaging in…

  6. How Instructional Design Experts Use Knowledge and Experience to Solve Ill-Structured Problems

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.; York, Cindy S.; Stickman, Ann; Wu, Xuemei (Lily); Zurek, Stacey; Goktas, Yuksel

    2008-01-01

    This study examined how instructional design (ID) experts used their prior knowledge and previous experiences to solve an ill-structured instructional design problem. Seven experienced designers used a think-aloud procedure to articulate their problem-solving processes while reading a case narrative. Results, presented in the form of four…

  7. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  8. The Effects of Schema-Based Instruction on the Mathematical Problem Solving of Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Peltier, Corey; Vannest, Kimberly J.

    2018-01-01

    The current study examines the effects of schema instruction on the problem-solving performance of four second-grade students with emotional and behavioral disorders. The existence of a functional relationship between the schema instruction intervention and problem-solving accuracy in mathematics is examined through a single case experiment using…

  9. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  10. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed

    Fuchs, Lynn S; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N; Hamlett, Carol L; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3(rd)-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed.

  11. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3rd-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed. PMID:19122881

  12. The Effects of Cognitive Strategy Instruction on Knowledge of Math Problem-Solving Processes of Middle School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia

    2013-01-01

    This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…

  13. Examining Information Problem-Solving, Knowledge, and Application Gains within Two Instructional Methods: Problem-Based and Computer-Mediated Participatory Simulation

    ERIC Educational Resources Information Center

    Newell, Terrance S.

    2008-01-01

    This study compared the effectiveness of two instructional methods--problem-based instruction within a face-to-face context and computer-mediated participatory simulation--in increasing students' content knowledge and application gains in the area of information problem-solving. The instructional methods were implemented over a four-week period. A…

  14. Solving Word Problems using Schemas: A Review of the Literature

    PubMed Central

    Powell, Sarah R.

    2011-01-01

    Solving word problems is a difficult task for students at-risk for or with learning disabilities (LD). One instructional approach that has emerged as a valid method for helping students at-risk for or with LD to become more proficient at word-problem solving is using schemas. A schema is a framework for solving a problem. With a schema, students are taught to recognize problems as falling within word-problem types and to apply a problem solution method that matches that problem type. This review highlights two schema approaches for 2nd- and 3rd-grade students at-risk for or with LD: schema-based instruction and schema-broadening instruction. A total of 12 schema studies were reviewed and synthesized. Both types of schema approaches enhanced the word-problem skill of students at-risk for or with LD. Based on the review, suggestions are provided for incorporating word-problem instruction using schemas. PMID:21643477

  15. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  16. "Wait for It . . ." Delaying Instruction Improves Mathematics Problem Solving: A Classroom Study

    ERIC Educational Resources Information Center

    Loehr, Abbey Marie; Fyfe, Emily R.; Rittle-Johnson, Bethany

    2014-01-01

    Engaging learners in exploratory problem-solving activities prior to receiving instruction (i.e., explore-instruct approach) has been endorsed as an effective learning approach. However, it remains unclear whether this approach is feasible for elementary-school children in a classroom context. In two experiments, second-graders solved mathematical…

  17. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2016-01-01

    This paper reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their…

  18. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2017-01-01

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and…

  19. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences

    PubMed Central

    Safari, Yahya; Meskini, Habibeh

    2016-01-01

    Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970

  20. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences.

    PubMed

    Safari, Yahya; Meskini, Habibeh

    2015-05-17

    Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.

  1. The effectiveness of learning with concept mapping on the science problem-solving of sixth-grade children

    NASA Astrophysics Data System (ADS)

    Jolly, Anju B.

    The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.

  2. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  3. Middle School Engineering Problem Solving Using Traditional vs. E-PBL Module Instruction

    ERIC Educational Resources Information Center

    Baele, Loren C.

    2017-01-01

    This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions.…

  4. Cognitive Principles of Problem Solving and Instruction. Final Report.

    ERIC Educational Resources Information Center

    Greeno, James G.; And Others

    Research in this project studied cognitive processes involved in understanding and solving problems used in instruction in the domain of mathematics, and explored implications of these cognitive analyses for the design of instruction. Three general issues were addressed: knowledge required for understanding problems, knowledge of the conditions…

  5. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    ERIC Educational Resources Information Center

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  6. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

    2015-01-01

    This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

  7. How Instructional Designers Solve Workplace Problems

    ERIC Educational Resources Information Center

    Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

    2013-01-01

    This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

  8. CHEMEX; Understanding and Solving Problems in Chemistry. A Computer-Assisted Instruction Program for General Chemistry.

    ERIC Educational Resources Information Center

    Lower, Stephen K.

    A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…

  9. Is Trait Rumination Associated with the Ability to Generate Effective Problem Solving Strategies? Utilizing Two Versions of the Means-Ends Problem-Solving Test.

    PubMed

    Hasegawa, Akira; Nishimura, Haruki; Mastuda, Yuko; Kunisato, Yoshihiko; Morimoto, Hiroshi; Adachi, Masaki

    This study examined the relationship between trait rumination and the effectiveness of problem solving strategies as assessed by the Means-Ends Problem-Solving Test (MEPS) in a nonclinical population. The present study extended previous studies in terms of using two instructions in the MEPS: the second-person, actual strategy instructions, which has been utilized in previous studies on rumination, and the third-person, ideal-strategy instructions, which is considered more suitable for assessing the effectiveness of problem solving strategies. We also replicated the association between rumination and each dimension of the Social Problem-Solving Inventory-Revised Short Version (SPSI-R:S). Japanese undergraduate students ( N  = 223) completed the Beck Depression Inventory-Second Edition, Ruminative Responses Scale (RRS), MEPS, and SPSI-R:S. One half of the sample completed the MEPS with the second-person, actual strategy instructions. The other participants completed the MEPS with the third-person, ideal-strategy instructions. The results showed that neither total RRS score, nor its subscale scores were significantly correlated with MEPS scores under either of the two instructions. These findings taken together with previous findings indicate that in nonclinical populations, trait rumination is not related to the effectiveness of problem solving strategies, but that state rumination while responding to the MEPS deteriorates the quality of strategies. The correlations between RRS and SPSI-R:S scores indicated that trait rumination in general, and its brooding subcomponent in particular are parts of cognitive and behavioral responses that attempt to avoid negative environmental and negative private events. Results also showed that reflection is a part of active problem solving.

  10. The development and nature of problem-solving among first-semester calculus students

    NASA Astrophysics Data System (ADS)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving performance, we observe that current instruction requires ongoing refinement to help students develop multi-register fluency and the ability to model quantitatively, as is called for in current US standards for mathematical instruction.

  11. Conflict Management in "Ad Hoc" Problem-Solving Groups: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Wallace, Les; Baxter, Leslie

    Full study of small group communication must include consideration of task and socio-emotional dimensions, especially in relation to group problem solving. Thirty small groups were tested for their reactions in various "ad hoc" conflict resolution situations. Instructions to the groups were (1) no problem-solving instructions (control),…

  12. The Impact of Guidance during Problem-Solving Prior to Instruction on Students' Inventions and Learning Outcomes

    ERIC Educational Resources Information Center

    Loibl, Katharina; Rummel, Nikol

    2014-01-01

    Multiple studies have shown benefits of problem-solving prior to instruction (cf. Productive Failure, Invention) in comparison to direct instruction. However, students' solutions prior to instruction are usually erroneous or incomplete. In analogy to "guided" discovery learning, it might therefore be fruitful to lead students…

  13. An Alternative Time for Telling: When Conceptual Instruction Prior to Problem Solving Improves Mathematical Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany

    2014-01-01

    Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…

  14. Linking Recent Research in Cognitive Science and Problem Solving to Instructional Practice: New Possibilities.

    ERIC Educational Resources Information Center

    Lippert, Renate

    The application of recent advances in the understanding of problem solving to the classroom is reviewed. Current research findings are described, and the instructional validity of these findings is illustrated by a research study of an instructional strategy called novice knowledge engineering. How various instructional strategies serve as…

  15. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  16. Effectiveness of Schema-Based Instruction for Improving Seventh-Grade Students' Proportional Reasoning: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2013-01-01

    This study examined the effect of schema-based instruction (SBI) on 7th-grade students' mathematical problem-solving performance. SBI is an instructional intervention that emphasizes the role of mathematical structure in word problems and also provides students with a heuristic to self-monitor and aid problem solving. Using a…

  17. Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction

    ERIC Educational Resources Information Center

    Zoanetti, Nathan

    2010-01-01

    This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…

  18. The Effects of Differentiating Instruction by Learning Styles on Problem Solving in Cooperative Groups

    ERIC Educational Resources Information Center

    Westbrook, Amy F.

    2011-01-01

    It can be difficult to find adequate strategies when teaching problem solving in a standard based mathematics classroom. The purpose of this study was to improve students' problem solving skills and attitudes through differentiated instruction when working on lengthy performance tasks in cooperative groups. This action research studied for 15 days…

  19. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    ERIC Educational Resources Information Center

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  20. Instructional Design-Based Research on Problem Solving Strategies

    ERIC Educational Resources Information Center

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  1. WWC Review of the Report "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    A recent study, "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability," examined the effectiveness of "Solve It!," a program intended to improve the problem-solving skills of seventh-grade math students. During the program, students are taught cognitive strategies of…

  2. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    ERIC Educational Resources Information Center

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  3. Educators' Perceptions of Their Instructional Leadership Styles and Their Problem Solving Styles

    ERIC Educational Resources Information Center

    Issa, Reine M.

    2014-01-01

    Instructional leadership is not well-defined in the literature. The term has been used to describe the principal's role as an instructional leader. However, principals are not the only instructional leaders. Teachers are as well. In this study, data on leadership and problem solving style were collected one time from 378 educators in K-12 school…

  4. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    ERIC Educational Resources Information Center

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  5. Acquisition of Visual Perceptual Skills from Worked Examples: Learning to Interpret Electrocardiograms (ECGs)

    ERIC Educational Resources Information Center

    van den Berge, Kees; van Gog, Tamara; Mamede, Silvia; Schmidt, Henk G.; van Saase, Jan L. C. M.; Rikers, Remy M. J. P.

    2013-01-01

    Research has shown that for acquiring problem-solving skills, instruction consisting of studying worked examples is more effective and efficient for novice learners than instruction consisting of problem-solving. This study investigated whether worked examples would also be a useful instructional format for the acquisition of visual perceptual…

  6. Classroom Discussion and Individual Problem-Solving in the Teaching of History: Do Different Instructional Approaches Affect Interest in Different Ways?

    ERIC Educational Resources Information Center

    Del Favero, Laura; Boscolo, Pietro; Vidotto, Giulio; Vicentini, Marco

    2007-01-01

    In this study, 100 Italian eighth graders were divided into two groups to compare the effects of two instructional interventions--the first based on problem-solving through discussion, the second on individual problem-solving--on students' learning of two historical topics (World War I and the economic boom), interest and self-perception of…

  7. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  8. Examining the Role of Web 2.0 Tools in Supporting Problem Solving during Case-Based Instruction

    ERIC Educational Resources Information Center

    Koehler, Adrie A.; Newby, Timothy J.; Ertmer, Peggy A.

    2017-01-01

    As learners solve complex problems, such as the ones present in case narratives, they need instructional support. Potentially, Web 2.0 applications can be useful to learners during case-based instruction (CBI), as their affordances offer creative and collaborative opportunities. However, there is limited research available on how the affordances…

  9. A Case Study of Design and Usability Evaluation of the Collaborative Problem Solving Instructional Platform System

    ERIC Educational Resources Information Center

    Chao, Jen-Yi; Chao, Shu-Jen; Yao, Lo-Yi; Liu, Chuan-His

    2016-01-01

    This study used Focus Group to analyze user requirements for user interface so as to understand what capabilities of the Collaborative Problem Solving (CPS) Instructional Platform were expected by users. After 12 focus group interviews, the following four functions had been identified as essential to the CPS Instructional Platform: CPS…

  10. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  11. Research on a Unique Instructional Framework for Elevating Students’ Quantitative Problem Solving Abilities

    NASA Astrophysics Data System (ADS)

    Prather, Edward E.; Wallace, Colin Scott

    2018-06-01

    We present an instructional framework that allowed a first time physics instructor to improve students quantitative problem solving abilities by more than a letter grade over what was achieved by students in an experienced instructor’s course. This instructional framework uses a Think-Pair-Share approach to foster collaborative quantitative problem solving during the lecture portion of a large enrollment introductory calculus-based mechanics course. Through the development of carefully crafted and sequenced TPS questions, we engage students in rich discussions on key problem solving issues that we typically only hear about when a student comes for help during office hours. Current work in the sophomore E&M course illustrates that this framework is generalizable to classes beyond the introductory level and for topics beyond mechanics.

  12. A Meta-Analysis of Schema Instruction on the Problem-Solving Performance of Elementary School Students

    ERIC Educational Resources Information Center

    Peltier, Corey; Vannest, Kimberly J.

    2017-01-01

    A variety of instructional practices have been recommended to increase the problem-solving (PS) performance of elementary school children. The purpose of this meta-analysis was to systematically review research on the use of schema instruction to increase the PS performance of elementary school-age students. A total of 21 studies, with 3,408…

  13. Mathematics Word Problem Solving: An Investigation into Schema-Based Instruction in a Computer-Mediated Setting and a Teacher-Mediated Setting with Mathematically Low-Performing Students

    ERIC Educational Resources Information Center

    Leh, Jayne

    2011-01-01

    Substantial evidence indicates that teacher-delivered schema-based instruction (SBI) facilitates significant increases in mathematics word problem solving (WPS) skills for diverse students; however research is unclear whether technology affordances facilitate superior gains in computer-mediated (CM) instruction in mathematics WPS when compared to…

  14. The Effects of Varied Visual Organizational Strategies within Computer-Based Instruction on Factual, Conceptual and Problem Solving Learning.

    ERIC Educational Resources Information Center

    Haag, Brenda Bannan; Grabowski, Barbara L.

    The purpose of this exploratory study was to examine the effectiveness of learner manipulation of visuals with and without organizing cues in computer-based instruction on adults' factual, conceptual, and problem-solving learning. An instructional unit involving the physiology and the anatomy of the heart was used. A post-test only control group…

  15. Computer Programming: A Medium for Teaching Problem Solving.

    ERIC Educational Resources Information Center

    Casey, Patrick J.

    1997-01-01

    Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…

  16. Problem Solving with Guided Repeated Oral Reading Instruction

    ERIC Educational Resources Information Center

    Conderman, Greg; Strobel, Debra

    2006-01-01

    Many students with disabilities require specialized instructional interventions and frequent progress monitoring in reading. The guided repeated oral reading technique promotes oral reading fluency while providing a reliable data-based monitoring system. This article emphasizes the importance of problem-solving when using this reading approach.

  17. The effect of mathematical model development on the instruction of acceleration to introductory physics students

    NASA Astrophysics Data System (ADS)

    Sauer, Tim Allen

    The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.

  18. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  19. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  20. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  1. Commentary:Deja vu All Over Again: What Will It Take To Solve Big Instructional Problems.

    ERIC Educational Resources Information Center

    Ysseldyke, Jim

    2000-01-01

    Presents a response to "School Psychology from an Instructional Perspective: Solving Big, Not Little Problems" (this issue). The author supports Shapiro's arguments but worries much about the barriers that would have to be overcome to enable such a paradigm shift to occur. (GCP)

  2. Learning Geometry Problem Solving by Studying Worked Examples: Effects of Learner Guidance and Expertise

    ERIC Educational Resources Information Center

    Bokosmaty, Sahar; Sweller, John; Kalyuga, Slava

    2015-01-01

    Research has demonstrated that instruction that relies heavily on studying worked examples is more effective for less experienced learners compared to instruction emphasizing problem solving. However, the guidance associated with studying some worked examples may reduce the performance of more experienced learners. This study investigated…

  3. The Computer as a Tutorial Laboratory: The Stanford BIP Project.

    ERIC Educational Resources Information Center

    Barr, Avron; And Others

    The BASIC Instructional Program (BIP) is an interactive problem-solving laboratory that offers tutorial assistance to students solving introductory programing problems in the BASIC language. After a brief review of the rationale and origins of the BIP instructional system, the design and implementation of BIP's curriculum information network are…

  4. Integrating Study Skills and Problem Solving into Remedial Mathematics

    ERIC Educational Resources Information Center

    Cornick, Jonathan; Guy, G. Michael; Beckford, Ian

    2015-01-01

    Students at a large urban community college enrolled in seven classes of an experimental remedial algebra programme, which integrated study skills instruction and collaborative problem solving. A control group of seven classes was taught in a traditional lecture format without study skills instruction. Student performance in the course was…

  5. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

    ERIC Educational Resources Information Center

    Szetela, W.; Super, D.

    A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

  6. Distributed Cognition as a Lens to Understand the Effects of Scaffolds: The Role of Transfer of Responsibility

    ERIC Educational Resources Information Center

    Belland, Brian R.

    2011-01-01

    Problem solving is an important skill in the knowledge economy. Research indicates that the development of problem solving skills works better in the context of instructional approaches centered on real-world problems. But students need scaffolding to be successful in such instruction. In this paper I present a conceptual framework for…

  7. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  8. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  9. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  10. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  11. The Effect of Cognitively Guided Instruction on Primary Students' Math Achievement, Problem-Solving Abilities and Teacher Questioning

    ERIC Educational Resources Information Center

    Medrano, Juan

    2012-01-01

    The purpose of this study is to impact the teaching and learning of math of 2nd through 4th grade math students at Porfirio H. Gonzales Elementary School. The Cognitively Guided Instruction (CGI) model serves as the independent variable for this study. Its intent is to promote math instruction that emphasizes problem-solving to a greater degree…

  12. Flexibility in Problem Solving: The Case of Equation Solving

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2008-01-01

    A key learning outcome in problem-solving domains is the development of flexible knowledge, where learners know multiple strategies and adaptively choose efficient strategies. Two interventions hypothesized to improve flexibility in problem solving were experimentally evaluated: prompts to discover multiple strategies and direct instruction on…

  13. Technologies as Rural Special Education Problem Solvers--A Status Report and Successful Strategies.

    ERIC Educational Resources Information Center

    Helge, Doris

    Rural schools can help solve their special education problems by using advanced technology to provide instructional support (computer managed instruction, satellite television, library searches, resource networks, on-line testing), instructional applications (computer assisted instruction, reading machines, mobile vans, instructional television),…

  14. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  15. Modifying a Research-Based Problem-Solving Intervention to Improve the Problem-Solving Performance of Fifth and Sixth Graders With and Without Learning Disabilities.

    PubMed

    Krawec, Jennifer; Huang, Jia

    The purpose of the present study was to test the efficacy of a modified cognitive strategy instructional intervention originally developed to improve the mathematical problem solving of middle and high school students with learning disabilities (LD). Fifth and sixth grade general education mathematics teachers and their students of varying ability (i.e., average-achieving [AA] students, low-achieving [LA] students, and students with LD) participated in the research study. Several features of the intervention were modified, including (a) explicitness of instruction, (b) emphasis on meta-cognition, (c) focus on problem-solving prerequisites, (d) extended duration of initial intervention, and (e) addition of visual supports. General education math teachers taught all instructional sessions to their inclusive classrooms. Curriculum-based measures (CBMs) of math problem solving were administered five times over the course of the year. A multilevel model (repeated measures nested within students and students nested within schools) was used to analyze student progress on CBMs. Though CBM scores in the intervention group were initially lower than that of the comparison group, intervention students improved significantly more in the first phase, with no differences in the second phase. Implications for instruction are discussed as well as directions for future research.

  16. Mathematics Teaching as Problem Solving: A Framework for Studying Teacher Metacognition Underlying Instructional Practice in Mathematics.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    1998-01-01

    Uses a "teaching as problem solving" perspective to examine the components of metacognition underlying the instructional practice of seven experienced and seven beginning secondary-school mathematics teachers. Data analysis of observations, lesson plans, videotapes, and audiotapes of structured interviews suggests that the metacognition of…

  17. Action Research and Response to Intervention: Bridging the Discourse Divide

    ERIC Educational Resources Information Center

    Little, Mary E.

    2012-01-01

    The purpose of this article is to define and clarify the process of instructional problem-solving using assessment data within action research (AR) and Response to Intervention (RtI). Similarities between AR and RtI are defined and compared. Lastly, specific resources and examples of the instructional problem-solving process of AR within…

  18. Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language

    ERIC Educational Resources Information Center

    Unuakhalu, Mike F.

    2009-01-01

    This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…

  19. A Problem-Solving Template for Integrating Qualitative and Quantitative Physics Instruction

    ERIC Educational Resources Information Center

    Fink, Janice M.; Mankey, Gary J.

    2010-01-01

    A problem-solving template enables a methodology of instruction that integrates aspects of both sequencing and conceptual learning. It is designed to enhance critical-thinking skills when used within the framework of a learner-centered approach to teaching, where regular, thorough assessments of student learning are key components of the…

  20. Failing to Learn: Towards a Unified Design Approach for Failure-Based Learning

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Rong, Hui; Choi, Ikseon

    2015-01-01

    To date, many instructional systems are designed to support learners as they progress through a problem-solving task. Often these systems are designed in accordance with instructional design models that progress the learner efficiently through the problem-solving process. However, theories from various fields have discussed failure as a strategic…

  1. Cognitive Science and Instructional Technology: Improvements in Higher Order Thinking Strategies.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.

    This paper examines the cognitive processes associated with higher-order thinking strategies--i.e., cognitive processes directly associated with the employment of knowledge in the service of problem solving and creativity--in order to more clearly define a prescribed instructional method to improve problem-solving skills. The first section of the…

  2. Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction

    ERIC Educational Resources Information Center

    Muller, Orna; Haberman, Bruria

    2008-01-01

    Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…

  3. Computer-Presented Organizational/Memory Aids as Instruction for Solving Pico-Fomi Problems.

    ERIC Educational Resources Information Center

    Steinberg, Esther R.; And Others

    1985-01-01

    Describes investigation of effectiveness of computer-presented organizational/memory aids (matrix and verbal charts controlled by computer or learner) as instructional technique for solving Pico-Fomi problems, and the acquisition of deductive inference rules when such aids are present. Results indicate chart use control should be adapted to…

  4. Improving Creative Problem-Solving in a Sample of Third Culture Kids

    ERIC Educational Resources Information Center

    Lee, Young Ju; Bain, Sherry K.; McCallum, R. Steve

    2007-01-01

    We investigated the effects of divergent thinking training (with explicit instruction) on problem-solving tasks in a sample of Third Culture Kids (Useem and Downie, 1976). We were specifically interested in whether the children's originality and fluency in responding increased following instruction, not only on classroom-based worksheets and the…

  5. Unifying Computer-Based Assessment across Conceptual Instruction, Problem-Solving, and Digital Games

    ERIC Educational Resources Information Center

    Miller, William L.; Baker, Ryan S.; Rossi, Lisa M.

    2014-01-01

    As students work through online learning systems such as the Reasoning Mind blended learning system, they often are not confined to working within a single educational activity; instead, they work through various different activities such as conceptual instruction, problem-solving items, and fluency-building games. However, most work on assessing…

  6. Perspectives on Problem Solving and Instruction

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  7. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  8. Do Scaffolded Supports between Aspects of Problem Solving Enhance Assessment Usability?

    ERIC Educational Resources Information Center

    McCoy, Jan D.; Braun-Monegan, Jenelle; Bettesworth, Leanne; Tindal, Gerald

    2015-01-01

    While problem solving as an instructional technique is widely advocated, educators are often challenged in effectively assessing student skill in this area. Students failing to solve a problem might fail in any of several aspects of the effort. The purpose of this research was to validate a scaffolded technique for assessing problem solving in…

  9. Goals and everyday problem solving: manipulating goal preferences in young and older adults.

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2010-11-01

    In the present study, we examined the link between goal and problem-solving strategy preferences in 130 young and older adults using hypothetical family problem vignettes. At baseline, young adults preferred autonomy goals, whereas older adults preferred generative goals. Imagining an expanded future time perspective led older adults to show preferences for autonomy goals similar to those observed in young adults but did not eliminate age differences in generative goals. Autonomy goals were associated with more self-focused instrumental problem solving, whereas generative goals were related to more other-focused instrumental problem solving in the no-instruction and instruction conditions. Older adults were better at matching their strategies to their goals than young adults were. This suggests that older adults may become better at selecting their strategies in accordance with their goals. Our findings speak to a contextual approach to everyday problem solving by showing that goals are associated with the selection of problem-solving strategies.

  10. The Physics Workbook: A Needed Instructional Device.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    2003-01-01

    Points out the importance of problem solving as a fundamental skill and how students struggle with problem solving in physics courses. Describes a workbook developed as a solution to students' struggles that features simple exercises and advanced problem solving. (Contains 12 references.) (Author/YDS)

  11. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…

  12. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…

  13. A Comparison of Two Mathematics Problem-Solving Strategies: Facilitate Algebra-Readiness

    ERIC Educational Resources Information Center

    Xin, Yan Ping; Zhang, Dake; Park, Joo Young; Tom, Kinsey; Whipple, Amanda; Si, Luo

    2011-01-01

    The authors compared a conceptual model-based problem-solving (COMPS) approach with a general heuristic instructional approach for teaching multiplication-division word-problem solving to elementary students with learning problems (LP). The results indicate that only the COMPS group significantly improved, from pretests to posttests, their…

  14. Dynamic Assessment of Algebraic Learning in Predicting Third Graders’ Development of Mathematical Problem Solving

    PubMed Central

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.

    2008-01-01

    Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957

  15. Scaffolding the Development of Problem-Solving Skills in Chemistry: Guiding Novice Students out of Dead Ends and False Starts

    ERIC Educational Resources Information Center

    Yuriev, Elizabeth; Naidu, Som; Schembri, Luke S.; Short, Jennifer L.

    2017-01-01

    To scaffold the development of problem-solving skills in chemistry, chemistry educators are exploring a variety of instructional techniques. In this study, we have designed, implemented, and evaluated a problem-solving workflow--''Goldilocks Help''. This workflow builds on work done in the field of problem solving in chemistry and provides…

  16. Teaching Mathematics Problem Solving to Students with Limited English Proficiency through Nested Spiral Approach.

    ERIC Educational Resources Information Center

    Chyu, Chi-Oy W.

    The Nested Spiral Approach (NSA) is an integrated instructional approach used to promote the motivated learning of mathematics problem solving in limited-English-proficient (LEP) students. The NSA is described and a trial use is discussed. The approach extends, elaborates, and supplements existing education and instruction theories to help LEP…

  17. Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task

    ERIC Educational Resources Information Center

    Chrysikou, Evangelia G.; Weisberg, Robert W.

    2005-01-01

    Two experiments examined possible negative transfer in nonexperts from the use of pictorial examples in a laboratory design problem-solving situation. In Experiment 1, 89 participants were instructed to "think aloud" and were assigned to 1 of 3 conditions: (a) control (standard instructions), (b) fixation (inclusion of a problematic…

  18. Using Explicit C-R-A Instruction to Teach Fraction Word Problem Solving to Low-Performing Asian English Learners

    ERIC Educational Resources Information Center

    Kim, Sun A.; Wang, Peishi; Michaels, Craig A.

    2015-01-01

    This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…

  19. Examination of a Social Problem-Solving Intervention to Treat Selective Mutism

    ERIC Educational Resources Information Center

    O'Reilly, Mark; McNally, Deirdre; Sigafoos, Jeff; Lancioni, Giulio E.; Green, Vanessa; Edrisinha, Chaturi; Machalicek, Wendy; Sorrells, Audrey; Lang, Russell; Didden, Robert

    2008-01-01

    The authors examined the use of a social problem-solving intervention to treat selective mutism with 2 sisters in an elementary school setting. Both girls were taught to answer teacher questions in front of their classroom peers during regular classroom instruction. Each girl received individualized instruction from a therapist and was taught to…

  20. Teaching Mathematical Problem Solving to Middle School Students in Math, Technology Education, and Special Education Classrooms

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Rueda, Enrique; Hung, Ya-Hui; Danneker, Jeanne

    2004-01-01

    This study compared two approaches for teaching sixth-grade middle school students to solve math problems in math, technology education, and special education classrooms. A total of 17 students with disabilities and 76 students without disabilities were taught using either enhanced anchored instruction (EAI) or text-based instruction coupled with…

  1. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  2. Do Variations of Science Teaching Approaches Make Difference in Shaping Student Content and Problem Solving Achievement across Different Racial/Ethnic Groups?

    ERIC Educational Resources Information Center

    Gao, Su; Wang, Jian

    2016-01-01

    Students' frequent exposure to inquiry-based science teaching is presumed more effective than their exposure to traditional didactic instruction in helping improve competence in content knowledge and problem solving. Framed through theoretical perspectives of inquiry-based instruction and culturally relevant pedagogy, this study examines this…

  3. Case-Based Instruction in Post-Secondary Education: Developing Students' Problem-Solving Expertise.

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.

    This study was designed to explore changes in students' problem-solving skills as they analyzed instructional design case studies during a semester-long course. Nineteen students at two Midwestern universities analyzed six to ten case studies as part of their course assignments. Both quantitative and qualitative data were collected, with students'…

  4. The Possible Impact of Problem-Solving Method of Instruction on Exceptional Students' Creativity

    ERIC Educational Resources Information Center

    Fard, Adnan Eshrati; Bahador, Ali; Moghadam, Mahsa Nazemi; Rajabi, Hooman; Moradi, Alinoor Noor

    2014-01-01

    The current study aimed at investigating the possible impact of the problem-solving method of instruction on the exceptional students' creativity. A sample of 50 male exceptional (Mild intellectual disability) students studying in the third grade of junior high school was chosen and divided into two equal groups. Both groups filled out the…

  5. Glogs as Non-Routine Problem Solving Tools in Mathematics

    ERIC Educational Resources Information Center

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  6. [The effects of instruction about strategies for efficient calculation].

    PubMed

    Suzuki, Masayuki; Ichikawa, Shin'ichi

    2016-06-01

    Calculation problems such as "12x7÷3" can be solved rapidly and easily by using certain techniques; we call these problems "efficient calculation problems." However, it has been pointed out that many students do not always solve them efficiently. In the present study, we examined the effects of an intervention on 35 seventh grade students (23 males, 12 females). The students were instructed to use an overview strategy that stated, "Think carefully about the whole expression", and were then taught three sub-strategies. The results showed that students solved similar problems efficiently after the intervention and the effects were preserved for five months.

  7. Concept-Rich Mathematics Instruction: Building a Strong Foundation for Reasoning and Problem Solving

    ERIC Educational Resources Information Center

    Ben-Hur, Meir

    2006-01-01

    Fact-filled textbooks that stress memorization and drilling are not very good for teaching students how to think mathematically and solve problems. But this is a book that comes to the rescue with an instructional approach that helps students in every grade level truly understand math concepts so they can apply them on high-stakes assessments,…

  8. An Investigation of Students' Performance after Peer Instruction with Stepwise Problem-Solving Strategies

    ERIC Educational Resources Information Center

    Gok, Tolga

    2015-01-01

    The purpose of this study was to examine the effects of strategic problem solving with peer instruction on college students' performance in physics. The students enrolled in 2 sections of a physics course were studied; 1 section was the treatment group and the other section was the comparison group. Students in the treatment group received peer…

  9. Enhancing Instructional Problem Solving: An Efficient System for Assisting Struggling Learners. Practical Intervention in the Schools Series

    ERIC Educational Resources Information Center

    Begeny, John C.; Schulte, Ann C.; Johnson, Kent

    2012-01-01

    This book presents a schoolwide model of instructional support designed to make the most of available time, resources, and personnel--one that is also fully compatible with other problem-solving models, such as response to intervention. The authors provide a comprehensive and cohesive framework for linking assessment and intervention. They show…

  10. The Application of Theoretical Factors in Teaching Problem Solving by Programed Instruction. HumRRO-TR-68-4.

    ERIC Educational Resources Information Center

    Seidel, Robert J.; Hunter, Harold G.

    In continuing research into the technology of training, a study was undertaken to devise guidelines for applying programed instruction to training courses that involve the learning of principles and rules for use in problem solving. As a research vehicle, a portion of the material in the Army's Programing Specialist Course was programed to explore…

  11. Toward Theory-Based Instruction in Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Heller, Joan I.; And Others

    Several empirical and theoretical analyses related to scientific problem-solving are reviewed, including: detailed studies of individuals at different levels of expertise, and computer models simulating some aspects of human information processing during problem solving. Analysis of these studies has revealed many facets about the nature of the…

  12. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    ERIC Educational Resources Information Center

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  13. Solving Problems with Charts & Tables. Pipefitter.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    Developed as part of the ABCs of Construction National Workplace Literacy Project, this instructional module is designed to help individuals employed as pipefitters learn to solve problems with charts and tables. Outlined in the first section is a five-step procedure for solving problems involving tables and/or charts: identifying the question to…

  14. Teaching People to Manage Constraints: Effects on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.

    2013-01-01

    Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…

  15. Curricular Reforms That Improve Students' Attitudes and Problem-Solving Performance

    ERIC Educational Resources Information Center

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2014-01-01

    We present the most recent steps undertaken to reform the introductory algebra-based course at The George Washington University. The reform sought to help students improve their problem-solving performance. Our pedagogy relies on didactic constructs such as the" GW-ACCESS problem-solving protocol," "instructional sequences" and…

  16. Students' Problem Solving Approaches for Developing Geologic Models in the Field

    ERIC Educational Resources Information Center

    Balliet, Russell N.; Riggs, Eric M.; Maltese, Adam V.

    2015-01-01

    Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods within geology and other science fields. Recent work has highlighted many aspects of fieldwork, but the problem solving behaviors displayed by geologists during fieldwork and the associated cognitive…

  17. Using the concrete-representational-abstract approach to support students with intellectual disability to solve change-making problems.

    PubMed

    Bouck, Emily; Park, Jiyoon; Nickell, Barb

    2017-01-01

    The Concrete-Representational-Abstract (CRA) instructional approach supports students with disabilities in mathematics. Yet, no research explores the use of the CRA approach to teach functional-based mathematics for this population and limited research explores the CRA approach for students who have a disability different from a learning disability, such as an intellectual disability. This study investigated the effects of using the CRA approach to teach middle school students in a self-contained mathematics class focused on functional-based mathematics to solve making change problems. Researchers used a multiple probe across participants design to determine if a functional relation existed between the CRA strategy and students' ability to solve making change problems. The study of consisted of five-to-eight baseline sessions, 9-11 intervention sessions, and two maintenance sessions for each student. Data were collected on percentage of making change problems students solved correctly. The CRA instructional strategy was effective in teaching all four participants to correctly solve the problems; a functional relation between the CRA approach and solving making change with coins problems across all participants was found. The CRA instructional approach can be used to support students with mild intellectual disability or severe learning disabilities in learning functional-based mathematics, such as purchasing skills (i.e., making change). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    ERIC Educational Resources Information Center

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  19. Weighing the Benefits of Anchored Math Instruction for Students with Disabilities in General Education Classes.

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Hung, Ya-Hui

    2002-01-01

    A study examined the effectiveness of enhanced anchor instruction and traditional problem instruction in improving the problem-solving performance of 42 seventh-graders with and without disabilities in inclusive classrooms. Students without disabilities profited from contextualized instruction, but benefits for the students with disabilities were…

  20. Assessment of the Effects of Problem Solving Instructional Strategies on Students' Achievement and Retention in Chemistry with Respect to Location in Rivers State

    ERIC Educational Resources Information Center

    Nbina, Jacobson Barineka; Obomanu, B. Joseph

    2011-01-01

    We report a study focused on how problem-solving instructional strategies would affect students' achievement and retention in Chemistry with particular reference to River State. A pre-test, post-test, non-equivalent control group design was adopted. Two research questions and two hypotheses were respectively answered and tested. Purposive and…

  1. Authorized Course of Instruction for the Quinmester Program. Science: Scientific Approach to Solving Problems; Who's Who; and What in the World's Going On.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…

  2. Dynamics of Strategies-Based Language Instruction: A Study of Reading Comprehension and Problem Solving Abilities via Structural Equation Modeling

    ERIC Educational Resources Information Center

    Ghahari, Shima; Basanjideh, Mahin

    2015-01-01

    The study aimed at exploring the psychological as well as educational outcomes of strategies awareness and use. We set out to examine the effect of reading strategic investment on language achievement and problem solving ability (PSA). The participating EFL learners were heterogeneous in terms of reading instruction; two of the intact groups had…

  3. Problem Solving Software: What Does It Teach?

    ERIC Educational Resources Information Center

    Duffield, Judith A.

    The purpose of this study was to examine the potential of computer-assisted instruction (CAI) for teaching problem solving skills. It was conducted in three phases. During the first phase, two pieces of problem solving software, "The King's Rule" and "Safari Search," were identified and analyzed. During the second phase, two groups of six…

  4. Introduction to Problem Solving: Strategies for the Elementary Math Classroom.

    ERIC Educational Resources Information Center

    O'Connell, Susan

    This book is designed to help better understand problem-solving instruction. It presents information on helping students understand the problem-solving process as well as information on teaching specific strategies, including: Choose an Operation; Find a Pattern; Make a Table; Make an Organized List; Draw a Picture or Diagram; Guess, Check, and…

  5. An Information-Summarising Instruction Strategy for Improving the Web-Based Problem Solving Abilities of Students

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2011-01-01

    As knowledge rapidly expands and accumulates, training and assessing students' information searching ability for solving problems on the Internet has become an important and challenging issue. This research aims to improve the web-based problem solving abilities of primary school students by employing an information summarising approach for…

  6. Against All Odds: Problem-Solving Strategies and Behavioural Characteristics of Novice Students

    ERIC Educational Resources Information Center

    Chang, Pei-Fen; Lin, Miao-Chen

    2015-01-01

    This study investigates problem-solving difficulties of novices in a classroom setting, using a German instructional tool, the Fischertechnik kit of approximately 400 parts. In order to analyse the students' thinking processes as they solved the problems, verbal protocol analysis (VPA) was used to record the students'' thinking processes and…

  7. Evaluation of Undergraduate Geologists' Problem Solving and Cognition during Field Exams Using a Mixed Methods Approach

    ERIC Educational Resources Information Center

    Balliet, Russell N.

    2012-01-01

    Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods. Recent progress has been made in this area but the problem solving behaviors displayed by geologists during fieldwork and the associated underlying cognition remains poorly understood. We present…

  8. Research Utilizing Problem Solving (RUPS) - Classroom Version. Description of Teacher Inservice Education Materials.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.

    The workshop instructional materials described here are designed to try out a systematic problem solving process as a way of working toward improvements in the school setting. Topics include diagnosis using force field technique, small group dynamics, planning for action, and planning a RUPS (Research Using Problem Solving) project. This…

  9. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    ERIC Educational Resources Information Center

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  10. Deaf and hard of hearing students' problem-solving strategies with signed arithmetic story problems.

    PubMed

    Pagliaro, Claudia M; Ansell, Ellen

    2012-01-01

    The use of problem-solving strategies by 59 deaf and hard of hearing children, grades K-3, was investigated. The children were asked to solve 9 arithmetic story problems presented to them in American Sign Language. The researchers found that while the children used the same general types of strategies that are used by hearing children (i.e., modeling, counting, and fact-based strategies), they showed an overwhelming use of counting strategies for all types of problems and at all ages. This difference may have its roots in language or instruction (or in both), and calls attention to the need for conceptual rather than procedural mathematics instruction for deaf and hard of hearing students.

  11. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    ERIC Educational Resources Information Center

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  12. Cognitive patterns of neuroanatomy concepts: Knowledge organizations that emerge from problem solving versus information gathering

    NASA Astrophysics Data System (ADS)

    Weidner, Jeanne Margaret O'malley

    2000-10-01

    This study was motivated by some of the claims that are found in the literature on Problem-Based Learning (PBL). This instructional technique, which uses case studies as its primary instructional tool, has been advanced as an alternative to traditional instruction in order to foster more meaningful, integrative learning of scientific concepts. Several of the advantages attributed to Problem-Based Learning are that it (1) is generally preferred by students because it appears to foster a more nurturing and enjoyable learning experience, (2) fosters greater retention of knowledge and concepts acquired, and (3) results in increased ability to apply this knowledge toward solving new problems. This study examines the differences that result when students learn neuroanatomy concepts under two instructional contexts: problem solving vs. information gathering. The technological resource provided to students to support learning under each of these contexts was the multimedia program BrainStorm: An Interactive Neuroanatomy Atlas (Coppa & Tancred, 1995). The study explores the influence of context with regard to subjects' performance on objective post-tests, organization of knowledge as measured by Pathfinder Networks, differential use of the multimedia software and discourse differences emerging from the transcripts. The findings support previous research in the literature that problem-solving results in less knowledge acquisition in the short term, greater retention of material over time, and a subjects' preference for the method. However, both the degree of retention and preference were influenced by subjects' prior knowledge of the material in the exercises, as there was a significant difference in performance between the two exercises: for the exercise about which subjects appeared to have greater background information, memory decay was less, and subject attitude toward the problem solving instructional format was more favorable, than for the exercise for which subjects had less prior knowledge. Subjects also used the software differently under each format with regard to modules accessed, time spent in modules, and types of information sought. In addition, analyses of the transcripts showed more numerous occurrences of explanations and summarizations in the problem-solving context, compared to the information gathering context. The attempts to show significant differences between the contexts by means of Pathfinder analyses were less than successful.

  13. Knowledge based translation and problem solving in an intelligent individualized instruction system

    NASA Technical Reports Server (NTRS)

    Jung, Namho; Biegel, John E.

    1994-01-01

    An Intelligent Individualized Instruction I(sup 3) system is being built to provide computerized instruction. We present the roles of a translator and a problem solver in an intelligent computer system. The modular design of the system provides for easier development and allows for future expansion and maintenance. CLIPS modules and classes are utilized for the purpose of the modular design and inter module communications. CLIPS facts and rules are used to represent the system components and the knowledge base. CLIPS provides an inferencing mechanism to allow the I(sup 3) system to solve problems presented to it in English.

  14. The Acquisition of Problem-Solving Skills in Mathematics: How Animations Can Aid Understanding of Structural Problem Features and Solution Procedures

    ERIC Educational Resources Information Center

    Scheiter, Katharina; Gerjets, Peter; Schuh, Julia

    2010-01-01

    In this paper the augmentation of worked examples with animations for teaching problem-solving skills in mathematics is advocated as an effective instructional method. First, in a cognitive task analysis different knowledge prerequisites are identified for solving mathematical word problems. Second, it is argued that so called hybrid animations…

  15. Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

    ERIC Educational Resources Information Center

    Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.

    2016-01-01

    Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…

  16. Equity and Access: All Students Are Mathematical Problem Solvers

    ERIC Educational Resources Information Center

    Franz, Dana Pompkyl; Ivy, Jessica; McKissick, Bethany R.

    2016-01-01

    Often mathematical instruction for students with disabilities, especially those with learning disabilities, includes an overabundance of instruction on mathematical computation and does not include high-quality instruction on mathematical reasoning and problem solving. In fact, it is a common misconception that students with learning disabilities…

  17. Designs of goal-free problems for trigonometry learning

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Maulidya, S. R.

    2018-03-01

    This paper describes the designs of goal-free problems particularly for trigonometry, which may be considered a difficult topic for high school students.Goal-free problem is an instructional design developed based on a Cognitive load theory (CLT). Within the design, instead of asking students to solve a specific goal of a mathematics problem, the instruction is to solve as many Pythagoras as possible. It was assumed that for novice students, goal-free problems encourage students to pay attention more to the given information and the mathematical principles that can be applied to reveal the unknown variables. Hence, students develop more structured knowledge while solving the goal-free problems. The resulted design may be used in regular mathematics classroom with some adjustment on the difficulty level and the allocated lesson time.

  18. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  19. The Effects of the Computer-Based Instruction on the Achievement and Problem Solving Skills of the Science and Technology Students

    ERIC Educational Resources Information Center

    Serin, Oguz

    2011-01-01

    This study aims to investigate the effects of the computer-based instruction on the achievements and problem solving skills of the science and technology students. This is a study based on the pre-test/post-test control group design. The participants of the study consist of 52 students; 26 in the experimental group, 26 in the control group. The…

  20. Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique

    NASA Astrophysics Data System (ADS)

    Rakkapao, S.; Pengpan, T.; Srikeaw, S.; Prasitpong, S.

    2014-01-01

    This study aims to investigate the use of the predict-observe-explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials.

  1. Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.

  2. Developing Instruction Materials Based on Joyful PBL to Improve Students Mathematical Representation Ability

    ERIC Educational Resources Information Center

    Minarni, Ani; Napitupulu, E. Elvis

    2017-01-01

    Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…

  3. Enhancing Learners' Problem Solving Performance in Mathematics: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Dhlamini, Joseph J.

    2016-01-01

    This paper reports on a pilot study that investigated the effect of implementing a context-based problem solving instruction (CBPSI) to enhance the problem solving performance of high school mathematics learners. Primarily, the pilot study aimed: (1) to evaluate the efficiency of data collection instruments; and, (2) to test the efficacy of CBPSI…

  4. A Description of the Strategic Knowledge of Experts Solving Transmission Genetics Problems.

    ERIC Educational Resources Information Center

    Collins, Angelo

    Descriptions of the problem-solving strategies of experts solving realistic, computer-generated transmission genetics problems are presented in this paper and implications for instruction are discussed. Seven experts were involved in the study. All of the experts had a doctoral degree and experience in both teaching and doing research in genetics.…

  5. Clinical Problem Solving Exercises for Pre-Clinical Medical Education: A Design, Implementation and Preliminary Evaluation.

    ERIC Educational Resources Information Center

    Bordage, Georges

    Clinical problem solving exercises for preclinical medical education that were developed at Michigan State University School of Osteopathic Medicine are described. Two types of outcomes were set as priorities in the design and implementation of the problem solving sessions: small group peer interactions as instructional and evaluative resources;…

  6. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  7. When Best Intentions Go Awry: The Failures of Concrete Representations to Help Solve Probability Word Problems

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.

    2011-01-01

    Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…

  8. Do Cases Teach Themselves? A Comparison of Case Library Prompts in Supporting Problem-Solving during Argumentation

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.

    2017-01-01

    Theorists have argued instructional strategies that emphasize ill-structured problem solving are an effective means to support higher order learning skills such as argumentation. However, argumentation is often difficult because novices lack the expertise or experience needed to solve contextualized problems. One way to supplement this lack of…

  9. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  10. The Benefits of Computer-Generated Feedback for Mathematics Problem Solving

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Rittle-Johnson, Bethany

    2016-01-01

    The goal of the current research was to better understand when and why feedback has positive effects on learning and to identify features of feedback that may improve its efficacy. In a randomized experiment, second-grade children (N = 75) received instruction on a correct problem-solving strategy and then solved a set of relevant problems.…

  11. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    NASA Astrophysics Data System (ADS)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).

  12. Strategy Instruction in Mathematics.

    ERIC Educational Resources Information Center

    Goldman, Susan R.

    1989-01-01

    Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…

  13. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    ERIC Educational Resources Information Center

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  14. Problem-Based Learning and Problem-Solving Tools: Synthesis and Direction for Distributed Education Environments.

    ERIC Educational Resources Information Center

    Friedman, Robert S.; Deek, Fadi P.

    2002-01-01

    Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…

  15. Embellishing Problem-Solving Examples with Deep Structure Information Facilitates Transfer

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2017-01-01

    Appreciation of problem structure is critical to successful learning. Two experiments investigated effective ways of communicating problem structure in a computer-based learning environment and tested whether verbal instruction is necessary to specify solution steps, when deep structure is already embellished by instructional examples.…

  16. The Use of Comics-Based Cases in Anchored Instruction

    ERIC Educational Resources Information Center

    Kneller, Matthew F.

    2009-01-01

    The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…

  17. SIMON: A Simple Instructional Monitor. Technical Report.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace; And Others

    An instructional monitor is a program which tries to detect, diagnose, and possibly help overcome a student's learning difficulties in the course of solving a problem or performing a task. In one approach to building an instructional monitor, the student uses a special task- or problem-oriented language expressly designed around some particular…

  18. Effects of Cognitive Strategy Interventions and Cognitive Moderators on Word Problem Solving in Children at Risk for Problem Solving Difficulties

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Lussier, Cathy; Orosco, Michael

    2013-01-01

    This study investigated the role of strategy instruction and cognitive abilities on word problem solving accuracy in children with math difficulties (MD). Elementary school children (N = 120) with and without MD were randomly assigned to 1 of 4 conditions: general-heuristic (e.g., underline question sentence), visual-schematic presentation…

  19. What Works with Worked Examples: Extending Self-Explanation and Analogical Comparison to Synthesis Problems

    ERIC Educational Resources Information Center

    Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.

    2017-01-01

    The ability to solve physics problems that require multiple concepts from across the physics curriculum--"synthesis" problems--is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these…

  20. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  1. Can goal-free problems facilitating students' flexible thinking?

    NASA Astrophysics Data System (ADS)

    Maulidya, Sity Rahmy; Hasanah, Rusi Ulfa; Retnowati, Endah

    2017-08-01

    Problem solving is the key of doing and also learning mathematics. It takes also the fundamental role of developing mathematical knowledge. Responding to the current reform movement in mathematics, students are expected to learn to be a flexible thinker. The ability to think flexible is challenged by the globalisation, hence influence mathematics education. A flexible thinking includes ability to apply knowledge in different contexts rather than simply use it in similar context when it is studied. Arguably problem solving activities can contribute to the development of the ability to apply skills to unfamiliar situations. Accordingly, an appropriate classroom instructional strategy must be developed. A cognitive load theory suggests that by reducing extraneous cognitive load during learning could enhance transfer learning. A goal-free problem strategy that is developed based in cognitive load theory have been showed to be effective for transfer learning. This strategy enables students to learn a large numbers of problem solving moves from a mathematics problem. The instruction in a goal-free problem directs students to `calculate as many solution as you can' rather than to calculate a single given goal. Many experiment research evident goal-free problem enhance learning. This literature review will discuss evidence goal-free problem facilitate students to solve problems flexibly and thus enhance their problem solving skills, including how its implication in the classroom.

  2. The Efficacy of Using Diagrams When Solving Probability Word Problems in College

    ERIC Educational Resources Information Center

    Beitzel, Brian D.; Staley, Richard K.

    2015-01-01

    Previous experiments have shown a deleterious effect of visual representations on college students' ability to solve total- and joint-probability word problems. The present experiments used conditional-probability problems, known to be more difficult than total- and joint-probability problems. The diagram group was instructed in how to use tree…

  3. From Answer-Getters to Problem Solvers

    ERIC Educational Resources Information Center

    Flynn, Mike

    2017-01-01

    In some math classrooms, students are taught to follow and memorize procedures to arrive at the correct solution to problems. In this article, author Mike Flynn suggests a way to move beyond answer-getting to true problem solving. He describes an instructional approach called three-act tasks in which students solve an engaging math problem in…

  4. Problem-Centered Supplemental Instruction in Biology: Influence on Content Recall, Content Understanding, and Problem Solving Ability

    NASA Astrophysics Data System (ADS)

    Gardner, Joel; Belland, Brian R.

    2017-08-01

    To address the need for effective, efficient ways to apply active learning in undergraduate biology courses, in this paper, we propose a problem-centered approach that utilizes supplemental web-based instructional materials based on principles of active learning. We compared two supplementary web-based modules using active learning strategies: the first used Merrill's First Principles of Instruction as a framework for organizing multiple active learning strategies; the second used a traditional web-based approach. Results indicated that (a) the First Principles group gained significantly from pretest to posttest at the Remember level ( t(40) = -1.432, p = 0.08, ES = 0.4) and at the Problem Solving level ( U = 142.5, N1 = 21, N2 = 21, p = .02, ES = 0.7) and (b) the Traditional group gained significantly from pretest to posttest at the Remember level ( t(36) = 1.762, p = 0.043, ES = 0.6). Those in the First Principles group were significantly more likely than the traditional group to be confident in their ability to solve problems in the future (χ2 (2, N = 40) = 3.585, p = 0.09).

  5. A Computer-Aided Instruction Program for Teaching the TOPS20-MM Facility on the DDN (Defense Data Network)

    DTIC Science & Technology

    1988-06-01

    Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used

  6. The Effects of Schema-Based Instruction on the Proportional Thinking of Students With Mathematics Difficulties With and Without Reading Difficulties.

    PubMed

    Jitendra, Asha K; Dupuis, Danielle N; Star, Jon R; Rodriguez, Michael C

    2016-07-01

    This study examined the effect of schema-based instruction (SBI) on the proportional problem-solving performance of students with mathematics difficulties only (MD) and students with mathematics and reading difficulties (MDRD). Specifically, we examined the responsiveness of 260 seventh grade students identified as MD or MDRD to a 6-week treatment (SBI) on measures of proportional problem solving. Results indicated that students in the SBI condition significantly outperformed students in the control condition on a measure of proportional problem solving administered at posttest (g = 0.40) and again 6 weeks later (g = 0.42). The interaction between treatment group and students' difficulty status was not significant, which indicates that SBI was equally effective for both students with MD and those with MDRD. Further analyses revealed that SBI was particularly effective at improving students' performance on items related to percents. Finally, students with MD significantly outperformed students with MDRD on all measures of proportional problem solving. These findings suggest that interventions designed to include effective instructional features (e.g., SBI) promote student understanding of mathematical ideas. © Hammill Institute on Disabilities 2014.

  7. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  8. Effectiveness of Small-Group Tutoring Interventions for Improving the Mathematical Problem-Solving Performance of Third-Grade Students with Mathematics Difficulties: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2012-01-01

    The present research assessed the efficacy of two tutoring protocols for improving the mathematics outcomes of at-risk third-grade students. Results indicated that students in the schema-based instruction (SBI) group outperformed students in the control group on word problem solving performance after 30 hours of problem-solving experience, but the…

  9. The Effect of Using the TI-92 on Basic College Algebra Students' Ability To Solve Word Problems.

    ERIC Educational Resources Information Center

    Runde, Dennis C.

    As part of an effort to improve community college algebra students' ability to solve word problems, a study was undertaken at Florida's Manatee Community College to determine the effects of using heuristic instruction (i.e., providing general rules for solving different types of math problems) in combination with the TI-92 calculator. The TI-92…

  10. Instructional Qualities of a Successful Mathematical Problem-Solving Class.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1998-01-01

    Describes activities that have been successfully implemented by an expert during a mathematical problem-solving course. Focuses on the identification of the qualities of these problems used to promote the development of student strategies and values that reflect mathematical practice in the classroom. Contains 17 references. (ASK)

  11. Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.

    ERIC Educational Resources Information Center

    Smith, Mike U.; Sims, O. Suthern, Jr.

    1992-01-01

    Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…

  12. Student Problem Solving in High School Genetics.

    ERIC Educational Resources Information Center

    Stewart, James

    1983-01-01

    Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)

  13. Why Problem-Based Learning Works: Theoretical Foundations

    ERIC Educational Resources Information Center

    Marra, Rose M.; Jonassen, David H.; Palmer, Betsy; Luft, Steve

    2014-01-01

    Problem-based learning (PBL) is an instructional method where student learning occurs in the context of solving an authentic problem. PBL was initially developed out of an instructional need to help medical school students learn their basic sciences knowledge in a way that would be more lasting while helping to develop clinical skills…

  14. Improving Primary Students' Mathematical Literacy through Problem Based Learning and Direct Instruction

    ERIC Educational Resources Information Center

    Firdaus, Fery Muhamad; Wahyudin; Herman, Tatang

    2017-01-01

    This research was done on primary school students who are able to understand mathematical concepts, but unable to apply them in solving real life problems. Therefore, this study aims to improve primary school students' mathematical literacy through problem-based learning and direct instruction. In addition, the research was conducted to determine…

  15. Facilitating Problem Solving in High School Chemistry.

    ERIC Educational Resources Information Center

    Gabel, Dorothy L.; Sherwood, Robert D.

    1983-01-01

    Investigated superiority of instructional strategies (factor-label method, proportionality, use of analogies, use of diagrams) in teaching problem-solving related to mole concept, gas laws, stoichiometry, and molarity. Also investigated effectiveness of strategies for students (N=609) with different verbal-visual preferences, proportional…

  16. The Problem-Solving Nemesis: Mindless Manipulation.

    ERIC Educational Resources Information Center

    Hawkins, Vincent J.

    1987-01-01

    Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)

  17. Designing Opportunities to Learn Mathematics Theory-Building Practices

    ERIC Educational Resources Information Center

    Bass, Hyman

    2017-01-01

    Mathematicians commonly distinguish two modes of work in the discipline: "Problem solving," and "theory building." Mathematics education offers many opportunities to learn problem solving. This paper explores the possibility, and value, of designing instructional activities that provide supported opportunities for students to…

  18. Effects of a Problem-based Structure of Physics Contents on Conceptual Learning and the Ability to Solve Problems

    NASA Astrophysics Data System (ADS)

    Becerra-Labra, Carlos; Gras-Martí, Albert; Martínez Torregrosa, Joaquín

    2012-05-01

    A model of teaching/learning is proposed based on a 'problem-based structure' of the contents of the course, in combination with a training in paper and pencil problem solving that emphasizes discussion and quantitative analysis, rather than formulae plug-in. The aim is to reverse the high failure and attrition rate among engineering undergraduates taking physics. A number of tests and questionnaires were administered to a group of students following a traditional lecture-based instruction, as well as to another group that was following an instruction scheme based on the proposed approach and the teaching materials developed ad hoc. The results show that students following the new method can develop scientific reasoning habits in problem-solving skills, and show gains in conceptual learning, attitudes and interests, and that the effects of this approach on learning are noticeable several months after the course is over.

  19. Immediate and Sustained Effects of Planning in a Problem-Solving Task

    ERIC Educational Resources Information Center

    Delaney, Peter F.; Ericsson, K. Anders; Knowles, Martin E.

    2004-01-01

    In 4 experiments, instructions to plan a task (water jugs) that normally produces little planning altered how participants solved the problems and resulted in enhanced learning and memory. Experiment 1 identified planning strategies that allowed participants to plan full solutions to water jugs problems. Experiment 2 showed that experience with…

  20. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    PubMed

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Teaching Mathematical Word Problem Solving: The Quality of Evidence for Strategy Instruction Priming the Problem Structure

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Petersen-Brown, Shawna; Lein, Amy E.; Zaslofsky, Anne F.; Kunkel, Amy K.; Jung, Pyung-Gang; Egan, Andrea M.

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et…

  2. Problem-Centered Supplemental Instruction in Biology: Influence on Content Recall, Content Understanding, and Problem Solving Ability

    ERIC Educational Resources Information Center

    Gardner, Joel; Belland, Brian R.

    2017-01-01

    To address the need for effective, efficient ways to apply active learning in undergraduate biology courses, in this paper, we propose a problem-centered approach that utilizes supplemental web-based instructional materials based on principles of active learning. We compared two supplementary web-based modules using active learning strategies: the…

  3. The Effects of Segmentation and Personalization on Superficial and Comprehensive Strategy Instruction in Multimedia Learning Environments

    ERIC Educational Resources Information Center

    Doolittle, Peter

    2010-01-01

    Short, cause-and-effect instructional multimedia tutorials that provide learner control of instructional pace (segmentation) and verbal representations of content in a conversational tone (personalization) have been demonstrated to benefit problem solving transfer. How might a more comprehensive multimedia instructional environment focused on…

  4. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    PubMed

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  5. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities

    PubMed Central

    Swanson, H. Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803

  6. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  7. Network Analysis of Students' Use of Representations in Problem Solving

    NASA Astrophysics Data System (ADS)

    McPadden, Daryl; Brewe, Eric

    2016-03-01

    We present the preliminary results of a study on student use of representations in problem solving within the Modeling Instruction - Electricity and Magnetism (MI-E&M) course. Representational competence is a critical skill needed for students to develop a sophisticated understanding of college science topics and to succeed in their science courses. In this study, 70 students from the MI-E&M, calculus-based course were given a survey of 25 physics problem statements both pre- and post- instruction, covering both Newtonian Mechanics and Electricity and Magnetism (E&M). For each problem statement, students were asked which representations they would use in that given situation. We analyze the survey results through network analysis, identifying which representations are linked together in which contexts. We also compare the representation networks for those students who had already taken the first-semester Modeling Instruction Mechanics course and those students who had taken a non-Modeling Mechanics course.

  8. Computer Systems for Teaching Complex Concepts.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…

  9. The Mathematical Preparation of Prospective Elementary Teachers: Reflections from Solving an "Interesting Problem"

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Contreras, Jose; Martinez-Cruz, Armando M.

    2009-01-01

    Problem solving tasks offer valuable opportunities to strengthen prospective elementary teachers' knowledge of and disposition toward mathematics, providing them with new experiences doing mathematics. Mathematics educators can influence future instruction by modeling effective pedagogical strategies that engage students in making sense of…

  10. Teaching Thinking and Problem Solving.

    ERIC Educational Resources Information Center

    Bransford, John; And Others

    1986-01-01

    This article focuses on two approaches to teaching reasoning and problem solving. One emphasizes the role of domain-specific knowledge; the other emphasizes general strategic and metacognitive knowledge. Many instructional programs are based on the latter approach. The article concludes that these programs can be strengthened by focusing on domain…

  11. Effect of Worked Examples and Cognitive Tutor Training on Constructing Equations

    ERIC Educational Resources Information Center

    Reed, Stephen K.; Corbett, Albert; Hoffman, Bob; Wagner, Angela; MacLaren, Ben

    2013-01-01

    Algebra students studied either static-table, static-graphics, or interactive-graphics instructional worked examples that alternated with Algebra Cognitive Tutor practice problems. A control group did not study worked examples but solved both the instructional and practice problems on the Cognitive Tutor (CT). Students in the control group…

  12. An Exploratory Study Contrasting High- and Low-Achieving Students' Percent Word Problem Solving

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.

    2012-01-01

    This study evaluated whether schema-based instruction (SBI), a promising method for teaching students to represent and solve mathematical word problems, impacted the learning of percent word problems. Of particular interest was the extent that SBI improved high- and low-achieving students' learning and to a lesser degree on the indirect effect of…

  13. Research Reporting Sections, Annual Meeting of the National Council of Teachers of Mathematics (57th, Boston, Massachusetts, April 18-21, 1979).

    ERIC Educational Resources Information Center

    Higgins, Jon L., Ed.

    This document provides abstracts of 20 research reports. Topics covered include: children's comprehension of simple story problems; field independence and group instruction; problem-solving competence and memory; spatial visualization and the use of manipulative materials; effects of games on mathematical skills; problem-solving ability and right…

  14. When Procedures Discourage Insight: Epistemological Consequences of Prompting Novice Physics Students to Construct Force Diagrams

    ERIC Educational Resources Information Center

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-01-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to…

  15. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

    ERIC Educational Resources Information Center

    Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

    2015-01-01

    This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

  16. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    ERIC Educational Resources Information Center

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same story…

  17. A System for Generating Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Nygard, Kendall E.; Ranganathan, Babusankar

    1983-01-01

    Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…

  18. Experimental problem solving: An instructional improvement field experiment

    NASA Astrophysics Data System (ADS)

    Ross, John A.; Maynes, Florence J.

    An instructional program based on expert-novice differences in experimental problem-solving performance was taught to grade 6 students (N = 265). Classes of students were randomly assigned to conditions in a delayed treatment design. Performance was assessed with multiple-choice and open-ended measures of specific transfer. Between group comparisons using pretest scores as a covariate showed that treatment condition students consistently outperformed controls; similar results were revealed in the within group comparisons. The achievement of the early treatment group did not decline in tests administered one month after the posttest.

  19. Promoting Experimental Problem-Solving Ability in Sixth-Grade Students through Problem-Oriented Teaching of Ecology: Findings of an Intervention Study in a Complex Domain

    ERIC Educational Resources Information Center

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-01-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…

  20. Effect of the Presence of External Representations on Accuracy and Reaction Time in Solving Mathematical Double-Choice Problems by Students of Different Levels of Instruction

    ERIC Educational Resources Information Center

    Leikin, Roza; Leikin, Mark; Waisman, Ilana; Shaul, Shelley

    2013-01-01

    This study explores the effects of the "presence of external representations of a mathematical object" (ERs) on problem solving performance associated with short double-choice problems. The problems were borrowed from secondary school algebra and geometry, and the ERs were either formulas, graphs of functions, or drawings of geometric…

  1. Improving conceptual and procedural knowledge: The impact of instructional content within a mathematics lesson.

    PubMed

    Rittle-Johnson, Bethany; Fyfe, Emily R; Loehr, Abbey M

    2016-12-01

    Students, parents, teachers, and theorists often advocate for direct instruction on both concepts and procedures, but some theorists suggest that including instruction on procedures in combination with concepts may limit learning opportunities and student understanding. This study evaluated the effect of instruction on a math concept and procedure within the same lesson relative to a comparable amount of instruction on the concept alone. Direct instruction was provided before or after solving problems to evaluate whether the type of instruction interacted with the timing of instruction within a lesson. We worked with 180 second-grade children in the United States. In a randomized experiment, children received a classroom lesson on mathematical equivalence in one of four conditions that varied in instruction type (conceptual or combined conceptual and procedural) and in instruction order (instruction before or after solving problems). Children who received two iterations of conceptual instruction had better retention of conceptual and procedural knowledge than children who received both conceptual and procedural instruction in the same lesson. Order of instruction did not impact outcomes. Findings suggest that within a single lesson, spending more time on conceptual instruction may be more beneficial than time spent teaching a procedure when the goal is to promote more robust understanding of target concepts and procedures. © 2016 The British Psychological Society.

  2. Effects of Video-Based and Applied Problems on the Procedural Math Skills of Average- and Low-Achieving Adolescents.

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Heinrichs, Mary; Chan, Shih-Yi; Mehta, Zara Dee; Watson, Elizabeth

    2003-01-01

    This study examined effects of video-based, anchored instruction and applied problems on the ability of 11 low-achieving (LA) and 26 average-achieving (AA) eighth graders to solve computation and word problems. Performance for both groups was higher during anchored instruction than during baseline, but no differences were found between instruction…

  3. Enhancing Direct Instruction on Introductory Physics for Supporting Students' Mental-Modeling Ability

    ERIC Educational Resources Information Center

    Mansyur, Jusman; Darsikin

    2016-01-01

    This paper describes an instructional design for introductory physics that integrates previous research results of physics problem-solving and the use of external representation into direct instruction (DI). The research is a part of research in obtaining an established instructional design to support mental-modeling ability. By integrating with…

  4. Improving the Skills of Health Professionals in Engaging Patients in Diabetes-Related Problem Solving.

    ERIC Educational Resources Information Center

    King, Elaine Boswell; Schlundt, David G.; Pichert, James W.; Kinzer, Charles K.; Backer, Barbara A.

    2002-01-01

    Nurses, dietitians, physicians, and a pharmacist (n=33) attended a patient teaching and problem-solving course emphasizing assessment, brainstorming, collaboration, and direct instruction skills. Analysis of videotaped patient teaching exercises revealed significant improvement in all four skills. Length of teaching sessions remained the same.…

  5. Instruction Emphasizing Effort Improves Physics Problem Solving

    ERIC Educational Resources Information Center

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  6. Facilitating Problem Solving in High School Chemistry.

    ERIC Educational Resources Information Center

    Gabel, Dorothy L.

    The major purpose of this study was to determine whether certain types of instructional strategies (factor-label method, use of analogies, use of diagrams, and proportionality) were superior to others in teaching problem solving in four topics (mole concept, gas laws, stoichiometry, and molarity). Also of major interest was whether particular…

  7. Productive Failure in STEM Education

    ERIC Educational Resources Information Center

    Trueman, Rebecca J.

    2014-01-01

    Science education is criticized because it often fails to support problem-solving skills in students. Instead, the instructional methods primarily emphasize didactic models that fail to engage students and reveal how the material can be applied to solve real problems. To overcome these limitations, this study asked participants in a general…

  8. Teaching Students with Moderate Intellectual Disability to Solve Word Problems

    ERIC Educational Resources Information Center

    Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.

    2018-01-01

    This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…

  9. Improving Problem-Solving Techniques for Students in Low-Performing Schools

    ERIC Educational Resources Information Center

    Hobbs, Robert Maurice

    2012-01-01

    Teachers can use culturally relevant pedagogical strategies and technologies as emerging tools to improve students' problem-solving skills. The purpose of this study was to investigate and assess the effectiveness of culturally specific computer-based instructional tasks on ninth-grade African American mathematics students. This study tried to…

  10. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  11. Appendix M. Research Utilization and Problem Solving

    ERIC Educational Resources Information Center

    Jung, Charles

    The Research Utilization and Problem Solving (RUPS) Model--an instructional system designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and developing curriculum to meet the needs identified--is intended to facilitate the development of…

  12. Solving Quantitative Problems: Guidelines for Teaching Derived from Research.

    ERIC Educational Resources Information Center

    Kramers-Pals, H.; Pilot, A.

    1988-01-01

    Presents four guidelines for teaching quantitative problem-solving based on research results: analyze difficulties of students, develop a system of heuristics, select and map key relations, and design instruction with proper orientation, exercise, and feedback. Discusses the four guidelines and uses flow charts and diagrams to show how the…

  13. Conceptual Transformation and Cognitive Processes in Origami Paper Folding

    ERIC Educational Resources Information Center

    Tenbrink, Thora; Taylor, Holly A.

    2015-01-01

    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  14. How doctors learn: the role of clinical problems across the medical school-to-practice continuum.

    PubMed

    Slotnick, H B

    1996-01-01

    The author proposes a theory of how physicians learn that uses clinical problem solving as its central feature. His theory, which integrates insights from Maslow, Schön, Norman, and others, claims that physicians-in-training and practicing physicians learn largely by deriving insights from clinical experience. These insights allow the learner to solve future problems and thereby address the learner's basic human needs for security, affiliation, and self-esteem. Ensuring that students gain such insights means that the proper roles of the teacher are (1) to select problems for students to solve and offer guidance on how to solve them, and (2) to serve as a role model of how to reflect on the problem, its solution, and the solution's effectiveness. Three principles guide instruction within its framework for learning: (1) learners, whether physicians-in-training or practicing physicians, seek to solve problems they recognize they have; (2) learners want to be involved in their own learning; and (3) instruction must both be time-efficient and also demonstrate the range of ways in which students can apply what they learn. The author concludes by applying the theory to an aspect of undergraduate education and to the general process of continuing medical education.

  15. When procedures discourage insight: epistemological consequences of prompting novice physics students to construct force diagrams

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-05-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.

  16. Effect of Strategy Teaching for the Solution of Ratio Problems on Students' Proportional Reasoning Skills

    ERIC Educational Resources Information Center

    Sen, Ceylan; Güler, Gürsel

    2017-01-01

    The study was conducted to reveal the effects of the instruction of different problem-solving strategies on the proportional reasoning skills of students in solving proportional problems in the 6th grade math's class. Quasi-experimental research model with pretest-posttest control group was employed in the study. For eight class hours, the…

  17. Middle School Engineering Problem Solving Using Traditional vs. e-PBL Module Instruction

    NASA Astrophysics Data System (ADS)

    Baele, Loren C.

    This multiple methods (Denzin, 1978) study investigated two instructional approaches, traditional module and electronic Problem-Based Learning instruction (e-PBL), used within a middle school engineering classroom focused on the variables of engagement, content knowledge, student self-assessment and teacher assessment of problem solving solutions. A non-equivalent group quasi-experimental research design (Creswell, 2015) was used on middle school students (N = 100) between those that received traditional module instruction (n = 51) and e-PBL instruction (n = 49). The qualitative approach of triangulation (Jick, 1979) was used to identify emergent themes for both between and within methods of data analysis on student engagement survey responses, two days of field observations notes, and six student interview transcripts. The quantitative results identified that students who received e-PBL instruction self-reported significantly greater engagement than those who received traditional module instruction. Further, there was a significant interaction effect between engineering content knowledge by group and gender as males who received e-PBL instruction had greater growth of content knowledge scores than males receiving traditional instruction, while females who received traditional instruction had greater growth of content knowledge scores than females in the e-PBL group. Through triangulation of the qualitative data, the emergent themes of the study suggest that hands-on learning produces higher levels of reported engagement independent of instructional method. The emergence of problem solving fatigue developed when both study groups reported a decline in engagement when entering into the final phase of the quantitative study suggesting that too many complex, ill-structured problems in rapid succession may negatively impact student engagement. Although females within the treatment group were most engaged, they did not achieve the knowledge growth of the females in the control group, who were the least engaged. Males presented with e-PBL instruction not only had better engagement, they had the greatest content knowledge growth of any group. Females were likely to have a greater negative difference between self-assessment scores and teacher assessment scores, while males self-assessed themselves closer to the teacher assessment score. Challenges to e-PBL implementation were identified including time, teacher training, and the strict school schedule. A learning management system (LMS) was found to effectively facilitate an e-PBL learning environment.

  18. Multiple Representation Instruction First versus Traditional Algorithmic Instruction First: Impact in Middle School Mathematics Classrooms

    ERIC Educational Resources Information Center

    Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara

    2015-01-01

    This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…

  19. The Application of Theoretical Factors in Teaching Problem-Solving by Programed Instruction. 1970.

    ERIC Educational Resources Information Center

    Seidel, Robert J.; Hunter, Harold G.

    1970-01-01

    Research was undertaken to establish guidelines for applying programed instruction to training courses in which rules and principles must be learned. The research vehicle was a portion of a course using automated instruction to teach computer programing. The effects of various factors on helping the students remember and apply the instruction were…

  20. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Fuchs, Lynn S.

    2010-01-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for the development of higher order mathematics skills, including solving word problems. Research indicates equal-sign instruction…

  1. Project-Based Pedagogy for the Facilitation of Webpage Design

    ERIC Educational Resources Information Center

    Jakovljevic, Maria; Ankiewicz, Piet

    2016-01-01

    Real issues of web design and development include many problem-solving tasks. There are, however, some inadequacies associated with the implementation of appropriate pedagogy for organised and structured instruction that supports the rational problem-solving paradigm. The purpose of this article is to report on a study for the design and…

  2. Geologic Problem Solving in the Field: Analysis of Field Navigation and Mapping by Advanced Undergraduates

    ERIC Educational Resources Information Center

    Riggs, Eric M.; Lieder, Christopher C.; Ballliet, Russell

    2009-01-01

    Field instruction is a critical piece of undergraduate geoscience majors' education, and fieldwork remains a major part of the work of professional geologists. Despite the central importance of field education, there exists relatively little educational research exploring how students learn to solve problems in geological fieldwork. This study…

  3. Teaching to Teach (with) Game Design: Game Design and Learning Workshops for Preservice Teachers

    ERIC Educational Resources Information Center

    Akcaoglu, Mete; Kale, Ugur

    2016-01-01

    Engagement in game design tasks can help preservice teachers develop pedagogical and technical skills for teaching and promoting critical thinking and problem-solving skills. Through the design process, preservice teachers not only exercise critical-thinking and problem-solving skills, but also learn about an instructional method to support their…

  4. Possibilities: A Framework for Modeling Students' Deductive Reasoning in Physics

    ERIC Educational Resources Information Center

    Gaffney, Jonathan David Housley

    2010-01-01

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning…

  5. An Experimental Investigation Utilizing the Computer as a Tool for Stimulating Reasoning Skills.

    ERIC Educational Resources Information Center

    White, Kathy B.; Collins, Rosann Webb

    1983-01-01

    Reports investigation of the first phase of problem solving, i.e., the awareness of mental operations, which uses cognitive process instruction to focus student attention on their thinking processes. Evaluation of students' ability to recall componential operations involved in familiar tasks indicates improvement in problem solving is an…

  6. Michael Eisenberg and Robert Berkowitz's Big6[TM] Information Problem-Solving Model.

    ERIC Educational Resources Information Center

    Carey, James O.

    2003-01-01

    Reviews the Big6 information problem-solving model. Highlights include benefits and dangers of the simplicity of the model; theories of instruction; testing of the model; the model as a process for completing research projects; and advice for school library media specialists considering use of the model. (LRW)

  7. Effect of Worked Examples on Mental Model Progression in a Computer-Based Simulation Learning Environment

    ERIC Educational Resources Information Center

    Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma

    2010-01-01

    In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…

  8. Research Utilizing Problem Solving: Outcome Evaluation Report. Improving Teaching Competencies Program.

    ERIC Educational Resources Information Center

    Murray, Stephen L.; And Others

    This report presents data collected about the impact of the Research Utilizing Problem Solving (RUPS) instructional system on the classrooms of teachers trained in two RUPS workshops, which were part of the Improving Teaching Competencies Program at the Northwest Regional Educational Laboratory. The report is divided into four chapters, the first…

  9. Problem Solving in the Early Years

    ERIC Educational Resources Information Center

    Diamond, Lindsay Lile

    2018-01-01

    Problem solving is recognized as a critical component to becoming a self-determined individual. The development of this skill should be fostered in the early years through the use of age-appropriate direct and embedded activities. However, many early childhood teachers may not be providing adequate instruction in this area. This column provides a…

  10. The Effects of Feedback during Exploratory Mathematics Problem Solving: Prior Knowledge Matters

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Rittle-Johnson, Bethany; DeCaro, Marci S.

    2012-01-01

    Providing exploratory activities prior to explicit instruction can facilitate learning. However, the level of guidance provided during the exploration has largely gone unstudied. In this study, we examined the effects of 1 form of guidance, feedback, during exploratory mathematics problem solving for children with varying levels of prior domain…

  11. Leveraging Cultural Resources through Teacher Pedagogical Reasoning: Elementary Grade Teachers Analyze Second Language Learners' Science Problem Solving

    ERIC Educational Resources Information Center

    Buxton, Cory A.; Salinas, Alejandra; Mahotiere, Margarette; Lee, Okhee; Secada, Walter G.

    2013-01-01

    Grounded in teacher professional development addressing the intersection of student diversity and content area instruction, this study examined school teachers' pedagogical reasoning complexity as they reflected on their second language learners' science problem solving abilities using both home and school contexts. Teachers responded to interview…

  12. Sense of Accomplishment Is Modulated by a Proper Level of Instruction and Represented in the Brain Reward System.

    PubMed

    Nakai, Tomoya; Nakatani, Hironori; Hosoda, Chihiro; Nonaka, Yulri; Okanoya, Kazuo

    2017-01-01

    Problem-solving can be facilitated with instructions or hints, which provide information about given problems. The proper amount of instruction that should be provided for learners is controversial. Research shows that tasks with intermediate difficulty induce the largest sense of accomplishment (SA), leading to an intrinsic motivation for learning. To investigate the effect of instructions, we prepared three instruction levels (No hint, Indirect hint, and Direct hint) for the same insight-problem types. We hypothesized that indirect instructions impose intermediate difficulty for each individual, thereby inducing the greatest SA per person. Based on previous neuroimaging studies that showed involvement of the bilateral caudate in learning and motivation, we expected SA to be processed in this reward system. We recruited twenty-one participants, and investigated neural activations during problem solving by functional magnetic resonance imaging (fMRI). We confirmed that the Indirect hint, which imposed intermediate difficulty, induced the largest SA among the three instruction types. Using fMRI, we showed that activations in the bilateral caudate and anterior cingulate cortex (ACC) were significantly modulated by SA. In the bilateral caudate, the indirect hint induced the largest activation, while the ACC seemed to reflect the difference between correct and incorrect trials. Importantly, such activation pattern was independent of notations (number or letter). Our results indicate that SA is represented in the reward system, and that the Indirect instruction effectively induces such sensation.

  13. Sense of Accomplishment Is Modulated by a Proper Level of Instruction and Represented in the Brain Reward System

    PubMed Central

    Nakai, Tomoya; Nakatani, Hironori; Hosoda, Chihiro; Nonaka, Yulri; Okanoya, Kazuo

    2017-01-01

    Problem-solving can be facilitated with instructions or hints, which provide information about given problems. The proper amount of instruction that should be provided for learners is controversial. Research shows that tasks with intermediate difficulty induce the largest sense of accomplishment (SA), leading to an intrinsic motivation for learning. To investigate the effect of instructions, we prepared three instruction levels (No hint, Indirect hint, and Direct hint) for the same insight-problem types. We hypothesized that indirect instructions impose intermediate difficulty for each individual, thereby inducing the greatest SA per person. Based on previous neuroimaging studies that showed involvement of the bilateral caudate in learning and motivation, we expected SA to be processed in this reward system. We recruited twenty-one participants, and investigated neural activations during problem solving by functional magnetic resonance imaging (fMRI). We confirmed that the Indirect hint, which imposed intermediate difficulty, induced the largest SA among the three instruction types. Using fMRI, we showed that activations in the bilateral caudate and anterior cingulate cortex (ACC) were significantly modulated by SA. In the bilateral caudate, the indirect hint induced the largest activation, while the ACC seemed to reflect the difference between correct and incorrect trials. Importantly, such activation pattern was independent of notations (number or letter). Our results indicate that SA is represented in the reward system, and that the Indirect instruction effectively induces such sensation. PMID:28052091

  14. Peer Instruction: An Evaluation of Its Theory, Application, and Contribution

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2017-01-01

    Many qualitative and quantitative studies performed on peer instruction based on interactive engagement method used in many different disciplines and courses were reviewed in the present study. The researchers examined the effects of peer instruction on students' cognitive skills (conceptual learning, problem solving, reasoning ability, etc.) and…

  15. Creating Shared Instructional Products: An Alternative Approach to Improving Teaching

    ERIC Educational Resources Information Center

    Morris, Anne K.; Hiebert, James

    2011-01-01

    To solve two enduring problems in education--unacceptably large variation in learning opportunities for students across classrooms and little continuing improvement in the quality of instruction--the authors propose a system that centers on the creation of shared instructional products that guide classroom teaching. By examining systems outside…

  16. Constructing Knowledge Bases: A Promising Instructional Tool.

    ERIC Educational Resources Information Center

    Trollip, Stanley R.; Lippert, Renate C.

    1987-01-01

    Argues that construction of knowledge bases is an instructional tool that encourages students' critical thinking in problem solving situations through metacognitive experiences. A study is described in which college students created expert systems to test the effectiveness of this method of instruction, and benefits for students and teachers are…

  17. Study the Problem.

    ERIC Educational Resources Information Center

    Choate, Joyce S.

    1990-01-01

    The initial step of a strategic process for solving mathematical problems, "studying the question," is discussed. A lesson plan for teaching students to identify and revise arithmetic problems is presented, involving directed instruction and supervised practice. (JDD)

  18. The Effects of Schema-Broadening Instruction on Second Graders’ Word-Problem Performance and Their Ability to Represent Word Problems with Algebraic Equations: A Randomized Control Study

    PubMed Central

    Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas

    2010-01-01

    The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822

  19. A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    PubMed Central

    Crowley, Rebecca S.; Medvedeva, Olga

    2003-01-01

    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159

  20. Effect of case-based learning on the development of graduate nurses' problem-solving ability.

    PubMed

    Yoo, Moon-Sook; Park, Jin-Hee

    2014-01-01

    Case-based learning (CBL) is a teaching strategy which promotes clinical problem-solving ability. This research was performed to investigate the effects of CBL on problem-solving ability of graduate nurses. This research was a quasi-experimental design using pre-test, intervention, and post-test with a non-synchronized, non-equivalent control group. The study population was composed of 190 new graduate nurses from university hospital A in Korea. Results of the research indicate that there was a statistically significant difference in objective problem-solving ability scores of CBL group demonstrating higher scores. Subjective problem-solving ability was also significantly higher in CBL group than in the lecture-based group. These results may suggest that CBL is a beneficial and effective instructional method of training graduate nurses to improve their clinical problem-solving ability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Learning biology through connecting mathematics to scientific mechanisms: Student outcomes and teacher supports

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anita

    Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM approaches, the types and amount of teacher support needed to achieve these types of student learning gains were investigated. In the context of providing teachers with access to educative materials, students achieved learning gains in both areas in the absence of face-to-face teacher professional development. However, maximal student learning gains required the investment of face-to-face professional development. This finding can govern distribution of scarce resources, but does not preclude implementation of MCM instruction even where resource availability does not allow for face-to-face professional development.

  2. [Survey on drug-related problems in Lithuania's pharmacies].

    PubMed

    Kubiliene, Loreta; Liukenskyte, Simona; Savickas, Arūnas; Jureniene, Kristina

    2006-01-01

    to survey the most common and the most important drug-related problems in Lithuania, to explore their solution and factors influencing it, to formulate recommendations for solving drug-related problems. Pharmacists from community pharmacies participated in a random survey. They filled in questionnaires about drug-related problems and their solutions. It was the first survey on drug-related problems ever carried out in Lithuania. For the first time, it was found out that in Lithuania pharmacists most commonly encountered drug-related problem--additional drug therapy (52.03% of respondents)--and most rarely encountered drug-related problem--dosage too high (3% of respondents). Pharmacists stated that all categories of drug-related problems were of equal importance. It was established that pharmacists commonly solved drug-related problems associated with noncompliance with instructions (72.5% of respondents) and rarely met the problem when improper drug was selected (39.56% of respondents). Patients taking prescription medicines commonly encounter additional drug therapy problem, and patients taking nonprescription medications commonly encounter problems related to noncompliance with instructions.

  3. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    NASA Astrophysics Data System (ADS)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  4. Enhancing Arithmetic and Word-Problem Solving Skills Efficiently by Individualized Computer-Assisted Practice

    ERIC Educational Resources Information Center

    Schoppek, Wolfgang; Tulis, Maria

    2010-01-01

    The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…

  5. Cognitive Task Analysis: Implications for the Theory and Practice of Instructional Design.

    ERIC Educational Resources Information Center

    Dehoney, Joanne

    Cognitive task analysis grew out of efforts by cognitive psychologists to understand problem-solving in a lab setting. It has proved a useful tool for describing expert performance in complex problem solving domains. This review considers two general models of cognitive task analysis and examines the procedures and results of analyses in three…

  6. Exploring Teachers' Process of Change in Incorporating Problem Solving into the Mathematics Classroom

    ERIC Educational Resources Information Center

    Rutherford, Vanessa

    2012-01-01

    This study explores how a problem-solving based professional learning community (PLC) affects the beliefs, knowledge, and instructional practices of two sixth-grade mathematics teachers. An interview and two observations were conducted prior to beginning the year-long PLC in order to gather information about the participants' beliefs,…

  7. Teaching Students with Behavioral Disorders to Use a Negotiation Procedure: Impact on Classroom Behavior and Conflict Resolution Strategy

    ERIC Educational Resources Information Center

    Bullock, Cathy

    2012-01-01

    The impact of the instruction of a six-step problem solving negotiation procedure on the conflict resolution strategies and classroom behavior of six elementary students with challenging behaviors was examined. Moderately positive effects were found for the following negotiation strategies used by students: independent problem solving, problem…

  8. Using Problem-Solving Steps and Audience Roles To Increase Student Engagement in Elementary Civics Instruction.

    ERIC Educational Resources Information Center

    Beck, Terence A.

    Leslie Herrenkohl's work in science (1998) has demonstrated that introducing "problem-solving steps" and "audience roles" to an elementary classroom can have a dramatic impact on rates of student engagement as measured through classroom talk. It is not known to what extent the success of the intervention was due to its…

  9. What Do Children and Adolescents Say They Do during Video Game Play?

    ERIC Educational Resources Information Center

    Blumberg, Fran C.; Randall, John D.

    2013-01-01

    We examined the problem-solving behaviors that 5th, 6th, and 7th graders used to negotiate a novel recreational video game. Students were characterized as frequent or infrequent players and instructed to think aloud during game play for 20 consecutive minutes. Comments were used to make inferences about the students' problem-solving behaviors…

  10. Applying Computerized Concept Maps in Guiding Pupils to Reason and Solve Mathematical Problems: The Design Rationale and Effect

    ERIC Educational Resources Information Center

    Chen, I-Ching; Hu, Shueh-Cheng

    2013-01-01

    The capability of solving fundamental mathematical problems is essential to elementary school students; however instruction based on ordinary narration usually perplexes students. Concept mapping is well known for its effectiveness on assimilating and organizing knowledge, which is essential to meaningful learning. A variety of concept map-based…

  11. The Art of Problem Solving: A Resource for the Mathematics Teacher.

    ERIC Educational Resources Information Center

    Posamentier, Alfred S.; Schulz, Wolfgang

    This book is designed to give mathematics teachers a host of interesting and useful ideas thereby raising their consciousness level and enabling an enrichment of the mathematics instruction program. The chapters in this book capture a broad spectrum of ideas in the area of mathematics problem solving. Chapters are: (1) "Strategies for Problem…

  12. The Effect of Cognitive- and Metacognitive-Based Instruction on Problem Solving by Elementary Students with Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    Grizzle-Martin, Tamieka

    2014-01-01

    Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…

  13. The Impact of a Standards Guided Equity and Problem Solving Institute on Participating Science Teachers and Their Students.

    ERIC Educational Resources Information Center

    Huber, Richard A.; Smith, Robert W.; Shotsberger, Paul G.

    This study examined the effect of a teacher enhancement project combining training on the National Science Education Standards, problem solving and equity education on middle school science teachers' attitudes and practices and, in turn, the attitudes of their students. Participating teachers reported changes in their instructional methods that…

  14. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  15. Solving Drug-Related Problems in the Professional Experience Program.

    ERIC Educational Resources Information Center

    Kane, Michael P.; And Others

    1993-01-01

    A study investigated the effectiveness of using the Pharmacist's Work-up of Drug Therapy (PWDT) in teaching 91 pharmacy students in a clinical clerkship program to identify and solve drug-related problems. Because the instructional technique was recently implemented, the study looked at effects of 3 different quantities of training (0, 1, and 3…

  16. Viewing or Visualising Which Concept Map Strategy Works Best on Problem-Solving Performance?

    ERIC Educational Resources Information Center

    Lee, Youngmin; Nelson, David W.

    2005-01-01

    The purpose of this study was to investigate the effects of two types of maps (generative vs. completed) and the amount of prior knowledge (high vs. low) on well-structured and ill-structured problem-solving performance. Forty-four undergraduates who were registered in an introductory instructional technology course participated in the study.…

  17. Twenty-First Century Police Training: Recruits' Problem-Solving Skills Following Scenario-Based Training

    ERIC Educational Resources Information Center

    Perry, Lee R.

    2012-01-01

    In response to the diverse requirements of 21st-century police work and the increasing emphasis on community-policing philosophy, the Los Angeles Police Department has implemented changes within its academy curricula and methods of instruction, including the use of adult-learning concepts, a community policing problem-solving model known as…

  18. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    ERIC Educational Resources Information Center

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  19. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    ERIC Educational Resources Information Center

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  20. Developing Thinking Skills within the Context of the Existing Secondary Curriculum: The Case of Economics.

    ERIC Educational Resources Information Center

    Morris, Paul

    Topics and issues which are central features of current secondary school economics curricula can be used to develop two aspects of students' thinking skills: (1) the development of problem-solving skills, and (2) the recognition of logical fallacies. The efficacy of economics instruction as a vehicle for developing student problem-solving skills…

  1. Self-Instructional Methods of Teaching Diagnostic Problem Solving to Automotive Students. Vocational-Industrial Education Research Report.

    ERIC Educational Resources Information Center

    Finch, Curtis R.

    The objective of this study was to investigate the effects of three methods of teaching diagnostic problem-solving (troubleshooting) to automotive students. The sample consisted of 45 community college students enrolled in automotive courses. Initially, all students received a presentation on ignition principles, and the Otis Mental Ability Test…

  2. Effectiveness of problem based learning as an instructional tool for acquisition of content knowledge and promotion of critical thinking among medical students.

    PubMed

    Tayyeb, Rakhshanda

    2013-01-01

    To assess effectiveness of PBL as an instructional tool in clinical years to improve learning of undergraduate students in terms of acquisition of content knowledge, critical thinking and problem solving skills through problem based learning and traditional way of teaching. Quasi-experimental study. Fatima Jinnah Medical College for Women, Lahore, from October 2009 to April 2010. Final year medical students attending Obstetrics and Gynaecology and Surgery rotations were inducted as participants in this study. Two batches of 50 students each attended Gynaecology rotation and two batches attended Surgery rotation, i.e. 100 students in each. Each batch was divided into two groups i.e. A and B of 25 students each. Group-A learnt through traditional teaching, involving bedside teaching and lectures in wards and Group-B learnt relevant clinical knowledge through a modified PBL process. Content knowledge was tested by MCQs testing recall while clinical reasoning and problem were assessed by MCQs testing analysis and critical thinking. Intra-group comparison of mean scores of pre and post-test scores was done using paired sample t-tests while for intergroup comparison of mean scores was done through independent sample t-test. Teaching through traditional method significantly improved content knowledge, (p = 0.001) but did not considerably improve clinical reasoning and problem solving skills (p = 0.093) whereas, content knowledge of students who studied through PBL remained the same (p = 0.202) but there was marked improvement in their clinical reasoning and problem solving skills (p = < 0.001). PBL is an effective instructional tool to foster critical thinking and problem solving skills among medical students.

  3. Towards an Understanding of Instructional Design Heuristics: An Exploratory Delphi Study

    ERIC Educational Resources Information Center

    York, Cindy S.; Ertmer, Peggy A.

    2011-01-01

    Evidence suggests that experienced instructional designers often use heuristics and adapted models when engaged in the instructional design problem-solving process. This study used the Delphi technique to identify a core set of heuristics designers reported as being important to the success of the design process. The overarching purpose of the…

  4. Problem-Solving Processes of Expert and Typical School Principals: A Quantitative Look

    ERIC Educational Resources Information Center

    Brenninkmeyer, Lawrence D.; Spillane, James P.

    2008-01-01

    Principals are increasingly expected to be the instructional as well as administrative leaders of their schools. However, little is known about how principals reason through the instructional issues that they face. An analysis of principal reasoning in instructional contexts is critical. The study presented in this article draws on interviews with…

  5. Comprehension Instruction: Research-Based Best Practices. Solving Problems in the Teaching of Literacy.

    ERIC Educational Resources Information Center

    Block, Cathy Collins, Ed.; Pressley, Michael, Ed.

    Noting that comprehension instruction is widely recognized as an essential component of developing students' pleasure and profit from reading, this book presents 25 essays on comprehension instruction that summarize current research and provide best-practice guidelines for teachers and teacher educators. Each chapter in the book presents key…

  6. Perspectives on the Use of the Problem-Solving Model from the Viewpoint of a School Psychologist, Administrator, and Teacher from a Large Midwest Urban School District

    ERIC Educational Resources Information Center

    Lau, Matthew Y.; Sieler, Jay D.; Muyskens, Paul; Canter, Andrea; VanKeuren, Barbara; Marston, Doug

    2006-01-01

    The Minneapolis Public School System has been implementing an intervention-based approach to special education placement. This Problem-Solving Model (PSM) was designed to de-emphasize the role of norm-referenced tests and to provide early instructional interventions. The basic outline of the PSM is to define the problem, determine the best…

  7. The Nature and Nurture of Military Genius: Developing Senior Strategic Leaders for the Postmodern Military

    DTIC Science & Technology

    2010-06-01

    the ability to think and solve problems. Short of a theory regarding how people learn , a theory that describes how people think and solve problems...not what to think . In terms of learning theory, this type of instruction falls under Saltz’s second type of learning : learning for problem solving...Jeff Geraghty is a student at the School of Advanced Air and Space Studies. He has served in the Air Force as an F-15E pilot, staff officer, and an

  8. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  9. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  10. Problem representation and mathematical problem solving of students of varying math ability.

    PubMed

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  11. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.

  12. Mental models as indicators of scientific thinking

    NASA Astrophysics Data System (ADS)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.

  13. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  14. Learning From Physics Instruction

    ERIC Educational Resources Information Center

    Shavelson, Richard J.

    1973-01-01

    Extends P. E. Jonson's studies of physics learning by analyzing, on the basis of a 12-student control group, 24 high-school students' word associations, aptitude scores, and achievement results during instruction. Indicated a positive relationship between problem-solving ability and meaningful concept formation. (CC)

  15. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  16. Intelligent Computer-Aided Instruction for Medical Diagnosis

    PubMed Central

    Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.

    1979-01-01

    An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.

  17. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training

    PubMed Central

    Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012

  18. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training.

    PubMed

    Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.

  19. A research strategy for the dynamic study of students' concepts and problem solving strategies using science software

    NASA Astrophysics Data System (ADS)

    Krajcik, Joseph S.; Simmons, Patricia E.; Lunetta, Vincent N.

    Microcomputers and appropriate software have the potential to help students learn. They can also serve as appropriate media for investigating how students learn. In this article we describe a research strategy examining learning and behavior when students interacted with microcomputers and software. Results from two preliminary studies illustrate the strategy.A major feature of the strategy included recording students interacting with microcomputer software interfaced with a VCR. The VCR recorded the video output from a microcomputer and students' verbal commentary via microphone input. This technique allowed students' comments about their observations, perceptions, predictions, explanations, and decisions to be recorded simultaneously with their computer input and the display on the microcomputer monitor.The research strategy described can provide important information about cognitive and affective behaviors of students engaged in using instructional software. Research studies utilizing this strategy can enhance our understanding of how students develop and employ important concepts and scientific relationships, how students develop problem-solving skills and solve problems, and how they interact with instructional software. Results of such studies have important implications for teaching and for the design of instructional software.

  20. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  1. An Exploration of Developing Active Exploring and Problem Solving Skill Lego Robot Course by the Application of Anchored Instruction Theory

    ERIC Educational Resources Information Center

    Chen, Chen-Yuan

    2013-01-01

    In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…

  2. Dynamic Testing of Gifted and Average-Ability Children's Analogy Problem Solving: Does Executive Functioning Play a Role?

    ERIC Educational Resources Information Center

    Vogelaar, Bart; Bakker, Merel; Hoogeveen, Lianne; Resing, Wilma C. M.

    2017-01-01

    In this study, dynamic testing principles were applied to examine progression of analogy problem solving, the roles that cognitive flexibility and metacognition play in children's progression as well as training benefits, and instructional needs of 7- to 8-year-old gifted and average-ability children. Utilizing a pretest training posttest control…

  3. Looking beyond RtI Standard Treatment Approach: It's Not Too Late to Embrace the Problem-Solving Approach

    ERIC Educational Resources Information Center

    King, Diane; Coughlin, Patricia Kathleen

    2016-01-01

    There are two approaches for providing Tier 2 interventions within Response to Intervention (RtI): standard treatment protocol (STP) and the problem-solving approach (PSA). This article describes the multi-tiered RtI prevention model being implemented across the United States through an analysis of these two approaches in reading instruction. It…

  4. Development and Application of a Computer Simulation Program to Enhance the Clinical Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Boh, Larry E.; And Others

    1987-01-01

    A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…

  5. Effectiveness of Mathematical Word Problem Solving Interventions for Students with Learning Disabilities and Mathematics Difficulties: A Meta-Analysis

    ERIC Educational Resources Information Center

    Lein, Amy E.

    2016-01-01

    This meta-analysis synthesized the findings from 23 published and five unpublished experimental or quasi-experimental group design studies on word problem-solving instruction for K-12 students with learning disabilities (LD) and mathematics difficulties (MD). A secondary purpose of this meta-analysis was to analyze the relation between treatment…

  6. Cognitive Complexity of Mathematics Instructional Tasks in a Taiwanese Classroom: An Examination of Task Sources

    ERIC Educational Resources Information Center

    Hsu, Hui-Yu; Silver, Edward A.

    2014-01-01

    We examined geometric calculation with number tasks used within a unit of geometry instruction in a Taiwanese classroom, identifying the source of each task used in classroom instruction and analyzing the cognitive complexity of each task with respect to 2 distinct features: diagram complexity and problem-solving complexity. We found that…

  7. An Alternative Time for Telling: When Conceptual Instruction Prior to Exploration Improves Mathematical Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany

    2013-01-01

    An emerging consensus suggests that guided discovery, which combines discovery and instruction, is a more effective educational approach than either one in isolation. The goal of this study was to examine two specific forms of guided discovery, testing whether conceptual instruction should precede or follow exploratory problem solving. In both…

  8. Designing Open and Individualized Instruction at the Elementary Level: A Guide for the Individual Teacher.

    ERIC Educational Resources Information Center

    Feldhusen, John; And Others

    A description of open and individualized elementary school instruction is provided. The goals of such instruction are to: 1) teach basic skills in language arts, math, science, and social studies; 2) develop higher cognitive abilities, such as problem solving; and 3) develop the child's social competence and self-concept. Open, individualized…

  9. Mathematics for the Technical Student: The Use of the Computer in the Systems Approach to Instruction.

    ERIC Educational Resources Information Center

    Capps, Joan P.

    An instructional method using flow-chart symbols to make mathematical abstractions more concrete was implemented for a year in a technical mathematics course. Students received instruction in computer applications and programming in the BASIC language in order to increase motivation and firm the mathematical skills and problem-solving approaches…

  10. I Could Really Focus on the Students

    ERIC Educational Resources Information Center

    Kelting, Taylor; Jenkins, Jayne M.; Gaudreault, Karen Lux

    2014-01-01

    Clinical supervision is practiced across all stages of teacher development to improve instructional behaviors by providing objective feedback, as well as diagnosing and solving instructional problems. Clinical supervision is composed of three elements: planning conference, classroom observation, and feedback conference. Clinical supervision is…

  11. Tool use and mechanical problem solving in apraxia.

    PubMed

    Goldenberg, G; Hagmann, S

    1998-07-01

    Moorlaas (1928) proposed that apraxic patients can identify objects and can remember the purpose they have been made for but do not know the way in which they must be used to achieve that purpose. Knowledge about the use of objects and tools can have two sources: It can be based on retrieval of instructions of use from semantic memory or on a direct inference of function from structure. The ability to infer function from structure enables subjects to use unfamiliar tools and to detect alternative uses of familiar tools. It is the basis of mechanical problem solving. The purpose of the present study was to analyze retrieval of instruction of use, mechanical problem solving, and actual tool use in patients with apraxia due to circumscribed lesions of the left hemisphere. For assessing mechanical problem solving we developed a test of selection and application of novel tools. Access to instruction of use was tested by pantomime of tool use. Actual tool use was examined for the same familiar tools. Forty two patients with left brain damage (LBD) and aphasia, 22 patients with right brain damage (RBD) and 22 controls were examined. Only LBD patients differed from controls on all tests. RBD patients had difficulties with the use but not with the selection of novel tools. In LBD patients there was a significant correlation between pantomime of tool use and novel tool selection but there were single cases who scored in the defective range on one of these tests and normally on the other. Analysis of LBD patients' lesions suggested that frontal lobe damage does not disturb novel tool selection. Only LBD patients who failed on pantomime of object use and on novel tool selection committed errors in actual use of familiar tools. The finding that mechanical problem solving is invariably defective in apraxic patients who commit errors with familiar tools is in good accord with clinical observations, as the gravity of their errors goes beyond what one would expect as a mere sequel of loss of access to instruction of use.

  12. The problem-solving approach in the teaching of number theory

    NASA Astrophysics Data System (ADS)

    Toh, Pee Choon; Hoong Leong, Yew; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Guan Tay, Eng; Him Ho, Foo

    2014-02-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to adopt a Pólya-style approach in learning mathematics. The Practical Worksheet is an instructional scaffold we adopted to help our pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. The Worksheet was initially used in a design experiment aimed at teaching problem solving in a secondary school. In this paper, we describe an application and adaptation of the MProSE (Mathematical Problem Solving for Everyone) design experiment to a university level number theory course for pre-service mathematics teachers. The goal of the enterprise was to help the pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. Our analysis of the pre-service mathematics teachers' work shows that the MProSE design holds promise for mathematics courses at the tertiary level.

  13. Effect of Two Preclinical Curricula on NMBE Part I Examination Performance.

    ERIC Educational Resources Information Center

    Farquhar, Lynda J.; And Others

    1986-01-01

    Comparison of medical students' performance on the National Board of Medical Examiners test, Part I, indicates that the replacement of scheduled instructional time (i.e., lecture-based instruction) with a guided problem-solving program was not detrimental to test scores. (MSE)

  14. The role of competing knowledge structures in undermining learning: Newton's second and third laws

    NASA Astrophysics Data System (ADS)

    Low, David J.; Wilson, Kate F.

    2017-01-01

    We investigate the development of student understanding of Newton's laws using a pre-instruction test (the Force Concept Inventory), followed by a series of post-instruction tests and interviews. While some students' somewhat naive, pre-existing models of Newton's third law are largely eliminated following a semester of teaching, we find that a particular inconsistent model is highly resilient to, and may even be strengthened by, instruction. If test items contain words that cue students to think of Newton's second law, then students are more likely to apply a "net force" approach to solving problems, even if it is inappropriate to do so. Additional instruction, reinforcing physical concepts in multiple settings and from multiple sources, appears to help students develop a more connected and consistent level of understanding. We recommend explicitly encouraging students to check their work for consistency with physical principles, along with the standard checks for dimensionality and order of magnitude, to encourage reflective and rigorous problem solving.

  15. Integrating Multiple Intelligences and Learning Styles on Solving Problems, Achievement in, and Attitudes towards Math in Six Graders with Learning Disabilities in Cooperative Groups

    ERIC Educational Resources Information Center

    Eissa, Mourad Ali; Mostafa, Amaal Ahmed

    2013-01-01

    This study investigated the effect of using differentiated instruction by integrating multiple intelligences and learning styles on solving problems, achievement in, and attitudes towards math in six graders with learning disabilities in cooperative groups. A total of 60 students identified with LD were invited to participate. The sample was…

  16. How Do We Know They're Getting Better? Assessment for 21st Century Minds, K-8

    ERIC Educational Resources Information Center

    Barell, John

    2012-01-01

    How do we measure students inquiry, problem-solving, and critical thinking abilities so that we know they are prepared to meet the challenges of the 21st century? John Barell explains how inquiry leads to problem-solving and provides specific steps for formative assessment that informs instruction of 21st century skills. Included are examples that…

  17. Proceedings of the Conference on Joint Problem Solving and Microcomputers (San Diego, California, March 31 - April 2, 1983). Technical Report No. 1.

    ERIC Educational Resources Information Center

    Cole, Michael; And Others

    A group of American and Japanese psychologists, anthropologists, linguists, and computer scientists gathered at the University of California, San Diego, to exchange ideas on models of joint problem solving and their special relevance to the design and implementation of computer-based systems of instruction. Much of the discussion focused on…

  18. A Case Study in Mathematics--The Cone Problem

    ERIC Educational Resources Information Center

    Damaskos, Nickander J.

    1969-01-01

    A case study in mathematics designed to illustrate how the computer may be instructed to solve complicated problems. The problem is to find the volume of a right truncated cone given the altitude and a half angle or the base radius. (RP)

  19. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.

  20. The NASTRAN User's Manual (Level 15)

    NASA Technical Reports Server (NTRS)

    Mccormick, C. W. (Editor)

    1972-01-01

    The User's manual for the NASA Structural Analysis (NASTRAN) program is presented. The manual contains all information needed to solve problems with NASTRAN. The volume is instructional and encyclopedic. The manual includes instruction in structural modeling techniques, instruction in input preparation, and information to assist the interpretation of the output. Descriptions of all input data cards, restart procedures, and diagnostic messages are developed.

  1. "There's Got to Be a Better Way to Do This": A Qualitative Investigation of Informal Learning among Instructional Designers

    ERIC Educational Resources Information Center

    Yanchar, Stephen C.; Hawkley, Melissa

    2014-01-01

    This study employed a qualitative research design to investigate informal learning among practicing instructional designers. Prior research has examined how instructional designers spend their time, make decisions, use theory, solve problems, and so on, but no published research has explored the nature and role of informal learning in…

  2. A System for Individualizing Instruction. Practical Answers to U-SAIL Implementation Questions. Monograph No. 4.

    ERIC Educational Resources Information Center

    Utah System Approach to Individualized Learning Project.

    The U-SAIL system is a practical approach to individualization of instruction in which a problem-solving process is employed to install a program in logical sequential phases. U-SAIL is a nationally validated, successfully replicated, cost-feasible system for individualization of instruction which can be implemented in a variety of settings with…

  3. Examination of a social problem-solving intervention to treat selective mutism.

    PubMed

    O'Reilly, Mark; McNally, Deirdre; Sigafoos, Jeff; Lancioni, Giulio E; Green, Vanessa; Edrisinha, Chaturi; Machalicek, Wendy; Sorrells, Audrey; Lang, Russell; Didden, Robert

    2008-03-01

    The authors examined the use of a social problem-solving intervention to treat selective mutism with 2 sisters in an elementary school setting. Both girls were taught to answer teacher questions in front of their classroom peers during regular classroom instruction. Each girl received individualized instruction from a therapist and was taught to discriminate salient social cues, select an appropriate social response, perform the response, and evaluate her performance. The girls generalized the skills to their respective regular classrooms and maintained the skills for up to 3 months after the removal of the intervention. Experimental control was demonstrated using a multiple baseline design across participants. Limitations of this study and issues for future research are discussed.

  4. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty.

    PubMed

    Powell, Sarah R; Fuchs, Lynn S

    2010-05-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3(rd)-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably.

  5. The Effect of a Case-Based Reasoning Instructional Model on Korean High School Students' Awareness in Climate Change Unit

    ERIC Educational Resources Information Center

    Jeong, Jinwoo; Kim, Hyoungbum; Chae, Dong-hyun; Kim, Eunjeong

    2014-01-01

    The purpose of this study is to investigate the effects of the case-based reasoning instructional model on learning about climate change unit. Results suggest that students showed interest because it allowed them to find the solution to the problem and solve the problem for themselves by analogy from other cases such as crossword puzzles in an…

  6. Flipped Classroom Instruction for Inclusive Learning

    ERIC Educational Resources Information Center

    Altemueller, Lisa; Lindquist, Cynthia

    2017-01-01

    The flipped classroom is a teaching methodology that has gained recognition in primary, secondary and higher education settings. The flipped classroom inverts traditional teaching methods, delivering lecture instruction outside class, and devoting class time to problem solving, with the teacher's role becoming that of a learning coach and…

  7. Fostering Creativity in the Classroom: Effects of Teachers' Epistemological Beliefs, Motivation, and Goal Orientation

    ERIC Educational Resources Information Center

    Hong, Eunsook; Hartzell, Stephanie A.; Greene, Mary T.

    2009-01-01

    The relationships of teachers' epistemological beliefs, motivation, and goal orientation to their instructional practices that foster student creativity were examined. Teachers' perceived instructional practices that facilitate the development of multiple perspectives in problem solving, transfer, task commitment, creative skill use, and…

  8. Exploring Agriculture in America. Instructor Guide and Student Reference.

    ERIC Educational Resources Information Center

    Humphrey, John Kevin; And Others

    This curriculum guide is designed to provide instruction about agriculture for eighth-grade students in Missouri. Lessons included in the curriculum employ a problem-solving instructional approach. Student-oriented activities are included to provide opportunities for experiential learning. Core competencies and key skills are identified in…

  9. Serving Mildly Handicapped Students in Technology Education.

    ERIC Educational Resources Information Center

    Scott, Michael L.; And Others

    1985-01-01

    Examines ways of meeting the needs of special education students in technology education. Discusses activity-oriented instruction, adding relevance to the instruction, the development of problem-solving and communication skills, the use of peer tutors, involving a special educator in industrial arts classes, safety concerns, and available…

  10. Relationship of students' conceptual representations and problem-solving abilities in acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Powers, Angela R.

    2000-10-01

    This study explored the relationship between secondary chemistry students' conceptual representations of acid-base chemistry, as shown in student-constructed concept maps, and their ability to solve acid-base problems, represented by their score on an 18-item paper and pencil test, the Acid-Base Concept Assessment (ABCA). The ABCA, consisting of both multiple-choice and short-answer items, was originally designed using a question-type by subtopic matrix, validated by a panel of experts, and refined through pilot studies and factor analysis to create the final instrument. The concept map task included a short introduction to concept mapping, a prototype concept map, a practice concept-mapping activity, and the instructions for the acid-base concept map task. The instruments were administered to chemistry students at two high schools; 108 subjects completed both instruments for this study. Factor analysis of ABCA results indicated that the test was unifactorial for these students, despite the intention to create an instrument with multiple "question-type" scales. Concept maps were scored both holistically and by counting valid concepts. The two approaches were highly correlated (r = 0.75). The correlation between ABCA score and concept-map score was 0.29 for holistically-scored concept maps and 0.33 for counted-concept maps. Although both correlations were significant, they accounted for only 8.8 and 10.2% of variance in ABCA scores, respectively. However, when the reliability of the instruments used is considered, more than 20% of the variance in ABCA scores may be explained by concept map scores. MANOVAs for ABCA and concept map scores by instructor, student gender, and year in school showed significant differences for both holistic and counted concept-map scores. Discriminant analysis revealed that the source of these differences was the instruction variable. Significant differences between classes receiving different instruction were found in the frequency of concepts listed by students for 9 of 10 concepts evaluated. Mean ABCA scores did not differ significantly between the two instruction groups. The results of this study failed to provide evidence of conceptual distinctions among different "types" of problem-solving items. The results suggested that several factors influence success in chemistry problem solving, including concept knowledge and organization. Further research into the nature of chemistry problems and problem solving is recommended.

  11. Using Problem Fields as a Method of Change.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki

    1992-01-01

    Discusses the rationale and use of problem fields which are sets of related and/or connected open-ended problem-solving tasks within mathematics instruction. Polygons with matchsticks and the number triangle are two examples of problem fields presented along with variations in conditions that promote other matchstick puzzles. (11 references) (JJK)

  12. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  13. The Application of Web-based Computer-assisted Instruction Courseware within Health Assessment

    NASA Astrophysics Data System (ADS)

    Xiuyan, Guo

    Health assessment is a clinical nursing course and places emphasis on clinical skills. The application of computer-assisted instruction in the field of nursing teaching solved the problems in the traditional lecture class. This article stated teaching experience of web-based computer-assisted instruction, based upon a two-year study of computer-assisted instruction courseware use within the course health assessment. The computer-assisted instruction courseware could develop teaching structure, simulate clinical situations, create teaching situations and facilitate students study.

  14. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  15. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  16. Learning stoichiometry: A comparison of text and multimedia instructional formats

    NASA Astrophysics Data System (ADS)

    Evans, Karen L.

    Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.

  17. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integrating Reform-Oriented Math Instruction in Special Education Settings

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Rueda, Enrique; LaRoque, Perry T.; Serlin, Ronald C.; Kwon, Jungmin

    2007-01-01

    This mixed-methods study assessed the effects of Enhanced Anchored Instruction (EAI) on the math performance of adolescents with learning disabilities in math (MLD). A quasi-experimental pretest-posttest control group design with switching replications was used to measure students' computation and problem-solving skills on EAI compared to control…

  19. Enhancing Online Collaborative Argumentation through Question Elaboration and Goal Instructions

    ERIC Educational Resources Information Center

    Golanics, J. D.; Nussbaum, E. M.

    2008-01-01

    Computer-supported collaborative argumentation can improve understanding and problem-solving skills. This study uses WebCT to explore the improvement of argumentation in asynchronous, web-based discussions through goal instructions, which are statements at the end of a discussion prompt indicating what students should achieve. In a previous study…

  20. An Instructional Systems Technology Model for Institutional Change.

    ERIC Educational Resources Information Center

    Dudgeon, Paul J.

    A program based on instructional systems technology was developed at Canadore College as a means of devising the optimal learning experience for each individual student. The systems approach is used to solve educational problems through a process of analysis, synthesis, modeling, and simulation, based on the LOGOS (Language for Optimizing…

  1. Processes and Knowledge in Designing Instruction.

    ERIC Educational Resources Information Center

    Greeno, James G.; And Others

    Results from a study of problem solving in the domain of instructional design are presented. Subjects were eight teacher trainees who were recent graduates of or were enrolled in the Stanford Teacher Education Program at Stanford University (California). Subjects studied a computer-based tutorial--the VST2000--about a fictitious vehicle. The…

  2. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  3. A Serious Game of Success

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2006-01-01

    This article discusses a computer game design and animation pilot at Washington County Technical High School as part of the advanced computer applications completer program. The focus of the instructional program is to teach students the 16 components of computer game design through a team-centered, problem-solving instructional format. Among…

  4. The Instructional Guide for Abbott Skills Enhancement Classes. Revised Edition.

    ERIC Educational Resources Information Center

    Ballinger, Ronda; Gee, Mary Kay

    This guide, which integrates adult basic education (ABE) curriculum, job skills for Abbott Laboratories, and work-related foundation skills, is designed for an instructional program in the skill areas of reading, writing, oral communications, mathematics, and problem solving. In addition to creating a uniform process and product to promote…

  5. Rethinking the Library Game: Creating an Alternate Reality with Social Media

    ERIC Educational Resources Information Center

    Battles, Jason; Glenn, Valerie; Shedd, Lindley

    2011-01-01

    In recent years, libraries have made efforts to create games, often for the purpose of information literacy instruction. Games can provide an interactive alternative to traditional instruction by introducing research tools and resources while also teaching problem solving skills within a collaborative learning environment. Despite the benefits,…

  6. Effects of Blended Instructional Models on Math Performance

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Ma, Xin; Gassaway, Linda; Toland, Michael D.; Butler, Mark; Cho, Sun-Joo

    2014-01-01

    A pretest-posttest cluster-randomized trial involving 31 middle schools and 335 students with disabilities tested the effects of combining explicit and anchored instruction on fraction computation and problem solving. Results of standardized and researcher-developed tests showed that students who were taught with the blended units outscored…

  7. An Ecological Approach to the On-Line Assessment of Problem-Solving Paths: Principles and Applications.

    ERIC Educational Resources Information Center

    Shaw, Robert E.; And Others

    1997-01-01

    Proposes a theoretical framework for designing online-situated assessment tools for multimedia instructional systems. Uses a graphic method based on ecological psychology to monitor student performance through a learning activity. Explores the method's feasibility in case studies describing instructional systems teaching critical-thinking and…

  8. Best Practices in Writing Instruction. Solving Problems in the Teaching of Literacy

    ERIC Educational Resources Information Center

    Graham, Steve, Ed.; MacArthur, Charles A., Ed.; Fitzgerald, Jill, Ed.

    2007-01-01

    Highly practical and accessible, this indispensable book provides clear-cut strategies for improving K-12 writing instruction. The contributors are leading authorities who demonstrate proven ways to teach different aspects of writing, with chapters on planning, revision, sentence construction, handwriting, spelling, and motivation. The use of the…

  9. Impact of the Second Semester University Modeling Instruction Course on Students' Representation Choices

    ERIC Educational Resources Information Center

    McPadden, Daryl; Brewe, Eric

    2017-01-01

    Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…

  10. Using High-Probability Instructional Sequences and Explicit Instruction to Teach Multiplication Facts

    ERIC Educational Resources Information Center

    Leach, Debra

    2016-01-01

    Students with learning disabilities often struggle with math fact fluency and require specialized interventions to recall basic facts. Deficits in math fact fluency can result in later difficulties when learning higher-level mathematical computation, concepts, and problem solving. The response-to-intervention (RTI) and…

  11. SYSTEMATISCHER AUSSPRACHEUNTERRICHT IM SPRACHLABORATORIUM (SYSTEMATIC PRONUNCIATION INSTRUCTION IN THE LANGUAGE LABORATORY).

    ERIC Educational Resources Information Center

    BOEDDINGHAUS, WALTER

    THE APPARENT DISAPPOINTMENT AND SLACKENING OF ENTHUSIASTIC INTEREST IN LANGUAGE LABORATORY INSTRUCTION IS MOST PROBABLY NOT DUE TO A FUNDAMENTAL LACK OF EFFECTIVENESS, BUT TO METHODOLOGICAL AND ORGANIZATIONAL PROBLEMS YET TO BE SOLVED. MOST IMPORTANT, THE RESTRICTIVE DEPENDENCE OF LABORATORY MATERIAL ON CLASSROOM LESSONS MUST BE ABANDONED. ONLY…

  12. An Evaluation of Interventions to Facilitate Algebra Problem Solving

    ERIC Educational Resources Information Center

    Mayfield, Kristin H.; Glenn, Irene M.

    2008-01-01

    Three participants were trained on 6 target algebra skills and subsequently received a series of 5 instructional interventions (cumulative practice, tiered feedback, feedback plus solution sequence instruction, review practice, and transfer training) in a multiple baseline across skills design. The effects of the interventions on the performance…

  13. Integrating Literacy and Engineering Instruction for Young Learners

    ERIC Educational Resources Information Center

    Wilson-Lopez, Amy; Gregory, Stacie

    2015-01-01

    According to recently published national standards, elementary students should engage in engineering design activities. This article outlines ways that teachers can use literacy instruction to support young students' engineering design activity, such as by selecting texts in which characters face problems that can be solved through engineering,…

  14. Finding the Optimal Guidance for Enhancing Anchored Instruction

    ERIC Educational Resources Information Center

    Zydney, Janet Mannheimer; Bathke, Arne; Hasselbring, Ted S.

    2014-01-01

    This study investigated the effect of different methods of guidance with anchored instruction on students' mathematical problem-solving performance. The purpose of this research was to iteratively design a learning environment to find the optimal level of guidance. Two iterations of the software were compared. The first iteration used explicit…

  15. Instructional Technology and Higher Education: Rewards, Rights, and Responsibilities.

    ERIC Educational Resources Information Center

    Albright, Michael J.

    This keynote address seeks to establish a definition for "instructional technology" that does not emphasize computer hardware and software but instead focuses on human skills, resource management, problem solving, and educational settings. Also discussed are ways in which technology like electronic mail and the world wide web has…

  16. Impact of Cognitive-Based Instructional Intervention on Learning Motivation: The Implementation of Student-Made Glossary in a Programming-Oriented Engineering Problem-Solving Course and Its Impact on Learning Motivation

    ERIC Educational Resources Information Center

    Huang, David Wenhao; Aagard, Hans; Diefes-Dux, Heidi

    2004-01-01

    This article describes the purpose, development, and implementation of a cognitive-based instructional intervention and its impact on learning motivation. The study was conducted in a programming-based problemsolving course for first-year engineering students. The results suggest that the instructional intervention developed based on the…

  17. Analyzing the Knowledge Construction and Cognitive Patterns of Blog-Based Instructional Activities Using Four Frequent Interactive Strategies (Problem Solving, Peer Assessment, Role Playing and Peer Tutoring): A Preliminary Study

    ERIC Educational Resources Information Center

    Wang, Shu-Ming; Hou, Huei-Tse; Wu, Sheng-Yi

    2017-01-01

    Instructional strategies can be helpful in facilitating students' knowledge construction and developing advanced cognitive skills. In the context of collaborative learning, instructional strategies as scripts can guide learners to engage in more meaningful interaction. Previous studies have been investigated the benefits of different instructional…

  18. Unconscious processing modulates creative problem solving: evidence from an electrophysiological study.

    PubMed

    Gao, Ying; Zhang, Hao

    2014-05-01

    Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Big 6 Tips: Teaching Information Problem Solving. #1 Task Definition: What Needs To Be Done.

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    1997-01-01

    Explains task definition which is the first stage in the Big 6, an approach to information and technology skills instruction. Highlights include defining the problem; identifying the information requirements of the problem; transferability from curriculum-based problems to everyday tasks; and task definition logs kept by students. (LRW)

  20. Elements of Problem-Based Learning: Suggestions for Implementation in the Asynchronous Environment

    ERIC Educational Resources Information Center

    Nelson, Erik

    2010-01-01

    Problem-based learning, or PBL, is a student-centered instructional approach that is derived from constructivist epistemology. It is based upon ill-structured real-world problems with the goal of strengthening and developing critical thinking and problem-solving skills in learners. Initially utilized in medical schools to strengthen diagnostic…

  1. Computer Lab Modules as Problem Solving Tools. Final Report.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.; Ignatz, Milton

    There are many problems involved in upgrading scientific literacy in high schools: poorly qualified teachers, the lack of good instructional materials, and economic and academic disadvantages all contribute to the problem. This document describes a project designed to increase the opportunities available to the high school science student to…

  2. That Can't Be Right! Using Counterintuitive Math Problems.

    ERIC Educational Resources Information Center

    Maylone, Nelson John

    This book is designed to provide middle-grade mathematics teachers with ideas for enlivening instruction to help students acquire a sense about numbers. Guided classroom discussions for writing opportunities centered on the theme of problem solving are provided. Following an introduction, chapters include the following: Counterintuitive Problems;…

  3. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  4. Talk aloud problem solving: Exploration of acquisition and frequency building in science text

    NASA Astrophysics Data System (ADS)

    Dembek, Ginny

    Discovering new ways to help students attain higher levels of scientific knowledge and to think critically is a national goal (Educate to Innovate campaign). Despite the best intentions, many students struggle to achieve a basic level of science knowledge (NAEP, 2011). The present study examined Talk Aloud Pair Problem Solving and frequency building with five students who were diagnosed with a disability and receive specialized reading instruction in a special education setting. Acquisition was obtained through scripted lessons and frequency building or practice strengthened the student's verbal repertoire making the problem solving process a durable behavior. Overall, students all demonstrated improvements in problem solving performance when compared to baseline. Students became more significantly accurate in performance and maintenance in learning was demonstrated. Generalization probes indicated improvement in student performance. Implications for practice and future research are discussed.

  5. The benefits of computer-generated feedback for mathematics problem solving.

    PubMed

    Fyfe, Emily R; Rittle-Johnson, Bethany

    2016-07-01

    The goal of the current research was to better understand when and why feedback has positive effects on learning and to identify features of feedback that may improve its efficacy. In a randomized experiment, second-grade children received instruction on a correct problem-solving strategy and then solved a set of relevant problems. Children were assigned to receive no feedback, immediate feedback, or summative feedback from the computer. On a posttest the following day, feedback resulted in higher scores relative to no feedback for children who started with low prior knowledge. Immediate feedback was particularly effective, facilitating mastery of the material for children with both low and high prior knowledge. Results suggest that minimal computer-generated feedback can be a powerful form of guidance during problem solving. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Storytelling as an Instructional Method: Research Perspectives (Modeling and Simulations for Learning and Instruction)

    DTIC Science & Technology

    2010-01-01

    solving the problem and then applying facts and skills to reach a solution (Savery, 1998). KEY INSTRUCTIONAL STORY RESEARCH QUESTIONS Regardless of the...collaborative writing in higher education. In C. J. Bonk & K. S. King (Eds.), Electronic collaborators: Learner-centered technologies for literacy ...Gentner and Kokinov (2001) and luthe (2005), analogical reasoning involves making inferences from the similarity of relationships of elements across two

  7. The Impacts of a Web-Aided Instructional Simulation on Science Learning.

    ERIC Educational Resources Information Center

    Hsu, Ying-Shao; Thomas, Rex A.

    2002-01-01

    Investigates the effects of selected characteristics of a web-aided instructional simulation on students' conceptual change, problem solving, and transfer abilities. Conducts a two-pronged research study with (n=117) students enrolled in a beginning meteorology course at Iowa State University. Compares three groups--with-log group, without-log…

  8. Patterns and Punctuation: Learning to Question Language

    ERIC Educational Resources Information Center

    Schlessman, Elizabeth

    2011-01-01

    As teachers plan instruction--even instruction about punctuation--they have the opportunity to engage students' minds and create new labels: question-asking, problem-solving. How teachers teach embeds a vision of who they think kids are and what they think kids are capable of. Are they destined for a future of critical thinking, questioning,…

  9. The Impact of a District-Wide Staff Development Effort on Secondary School Principals' Perceptions of Their Role.

    ERIC Educational Resources Information Center

    DeFigio, Nicholas; Hughes, Sean

    Increasingly, principals are being viewed as instructional leaders, professional educators active in initiating and planning teacher development programs. While most principals consider instructional leadership a high priority, they spend much of their time solving routine problems and confronting minor crises. Immediate, short-term responses take…

  10. Instruction-First and Problem-Solving-First Approaches: Alternative Pathways to Learning Complex Tasks

    ERIC Educational Resources Information Center

    Likourezos, Vicki; Kalyuga, Slava

    2017-01-01

    According to cognitive load theory, using worked examples is an effective and efficient instructional strategy for initial cognitive skill acquisition for novice learners, as it reduces cognitive load and frees up cognitive resources to build task competence. Contrary to this, productive failure (as well as invention learning, desirable…

  11. Comprehension Instruction: Research-Based Best Practices. Solving Problems in the Teaching of Literacy. Second Edition

    ERIC Educational Resources Information Center

    Block, Cathy Collins, Ed.; Parris, Sheri R., Ed.

    2008-01-01

    Now in a substantially revised and updated second edition, this comprehensive professional resource and text is based on cutting-edge research. In each chapter, leading scholars provide an overview of a particular aspect of comprehension, offer best-practice instructional guidelines and policy recommendations, present key research questions still…

  12. Analogical Instruction in Statistics: Implications for Social Work Educators

    ERIC Educational Resources Information Center

    Thomas, Leela

    2008-01-01

    This paper examines the use of analogies in statistics instruction. Much has been written about the difficulty social work students have with statistics. To address this concern, Glisson and Fischer (1987) called for the use of analogies. Understanding of analogical problem solving has surged in the last few decades with the integration of…

  13. Teachers' Use of a Verbally Governed Algorithm and Student Learning

    ERIC Educational Resources Information Center

    Keohane, Dolleen-Day; Greer, R. Douglas

    2005-01-01

    The effects of instructing teachers in the use of a verbally governed algorithm to solve students' learning problems were measured. The teachers were taught to analyze students' responses to instruction using a strategic protocol, which included a series of verbally governed questions. The study was designed to determine whether the instructional…

  14. Improving the Fraction Word Problem Solving of Students with Mathematics Learning Disabilities: Interactive Computer Application

    ERIC Educational Resources Information Center

    Shin, Mikyung; Bryant, Diane P.

    2017-01-01

    Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…

  15. Reflection as a Means of Developing Expertise in Problem Solving, Decision Making, and Complex Thinking of Designers.

    ERIC Educational Resources Information Center

    Moallem, Mahnaz

    This paper focuses on reflection and reflective thinking as a means of developing expertise in instructional designers. The need for the reflective instructional designer is discussed, and reflective thinking is examined from several perspectives, i.e., controlled thinking, tacit knowledge, epistemic assumption, abductive reasoning, willingness to…

  16. Developing Self-Regulated Learners through Collaborative Online Case Discussion in Educational Psychology

    ERIC Educational Resources Information Center

    Willems, Patricia P.; Gonzalez-DeHass, Alyssa

    2015-01-01

    Case study instruction is characterized by centering instruction around the use of hypothetical classroom dilemmas. It uses descriptive stories and invites students to discuss application of course material as they engage in hypothetical classroom problem-solving and teacher decision-making. Teaching is a complex profession that requires high…

  17. Effects of Enhanced Anchored Instruction on Skills Aligned to Common Core Math Standards

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Cho, Sun-Joo

    2013-01-01

    This study compared how students with learning difficulties in math (MLD) who were randomly assigned to two instructional conditions answered items on problem solving tests aligned to the Common Core State Standards Initiative for Mathematics. Posttest scores showed improvement in the math performance of students receiving Enhanced Anchored…

  18. Problem Solved: Middle School Math Instruction Gets a Boost from a Flexible Model for Learning

    ERIC Educational Resources Information Center

    Jacobs, Jennifer; Koellner, Karen; Funderburk, Joanie

    2012-01-01

    Education researchers frequently seek out districts, schools, and teachers as partners for professional learning projects. They share their ambitious vision--a new model of professional learning that will support an empowered community, instructional improvement, and student achievement. The authors, along with other members of their research…

  19. Evaluation of a Theory of Instructional Sequences for Physics Instruction

    ERIC Educational Resources Information Center

    Wackermann, Rainer; Trendel, Georg; Fischer, Hans E.

    2010-01-01

    The background of the study is the theory of "basis models of teaching and learning", a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear…

  20. The Effective Utilization of an Instructional Film in a Learning Sequence

    ERIC Educational Resources Information Center

    Thomas, Ian D.

    1973-01-01

    Summarizes some of the main research findings relating to the utilization of instructional films in classroom situations. Reports the confirmation of a number of these findings in a survey conducted to investigate the teaching and learning practices used in acquiring the ability to solve simple problems using Coulomb's Law. (Author/JR)

  1. Authentic Performance of Complex Problem-Solving Tasks with an EPSS.

    ERIC Educational Resources Information Center

    Leighton, Chet; McCabe, Cynthia

    Just-In-Time Learning (JIT Learning) is a semester-long graduate course that teaches corporate trainers and instructional designers how to design performance improvement interventions. This course is part of a Master's program in Instructional Technology at San Francisco State University. The course has been offered three times and has been…

  2. Evaluation of Instructional Systems RUPS and TABA. Final Report.

    ERIC Educational Resources Information Center

    O'Neill, Phillip M.

    An investigation was conducted to determine the extent of dissemination of the Research Utilizing Problem Solving (Rups) and Development of Higher Level Thinking Abilities (TABA) instructional systems developed by the Northwest Regional Laboratory (NWREL), the degree of conformity between the RUPS and TABA systems as developed and as used in the…

  3. Dynamic Nature of Atoms and Molecules, Science (Experimental): 5316.06.

    ERIC Educational Resources Information Center

    Buffaloe, Jacquelin F.

    This unit of instruction deals with the study of both physical and chemical systems in equilibrium. It provides the student with instruction that will enable him to predict products in solubility, acid-base, and oxidation-reduction reactions and to write and balance equations for these reactions and solve problems involving equilibria constants.…

  4. The Effect of Contrasting Analogies on Understanding of and Reasoning about Natural Selection

    ERIC Educational Resources Information Center

    Sota, Melinda

    2012-01-01

    Analogies play significant roles in communication as well as in problem solving and model building in science domains. Analogies have also been incorporated into several different instructional strategies--most notably in science domains where the concepts and principles to be learned are abstract or complex. Although several instructional models…

  5. Best Practices in Adolescent Literacy Instruction. Solving Problems in the Teaching of Literacy

    ERIC Educational Resources Information Center

    Hinchman, Kathleen A., Ed.; Sheridan-Thomas, Heather K., Ed.

    2008-01-01

    Covering everything from day-to-day learning activities to schoolwide goals, this engaging book reviews key topics in literacy instruction for grades 5-12 and provides research-based recommendations for practice. Leading scholars present culturally responsive strategies for motivating adolescents; using multiple texts and digital media;…

  6. Issues in Science Education: Changing Purposes of Science Education.

    ERIC Educational Resources Information Center

    Williamson, Stan

    This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…

  7. Using Web 2.0 Tools to Facilitate Case-Based Instruction: Considering the Possibilities

    ERIC Educational Resources Information Center

    Koehler, Adrie A.; Ertmer, Peggy A.

    2016-01-01

    Case-based instruction (CBI) offers a promising method for promoting problem-solving skills in learners. However, during CBI, the instructor shoulders major responsibility for shaping the learning that takes place. Research indicates that the facilitation techniques used during case discussions influence what gets covered, and to what extent,…

  8. High school students' understanding and problem solving in population genetics

    NASA Astrophysics Data System (ADS)

    Soderberg, Patti D.

    This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.

  9. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty

    PubMed Central

    Powell, Sarah R.; Fuchs, Lynn S.

    2010-01-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for higher-order mathematics skills including word problems. Research indicates equal-sign instruction can alter how typically-developing students use the equal sign, but no study has examined effects for students with mathematics difficulty (MD) or how equal-sign instruction contributes to word-problem skill for students with or without MD. The present study assessed the efficacy of equal-sign instruction within word-problem tutoring. Third-grade students with MD (n = 80) were assigned to word-problem tutoring, word-problem tutoring plus equal-sign instruction (combined) tutoring, or no-tutoring control. Combined tutoring produced better improvement on equal sign tasks and open equations compared to the other 2 conditions. On certain forms of word problems, combined tutoring but not word-problem tutoring alone produced better improvement than control. When compared at posttest to 3rd-grade students without MD on equal sign tasks and open equations, only combined tutoring students with MD performed comparably. PMID:20640240

  10. Teaching Creativity and Inventive Problem Solving in Science

    PubMed Central

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures. PMID:19723812

  11. Teaching creativity and inventive problem solving in science.

    PubMed

    DeHaan, Robert L

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

  12. Using Categorization of Problems as an Instructional Tool to Help Introductory Students Learn Physics

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2016-01-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large…

  13. Learning and Optimization of Cognitive Capabilities. Final Project Report.

    ERIC Educational Resources Information Center

    Lumsdaine, A.A.; And Others

    The work of a three-year series of experimental studies of human cognition is summarized in this report. Proglem solving and learning in man-machine interaction was investigated, as well as relevant variables and processes. The work included four separate projects: (1) computer-aided problem solving, (2) computer-aided instruction techniques, (3)…

  14. Integrating Numerical Computation into the Modeling Instruction Curriculum

    ERIC Educational Resources Information Center

    Caballero, Marcos D.; Burk, John B.; Aiken, John M.; Thoms, Brian D.; Douglas, Scott S.; Scanlon, Erin M.; Schatz, Michael F.

    2014-01-01

    Numerical computation (the use of a computer to solve, simulate, or visualize a physical problem) has fundamentally changed the way scientific research is done. Systems that are too difficult to solve in closed form are probed using computation. Experiments that are impossible to perform in the laboratory are studied numerically. Consequently, in…

  15. Designing Undergraduate-Level Organic Chemistry Instructional Problems: Seven Ideas from a Problem-Solving Study of Practicing Synthetic Organic Chemists

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2012-01-01

    The development of curricular problems based on the practice of synthetic organic chemistry has not been explored in the literature. Such problems have broadly been hypothesized to promote student persistence and interest in STEM fields. This study reports seven ideas about how practice-based problems can be developed for sophomore-level organic…

  16. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  17. Mathematics Competency for Beginning Chemistry Students Through Dimensional Analysis.

    PubMed

    Pursell, David P; Forlemu, Neville Y; Anagho, Leonard E

    2017-01-01

    Mathematics competency in nursing education and practice may be addressed by an instructional variation of the traditional dimensional analysis technique typically presented in beginning chemistry courses. The authors studied 73 beginning chemistry students using the typical dimensional analysis technique and the variation technique. Student quantitative problem-solving performance was evaluated. Students using the variation technique scored significantly better (18.3 of 20 points, p < .0001) on the final examination quantitative titration problem than those who used the typical technique (10.9 of 20 points). American Chemical Society examination scores and in-house assessment indicate that better performing beginning chemistry students were more likely to use the variation technique rather than the typical technique. The variation technique may be useful as an alternative instructional approach to enhance beginning chemistry students' mathematics competency and problem-solving ability in both education and practice. [J Nurs Educ. 2017;56(1):22-26.]. Copyright 2017, SLACK Incorporated.

  18. Task and Observer Skill Factors in Accuracy of Assessment of Performance

    DTIC Science & Technology

    1977-04-01

    consisted of two four minute videotapes. The actress in one tape was an undergraduate female and the actor in the second tape was a graduate male...viewed two problem-solving sequenceo under instructions to describe into a tape recorder "all the different things" the actor did. These reports were...scored by judges for reference to molar vs . molcculor units of behavior. One of the problem-solving sequences was "apparently random," consisting of

  19. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 27 science activities for secondary school science instruction. Topic areas include microbiology, botany, biochemistry, genetics, safety, earthquakes, problem solving, electricity, heat, solutions, mechanics, quantum mechanics, flame tests, and molecular structure. (CW)

  20. Problem-Based Learning in Formal and Informal Learning Environments

    ERIC Educational Resources Information Center

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  1. Systematizing Scaffolding for Problem-Based Learning: A View from Case-Based Reasoning

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Kolodner, Janet L.

    2016-01-01

    Current theories and models of education often argue that instruction is best administered when knowledge is situated within a context. Problem-based learning (PBL) provides an approach to education that has particularly powerful affordances for learning disciplinary content and practices by solving authentic problems within a discipline. However,…

  2. Effects of using multi-vide ruler kit in the acquisition of numeracy skills among PROTIM students

    NASA Astrophysics Data System (ADS)

    Arumugan, Hemalatha A./P.; Obeng, Sharifah Nasriah Wan; Talib, Corrienna Abdul; Bunyamin, Muhammad Abdul Hadi; Ali, Marlina; Ibrahim, Norhasniza; Zawadzki, Rainer

    2017-08-01

    One effective way to teach arithmetic more interestingly and make it easier to learn is through the use of instructional materials. These can help students master certain mathematical skills, particularly multiplication and division, often considered difficult amongst primary school pupils. Nevertheless, the insufficiency of appropriate instructional materials causes difficulty in understanding how to use the proper technique or apply the concept, especially in multiplication. With this in mind, this study investigated whether the innovative and creative instructional material designed to assist and enhance numeracy skills, namely the Multi-vide Ruler kit, could increase students' ability in solving multiplication and division questions and whether it affected their interest in solving numeracy problems. Participants in this study included ten PROTIM (Program Tiga M [Three M Program] - membaca [reading], menulis [writing] dan mengira [calculate]) students, 9-10 years old, who had difficulties in reading, writing and arithmetic. In order to get appropriate support for qualitative research, a pre and post-test containing ten basic mathematical operations, was implemented together with the Multi-vide Ruler Kit. The findings of the qualitative case study, with the pre and post-tests, showed significant differences in their achievement and interest in two-digit multiplication and division operations. The results suggest that this approach could improve PROTIM student's ability to solve basic mathematical operations. What was most encouraging was the increase in students' interest in solving numeracy problems.

  3. A State Articulated Instructional Objectives Guide for Occupational Education Programs. State Pilot Model for Drafting (Graphic Communications). Part I--Basic. Part II--Specialty Programs. Section A (Mechanical Drafting and Design). Section B (Architectural Drafting and Design).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    A two-part articulation instructional objective guide for drafting (graphic communications) is provided. Part I contains summary information on seven blocks (courses) of instruction. They are as follow: introduction; basic technical drafting; problem solving in graphics; reproduction processes; freehand drawing and sketching; graphics composition;…

  4. The PBL projects: where we've been and where we are going

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Massa, Nicholas M.

    2015-10-01

    Problem-based learning (PBL) is an instructional approach in which students learn course content by using a structured approach to collaboratively solving complex real-world problems. PBL addresses widespread industry concern that graduates of technician and engineering programs often have difficulty applying their technical knowledge to novel situations and working effectively in teams. Over the past 9 years, the PBL Projects of the New England Board of Higher Education (Boston, MA) have developed instructional strategies and materials that research shows address industry concerns by improving student learning, retention, critical thinking and problem-solving skills as well as the transfer of knowledge to new situations. In this paper we present a retrospective of the PBL Projects, three National Science Foundation Advanced Technology Education (NSF-ATE) projects that developed twenty interdisciplinary multi-media PBL case studies called "Challenges" in the topic areas of optics/photonics, sustainable technology and advanced manufacturing, provided faculty professional development in the use of PBL in the classroom to teachers across the U.S. and abroad, and conducted research on the efficacy of the PBL method. We will describe the resources built into the Challenges to scaffold the development of students' problem solving and critical thinking skills and the support provided to instructors who wish to create a student-centered classroom by incorporating PBL. Finally, we will discuss plans for next steps and examine strategies for taking PBL to the next level through actual industry-based problem solving experiences.

  5. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  6. Linear Equations. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying algebraic operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  7. Acing the Exam.

    ERIC Educational Resources Information Center

    Margolis, Rick

    2002-01-01

    Discusses improving student test scores based on an interview with Bob Berkowitz, co-developer of the Big6 approach to problem solving. Highlights include experiences at Wayne Central High School (Ontario Center, NY); cooperation between library media specialists and classroom teachers; viewing instruction as a series of information problems; and…

  8. Common Fractions. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  9. Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement

    NASA Astrophysics Data System (ADS)

    Suwono, Hadi; Wibowo, Agung

    2018-01-01

    Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.

  10. The Use of Comics in Experimental Instructions in a Non-Formal Chemistry Learning Context

    ERIC Educational Resources Information Center

    Affeldt, Fiona; Meinhart, Daniel; Eilks, Ingo

    2018-01-01

    Practical work is an essential component of science education. However, insufficient approaches towards practical work can limit the potential it has for promoting both students' motivation and situational interest. One suggestion to solve this problem is to use alternative forms of lab instruction which are both motivating and easy to comprehend.…

  11. An Investigation of the Use of Computer-Aided-Instruction in Teaching Students How to Solve Selected Multistep General Chemistry Problems.

    ERIC Educational Resources Information Center

    Grandey, Robert C.

    The development of computer-assisted instructional lessons on the following three topics is discussed: 1) the mole concept and chemical formulas, 2) concentration of solutions and quantities from chemical equations, and 3) balancing equations for oxidation-reduction reactions. Emphasis was placed on developing computer routines which interpret…

  12. An Instructional System in Physical Science, Teacher's Guide and Keys.

    ERIC Educational Resources Information Center

    Washington State Univ., Pullman.

    This manual is a teacher's guide to a self-instructional program in basic physical science, designed for high school students who have not had a course in chemistry or physics. There are six units in the manual relating to these areas: problem solving and experimental procedures; universal standards, metric system and conversion; mechanics; the…

  13. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  14. Applying a Response-to-Intervention Model to Literacy Instruction for Students Who Are Blind or Have Low Vision

    ERIC Educational Resources Information Center

    Kamei-Hannan, Cheryl; Holbrook, M. Cay; Ricci, Leila A.

    2012-01-01

    Introduction: Response to intervention (RTI) has become widely recognized and used in education. Propelling its significance is its systematic and schoolwide approach and emphasis on using a problem-solving approach to providing appropriate instruction for each child. Children with visual impairments (that is, blindness and low vision) are…

  15. Solutions Unlimited: Evaluation of Prototype Units 1 and 3. Research Report 89.

    ERIC Educational Resources Information Center

    Agency for Instructional Television, Bloomington, IN.

    Solutions Unlimited is a computer/video project developed by the Agency for Instructional Television (AIT) in collaboration with a consortium of state, provincial, and local education agencies. The goal of the project is to improve the problem-solving skills of students in grades 6 through 8 through the use of brief instructional television…

  16. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    ERIC Educational Resources Information Center

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  17. Can Instructional Reform in Urban Middle Schools Help Students Narrow the Mathematics Performance Gap? Some Evidence from the QUASAR Project.

    ERIC Educational Resources Information Center

    Silver, Edward A.; Lane, Suzanne

    1995-01-01

    Compared mathematical performance of middle school students in low-income communities involved in the QUASAR project to those of a demographically similar school and of a nationally representative sample. QUASAR mathematics instruction emphasizes reasoning, problem-solving, and understanding. Quasar students outperformed NAEP's disadvantaged urban…

  18. Facilitating Students' Learning with Hybrid Instruction: A Comparison among Four Learning Styles

    ERIC Educational Resources Information Center

    Wichadee, Saovapa

    2013-01-01

    Introduction: Since a part of the instruction happens online, a hybrid course has usually been used to solve the problems of space and time. This article explores how students' learning styles influence their learning and satisfaction when certain format of a hybrid course is implemented. Methods: Participants were 122 first-year students at a…

  19. In Search of Scaffolding: An Observational Study of Fathers' Informal Instructional Styles.

    ERIC Educational Resources Information Center

    Cordon, Luis A.

    Most research on scaffolded instruction has been conducted with mothers rather than fathers and has carried the implicit assumption that it is superior to other methods. This study examined fathers' teaching style differences and the effects of those differences on children's recall and transfer of a strategy for solving balance scale problems.…

  20. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    NASA Astrophysics Data System (ADS)

    McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.

    2016-12-01

    The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  1. From Whole Numbers to Invert and Multiply

    ERIC Educational Resources Information Center

    Cavey, Laurie O.; Kinzel, Margaret T.

    2014-01-01

    Teachers report that engaging students in solving contextual problems is an important part of supporting student understanding of algorithms for fraction division. Meaning for whole-number operations is a crucial part of making sense of contextual problems involving rational numbers. The authors present a developed instructional sequence to…

  2. The Metric System. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  3. Tutoring electronic troubleshooting in a simulated maintenance work environment

    NASA Technical Reports Server (NTRS)

    Gott, Sherrie P.

    1987-01-01

    A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.

  4. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  5. Discrimination theory of rule-governed behavior

    PubMed Central

    Cerutti, Daniel T.

    1989-01-01

    In rule-governed behavior, previously established elementary discriminations are combined in complex instructions and thus result in complex behavior. Discriminative combining and recombining of responses produce behavior with characteristics differing from those of behavior that is established through the effects of its direct consequences. For example, responding in instructed discrimination may be occasioned by discriminative stimuli that are temporally and situationally removed from the circumstances under which the discrimination is instructed. The present account illustrates properties of rule-governed behavior with examples from research in instructional control and imitation learning. Units of instructed behavior, circumstances controlling compliance with instructions, and rule-governed problem solving are considered. PMID:16812579

  6. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  7. Using Problem-Based Learning to Increase Computer Self-Efficacy in Taiwanese Students

    ERIC Educational Resources Information Center

    Smith, Cary Stacy; Hung, Li-Ching

    2017-01-01

    In Taiwan, teaching focuses around lecturing, with students having little opportunity to interact with each other. Problem-based learning (PBL) is a means of instruction where students learn the subject by being active participants in the pedagogical process, with the emphasis on problem-solving. In this study, the authors investigated whether PBL…

  8. The Self-Formation of Collaborative Groups in a Problem Based Learning Environment

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2016-01-01

    The aim of this paper is to present "the three steps method" of the self-formation of collaborative groups in a problem-based learning environment. The self-formation of collaborative groups is based on sharing of accountability among students for solving instructional problems. The steps of the method are planning collaborative problem…

  9. Enhancing Problem-Solving Expertise by Means of an Authentic, Collaborative, Computer Supported and Problem-Based Course

    ERIC Educational Resources Information Center

    Arts, Jos A. R.; Gijselaers, Wim H.; Segers, Mien S. R.

    2006-01-01

    Instructional designs, embedding learning in meaningful contexts such as problem-based learning (PBL) are increasingly used for fostering expertise to prepare students for the demands of the future workplace. However, cognitive outcomes of these curricula in terms of expertise outcomes are not always conclusive. Based on the instructional…

  10. Contact in an Expanding Universe: An Instructive Exercise in Dynamic Geometry

    ERIC Educational Resources Information Center

    Zimmerman, Seth

    2010-01-01

    The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic…

  11. Rebecca's in the Dark: A Comparative Study of Problem-Based Learning and Direct Instruction/Experiential Learning in Two 4th-Grade Classrooms

    ERIC Educational Resources Information Center

    Drake, Kay N.; Long, Deborah

    2009-01-01

    Seeking improved student performance in elementary schools has led educators to advocate inquiry-based teaching approaches, including problem-based learning (PBL). In PBL, students simultaneously develop problem-solving strategies, disciplinary knowledge bases, collaborative skills, and dispositions. Research into the efficacy of PBL in elementary…

  12. Effects of Problem Based Economics on High School Economics Instruction. Final Report. NCEE 2010-4022rev

    ERIC Educational Resources Information Center

    Finkelstein, Neal; Hanson, Thomas; Huang, Chun-Wei; Hirschman, Becca; Huang, Min

    2011-01-01

    This study examines whether the Problem Based Economics curriculum developed by the Buck Institute for Education improves grade 12 students' content knowledge as measured by the Test of Economic Literacy, a test refined by the National Council on Economic Education (NCEE) over decades. Students' problem-solving skills in economics were also…

  13. "What's so Terrible about Swallowing an Apple Seed?" Problem-Based Learning in Kindergarten

    ERIC Educational Resources Information Center

    Zhang, Meilan; Parker, Joyce; Eberhardt, Jan; Passalacqua, Susan

    2011-01-01

    Problem-Based Learning (PBL), an instructional approach originated in medical education, has gained increasing attention in K-12 science education because of its emphasis on self-directed learning and real-world problem-solving. Yet few studies have examined how PBL can be adapted for kindergarten. In this study, we examined how a veteran…

  14. Effect of Cooperative Problem-Based Lab Instruction on Metacognition and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie; Stevens, Ron

    2012-01-01

    While most scientists agree that laboratory work is an important part of introductory science courses, there is scant evidence for the relationship between laboratory work and student learning, particularly at the college level. This work reports the quantitative component of a mixed-methods study of the effect of cooperative problem-based…

  15. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

    PubMed Central

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

  16. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    ERIC Educational Resources Information Center

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  17. Infusing BSCS 5E Instructional Model with Multimedia: A Promising Approach to Develop 21st Century Skills

    ERIC Educational Resources Information Center

    Senan, Divya C.

    2013-01-01

    The full promise of class room learning is dependent on its ability to incorporate 21st century skills in its instructional design, delivery and implementation. In this increasingly competitive global economy, it is not enough for students to acquire subject-level mastery alone. Skills like creative thinking, problem-solving, communication and…

  18. Effects of Visual Working Memory Training and Direct Instruction on Geometry Problem Solving in Students with Geometry Difficulties

    ERIC Educational Resources Information Center

    Zhang, Dake

    2017-01-01

    We examined the effectiveness of (a) a working memory (WM) training program and (b) a combination program involving both WM training and direct instruction for students with geometry difficulties (GD). Four students with GD participated. A multiple-baseline design across participants was employed. During the Phase 1, students received six sessions…

  19. Utilizing Simulation-Based Training of Video Clip Instruction for the Store Service Operations Practice Course

    ERIC Educational Resources Information Center

    Lin, Che-Hung; Yen, Yu-Ren; Wu, Pai-Lu

    2015-01-01

    The aim of this study was to develop a store service operations practice course based on simulation-based training of video clip instruction. The action research of problem-solving strategies employed for teaching are by simulated store operations. The counter operations course unit used as an example, this study developed 4 weeks of subunits for…

  20. Concept-Based Curriculum and Instruction for the Thinking Classroom. Second Edition (Revised Edition). Concept-Based Curriculum and Instruction Series

    ERIC Educational Resources Information Center

    Erickson, H. Lynn; Lanning, Lois A.; French, Rachel

    2017-01-01

    Knowing the facts is not enough. If we want students to develop intellectually, creatively problem-solve, and grapple with complexity, the key is in "conceptual understanding." A Concept-Based curriculum recaptures students' innate curiosity about the world and provides the thrilling feeling of engaging one's mind. This updated edition…

  1. Computer Aided Instruction and Problem Solving in the Teaching of Oral Diagnosis.

    ERIC Educational Resources Information Center

    Spencer, Judson; Gobetti, John P.

    A computer-assisted instructional (CAI) program is being used at the University of Michigan School of Dentistry to aid in the teaching of oral diagnosis to dental students. The program is designed to simulate a real life situation--i.e., the diagnosis of patient illness-which would not be otherwise available to the student and to demonstrate to…

  2. Tutoring in Critical Thinking: Using the Stases to Scaffold High School Students' Reading and Writing of Persuasive Text

    ERIC Educational Resources Information Center

    Slater, Wayne H.; Groff, James A.

    2017-01-01

    Using case study research methods, we investigated the effectiveness of a dialogic tutoring model informed by cognitive strategy instruction to implement a problem-solving strategy using a gradual-release-of-responsibility model of instruction situated in stasis theory. Eight minority 10th graders participated because of their difficulties with…

  3. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    ERIC Educational Resources Information Center

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  4. Guided-Inquiry Based Laboratory Instruction: Investigation of Critical Thinking Skills, Problem Solving Skills, and Implementing Student Roles in Chemistry

    ERIC Educational Resources Information Center

    Gupta, Tanya

    2012-01-01

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with…

  5. Improving Learning Results and Reducing Cognitive Load through 3D Courseware on Color Management and Inspection Instruction

    ERIC Educational Resources Information Center

    Hsiung, Liang-Yuan; Lai, Mu-Hui

    2013-01-01

    This study intends to solve the problem that schools in Taiwan lack of the equipment for color management and inspection instruction and seek ways to improve learning results and reduce cognitive load. The researchers developed 3D courseware for color management and inspection through a research and development process. To further scrutinize the…

  6. Technology I, II, and III: Criteria for Understanding and Improving the Practice of Instructional Technology

    ERIC Educational Resources Information Center

    McDonald, Jason K.; Gibbons, Andrew S.

    2009-01-01

    In this paper we describe the criteria of "Technology I, II, and III," which some instructional theorists have proposed to describe the differences between a formulaic and a reflective approach to solving educational problems. In a recent study, we applied these criteria to find evidence of a "technological gravity" that pulls practitioners away…

  7. Research on Computers in Mathematics Education, IV. The Use of Computers in Mathematics Education Resource Series.

    ERIC Educational Resources Information Center

    Kieren, Thomas E.

    This last paper in a set of four reviews research on a wide variety of computer applications in the mathematics classroom. It covers computer-based instruction, especially drill-and-practice and tutorial modes; computer-managed instruction; and computer-augmented problem-solving. Analytical comments on the findings and status of the research are…

  8. Wusor II: A Computer Aided Instruction Program with Student Modelling Capabilities. AI Memo 417.

    ERIC Educational Resources Information Center

    Carr, Brian

    Wusor II is the second intelligent computer aided instruction (ICAI) program that has been developed to monitor the progress of, and offer suggestions to, students playing Wumpus, a computer game designed to teach logical thinking and problem solving. From the earlier efforts with Wusor I, it was possible to produce a rule-based expert which…

  9. Smithtown: An Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Raghavan, Kalyani; Katz, Arnold

    1989-01-01

    Described is an instructional aid that employs artificial intelligence methods to assist students in beginning economics courses to improve their problem-solving skills. Discussed are the rationale, structure, and evaluation of this program. (CW)

  10. Specific Cognitive Predictors of Early Math Problem Solving

    ERIC Educational Resources Information Center

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  11. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-04-29

    can be converted to a quadratic unconstrained binary optimization ( QUBO ) problem that uses 0/1-valued variables, and so they are often used...Frontiers in Physics, 2:5 (12 Feb 2014). [7] “Programming with QUBOs ,” (instructional document) D-Wave: The Quantum Computing Company, 2013. [8

  12. Attention and Encoding in Physics Learning and Problem Solving

    ERIC Educational Resources Information Center

    Feil, Adam John

    2009-01-01

    This dissertation presents several studies designed to probe the mental representations that physics experts and novices form when interacting with typical instructional materials, such as diagrams and problem statements. By using recognition tasks and a change detection task, the mental representations of experts and novices are studied in a more…

  13. Video Game-Based Learning: An Emerging Paradigm for Instruction

    ERIC Educational Resources Information Center

    Squire, Kurt D.

    2008-01-01

    Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…

  14. Laboratory Experiences in Marine Biology, Student Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    This manual contains instructions for laboratory exercises using marine organisms. For each exercise a problem is defined, materials are listed, possible ways to solve the problem are suggested, questions are asked to guide the student in interpreting data, and further reading is suggested. The exercises deal with the measurement of oxygen…

  15. Video Game-Based Learning: An Emerging Paradigm for Instruction

    ERIC Educational Resources Information Center

    Squire, Kurt D.

    2013-01-01

    Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…

  16. Positive Youth Development and Nutrition: Interdisciplinary Strategies to Enhance Student Outcomes

    ERIC Educational Resources Information Center

    Edwards, Oliver W.; Cheeley, Taylor

    2016-01-01

    Educational policies require the use of data and progress monitoring frameworks to guide instruction and intervention in schools. As a result, different problem-solving models such as multitiered systems of supports (MTSS) have emerged that use these frameworks to improve student outcomes. However, problem-focused models emphasize negative…

  17. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…

  18. Professional Development of Teachers of Vocational Education. Reprint Series.

    ERIC Educational Resources Information Center

    Camp, William G.

    A research and theory-based model proposed for the professional preparation and induction of vocational teachers suggests a collaborative problem-solving effort that would use a clinical approach to preservice preparation. Beginning teachers report problems not in subject material, but in instructional planning, delivery, and classroom management…

  19. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  20. Extending Students' Practice of Metacognitive Regulation Skills with the Science Writing Heuristic

    NASA Astrophysics Data System (ADS)

    van Opstal, Mary T.; Daubenmire, Patrick L.

    2015-05-01

    Metacognition can be described as an internal conversation that seeks to answer the questions, 'how much do I really know about what I am learning' and, 'how am I monitoring what I am learning?' Metacognitive regulation skills are critical to meaningful learning because they facilitate the abilities to recognize the times when one's current level of understanding is insufficient and to identify the needs for closing the gap in understanding. This research explored how using the Science Writing Heuristic (SWH) as an instructional approach in a laboratory classroom affected students' practice of metacognitive skills while solving open-ended laboratory problems. Within our qualitative research design, results demonstrate that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a different degree and to a different depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, peer collaboration became a prominent path for supporting the use of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. Results from this study suggest that using instruction that encourages practice of metacognitive strategies can improve students' use of these strategies.

  1. Bibliography: Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  2. Does chess instruction improve mathematical problem-solving ability? Two experimental studies with an active control group.

    PubMed

    Sala, Giovanni; Gobet, Fernand

    2017-12-01

    It has been proposed that playing chess enables children to improve their ability in mathematics. These claims have been recently evaluated in a meta-analysis (Sala & Gobet, 2016, Educational Research Review, 18, 46-57), which indicated a significant effect in favor of the groups playing chess. However, the meta-analysis also showed that most of the reviewed studies used a poor experimental design (in particular, they lacked an active control group). We ran two experiments that used a three-group design including both an active and a passive control group, with a focus on mathematical ability. In the first experiment (N = 233), a group of third and fourth graders was taught chess for 25 hours and tested on mathematical problem-solving tasks. Participants also filled in a questionnaire assessing their meta-cognitive ability for mathematics problems. The group playing chess was compared to an active control group (playing checkers) and a passive control group. The three groups showed no statistically significant difference in mathematical problem-solving or metacognitive abilities in the posttest. The second experiment (N = 52) broadly used the same design, but the Oriental game of Go replaced checkers in the active control group. While the chess-treated group and the passive control group slightly outperformed the active control group with mathematical problem solving, the differences were not statistically significant. No differences were found with respect to metacognitive ability. These results suggest that the effects (if any) of chess instruction, when rigorously tested, are modest and that such interventions should not replace the traditional curriculum in mathematics.

  3. A Flipped Pedagogy for Expert Problem Solving

    NASA Astrophysics Data System (ADS)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  4. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Toward a Practical Model of Cognitive/Information Task Analysis and Schema Acquisition for Complex Problem-Solving Situations.

    ERIC Educational Resources Information Center

    Braune, Rolf; Foshay, Wellesley R.

    1983-01-01

    The proposed three-step strategy for research on human information processing--concept hierarchy analysis, analysis of example sets to teach relations among concepts, and analysis of problem sets to build a progressively larger schema for the problem space--may lead to practical procedures for instructional design and task analysis. Sixty-four…

  6. Using a Brief Form of Problem-Based Learning in a Research Methods Class: Perspectives of Instructor and Students

    ERIC Educational Resources Information Center

    Elder, Anastasia D.

    2015-01-01

    Problem based learning (PBL) is an instructional method aimed at engaging students in collaboratively solving an ill-structured problem. PBL has been presented and researched as an overhaul of existing curriculum design, yet a modified version may be attractive to college instructors who desire active learning on the part of their students, but…

  7. Teaching Problem-Solving and Critical-Thinking Skills Online Using Problem-Based Learning

    ERIC Educational Resources Information Center

    Romero, Liz; Orzechowski, Agnes; Rahatka, Ola

    2014-01-01

    The availability of technological tools is promoting a shift toward more student-centered online instruction. This article describes the implementation of a Problem-Based Learning (PBL) model and the technological tools used to meet the expectations of the model as well as the needs of the students. The end product is a hybrid course with eight…

  8. An evaluation of a geographic information system software and its utility in promoting the use of integrated process skills in secondary students

    NASA Astrophysics Data System (ADS)

    Abbott, Thomas Diamond

    2001-07-01

    As technology continues to become an integral part of our educational system, research that clarifies how various technologies affect learning should be available to educators prior to the large scale introduction of any new technology into the classroom. This study will assess the degree to which a relatively new Geographic Information System Software (ArcView 3.1), when utilized by high school freshman in earth science and geography courses, can be used to (a) promote and develop integrated process skills in these students, and (b) improve their awareness and appraisal of their problem solving abilities. Two research questions will be addressed in this research: (1) Will the use of a GIS to solve problems with authentic contexts enhance the learning and refinement of integrated process skills over more conventional means of classroom instruction? and (2) Will students' perceptions of competence to solve problems within authentic contexts be greater for those who learned to use and implement a GIS when compared to those who have learned by more conventional means of classroom instruction? Research Question 1 will be assessed by using the Test of Integrated Process Skills II (or TIPS II) and Research Question 2 will be addressed by using the Problem Solving Inventory (PSI). The research will last thirteen weeks. The TIPS II and the PSI will be administered after the intervention of GIS to the experimental group, at which point an Analysis of Covariance and the Mann-Whitney U-test will be utilized to measure the affects of intervention by the independent variable. Teacher/researcher journals and teacher/student questionnaires will be used to compliment the statistical analysis. It is hoped that this study will help in the creation of future instructional models that enable educators to utilize modern technologies appropriately in their classrooms.

  9. Sixth-Grade Aeronauts.

    ERIC Educational Resources Information Center

    Flick, Larry; Dejmal, Ked

    1989-01-01

    An activity which combines problem solving with the history and science of hot air balloons is presented. Instructions for making and launching tissue-paper balloons are provided. The advantage of using manipulative materials with middle school students is discussed. (CW)

  10. Symbolic-Graphical Calculators: Teaching Tools for Mathematics.

    ERIC Educational Resources Information Center

    Dick, Thomas P.

    1992-01-01

    Explores the role that symbolic-graphical calculators can play in the current calls for reform in the mathematics curriculum. Discusses symbolic calculators and graphing calculators in relation to problem solving, computational skills, and mathematics instruction. (MDH)

  11. A Computer-Assisted Instructional Software Program in Mathematical Problem-Solving Skills for Medication Administration for Beginning Baccalaureate Nursing Students at San Jose State University.

    ERIC Educational Resources Information Center

    Wahl, Sharon C.

    Nursing educators and administrators are concerned about medication errors made by students which jeopardize patient safety. The inability to conceptualize and calculate medication dosages, often related to math anxiety, is implicated in such errors. A computer-assisted instruction (CAI) program is seen as a viable method of allowing students to…

  12. Effects of Design-Based Science Instruction on Science Problem-Solving Competency among Different Groups of High-School Traditional Chemistry Students

    ERIC Educational Resources Information Center

    Lartson, Cobina Adu

    2013-01-01

    Recent trends indicate a significant decline in the number of students graduating from Science, Technology, Engineering and Math (STEM) programs in the US. The under-representation of students of color, females and low income students in STEM programs has also been documented. Design Based Science (DBS) instruction has been suggested to improve…

  13. Effects of Enhanced Laboratory Instructional Technique on Senior Secondary Students' Attitude toward Chemistry in Oyo Township, Oyo State, Nigeria

    ERIC Educational Resources Information Center

    Adesoji, Francis Adewumi; Raimi, Sikiru Morakinyo

    2004-01-01

    The study examined the effect of supplementing laboratory instruction with problem solving strategy and or practical skills teaching on students' attitude toward chemistry. A total of 286 senior secondary class II students (145 males and 141 females) drawn from four local government areas in Oyo township in Oyo state, Nigeria, took part in the…

  14. Computer Aided Self-Instruction Training with Impulsive Deaf Students and Learning Disabled Students: A Study on Teaching Reflective Thought. Education and Technology Series.

    ERIC Educational Resources Information Center

    Campbell, Donald S.; And Others

    Two studies examined the effectiveness of self-instruction training via a specially developed computer program to modify the impulsive problem-solving behavior of 16 deaf and 10 learning disabled (aphasic) adolescents attending two special residential schools in Canada. In the control condition, students learned the Apple LOGO computing language…

  15. Redesigning the Content and Sequence of Instruction in Music Theory. Final Report to Fund for the Improvement of Post Secondary Education.

    ERIC Educational Resources Information Center

    Ashley, Richard D.

    This report summarizes a project in which a number of new approaches were taken to improve learning in undergraduate basic music instruction for music majors. The basic viewpoint proposed was that music activities can be seen as skilled problem solving in the areas of aural analysis, visual analysis, and understanding of compositional processes.…

  16. A Research Study of Computer-Based Tutoring of Mathematical and Scientific Knowledge. Final Technical Report.

    ERIC Educational Resources Information Center

    Goldstein, Ira

    Computer coaching of students as an aid in problem-solving instruction is discussed. This report describes an advanced form of computer-assisted instruction that must not only present the material to be taught, but also analyze the student's responses. The program must decide whether to intervene and how much to say to a pupil based on its…

  17. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    NASA Astrophysics Data System (ADS)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  18. Teaching mathematical word problem solving: the quality of evidence for strategy instruction priming the problem structure.

    PubMed

    Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.

  19. Teaching Mathematics by Comparison: Analog Visibility as a Double-Edged Sword

    ERIC Educational Resources Information Center

    Begolli, Kreshnik Nasi; Richland, Lindsey Engle

    2016-01-01

    Comparing multiple solutions to a single problem is an important mode for developing flexible mathematical thinking, yet instructionally leading this activity is challenging (Stein, Engle, Smith, & Hughes, 2008). We test 1 decision teachers must make after having students solve a problem: whether to only verbally discuss students' solutions or…

  20. Diagramming Word Problems: A Strategic Approach for Instruction

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy M.

    2015-01-01

    While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…

  1. A Classification Metric for Computer Procedures in a Structured Educational Environment.

    ERIC Educational Resources Information Center

    Linton, M. J.; And Others

    Use of a computer programming language in problem-solving activities provides an opportunity to examine how young children use a restricted set of language primitives. The generation, and execution of computer instructions was used as a verification stage in the problem-solution process. The metric is intended to provide a descriptive…

  2. Improving Problem-Solving Skills with the Help of Plane-Space Analogies

    ERIC Educational Resources Information Center

    Budai, László

    2013-01-01

    We live our lives in three-dimensional space and encounter geometrical problems (equipment instructions, maps, etc.) every day. Yet there are not sufficient opportunities for high school students to learn geometry. New teaching methods can help remedy this. Specifically our experience indicates that there is great promise for use of geometry…

  3. What are some of the cognitive, psychological, and social factors that facilitate or hinder licensed vocational nursing students' acquisition of problem-solving skills involved with medication-dosage calculations?

    NASA Astrophysics Data System (ADS)

    Allen, Arthur William

    The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.

  4. Impact of Personal Computing on Education.

    ERIC Educational Resources Information Center

    McIsaac, Donald N.

    1979-01-01

    Describes microcomputers, outlines lessons learned from the evolution of other technologies as they apply to the development of the microcomputer, discusses computer literacy as a problem-solving tool, and speculates about microcomputer use in instruction and administration. (IRT)

  5. Text Comprehension and Oral Language as Predictors of Word-Problem Solving: Insights into Word-Problem Solving as a Form of Text Comprehension

    PubMed Central

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Fuchs, Douglas; Seethaler, Pamela M.; Martin, BrittanyLee N.

    2018-01-01

    This study was designed to deepen insights on whether word-problem (WP) solving is a form of text comprehension (TC) and on the role of language in WPs. A sample of 325 second graders, representing high, average, and low reading and math performance, was assessed on (a) start-of-year TC, WP skill, language, nonlinguistic reasoning, working memory, and foundational skill (word identification, arithmetic) and (b) year-end WP solving, WP-language processing (understanding WP statements, without calculation demands), and calculations. Multivariate, multilevel path analysis, accounting for classroom and school effects, indicated that TC was a significant and comparably strong predictor of all outcomes. Start-of-year language was a significantly stronger predictor of both year-end WP outcomes than of calculations, whereas start-of-year arithmetic was a significantly stronger predictor of calculations than of either WP measure. Implications are discussed in terms of WP solving as a form of TC and a theoretically coordinated approach, focused on language, for addressing TC and WP-solving instruction. PMID:29643723

  6. Implementation of Problem Based Learning Model in Concept Learning Mushroom as a Result of Student Learning Improvement Efforts Guidelines for Teachers

    ERIC Educational Resources Information Center

    Rubiah, Musriadi

    2016-01-01

    Problem based learning is a training strategy, students work together in groups, and take responsibility for solving problems in a professional manner. Instructional materials such as textbooks become the main reference of students in study of mushrooms, especially the material is considered less effective in responding to the information needs of…

  7. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  8. The role of cognitive processes, foundational math skill, and calculation accuracy and fluency in word-problem solving versus prealgebraic knowledge.

    PubMed

    Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D

    2016-12-01

    The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Conceptual change strategies in teaching genetics

    NASA Astrophysics Data System (ADS)

    Batzli, Laura Elizabeth

    The purpose of this study was to evaluate the effectiveness of utilizing conceptual change strategies when teaching high school genetics. The study examined the effects of structuring instruction to provide students with cognitive situations which promote conceptual change, specifically instruction was structured to elicit students' prior knowledge. The goal of the study was that the students would not only be able to solve genetics problems and define basic terminology but they would also have constructed more scientific schemas of the actual processes involved in inheritance. This study is based on the constructivist theory of learning and conceptual change research which suggest that students are actively involved in the process of relating new information to prior knowledge as they construct new knowledge. Two sections of biology II classes received inquiry based instruction and participated in structured cooperative learning groups. However, the unique difference in the treatment group's instruction was the use of structured thought time and the resulting social interaction between the students. The treatment group students' instructional design allowed students to socially construct their cognitive knowledge after elicitation of their prior knowledge. In contrast, the instructional design for the control group students allowed them to socially construct their cognitive knowledge of genetics without the individually structured thought time. The results indicated that the conceptual change strategies with individually structured thought time improved the students' scientific mastery of genetics concepts and they maintained fewer post instructional alternative conceptions. Although all students gained the ability to correctly solve genetics problems, the treatment group students were able to explain the processes involved in terms of meiosis. The treatment group students were also able to better apply their knowledge to novel genetic situations. The implications for genetics instruction from these results were discussed.

  10. The Influences of Middle School Mathematics Teachers' Practical Rationality on Instructional Decision Making Regarding the Common Core State Standards for Mathematical Practices

    ERIC Educational Resources Information Center

    Sobolewski-McMahon, Lauren M.

    2017-01-01

    The purpose of this study was to examine the influences of various facets of middle school mathematics teachers' practical rationality on their instructional decision making as they plan to enact the Common Core State Standards for Mathematical Practice, CCSS-MP1 (perseverance in problem solving) and CCSS-MP3 (communicating and critiquing). The…

  11. Case Designs for Ill-Structured Problems: Analysis and Implications for Practice

    ERIC Educational Resources Information Center

    Dabbagh, Nada; Blijd, Cecily Williams

    2009-01-01

    This study is a third in a series of studies that examined students' information seeking and problem solving behaviors while interacting with one of two types of web-based representations of an ill-structured instructional design case: hierarchical (tree-like) and heterarchical (network-like). A Java program was used to track students' hypermedia…

  12. Using an Epistemic Game to Facilitate Students' Problem-Solving: The Case of Hospitality Management

    ERIC Educational Resources Information Center

    Wang, Shwu-Huey; Wang, Hsiu-Yuan

    2017-01-01

    Hospitality students are required to be able to address challenging cases or problems in the work environment. However, traditional lecture- or exam-based instruction leaves a gap between theory and practice. On the other hand, modern youth live and socialise in an increasingly digital environment, and one of their biggest pastimes is playing…

  13. Reflections on Language and Mathematics Problem Solving: A Case Study of a Bilingual First-Grade Teacher

    ERIC Educational Resources Information Center

    Musanti, Sandra I.; Celedon-Pattichis, Sylvia; Marshall, Mary E.

    2009-01-01

    This case study investigates a professional development initiative in which a first-grade bilingual teacher engages in learning and teaching Cognitively Guided Instruction, a framework for understanding student thinking through context-rich word-problem lessons. The study explores (a) the impact of classroom-based professional development on a…

  14. Proportional Reasoning Word Problem Performance for Middle School Students with High-Incidence Disabilities (HID)

    ERIC Educational Resources Information Center

    Brawand, Anne Eichorn

    2013-01-01

    Schema-based instruction (SBI) was used to examine the solving of proportional reasoning word problems for middle school students with high-incidence disabilities (HID). Seventh- and eighth-grade students with HID participated in the study. Students were randomly assigned to one of three groups. A multiple-baseline-across-groups design was…

  15. Struggling Readers: Assessment and Instruction in Grades K-6. Solving Problems in the Teaching of Literacy.

    ERIC Educational Resources Information Center

    Balajthy, Ernest; Lipa-Wade, Sally

    This book focuses on three distinct types of struggling readers that teachers will instantly recognize from their own classrooms--the "Catch-On Reader," the "Catch-Up Reader," and the "Stalled Reader." The book provides detailed case studies which bring to life the specific problems these students are likely to face…

  16. Undergraduate Student Task Group Approach to Complex Problem Solving Employing Computer Programming.

    ERIC Educational Resources Information Center

    Brooks, LeRoy D.

    A project formulated a computer simulation game for use as an instructional device to improve financial decision making. The author constructed a hypothetical firm, specifying its environment, variables, and a maximization problem. Students, assisted by a professor and computer consultants and having access to B5500 and B6700 facilities, held 16…

  17. Problems and Procedures in Planning a Situation Based Video Test on Teaching.

    ERIC Educational Resources Information Center

    Masonis, Edward J.

    This paper briefly outlines some problems one must solve when developing a video-based test to evaluate what a teacher knows about learning and instruction. Consideration is given to the effect the use of videotapes of actual classroom behavior have on test planning. Two methods of incorporating such situational material into the test…

  18. Student-Teachers' Emotional Needs and Dichotomous Problem-Solving: Non-Cognitive Root Causes of Teaching and Learning Problems

    ERIC Educational Resources Information Center

    Soslau, Elizabeth

    2016-01-01

    This study investigated whether typical field instruction practice adequately addressed student-teachers' emotional needs and discerned whether unmet needs interrupted teacher learning. Four student-teachers completed weekly needs-based writing tasks, based on a broad application of Needs Theory. At the conclusion of the 16-week practicum, data…

  19. Examining Learning Styles and Perceived Benefits of Analogical Problem Construction on SQL Knowledge Acquisition

    ERIC Educational Resources Information Center

    Mills, Robert J.; Dupin-Bryant, Pamela A.; Johnson, John D.; Beaulieu, Tanya Y.

    2015-01-01

    The demand for Information Systems (IS) graduates with expertise in Structured Query Language (SQL) and database management is vast and projected to increase as "big data" becomes ubiquitous. To prepare students to solve complex problems in a data-driven world, educators must explore instructional strategies to help link prior knowledge…

  20. Exploring Initiative as a Signal of Knowledge Co-Construction During Collaborative Problem Solving.

    PubMed

    Howard, Cynthia; Di Eugenio, Barbara; Jordan, Pamela; Katz, Sandra

    2017-08-01

    Peer interaction has been found to be conducive to learning in many settings. Knowledge co-construction (KCC) has been proposed as one explanatory mechanism. However, KCC is a theoretical construct that is too abstract to guide the development of instructional software that can support peer interaction. In this study, we present an extensive analysis of a corpus of peer dialogs that we collected in the domain of introductory Computer Science. We show that the notion of task initiative shifts correlates with both KCC and learning. Speakers take task initiative when they contribute new content that advances problem solving and that is not invited by their partner; if initiative shifts between the partners, it indicates they both contribute to problem solving. We found that task initiative shifts occur more frequently within KCC episodes than outside. In addition, task initiative shifts within KCC episodes correlate with learning for low pre-testers, and total task initiative shifts correlate with learning for high pre-testers. As recognizing task initiative shifts does not require as much deep knowledge as recognizing KCC, task initiative shifts as an indicator of productive collaboration are potentially easier to model in instructional software that simulates a peer. Copyright © 2016 Cognitive Science Society, Inc.

  1. Using Microcomputers to Teach Non-Linear Equations at Sixth Form Level.

    ERIC Educational Resources Information Center

    Cheung, Y. L.

    1984-01-01

    Promotes the use of the microcomputer in mathematics instruction, reviewing approaches to teaching nonlinear equations. Examples of computer diagrams are illustrated and compared to textbook samples. An example of a problem-solving program is included. (ML)

  2. Fostering Self-Determination Is a Developmental Task.

    ERIC Educational Resources Information Center

    Sands, Deanna J.; Doll, Beth

    1996-01-01

    This discussion of the developmental underpinnings of self-determination for students with disabilities considers metacognition, self-perception, social problem solving, and autonomous decision making. It urges developing school policies contributing to self-sufficiency; ameliorating curricular, instructional, and service delivery systems…

  3. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  4. Self-instruction: An analysis of the differential effects of instruction and reinforcement

    PubMed Central

    Roberts, Richard N.; Nelson, Rosemery O.; Olson, Terry W.

    1987-01-01

    This study investigated the impact of training 9 first- and second-grade children to use a full self-instructional regimen, and then differentially reinforced the use of self-instruction only, accuracy only, or both self-instruction and accuracy. Three comparison children received no training in self-instruction and were reinforced for accuracy only. Children improved dramatically in academic accuracy subsequent to self-instructional training, independent of the use of self-instruction and of the specific behavior consequated. Children who were reinforced for using self-instruction did use self-instruction, and those who were not, did not. Comparison group children showed little improvement until training in problem-solving strategies was given after 9 days of reinforcement for accuracy. Self-instructional training is discussed as one type of event that increases the likelihood of accurate performance. Its effectiveness may be explained in terms of a teaching strategy rather than in terms of modifying cognitive processes. PMID:16795700

  5. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed Central

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  6. Computer problem-solving coaches for introductory physics: Design and usability studies

    NASA Astrophysics Data System (ADS)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  7. Discouraged Children: When Praise Does Not Help.

    ERIC Educational Resources Information Center

    Hanko, Gerda

    1994-01-01

    This article offers suggestions to British teachers working with students who are so discouraged that praise appears to have no effect. Available knowledge about positive instructional approaches, the misuse of praise, and the value of collaborative problem solving is reviewed. (DB)

  8. Korea TESOL Journal, Fall/Winter 2000.

    ERIC Educational Resources Information Center

    Dickey, Robert J., Ed.

    2000-01-01

    This issue includes the following articles: "A Problem Solving Approach to the Management of Change in Language Education" (Andy Curtis); "Nonverbal Communications Skills in the EFL Curriculum" (Chung-Il Kang); "Korean Student Exposure to English Listening and Speaking: Instruction, Multimedia, Travel Experience and…

  9. Technology Enhanced Learning in Programming Courses--International Perspective

    ERIC Educational Resources Information Center

    Ivanovic, Mirjana; Xinogalos, Stelios; Pitner, Tomáš; Savic, Miloš

    2017-01-01

    Technology enhanced learning (TEL) is increasingly influencing university education, mainly in overcoming disadvantages of direct instruction teaching approaches, and encouraging creativity, problem solving and critical thinking in student-centered, interactive learning environments. In this paper, experiences from object-oriented programming…

  10. Using Integer Manipulatives: Representational Determinism

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Lynch-Davis, Kathleen; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2016-01-01

    Teachers and students commonly use various concrete representations during mathematical instruction. These representations can be utilized to help students understand mathematical concepts and processes, increase flexibility of thinking, facilitate problem solving, and reduce anxiety while doing mathematics. Unfortunately, the manner in which some…

  11. A Practical Decision Guide for Integrating Digital Applications and Handheld Devices into Advanced Individual Training

    DTIC Science & Technology

    2013-07-01

    the devices increase efficiency and make instruction easier for them. (1) Demonstrate the ability of mobile learning to improve student learning ...predictors of learning , after controlling for the effects of cognitive ability and pre-training knowledge of the subject matter. Equally as...conventional teaching. PBL is an instructional model originally developed in medical schools , in which students are given a complex problem to solve that may

  12. Instructional strategies for online introductory college physics based on learning styles

    NASA Astrophysics Data System (ADS)

    Ekwue, Eleazer U.

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.

  13. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    PubMed

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, p<.001); problem-solving was positively associated with self-directed learning (r=.75, p<.001). Learning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Cognitive Load in Percentage Change Problems: Unitary, Pictorial, and Equation Approaches to Instruction

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Tobias, Stephen

    2014-01-01

    Eighth grade students in Australia (N = 60) participated in an experiment on learning how to solve percentage change problems in a regular classroom in three conditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an acquisition phase, and a post-test. The main goal was to test the relative merits of the three…

  15. Moving to Learn: How Guiding the Hands Can Set the Stage for Learning

    ERIC Educational Resources Information Center

    Brooks, Neon; Goldin-Meadow, Susan

    2016-01-01

    Previous work has found that guiding problem-solvers' movements can have an immediate effect on their ability to solve a problem. Here we explore these processes in a learning paradigm. We ask whether guiding a learner's movements can have a delayed effect on learning, setting the stage for change that comes about only after instruction. Children…

  16. A Project-Based Digital Storytelling Approach for Improving Students' Learning Motivation, Problem-Solving Competence and Learning Achievement

    ERIC Educational Resources Information Center

    Hung, Chun-Ming; Hwang, Gwo-Jen; Huang, Iwen

    2012-01-01

    Although project-based learning is a well-known and widely used instructional strategy, it remains a challenging issue to effectively apply this approach to practical settings for improving the learning performance of students. In this study, a project-based digital storytelling approach is proposed to cope with this problem. With a…

  17. Using Multiple Calibration Indices in Order to Capture the Complex Picture of What Affects Students' Accuracy of Feeling of Confidence

    ERIC Educational Resources Information Center

    Boekaerts, Monique; Rozendaal, Jeroen S.

    2010-01-01

    The present study used multiple calibration indices to capture the complex picture of fifth graders' calibration of feeling of confidence in mathematics. Specifically, the effects of gender, type of mathematical problem, instruction method, and time of measurement (before and after problem solving) on calibration skills were investigated. Fourteen…

  18. The effect of multiple internal representations on context-rich instruction

    NASA Astrophysics Data System (ADS)

    Lasry, Nathaniel; Aulls, Mark W.

    2007-11-01

    We discuss n-coding, a theoretical model of multiple internal mental representations. The n-coding construct is developed from a review of cognitive and imaging data that demonstrates the independence of information processed along different modalities such as verbal, visual, kinesthetic, logico-mathematic, and social modalities. A study testing the effectiveness of the n-coding construct in classrooms is presented. Four sections differing in the level of n-coding opportunities were compared. Besides a traditional-instruction section used as a control group, each of the remaining three sections were given context-rich problems, which differed by the level of n-coding opportunities designed into their laboratory environment. To measure the effectiveness of the construct, problem-solving skills were assessed as conceptual learning using the force concept inventory. We also developed several new measures that take students' confidence in concepts into account. Our results show that the n-coding construct is useful in designing context-rich environments and can be used to increase learning gains in problem solving, conceptual knowledge, and concept confidence. Specifically, when using props in designing context-rich problems, we find n-coding to be a useful construct in guiding which additional dimensions need to be attended to.

  19. Comparing the cognitive differences resulting from modeling instruction: Using computer microworld and physical object instruction to model real world problems

    NASA Astrophysics Data System (ADS)

    Oursland, Mark David

    This study compared the modeling achievement of students receiving mathematical modeling instruction using the computer microworld, Interactive Physics, and students receiving instruction using physical objects. Modeling instruction included activities where students applied the (a) linear model to a variety of situations, (b) linear model to two-rate situations with a constant rate, (c) quadratic model to familiar geometric figures. Both quantitative and qualitative methods were used to analyze achievement differences between students (a) receiving different methods of modeling instruction, (b) with different levels of beginning modeling ability, or (c) with different levels of computer literacy. Student achievement was analyzed quantitatively through a three-factor analysis of variance where modeling instruction, beginning modeling ability, and computer literacy were used as the three independent factors. The SOLO (Structure of the Observed Learning Outcome) assessment framework was used to design written modeling assessment instruments to measure the students' modeling achievement. The same three independent factors were used to collect and analyze the interviews and observations of student behaviors. Both methods of modeling instruction used the data analysis approach to mathematical modeling. The instructional lessons presented problem situations where students were asked to collect data, analyze the data, write a symbolic mathematical equation, and use equation to solve the problem. The researcher recommends the following practice for modeling instruction based on the conclusions of this study. A variety of activities with a common structure are needed to make explicit the modeling process of applying a standard mathematical model. The modeling process is influenced strongly by prior knowledge of the problem context and previous modeling experiences. The conclusions of this study imply that knowledge of the properties about squares improved the students' ability to model a geometric problem more than instruction in data analysis modeling. The uses of computer microworlds such as Interactive Physics in conjunction with cooperative groups are a viable method of modeling instruction.

  20. An interactive problem-solving approach to teach traumatology for medical students.

    PubMed

    Abu-Zidan, Fikri M; Elzubeir, Margaret A

    2010-08-13

    We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.

Top