Sample records for problem solving involves

  1. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  2. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  3. Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.

    PubMed

    Anderson, John R

    2012-03-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  5. The Roles of Internal Representation and Processing in Problem Solving Involving Insight: A Computational Complexity Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd

    2017-01-01

    In human problem solving, there is a wide variation between individuals in problem solution time and success rate, regardless of whether or not this problem solving involves insight. In this paper, we apply computational and parameterized analysis to a plausible formalization of extended representation change theory (eRCT), an integration of…

  6. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  7. An Action-Research Program for Increasing Employee Involvement in Problem Solving.

    ERIC Educational Resources Information Center

    Pasmore, William; Friedlander, Frank

    1982-01-01

    Describes the use of participative action research to solve problems of work-related employee injuries in a rural midwestern electronics plant by increasing employee involvement. The researchers established an employee problem-solving group that interviewed and surveyed workers, analyzed the results, and suggested new work arrangements. (Author/RW)

  8. Effect of Scaffolding on Helping Introductory Physics Students Solve Quantitative Problems Involving Strong Alternative Conceptions

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2015-01-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…

  9. Analytical Derivation: An Epistemic Game for Solving Mathematically Based Physics Problems

    ERIC Educational Resources Information Center

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-01-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the "analytical derivation" game. This game involves deriving an…

  10. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  11. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  12. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  13. Association Between Anticipatory Grief and Problem Solving Among Family Caregivers of Persons with Cognitive Impairment

    PubMed Central

    Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda

    2013-01-01

    Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394

  14. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    ERIC Educational Resources Information Center

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  15. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  16. Problem Solving Process Research of Everyone Involved in Innovation Based on CAI Technology

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shao, Yunfei; Tang, Xiaowo

    It is very important that non-technical department personnel especially bottom line employee serve as innovators under the requirements of everyone involved in innovation. According the view of this paper, it is feasible and necessary to build everyone involved in innovation problem solving process under Total Innovation Management (TIM) based on the Theory of Inventive Problem Solving (TRIZ). The tools under the CAI technology: How TO mode and science effects database could be very useful for all employee especially non-technical department and bottom line for innovation. The problem solving process put forward in the paper focus on non-technical department personnel especially bottom line employee for innovation.

  17. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  18. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  19. Impacts of Learning Inventive Problem-Solving Principles: Students' Transition from Systematic Searching to Heuristic Problem Solving

    ERIC Educational Resources Information Center

    Barak, Moshe

    2013-01-01

    This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…

  20. A Cognitive Model for Problem Solving in Computer Science

    ERIC Educational Resources Information Center

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  1. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  2. Characterising the Cognitive Processes in Mathematical Investigation

    ERIC Educational Resources Information Center

    Yeo, Joseph B. W.; Yeap, Ban Har

    2010-01-01

    Many educators believe that mathematical investigation involves both problem posing and problem solving, but some teachers have taught their students to investigate during problem solving. The confusion about the relationship between investigation and problem solving may affect how teachers teach their students and how researchers conduct their…

  3. Improving insight and non-insight problem solving with brief interventions.

    PubMed

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  4. Problem solving using soft systems methodology.

    PubMed

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  5. Using Centrality of Concept Maps as a Measure of Problem Space States in Computer-Supported Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Clariana, Roy B.; Engelmann, Tanja; Yu, Wu

    2013-01-01

    Problem solving likely involves at least two broad stages, problem space representation and then problem solution (Newell and Simon, Human problem solving, 1972). The metric centrality that Freeman ("Social Networks" 1:215-239, 1978) implemented in social network analysis is offered here as a potential measure of both. This development research…

  6. An Investigation of Construct Relevant and Irrelevant Features of Mathematics Problem-Solving Questions Using Comparative Judgement and Kelly's Repertory Grid

    ERIC Educational Resources Information Center

    Holmes, Stephen D.; He, Qingping; Meadows, Michelle

    2017-01-01

    The relationship between the characteristics of 33 mathematical problem-solving questions answered by 16-year-old students in England and the quality of problem-solving elicited was investigated in two studies. The first study used comparative judgement (CJ) to estimate the quality of the problem-solving elicited by each question, involving 33…

  7. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  8. A Crisis in Space--A Futuristic Simulation Using Creative Problem Solving.

    ERIC Educational Resources Information Center

    Clode, Linda

    1992-01-01

    An enrichment program developed for sixth-grade gifted students combined creative problem solving with future studies in a way that would simulate real life crisis problem solving. The program involved forecasting problems of the future requiring evacuation of Earth, assuming roles on a spaceship, and simulating crises as the spaceship traveled to…

  9. The Association of DRD2 with Insight Problem Solving.

    PubMed

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  10. The Association of DRD2 with Insight Problem Solving

    PubMed Central

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings. PMID:27933030

  11. The Case for Problem Solving in Second Language Learning. CLCS Occasional Paper No. 33.

    ERIC Educational Resources Information Center

    Bourke, James Mannes

    A study undertaken in Ireland investigated the effectiveness of a second language teaching strategy that focused on grammatical problem-solving. In this approach, the problems are located within the target language system, and the problem-solving involves induction of grammatical rules and use of those rules. Learners are confronted with instances…

  12. Mathematical Problem Solving. Issues in Research.

    ERIC Educational Resources Information Center

    Lester, Frank K., Jr., Ed.; Garofalo, Joe, Ed.

    This set of papers was originally developed for a conference on Issues and Directions in Mathematics Problem Solving Research held at Indiana University in May 1981. The purpose is to contribute to the clear formulation of the key issues in mathematical problem-solving research by presenting the ideas of actively involved researchers. An…

  13. Solving Problems with Charts & Tables. Pipefitter.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    Developed as part of the ABCs of Construction National Workplace Literacy Project, this instructional module is designed to help individuals employed as pipefitters learn to solve problems with charts and tables. Outlined in the first section is a five-step procedure for solving problems involving tables and/or charts: identifying the question to…

  14. The Role of Problem Solving in Complex Intraverbal Repertoires

    ERIC Educational Resources Information Center

    Sautter, Rachael A.; LeBlanc, Linda A.; Jay, Allison A.; Goldsmith, Tina R.; Carr, James E.

    2011-01-01

    We examined whether typically developing preschoolers could learn to use a problem-solving strategy that involved self-prompting with intraverbal chains to provide multiple responses to intraverbal categorization questions. Teaching the children to use the problem-solving strategy did not produce significant increases in target responses until…

  15. Creativity and Insight in Problem Solving

    ERIC Educational Resources Information Center

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  16. Planning meals: Problem-solving on a real data-base

    ERIC Educational Resources Information Center

    Byrne, Richard

    1977-01-01

    Planning the menu for a dinner party, which involves problem-solving with a large body of knowledge, is used to study the daily operation of human memory. Verbal protocol analysis, a technique devised to investigate formal problem-solving, is examined theoretically and adapted for analysis of this task. (Author/MV)

  17. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  18. Virtual Bridge Design

    ERIC Educational Resources Information Center

    Bisogno, Janet; JeanPierre, Bobby

    2008-01-01

    The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…

  19. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2010-01-01

    In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

  20. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  1. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  2. Autobiographical Memory and Social Problem-Solving in Asperger Syndrome

    ERIC Educational Resources Information Center

    Goddard, Lorna; Howlin, Patricia; Dritschel, Barbara; Patel, Trishna

    2007-01-01

    Difficulties in social interaction are a central feature of Asperger syndrome. Effective social interaction involves the ability to solve interpersonal problems as and when they occur. Here we examined social problem-solving in a group of adults with Asperger syndrome and control group matched for age, gender and IQ. We also assessed…

  3. Using Everyday Materials To Promote Problem Solving in Toddlers.

    ERIC Educational Resources Information Center

    Segatti, Laura; Brown-DuPaul, Judy; Keyes, Tracy L.

    2003-01-01

    Outlines benefits of and skills involved in problem solving. Details how an environment rich in materials that foster cause-and-effect or trial-and-error explorations promote cognitive development among toddlers. Offers examples of problem-solving experiences and lists materials for use in curriculum planning. Describes the teacher' role as one of…

  4. The Effects of Labels on Learning Subgoals for Solving Problems.

    ERIC Educational Resources Information Center

    Catrambone, Richard

    This study, involving 65 undergraduates at the Georgia Institute of Technology (Atlanta); explores a scheme for representing problem-solving knowledge and predicting transfer as a function of problem-solving subgoals acquired from examples. A subgoal is an unknown entity (numerical or conceptual) that needs to be found in order to achieve a higher…

  5. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    ERIC Educational Resources Information Center

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Sheridan, Susan M.; Mandell, David S.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem-solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the…

  6. Emergent Leadership in Children's Cooperative Problem Solving Groups

    ERIC Educational Resources Information Center

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  7. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  8. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    NASA Astrophysics Data System (ADS)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).

  9. Diverse knowledges and competing interests: an essay on socio-technical problem-solving.

    PubMed

    di Norcia, Vincent

    2002-01-01

    Solving complex socio-technical problems, this paper claims, involves diverse knowledges (cognitive diversity), competing interests (social diversity), and pragmatism. To explain this view, this paper first explores two different cases: Canadian pulp and paper mill pollution and siting nuclear reactors in systematically sensitive areas of California. Solving such socio-technically complex problems involves cognitive diversity as well as social diversity and pragmatism. Cognitive diversity requires one to not only recognize relevant knowledges but also to assess their validity. Finally, it is suggested, integrating the resultant set of diverse relevant and valid knowledges determines the parameters of the solution space for the problem.

  10. A Description of the Strategic Knowledge of Experts Solving Transmission Genetics Problems.

    ERIC Educational Resources Information Center

    Collins, Angelo

    Descriptions of the problem-solving strategies of experts solving realistic, computer-generated transmission genetics problems are presented in this paper and implications for instruction are discussed. Seven experts were involved in the study. All of the experts had a doctoral degree and experience in both teaching and doing research in genetics.…

  11. Five Heads Are Better than One: Preliminary Results of Team-Based Learning in a Communication Disorders Graduate Course

    ERIC Educational Resources Information Center

    Epstein, Baila

    2016-01-01

    Background: Clinical problem-solving is fundamental to the role of the speech-language pathologist in both the diagnostic and treatment processes. The problem-solving often involves collaboration with clients and their families, supervisors, and other professionals. Considering the importance of cooperative problem-solving in the profession,…

  12. Tin Cans Revisited.

    ERIC Educational Resources Information Center

    Verderber, Nadine L.

    1992-01-01

    Presents the use of spreadsheets as an alternative method for precalculus students to solve maximum or minimum problems involving surface area and volume. Concludes that students with less technical backgrounds can solve problems normally requiring calculus and suggests sources for additional problems. (MDH)

  13. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  14. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  15. Discovering Steiner Triple Systems through Problem Solving

    ERIC Educational Resources Information Center

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  16. Mathematical Problem-Solving Styles in the Education of Deaf and Hard-of-Hearing Individuals

    ERIC Educational Resources Information Center

    Erickson, Elizabeth E. A.

    2012-01-01

    This study explored the mathematical problem-solving styles of middle school and high school deaf and hard-of-hearing students and the mathematical problem-solving styles of the mathematics teachers of middle school and high school deaf and hard-of-hearing students. The research involved 45 deaf and hard-of-hearing students and 19 teachers from a…

  17. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    ERIC Educational Resources Information Center

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  18. Developing a Blended Learning-Based Method for Problem-Solving in Capability Learning

    ERIC Educational Resources Information Center

    Dwiyogo, Wasis D.

    2018-01-01

    The main objectives of the study were to develop and investigate the implementation of blended learning based method for problem-solving. Three experts were involved in the study and all three had stated that the model was ready to be applied in the classroom. The implementation of the blended learning-based design for problem-solving was…

  19. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  1. Problem Finding in Professional Learning Communities: A Learning Study Approach

    ERIC Educational Resources Information Center

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    This study marries collaborative problem solving and learning study in understanding the onset of a cycle of teacher professional development process within school-based professional learning communities (PLCs). It aimed to explore how a PLC carried out collaborative problem finding--a key process involved in collaborative problem solving--that…

  2. First Episode Psychosis

    MedlinePlus

    ... teaches family members about psychosis, coping, communication, and problem-solving skills. Family members who are informed and involved ... to ensure success. Case Management helps clients with problem solving. The case manager may offer solutions to address ...

  3. 7 CFR 4285.70 - Evaluation criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Adequacy, soundness, and appropriateness of the proposed approach to solve the identified problem. (30%) (3) Feasibility and probability of success of project solving the problem. (10%) (4) Qualifications, experience in... proposal demonstrates the following: (1) Focus on a practical solution to a significant problem involving...

  4. Collaborative problem solving with a total quality model.

    PubMed

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  5. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  7. The Investigation of Problem Solving Skill of the Mountaineers in Terms of Demographic Variables

    ERIC Educational Resources Information Center

    Gürer, Burak

    2015-01-01

    The aim of this research is to investigate problem solving skills of the individuals involved in mountaineering. 315 volunteers participated in the study. The research data were collected by problem solving scale developed by Heppner and Peterson and the Turkish version of which was conducted by Sahin et al. There are totally 35 items and only 3…

  8. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  9. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  10. A Problem-Solving Model for Literacy Coaching Practice

    ERIC Educational Resources Information Center

    Toll, Cathy A.

    2017-01-01

    Literacy coaches are more effective when they have a clear plan for their collaborations with teachers. This article provides details of such a plan, which involves identifying a problem, understanding the problem, deciding what to do differently, and trying something different. For each phase of the problem-solving model, there are key tasks for…

  11. Is Word-Problem Solving a Form of Text Comprehension?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  12. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  13. Investigating the effect of mental set on insight problem solving.

    PubMed

    Ollinger, Michael; Jones, Gary; Knoblich, Günther

    2008-01-01

    Mental set is the tendency to solve certain problems in a fixed way based on previous solutions to similar problems. The moment of insight occurs when a problem cannot be solved using solution methods suggested by prior experience and the problem solver suddenly realizes that the solution requires different solution methods. Mental set and insight have often been linked together and yet no attempt thus far has systematically examined the interplay between the two. Three experiments are presented that examine the extent to which sets of noninsight and insight problems affect the subsequent solutions of insight test problems. The results indicate a subtle interplay between mental set and insight: when the set involves noninsight problems, no mental set effects are shown for the insight test problems, yet when the set involves insight problems, both facilitation and inhibition can be seen depending on the type of insight problem presented in the set. A two process model is detailed to explain these findings that combines the representational change mechanism with that of proceduralization.

  14. Solving the water jugs problem by an integer sequence approach

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.

  15. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  17. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  18. Evoking Knowledge and Information Awareness for Enhancing Computer-Supported Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Engelmann, Tanja; Tergan, Sigmar-Olaf; Hesse, Friedrich W.

    2010-01-01

    Computer-supported collaboration by spatially distributed group members still involves interaction problems within the group. This article presents an empirical study investigating the question of whether computer-supported collaborative problem solving by spatially distributed group members can be fostered by evoking knowledge and information…

  19. REACTT: an algorithm for solving spatial equilibrium problems.

    Treesearch

    D.J. Brooks; J. Kincaid

    1987-01-01

    The problem of determining equilibrium prices and quantities in spatially separated markets is reviewed. Algorithms that compute spatial equilibria are discussed. A computer program using the reactive programming algorithm for solving spatial equilibrium problems that involve multiple commodities is presented, along with detailed documentation. A sample data set,...

  20. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  1. Cognitive Principles of Problem Solving and Instruction. Final Report.

    ERIC Educational Resources Information Center

    Greeno, James G.; And Others

    Research in this project studied cognitive processes involved in understanding and solving problems used in instruction in the domain of mathematics, and explored implications of these cognitive analyses for the design of instruction. Three general issues were addressed: knowledge required for understanding problems, knowledge of the conditions…

  2. Everyday problem solving across the adult life span: solution diversity and efficacy.

    PubMed

    Mienaltowski, Andrew

    2011-10-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. © 2011 New York Academy of Sciences.

  3. Everyday problem solving across the adult life span: solution diversity and efficacy

    PubMed Central

    Mienaltowski, Andrew

    2013-01-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. PMID:22023569

  4. Strategies of Pre-Service Primary School Teachers for Solving Addition Problems with Negative Numbers

    ERIC Educational Resources Information Center

    Almeida, Rut; Bruno, Alicia

    2014-01-01

    This paper analyses the strategies used by pre-service primary school teachers for solving simple addition problems involving negative numbers. The findings reveal six different strategies that depend on the difficulty of the problem and, in particular, on the unknown quantity. We note that students use negative numbers in those problems they find…

  5. After Being Challenged by a Video Game Problem, Sleep Increases the Chance to Solve It

    PubMed Central

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events. PMID:24416219

  6. After being challenged by a video game problem, sleep increases the chance to solve it.

    PubMed

    Beijamini, Felipe; Pereira, Sofia Isabel Ribeiro; Cini, Felipe Augusto; Louzada, Fernando Mazzilli

    2014-01-01

    In the past years many studies have demonstrated the role of sleep on memory consolidation. It is known that sleeping after learning a declarative or non-declarative task, is better than remaining awake. Furthermore, there are reports of a possible role for dreams in consolidation of declarative memories. Other studies have reported the effect of naps on memory consolidation. With similar protocols, another set of studies indicated that sleep has a role in creativity and problem-solving. Here we hypothesised that sleep can increase the likelihood of solving problems. After struggling to solve a video game problem, subjects who took a nap (n = 14) were almost twice as likely to solve it when compared to the wake control group (n = 15). It is interesting to note that, in the nap group 9 out 14 subjects engaged in slow-wave sleep (SWS) and all solved the problem. Surprisingly, we did not find a significant involvement of Rapid Eye Movement (REM) sleep in this task. Slow-wave sleep is believed to be crucial for the transfer of memory-related information to the neocortex and implement intentions. Sleep can benefit problem-solving through the generalisation of newly encoded information and abstraction of the gist. In conclusion, our results indicate that sleep, even a nap, can potentiate the solution of problems that involve logical reasoning. Thus, sleep's function seems to go beyond memory consolidation to include managing of everyday-life events.

  7. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder.

    PubMed

    Yakubova, Gulnoza; Hughes, Elizabeth M; Hornberger, Erin

    2015-09-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with ASD completed the study. All three students demonstrated greater accuracy in solving fraction word problems and maintained accuracy levels at a 1-week follow-up.

  8. Thinking in Terms of Sensors: Personification of Self as an Object in Physics Problem Solving

    ERIC Educational Resources Information Center

    Tabor-Morris, A. E.

    2015-01-01

    How can physics teachers help students develop consistent problem solving techniques for both simple and complicated physics problems, such as those that encompass objects undergoing multiple forces (mechanical or electrical) as individually portrayed in free-body diagrams and/or phenomenon involving multiple objects, such as Doppler effect…

  9. Non-Mathematical Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Cartrette, David P.; Bodner, George M.

    2010-01-01

    Differences in problem-solving ability among organic chemistry graduate students and faculty were studied within the domain of problems that involved the determination of the structure of a molecule from the molecular formula of the compound and a combination of IR and [to the first power]H NMR spectra. The participants' performance on these tasks…

  10. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance

    ERIC Educational Resources Information Center

    Haghverdi, Majid; Wiest, Lynda R.

    2016-01-01

    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  11. Collaboration, Multi-Tasking and Problem Solving Performance in Shared Virtual Spaces

    ERIC Educational Resources Information Center

    Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk

    2016-01-01

    Collaborative problem-solving is often not a sequential process; instead, it can involve tasking switching or dual tasking (i.e., multitasking) activities in that the collaborators need to shift their attention between the targeted problems and the conversations they carry on with their collaborators. It is not known to what extent the…

  12. Introducing Challenging Tasks: Inviting and Clarifying without Explaining and Demonstrating

    ERIC Educational Resources Information Center

    Cheeseman, Jill; Clarke, Doug; Roche, Anne; Walker, Nadia

    2016-01-01

    Introducing challenging tasks in such a way that makes them accessible, rather than daunting, to students is a challenge for teachers. Solving challenging tasks involves students having to grapple with the problem. The role of the teacher is to motivate and clarify the problem rather than showing students how to solve the problem.

  13. Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…

  14. Examining Middle School Pre-Service Teachers' Knowledge of Fraction Division Interpretations

    ERIC Educational Resources Information Center

    Alenazi, Ali

    2016-01-01

    This study investigated 11 pre-service middle school teachers' solution strategies for exploring their knowledge of fraction division interpretations. Each participant solved six fraction division problems. The problems were organized into two sets: symbolic problems (involving numbers only) and contextual problems (involving measurement…

  15. Self-calibration of robot-sensor system

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu

    1990-01-01

    The process of finding the coordinate transformation between a robot and an external sensor system has been addressed. This calibration is equivalent to solving a nonlinear optimization problem for the parameters that characterize the transformation. A two-step procedure is herein proposed for solving the problem. The first step involves finding a nominal solution that is a good approximation of the final solution. A varational problem is then generated to replace the original problem in the next step. With the assumption that the variational parameters are small compared to unity, the problem that can be more readily solved with relatively small computation effort.

  16. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  17. Update: Guidelines for Effective Facilitation of Creative Problem Solving. Part 2.

    ERIC Educational Resources Information Center

    Firestien, Roger L.; Treffinger, Donald J.

    1989-01-01

    In this second article of a series, the first three stages of the CPS (Creative Problem Solving) process are described and several facilitation techniques that can be used in each stage are discussed. The three stages discussed (Mess-Finding, Data-Finding, and Problem-Finding) each involve a creative thought and a critical thought phase. (JDD)

  18. A Brief Guide to Modelling in Secondary School: Estimating Big Numbers

    ERIC Educational Resources Information Center

    Albarracín, Lluís; Gorgorió, Núria

    2015-01-01

    Fermi problems are problems which, due to their difficulty, can be satisfactorily solved by being broken down into smaller pieces that are solved separately. In this article, we present different sequences of activities involving Fermi problems that can be carried out in Secondary School classes. The aim of these activities is to discuss…

  19. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    ERIC Educational Resources Information Center

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  20. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Hughes, Elizabeth M.; Hornberger, Erin

    2015-01-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with…

  1. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    ERIC Educational Resources Information Center

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  2. Characteristics of a Cognitive Tool That Helps Students Learn Diagnostic Problem Solving

    ERIC Educational Resources Information Center

    Danielson, Jared A.; Mills, Eric M.; Vermeer, Pamela J.; Preast, Vanessa A.; Young, Karen M.; Christopher, Mary M.; George, Jeanne W.; Wood, R. Darren; Bender, Holly S.

    2007-01-01

    Three related studies replicated and extended previous work (J.A. Danielson et al. (2003), "Educational Technology Research and Development," 51(3), 63-81) involving the Diagnostic Pathfinder (dP) (previously Problem List Generator [PLG]), a cognitive tool for learning diagnostic problem solving. In studies 1 and 2, groups of 126 and 113…

  3. Medical Problem-Solving: A Critique of the Literature.

    ERIC Educational Resources Information Center

    McGuire, Christine H.

    1985-01-01

    Prescriptive, decision-analysis of medical problem-solving has been based on decision theory that involves calculation and manipulation of complex probability and utility values to arrive at optimal decisions that will maximize patient benefits. The studies offer a methodology for improving clinical judgment. (Author/MLW)

  4. A problem-solving approach to effective insulin injection for patients at either end of the body mass index.

    PubMed

    Juip, Micki; Fitzner, Karen

    2012-06-01

    People with diabetes require skills and knowledge to adhere to medication regimens and self-manage this complex disease. Effective self-management is contingent upon effective problem solving and decision making. Gaps existed regarding useful approaches to problem solving by individuals with very low and very high body mass index (BMI) who self-administer insulin injections. This article addresses those gaps by presenting findings from a patient survey, a symposium on the topic of problem solving, and recent interviews with diabetes educators to facilitate problem-solving approaches for people with diabetes with high and low BMI who inject insulin and/or other medications. In practice, problem solving involves problem identification, definition, and specification; goal and barrier identification are a prelude to generating a set of potential strategies for problem resolution and applying these strategies to implement a solution. Teaching techniques, such as site rotation and ensuring that people with diabetes use the appropriate equipment, increase confidence with medication adherence. Medication taking is more effective when people with diabetes are equipped with the knowledge, skills, and problem-solving behaviors to effectively self-manage their injections.

  5. Environmental problem-solving: Psychosocial factors

    NASA Astrophysics Data System (ADS)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  6. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  7. Junior high school students’ reflective thinking on fraction problem solving: In case of gender differences

    NASA Astrophysics Data System (ADS)

    Rasyid, M. A.; Budiarto, M. T.; Lukito, A.

    2018-01-01

    This study aims to describe reflective thinking of junior high school students on solving the fractions problem in terms of gender differences. This research is a qualitative approach involving one male student and one female student in seventh grade. The data were collected through the assignment of fractional problem solving and interview, then the data were triangulated and analyzed by three stages, namely data condensation, data display and conclusion. The results showed that the subjects of male and female were reacting, elaborating and contemplating at each stage of solving the fractions problem. But at the stage of devising the plan, the female subject was contemplating, relying more on their beliefs, did not consider their experience, in addition, the female subject didn’t use experience of the steps she planned to solve the problem of fractions.

  8. Effects of Variation and Prior Knowledge on Abstract Concept Learning

    ERIC Educational Resources Information Center

    Braithwaite, David W.; Goldstone, Robert L.

    2015-01-01

    Learning abstract concepts through concrete examples may promote learning at the cost of inhibiting transfer. The present study investigated one approach to solving this problem: systematically varying superficial features of the examples. Participants learned to solve problems involving a mathematical concept by studying either superficially…

  9. Student Involvement in Problem Solving and Decision Making--A Look at the Facts of Life.

    ERIC Educational Resources Information Center

    Sweeney, Jim

    1979-01-01

    The author contends that, in spite of the belief by principals and teachers that students participate in school decision making and problem solving, in reality they really do not. He suggests ways in which this condition can be rectified. (KC)

  10. The Emotional Dimensions of the Problem-Solving Process.

    ERIC Educational Resources Information Center

    Hill, Barbara; And Others

    1979-01-01

    Predictable affective responses are evoked during each phase of a group or organizational problem-solving process. With the needs assessment phase come hope and energy; with goal-setting, confusion and dissatisfaction; with action planning, involvement and accomplishment; with implementation, "stage fright" and joy; with evaluation, pride or…

  11. Synectics: An Explanation of the Process and Some Comments on its Application in the Secondary School.

    ERIC Educational Resources Information Center

    Marran, James F.; Rogan, Donald V.

    Synectics is a method of creative problem solving through the use of metaphor and apparent irrelevancy developed by William J. J. Gordon. The process involves rational knowledge of the problem to be solved, irrational improvisations that lead to fertile associations creating new approaches to the problem, and euphoric state that is essential in…

  12. Families Affected by Huntington's Disease Report Difficulties in Communication, Emotional Involvement, and Problem Solving.

    PubMed

    Jona, Celine M H; Labuschagne, Izelle; Mercieca, Emily-Clare; Fisher, Fiona; Gluyas, Cathy; Stout, Julie C; Andrews, Sophie C

    2017-01-01

    Family functioning in Huntington's disease (HD) is known from previous studies to be adversely affected. However, which aspects of family functioning are disrupted is unknown, limiting the empirical basis around which to create supportive interventions. The aim of the current study was to assess family functioning in HD families. We assessed family functioning in 61 participants (38 HD gene-expanded participants and 23 family members) using the McMaster Family Assessment Device (FAD; Epstein, Baldwin and Bishop, 1983), which provides scores for seven domains of functioning: Problem Solving; Communication; Affective Involvement; Affective Responsiveness; Behavior Control; Roles; and General Family Functioning. The most commonly reported disrupted domain for HD participants was Affective Involvement, which was reported by 39.5% of HD participants, followed closely by General Family Functioning (36.8%). For family members, the most commonly reported dysfunctional domains were Affective Involvement and Communication (both 52.2%). Furthermore, symptomatic HD participants reported more disruption to Problem Solving than pre-symptomatic HD participants. In terms of agreement between pre-symptomatic and symptomatic HD participants and their family members, all domains showed moderate to very good agreement. However, on average, family members rated Communication as more disrupted than their HD affected family member. These findings highlight the need to target areas of emotional engagement, communication skills and problem solving in family interventions in HD.

  13. Families Affected by Huntington’s Disease Report Difficulties in Communication, Emotional Involvement, and Problem Solving

    PubMed Central

    Jona, Celine M.H.; Labuschagne, Izelle; Mercieca, Emily-Clare; Fisher, Fiona; Gluyas, Cathy; Stout, Julie C.; Andrews, Sophie C.

    2017-01-01

    Background: Family functioning in Huntington’s disease (HD) is known from previous studies to be adversely affected. However, which aspects of family functioning are disrupted is unknown, limiting the empirical basis around which to create supportive interventions. Objective: The aim of the current study was to assess family functioning in HD families. Methods: We assessed family functioning in 61 participants (38 HD gene-expanded participants and 23 family members) using the McMaster Family Assessment Device (FAD; Epstein, Baldwin and Bishop, 1983), which provides scores for seven domains of functioning: Problem Solving; Communication; Affective Involvement; Affective Responsiveness; Behavior Control; Roles; and General Family Functioning. Results: The most commonly reported disrupted domain for HD participants was Affective Involvement, which was reported by 39.5% of HD participants, followed closely by General Family Functioning (36.8%). For family members, the most commonly reported dysfunctional domains were Affective Involvement and Communication (both 52.2%). Furthermore, symptomatic HD participants reported more disruption to Problem Solving than pre-symptomatic HD participants. In terms of agreement between pre-symptomatic and symptomatic HD participants and their family members, all domains showed moderate to very good agreement. However, on average, family members rated Communication as more disrupted than their HD affected family member. Conclusion: These findings highlight the need to target areas of emotional engagement, communication skills and problem solving in family interventions in HD. PMID:28968240

  14. Intuitive Feelings of Warmth and Confidence in Insight and Noninsight Problem Solving of Magic Tricks.

    PubMed

    Hedne, Mikael R; Norman, Elisabeth; Metcalfe, Janet

    2016-01-01

    The focus of the current study is on intuitive feelings of insight during problem solving and the extent to which such feelings are predictive of successful problem solving. We report the results from an experiment (N = 51) that applied a procedure where the to-be-solved problems were 32 short (15 s) video recordings of magic tricks. The procedure included metacognitive ratings similar to the "warmth ratings" previously used by Metcalfe and colleagues, as well as confidence ratings. At regular intervals during problem solving, participants indicated the perceived closeness to the correct solution. Participants also indicated directly whether each problem was solved by insight or not. Problems that people claimed were solved by insight were characterized by higher accuracy and higher confidence than noninsight solutions. There was no difference between the two types of solution in warmth ratings, however. Confidence ratings were more strongly associated with solution accuracy for noninsight than insight trials. Moreover, for insight trials the participants were more likely to repeat their incorrect solutions on a subsequent recognition test. The results have implications for understanding people's metacognitive awareness of the cognitive processes involved in problem solving. They also have general implications for our understanding of how intuition and insight are related.

  15. Intuitive Feelings of Warmth and Confidence in Insight and Noninsight Problem Solving of Magic Tricks

    PubMed Central

    Hedne, Mikael R.; Norman, Elisabeth; Metcalfe, Janet

    2016-01-01

    The focus of the current study is on intuitive feelings of insight during problem solving and the extent to which such feelings are predictive of successful problem solving. We report the results from an experiment (N = 51) that applied a procedure where the to-be-solved problems were 32 short (15 s) video recordings of magic tricks. The procedure included metacognitive ratings similar to the “warmth ratings” previously used by Metcalfe and colleagues, as well as confidence ratings. At regular intervals during problem solving, participants indicated the perceived closeness to the correct solution. Participants also indicated directly whether each problem was solved by insight or not. Problems that people claimed were solved by insight were characterized by higher accuracy and higher confidence than noninsight solutions. There was no difference between the two types of solution in warmth ratings, however. Confidence ratings were more strongly associated with solution accuracy for noninsight than insight trials. Moreover, for insight trials the participants were more likely to repeat their incorrect solutions on a subsequent recognition test. The results have implications for understanding people's metacognitive awareness of the cognitive processes involved in problem solving. They also have general implications for our understanding of how intuition and insight are related. PMID:27630598

  16. Unconscious processing modulates creative problem solving: evidence from an electrophysiological study.

    PubMed

    Gao, Ying; Zhang, Hao

    2014-05-01

    Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Design and Implementation of the Game-Design and Learning Program

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2016-01-01

    Design involves solving complex, ill-structured problems. Design tasks are consequently, appropriate contexts for children to exercise higher-order thinking and problem-solving skills. Although creating engaging and authentic design contexts for young children is difficult within the confines of traditional schooling, recently, game-design has…

  18. Engaging Students with Pre-Recorded "Live" Reflections on Problem-Solving with "Livescribe" Pens

    ERIC Educational Resources Information Center

    Hickman, Mike

    2013-01-01

    This pilot study, involving PGCE primary student teachers, applies "Livescribe" pen technology to facilitate individual and group reflection on collaborative mathematical problem solving (Hickman 2011). The research question was: How does thinking aloud, supported by digital audio recording, support student teachers' understanding of…

  19. Dissociable Stages of Problem Solving (I): Temporal Characteristics Revealed by Eye-Movement Analyses

    ERIC Educational Resources Information Center

    Nitschke, Kai; Ruh, Nina; Kappler, Sonja; Stahl, Christoph; Kaller, Christoph P.

    2012-01-01

    Understanding the functional neuroanatomy of planning and problem solving may substantially benefit from better insight into the chronology of the cognitive processes involved. Based on the assumption that regularities in cognitive processing are reflected in overtly observable eye-movement patterns, here we recorded eye movements while…

  20. Teaching Students with Moderate Intellectual Disability to Solve Word Problems

    ERIC Educational Resources Information Center

    Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.

    2018-01-01

    This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…

  1. Infusing Action Mazes into Language Assessment Class Using Quandary

    ERIC Educational Resources Information Center

    Kiliçkaya, Ferit

    2017-01-01

    It is widely acknowledged that problem solving is one of today's prominent skills and is an ongoing activity where learners are actively involved in seeking information, generating new knowledge based on this information, and making decisions accordingly. In this respective, through infusing problem-solving into curriculum of language teaching, it…

  2. Designing WebQuests to Support Creative Problem Solving

    ERIC Educational Resources Information Center

    Rubin, Jim

    2013-01-01

    WebQuests have been a popular alternative for collaborative group work that utilizes internet resources, but studies have questioned how effective they are in challenging students to use higher order thinking processes that involve creative problem solving. This article explains how different levels of inquiry relate to categories of learning…

  3. The Effects of Motivation and Emotion upon Problem Solving.

    ERIC Educational Resources Information Center

    Sanders, Michele; Matsumoto, David

    Recent research has refuted the behaviorist approach by establishing a relationship between emotion and behavior. The data collection procedure, however, has often involved an inferred emotional state from a hypothetical situation. As partial fulfillment of a class requirement, 60 college students were asked to perform two problem solving tasks…

  4. Aspects of the Cognitive Model of Physics Problem Solving.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    Various aspects of the cognitive model of physics problem solving are discussed in detail including relevant cues, encoding, memory, and input stimuli. The learning process involved in the recognition of familiar and non-familiar sensory stimuli is highlighted. Its four components include selection, acquisition, construction, and integration. The…

  5. Teaching Math. Extending Problem Solving.

    ERIC Educational Resources Information Center

    May, Lola

    1996-01-01

    Describes four teaching activities to help children extend math problem-solving skills by using their own questions. Activities involve using a chart and symbols to develop equations adding up to 12, going on an imaginary shopping trip, using shapes to represent dollar amounts, using the date on a penny to engage in various mathematical…

  6. Conceptual Transformation and Cognitive Processes in Origami Paper Folding

    ERIC Educational Resources Information Center

    Tenbrink, Thora; Taylor, Holly A.

    2015-01-01

    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  7. Implementing the Japanese Problem-Solving Lesson Structure

    ERIC Educational Resources Information Center

    Groves, Susie

    2013-01-01

    While there has been worldwide interest in Japanese Lesson Study as a model for teacher professional learning, there has been less research into authentic implementation of the problem-solving lesson structure that underpins mathematics research lessons in Japan. Findings from a Lesson Study project involving teachers from three Victorian primary…

  8. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    PubMed

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p < .001) and higher levels of social problem solving (p < .01). Higher chronic anxiety was related to lower social problem solving (p < .001). A test of mediation showed that chronic anxiety mediates the relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less involvement in health-comprising behaviors and increased academic engagement.

  9. The problem solving skills and student generated representations (SGRs) profile of senior high school students in Bandung on the topic of work and energy

    NASA Astrophysics Data System (ADS)

    Alami, Y.; Sinaga, P.; Setiawan, A.

    2018-05-01

    Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.

  10. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  11. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  12. Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.

  13. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  14. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  15. Rocks in a Box: A Three-Point Problem.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1981-01-01

    Describes a simulation drilling core activity involving the use of a physical model from which students gather data and solve a three-point problem to determine the strike and dip of a buried stratum. Includes descriptions of model making, data plots, and additional problems involving strike and dip. (DS)

  16. Conventional and Eccentric Uses of Crystallographic Databases in Practical Materials Identification Problems

    PubMed Central

    Kaduk, James A.

    1996-01-01

    The crystallographic databases are powerful and cost-effective tools for solving materials identification problems, both individually and in combination. Examples of the conventional and unconventional use of the databases in solving practical problems involving organic, coordination, and inorganic compounds are provided. The creation and use of fully-relational versions of the Powder Diffraction File and NIST Crystal Data are described. PMID:27805165

  17. The Language Factor in Elementary Mathematics Assessments: Computational Skills and Applied Problem Solving in a Multidimensional IRT Framework

    ERIC Educational Resources Information Center

    Hickendorff, Marian

    2013-01-01

    The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…

  18. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory.

    PubMed

    Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara

    2015-09-01

    Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.

  19. ABO/Rh Blood-Typing Model: A Problem-Solving Activity

    ERIC Educational Resources Information Center

    Wake, Carol

    2005-01-01

    An ARO/Rh Blood-Typing kit useful for students to visualize blood-typing activities and practice problem-solving skills with transfusion reactions is presented. The model also enables students to identify relationships between A, B, and Rh antigens and antibodies in blood and to understand molecular mechanisms involved in transfusion agglutination…

  20. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    ERIC Educational Resources Information Center

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  1. Problem Solving Strategies of Girls and Boys in Single-Sex Mathematics Classrooms

    ERIC Educational Resources Information Center

    Che, Megan; Wiegert, Elaine; Threlkeld, Karen

    2012-01-01

    This study examines patterns in middle-grade boys' and girls' written problem solving strategies for a mathematical task involving proportional reasoning. The students participating in this study attend a coeducational charter middle school with single-sex classrooms. One hundred nineteen sixth-grade students' responses are analyzed by gender…

  2. An Experimental Investigation Utilizing the Computer as a Tool for Stimulating Reasoning Skills.

    ERIC Educational Resources Information Center

    White, Kathy B.; Collins, Rosann Webb

    1983-01-01

    Reports investigation of the first phase of problem solving, i.e., the awareness of mental operations, which uses cognitive process instruction to focus student attention on their thinking processes. Evaluation of students' ability to recall componential operations involved in familiar tasks indicates improvement in problem solving is an…

  3. Creating Alien Life Forms: Problem Solving in Biology.

    ERIC Educational Resources Information Center

    Grimnes, Karin A.

    1996-01-01

    Describes a project that helps students integrate biological concepts using both creativity and higher-order problem-solving skills. Involves students playing the roles of junior scientists aboard a starship in orbit around a class M planet and using a description of habitats, seasonal details, and a surface map of prominent geographic features to…

  4. Prospective Teachers' Beliefs about Problem Solving in Multiple Ways

    ERIC Educational Resources Information Center

    Arikan, Elif Esra

    2016-01-01

    The purpose of this study is to analyze whether prospective teachers believe solving a mathematics problem involves in using different solution methods. 60 mathematics prospective teachers who take the pedagogic training program in a state university were participated in this study. Five open-ended questions were asked. The study was carried out…

  5. Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim

    2013-01-01

    Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…

  6. Life Skills Coach Training Manual.

    ERIC Educational Resources Information Center

    Saskatchewan NewStart, Inc., Prince Albert.

    Ways of helping coaches to counsel unemployed adults in the solving of their personal problems are explored in this manual. Originally printed as two separate volumes, this reprinting of the study has bound the two together. Volume I involves a general discussion of life's problems and of the need to solve them. This volume contains four parts.…

  7. Circumference and Problem Solving.

    ERIC Educational Resources Information Center

    Blackburn, Katie; White, David

    The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…

  8. Worry in Children: Changing Associations with Fear, Thinking, and Problem-Solving

    ERIC Educational Resources Information Center

    Carr, Imogen; Szabó, Marianna

    2015-01-01

    Worry in adults has been conceptualized as a thinking process involving problem-solving attempts about anticipated negative outcomes. This process is related to, though distinct from, fear. Previous research suggested that compared to adults, children's experience of worry is less strongly associated with thinking and more closely related to fear.…

  9. Clock Work: How Tools for Time Mediate Problem Solving and Reveal Understanding

    ERIC Educational Resources Information Center

    Earnest, Darrell

    2017-01-01

    This article reports on elementary students' understanding of time in the context of common classroom manipulatives and notational systems. Students in Grades 2 (n = 72) and 4 (n = 72) participated in problem-solving interviews involving different clocks. Quantitative results revealed that students' performances were significantly different as a…

  10. Teaching Problem-Solving and Creativity in College Courses. AAHE-ERIC/Higher Education Research Currents.

    ERIC Educational Resources Information Center

    Whitman, Neal

    Courses designed to teach problem-solving and creativity, which are relatively new additions to college curricula, are discussed, along with their intellectual foundations and research on these two processes. The teaching of these processes involves the following course goals: teaching a specific subject, generally useful skills, and professional…

  11. Environmental Pollution: Is There Enough Public Concern to Lead to Action?

    ERIC Educational Resources Information Center

    Sharma, Navin C.; And Others

    1975-01-01

    Research indicates that the impetus to solve pollution problems may have to come from processes outside the realm of ordinary problem solving institutions. Mass media exposure and involvement in the political process are ineffective in generating antipollution sentiment. "Grass roots" movements based on informal communication may emerge to combat…

  12. Social problem solving among depressed adolescents is enhanced by structured psychotherapies.

    PubMed

    Dietz, Laura J; Marshal, Michael P; Burton, Chad M; Bridge, Jeffrey A; Birmaher, Boris; Kolko, David; Duffy, Jamira N; Brent, David A

    2014-04-01

    Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents' interpersonal behavior. Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% White) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST) and after 12-16 weeks of treatment. Adolescent involvement, problem solving, and dyadic conflict were examined. Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents' problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents' problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT.

  13. Social problem solving among depressed adolescents is enhanced by structured psychotherapies

    PubMed Central

    Dietz, Laura J.; Marshal, Michael P.; Burton, Chad M.; Bridge, Jeffrey A.; Birmaher, Boris; Kolko, David; Duffy, Jamira N.; Brent, David A.

    2014-01-01

    Objective Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents’ interpersonal behavior. Method Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% Caucasian) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST), and after 12–16 weeks of treatment. Adolescent involvement, problem solving and dyadic conflict were examined. Results Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents’ problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents’ problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Conclusions Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one Pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT. PMID:24491077

  14. Modeling visual problem solving as analogical reasoning.

    PubMed

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. The effects of cumulative practice on mathematics problem solving.

    PubMed

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  16. The effects of cumulative practice on mathematics problem solving.

    PubMed Central

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132

  17. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  18. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  19. Learning from external environments using Soar

    NASA Technical Reports Server (NTRS)

    Laird, John E.

    1989-01-01

    Soar, like the previous PRODIGY and Theo, is a problem-solving architecture that attempts to learn from experience; unlike them, it takes a more uniform approach, using a single forward-chaining architecture for planning and execution. Its single learning mechanism, designated 'chunking', is domain-independent. Two developmental approaches have been employed with Soar: the first of these allows the architecture to attempt a problem on its own, while the second involves a degree of external guidance. This learning through guidance is integrated with general problem-solving and autonomous learning, leading to an avoidance of human interaction for simple problems that Soar can solve on its own.

  20. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  1. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  2. Using Explicit C-R-A Instruction to Teach Fraction Word Problem Solving to Low-Performing Asian English Learners

    ERIC Educational Resources Information Center

    Kim, Sun A.; Wang, Peishi; Michaels, Craig A.

    2015-01-01

    This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…

  3. Relations between Young Students' Strategic Behaviours, Domain-Specific Self-Concept, and Performance in a Problem-Solving Situation

    ERIC Educational Resources Information Center

    Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios

    2009-01-01

    This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…

  4. Should Mathematics Be a Mandatory Fundamental Component of Any IT Discipline?

    ERIC Educational Resources Information Center

    Eid, Chaker; Millham, Richard

    2013-01-01

    In this paper, we investigate whether and how mathematics factors into students' performance in IT learning. The involved cognitive levels of students learning mathematics and hence problem solving, are correlated to how well they are able to transpose their knowledge and apply it to problem solving in the IT field(s). Our hypothesis is that if…

  5. A Multilevel Study of Self-Beliefs and Student Behaviors in a Group Problem-Solving Task

    ERIC Educational Resources Information Center

    Hanham, José; McCormick, John

    2018-01-01

    Relationships among self-construal, self-efficacy, and group behaviors during a group problem-solving task with friends and acquaintances were hypothesized. The sample comprised 126 students in Grades 8-11, from 5 randomly selected government high schools, organized into 42 groups. Data collection involved self-reports and observations.…

  6. Teachers' and Learners' Inclinations towards Animal Organ Dissection and Its Use in Problem-Solving

    ERIC Educational Resources Information Center

    Kavai, Portia; de Villiers, Rian; Fraser, William

    2017-01-01

    In Life Sciences (biology) education, both nationally and internationally, the study of animal and organ morphology has traditionally involved dissection since the early 19th century. This study focused on the inclinations of teachers and learners towards animal organ dissection, and its use in problem-solving in Grade 11 Life Sciences education…

  7. Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations

    ERIC Educational Resources Information Center

    Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln

    2007-01-01

    A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…

  8. Using a Problem-Solving Strategy to Prevent Work-Related Accidents Due to Unsafe Worker Behavior.

    ERIC Educational Resources Information Center

    Martella, Ronald C.; And Others

    1992-01-01

    A two-stage problem-solving strategy involving cue cards and their gradual withdrawal was used to teach nine sheltered workshop employees how to prevent work-related accidents. Results indicated that participants used the strategy appropriately and generalized their skills to similar and dissimilar situations up to eight weeks after training.…

  9. Stalking the IQ Quark.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    1979-01-01

    An information-processing framework is presented for understanding intelligence. Two levels of processing are discussed: the steps involved in solving a complex intellectual task, and higher-order processes used to decide how to solve the problem. (MH)

  10. AI tools in computer based problem solving

    NASA Technical Reports Server (NTRS)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  11. Hamster Math: Authentic Experiences in Data Collection.

    ERIC Educational Resources Information Center

    Jorgensen, Beth

    1996-01-01

    Describes the data collection and interpretation project of primary grade students involving predicting, graphing, estimating, measuring, number problem construction, problem solving, and probability. (MKR)

  12. Robust operative diagnosis as problem solving in a hypothesis space

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1988-01-01

    This paper describes an approach that formulates diagnosis of physical systems in operation as problem solving in a hypothesis space. Such a formulation increases robustness by: (1) incremental hypotheses construction via dynamic inputs, (2) reasoning at a higher level of abstraction to construct hypotheses, and (3) partitioning the space by grouping fault hypotheses according to the type of physical system representation and problem solving techniques used in their construction. It was implemented for a turbofan engine and hydraulic subsystem. Evaluation of the implementation on eight actual aircraft accident cases involving engine faults provided very promising results.

  13. Parental Problem-Solving Abilities and the Association of Sickle Cell Disease Complications with Health-related Quality of Life for School-age Children

    PubMed Central

    Barakat, Lamia P.; Daniel, Lauren C.; Smith, Kelsey; Robinson, M. Renée; Patterson, Chavis A.

    2013-01-01

    Children with sickle cell disease (SCD) are at risk for poor health-related quality of life (HRQOL). The current analysis sought to explore parent problem-solving abilities/skills as a moderator between SCD complications and HRQOL to evaluate applicability to pediatric SCD. At baseline, 83 children ages 6–12 years and their primary caregiver completed measures of the child HRQOL. Primary caregivers also completed a measure of social problem-solving. A SCD complications score was computed from medical record review. Parent problem-solving abilities significantly moderated the association of SCD complications with child self-report psychosocial HRQOL (p = .006). SCD complications had a direct effect on parent proxy physical and psychosocial child HRQOL. Enhancing parent problem-solving abilities may be one approach to improve HRQOL for children with high SCD complications; however, modification of parent perceptions of HRQOL may require direct intervention to improve knowledge and skills involved in disease management. PMID:24222378

  14. Parental problem-solving abilities and the association of sickle cell disease complications with health-related quality of life for school-age children.

    PubMed

    Barakat, Lamia P; Daniel, Lauren C; Smith, Kelsey; Renée Robinson, M; Patterson, Chavis A

    2014-03-01

    Children with sickle cell disease (SCD) are at risk for poor health-related quality of life (HRQOL). The current analysis sought to explore parent problem-solving abilities/skills as a moderator between SCD complications and HRQOL to evaluate applicability to pediatric SCD. At baseline, 83 children ages 6-12 years and their primary caregiver completed measures of child HRQOL. Primary caregivers also completed a measure of social problem-solving. A SCD complications score was computed from medical record review. Parent problem-solving abilities significantly moderated the association of SCD complications with child self-report psychosocial HRQOL (p = .006). SCD complications had a direct effect on parent proxy physical and psychosocial child HRQOL. Enhancing parent problem-solving abilities may be one approach to improve HRQOL for children with high SCD complications; however, modification of parent perceptions of HRQOL may require direct intervention to improve knowledge and skills involved in disease management.

  15. Study the Problem.

    ERIC Educational Resources Information Center

    Choate, Joyce S.

    1990-01-01

    The initial step of a strategic process for solving mathematical problems, "studying the question," is discussed. A lesson plan for teaching students to identify and revise arithmetic problems is presented, involving directed instruction and supervised practice. (JDD)

  16. Incubation Effects in Problem Solving

    DTIC Science & Technology

    1988-12-14

    to other matters The incubation period is over when a sudden illumination occurs or when the problem solver resumes conscious problem solving and then...atheoretical -- as it must be if we are to establish the ’Briefly, Best-First search involves evaluating each idea that has been generated so far and...choosing the most promising one for further exploration, After a certain amount of exploration, the evaluation process is repeated. A certain idea may look

  17. What are some of the cognitive, psychological, and social factors that facilitate or hinder licensed vocational nursing students' acquisition of problem-solving skills involved with medication-dosage calculations?

    NASA Astrophysics Data System (ADS)

    Allen, Arthur William

    The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.

  18. Students' Difficulties with Integration in Electricity

    ERIC Educational Resources Information Center

    Nguyen, Dong-Hai; Rebello, N. Sanjay

    2011-01-01

    This study investigates the common difficulties that students in introductory physics experience when solving problems involving integration in the context of electricity. We conducted teaching-learning interviews with 15 students in a second-semester calculus-based introductory physics course on several problems involving integration. We found…

  19. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  20. Problem solving for depressed suicide attempters and depressed individuals without suicide attempt.

    PubMed

    Roskar, Saska; Zorko, Maja; Bucik, Valentin; Marusic, Andrej

    2007-12-01

    Next to feelings of hopelessness, certain cognitive features such as problem solving deficiency, attentional bias and reduced future positive thinking are involved in the development and maintenance of suicidal behavior. The aim of this study was to examine feelings of hopelessness and problem solving ability in depressed suicide attempters and depressed individuals without a suicide attempt and to see whether these features change over time. Three groups of participants, depressed suicide attempters (N=23), psychiatric control group (N=27) and healthy volunteers (N=27) completed measures of hopelessness and executive planning and problem solving abilities. The two clinical groups completed all measures shortly after admission and then again 7 weeks later whereas the non-clinical control group completed measures at baseline only. Both clinical groups displayed a higher level of hopelessness and poorer problem solving ability when compared to non-clinical volunteers. However, no differences were found between the two clinical groups. In neither of the clinical groups was improvement in problem solving ability between baseline and retesting observed despite the lowering of feelings of hopelessness. The diagnoses in the psychiatric controls group were only obtained by the psychiatrist and not checked by further documentation or questionnaires. Furthermore we did not control for personality traits which might influence cognitive functioning. Since feelings of hopelessness decreased over time and problem solving ability nevertheless remained stable it is important that treatment not only focuses on mood improvement of depressed suicidal and depressed non-suicidal individuals but also on teaching problem solving techniques.

  1. Lesion mapping of social problem solving

    PubMed Central

    Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  2. Quantum speedup in solving the maximal-clique problem

    NASA Astrophysics Data System (ADS)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  3. Problem solving in the borderland between mathematics and physics

    NASA Astrophysics Data System (ADS)

    Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas

    2017-01-01

    The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization.

  4. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  5. Children's application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning skills

    NASA Astrophysics Data System (ADS)

    Watters, James J.; English, Lyn D.

    The research reported in this article was undertaken to obtain a better understanding of problem solving and scientific reasoning in 10-year-old children. The study involved measuring children's competence at syllogistic reasoning and in solving a series of problems requiring inductive reasoning. Children were also categorized on the basis of levels of simultaneous and successive synthesis. Simultaneous and successive synthesis represent two dimensions of information processing identified by Luria in a program of neuropsychological research. Simultaneous synthesis involves integration of information in a holistic or spatial fashion, whereas successive synthesis involves processing information sequentially with temporal links between stimuli. Analysis of the data generated in the study indicated that syllogistic reasoning and inductive reasoning were significantly correlated with both simultaneous and successive synthesis. However, the strongest correlation was found between simultaneous synthesis and inductive reasoning. These findings provide a basis for understanding the roles of spatial and verbal-logical ability as defined by Luria's neuropsychological theory in scientific problem solving. The results also highlight the need for teachers to provide experiences which are compatible with individual students' information processing styles.Received: 19 October 1993; Revised: 15 December 1994;

  6. Effects of a Target-Task Problem-Solving Model on Senior Secondary School Students' Performance in Physics

    ERIC Educational Resources Information Center

    Olaniyan, A. O.; Omosewo, E. O.

    2015-01-01

    The study investigated the Effects of a Target-Task Problem-Solving Model on Senior Secondary School Students' Performance in Physics. The research design was a quasi-experimental, non-randomized, non-equivalent pretest, post-test using a control group. The study was conducted in two schools purposively selected and involved a total of 120 Senior…

  7. Articulation of Spatial and Geometrical Knowledge in Problem Solving with Technology at Primary School

    ERIC Educational Resources Information Center

    Soury-Lavergne, Sophie; Maschietto, Michela

    2015-01-01

    Our paper focuses on the relationship between spatial and geometrical knowledge in problem solving situations at primary school. We have created tasks that involve three different spaces: physical space, graphical space and geometrical space. We aim to study the specific role of graphical space as a bridge between the other two spaces using paper…

  8. The Effect on Pupils' Science Performance and Problem-Solving Ability through Lego: An Engineering Design-Based Modeling Approach

    ERIC Educational Resources Information Center

    Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen

    2016-01-01

    Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…

  9. The Effects of Varied Visual Organizational Strategies within Computer-Based Instruction on Factual, Conceptual and Problem Solving Learning.

    ERIC Educational Resources Information Center

    Haag, Brenda Bannan; Grabowski, Barbara L.

    The purpose of this exploratory study was to examine the effectiveness of learner manipulation of visuals with and without organizing cues in computer-based instruction on adults' factual, conceptual, and problem-solving learning. An instructional unit involving the physiology and the anatomy of the heart was used. A post-test only control group…

  10. Regressive Imagery in Creative Problem-Solving: Comparing Verbal Protocols of Expert and Novice Visual Artists and Computer Programmers

    ERIC Educational Resources Information Center

    Kozbelt, Aaron; Dexter, Scott; Dolese, Melissa; Meredith, Daniel; Ostrofsky, Justin

    2015-01-01

    We applied computer-based text analyses of regressive imagery to verbal protocols of individuals engaged in creative problem-solving in two domains: visual art (23 experts, 23 novices) and computer programming (14 experts, 14 novices). Percentages of words involving primary process and secondary process thought, plus emotion-related words, were…

  11. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    ERIC Educational Resources Information Center

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  12. The Application of Theoretical Factors in Teaching Problem Solving by Programed Instruction. HumRRO-TR-68-4.

    ERIC Educational Resources Information Center

    Seidel, Robert J.; Hunter, Harold G.

    In continuing research into the technology of training, a study was undertaken to devise guidelines for applying programed instruction to training courses that involve the learning of principles and rules for use in problem solving. As a research vehicle, a portion of the material in the Army's Programing Specialist Course was programed to explore…

  13. Links between Success in Non-Measurement and Calculation Tasks in Area and Volume Measurement and Pupils' Problems

    ERIC Educational Resources Information Center

    Tumová, Veronika; Vondrová, Nada

    2017-01-01

    Measurement in geometry is one of the key areas of school mathematics, however, pupils make serious mistakes when solving problems involving measurement and hold misconceptions. This article focuses on the possible links between lower secondary pupils' (n = 870) success in solving non-measurement tasks and calculations tasks on area and volume and…

  14. Cognitive constraints on high school students' representations of real environmental problems

    NASA Astrophysics Data System (ADS)

    Barnes, Ervin Kenneth

    One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and efforts to increase community awareness. The ways students think about, learn from, and solve real environmental problems were all constrained by the perspective tenets (including cultural tenets of role, status, and power) and envisioning processes. It was concluded that students need help from the community to go further in solving these real environmental problems.

  15. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  16. Advancing water resource management in agricultural, rural, and urbanizing watersheds: Enhancing University involvement

    USDA-ARS?s Scientific Manuscript database

    In this research editorial we make four points relative to solving water resource issues: (1) they are complex problems and difficult to solve, (2) some progress has been made on solving these issues, (3) external non-stationary drivers such as land use changes, climate change and variability, and s...

  17. Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study.

    PubMed

    Hao, Xin; Cui, Shuai; Li, Wenfu; Yang, Wenjing; Qiu, Jiang; Zhang, Qinglin

    2013-10-09

    Insight can be the first step toward creating a groundbreaking product. As evident in anecdotes and major inventions in history, heuristic events (heuristic prototypes) prompted inventors to acquire insight when solving problems. Bionic imitation in scientific innovation is an example of this kind of problem solving. In particular, heuristic prototypes (e.g., the lotus effect; the very high water repellence exhibited by lotus leaves) help solve insight problems (e.g., non-stick surfaces). We speculated that the biological functional feature of prototypes is a critical factor in inducing insightful scientific problem solving. In this functional magnetic resonance imaging (fMRI) study, we selected scientific innovation problems and utilized "learning prototypes-solving problems" two-phase paradigm to test the supposition. We also explored its neural mechanisms. Functional MRI data showed that the activation of the middle temporal gyrus (MTG, BA 37) and the middle occipital gyrus (MOG, BA 19) were associated with the highlighted functional feature condition. fMRI data also indicated that the MTG (BA 37) could be responsible for the semantic processing of functional features and for the formation of novel associations based on related functions. In addition, the MOG (BA 19) could be involved in the visual imagery of formation and application of function association between the heuristic prototype and problem. Our findings suggest that both semantic processing and visual imagery could be crucial components underlying scientific problem solving. © 2013 Elsevier B.V. All rights reserved.

  18. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses

    PubMed Central

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606

  19. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses.

    PubMed

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.

  20. An episodic specificity induction enhances means-end problem solving in young and older adults.

    PubMed

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  1. An episodic specificity induction enhances means-end problem solving in young and older adults

    PubMed Central

    Madore, Kevin P.; Schacter, Daniel L.

    2014-01-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688

  2. Testing the effectiveness of problem-based learning with learning-disabled students in biology

    NASA Astrophysics Data System (ADS)

    Guerrera, Claudia Patrizia

    The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.

  3. Word Problems: A "Meme" for Our Times.

    ERIC Educational Resources Information Center

    Leamnson, Robert N.

    1996-01-01

    Discusses a novel approach to word problems that involves linear relationships between variables. Argues that working stepwise through intermediates is the way our minds actually work and therefore this should be used in solving word problems. (JRH)

  4. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  5. Development of Proportional Reasoning: Where Young Children Go Wrong

    PubMed Central

    Boyer, Ty W.; Levine, Susan C.; Huttenlocher, Janellen

    2008-01-01

    Previous studies have found that children have difficulty solving proportional reasoning problems involving discrete units until 10- to 12-years of age, but can solve parallel problems involving continuous quantities by 6-years of age. The present studies examine where children go wrong in processing proportions that involve discrete quantities. A computerized proportional equivalence choice task was administered to kindergartners through fourth-graders in Study 1, and to first- and third-graders in Study 2. Both studies involved four between-subjects conditions that were formed by pairing continuous and discrete target proportions with continuous and discrete choice alternatives. In Study 1, target and choice alternatives were presented simultaneously and in Study 2 target and choice alternatives were presented sequentially. In both studies, children performed significantly worse when both the target and choice alternatives were represented with discrete quantities than when either or both of the proportions involved continuous quantities. Taken together, these findings indicate that children go astray on proportional reasoning problems involving discrete units only when a numerical match is possible, suggesting that their difficulty is due to an overextension of numerical equivalence concepts to proportional equivalence problems. PMID:18793078

  6. GRIPs (Group Investigation Problems) for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2006-12-01

    GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.

  7. Design and Diagnosis Problem Solving with Multifunctional Technical Knowledge Bases

    DTIC Science & Technology

    1992-09-29

    STRUCTURE METHODOLOGY Design problem solving is a complex activity involving a number of subtasks. and a number of alternative methods potentially available...Conference on Artificial Intelligence. London: The British Computer Society, pp. 621-633. Friedland, P. (1979). Knowledge-based experimental design ...Computing Milieuxl: Management of Computing and Information Systems- -ty,*m man- agement General Terms: Design . Methodology Additional Key Words and Phrases

  8. PAN AIR summary document (version 1.0)

    NASA Technical Reports Server (NTRS)

    Derbyshire, T.; Sidwell, K. W.

    1982-01-01

    The capabilities and limitations of the panel aerodynamics (PAN AIR) computer program system are summarized. This program uses a higher order panel method to solve boundary value problems involving the Prandtl-Glauert equation for subsonic and supersonic potential flows. Both aerodynamic and hydrodynamic problems can be solved using this modular software which is written for the CDC 6600 and 7600, and the CYBER 170 series computers.

  9. The Effects of Two Strategic and Meta-Cognitive Questioning Approaches on Children's Explanatory Behaviour, Problem-Solving, and Learning during Cooperative, Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim; Burgh, Gilbert; Haynes, Michele

    2012-01-01

    Teaching students to ask and answer questions is critically important if they are to engage in reasoned argumentation, problem-solving, and learning. This study involved 35 groups of grade 6 children from 18 classrooms in three conditions (cognitive questioning condition, community of inquiry condition, and the comparison condition) who were…

  10. Selective Spatial Working Memory Impairment in a Group of Children with Mathematics Learning Disabilities and Poor Problem-Solving Skills

    ERIC Educational Resources Information Center

    Passolunghi, Maria Chiara; Mammarella, Irene Cristina

    2012-01-01

    This study examines visual and spatial working memory skills in 35 third to fifth graders with both mathematics learning disabilities (MLD) and poor problem-solving skills and 35 of their peers with typical development (TD) on tasks involving both low and high attentional control. Results revealed that children with MLD, relative to TD children,…

  11. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    PubMed

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  12. An investigation of aviator problem-solving skills as they relate to amount of total flight time

    NASA Astrophysics Data System (ADS)

    Guilkey, James Elwood, Jr.

    As aircraft become increasingly more reliable, safety issues have shifted towards the human component of flight, the pilot. Jensen (1995) indicated that 80% of all General Aviation (GA) accidents are the result, at least in part, of errors committed by the aviator. One major focus of current research involves aviator decision making (ADM). ADM combines a broad range of psychological factors including personality, attitude, and motivation. This approach fails to isolate certain key components such as aviator problem-solving (APS) which are paramount to safe operations. It should be noted that there is a clear delineation between problem-solving and decision making and not assume that they are homogenous. For years, researchers, industry, and the Federal Aviation Administration (FAA) have depended on total flight hours as the standard by which to judge aviator expertise. A pilot with less than a prescribed number of hours is considered a novice while those above that mark are considered experts. The reliance on time as a predictor of performance may be accurate when considering skills which are required on every flight (i.e., takeoff and landing) but we can't assume that this holds true for all aspects of aviator expertise. Complex problem-solving for example, is something that is rarely faced during the normal course of flying. In fact, there are a myriad of procedures and FAA mandated regulations designed to assist pilots in avoiding problems. Thus, one should not assume that aviator problem-solving skills will increase over time. This study investigated the relationship between problem-solving skills of general aviation pilots and total number of flight hours. It was discovered that flight time is not a good predictor of problem-solving performance. There were two distinct strategies that were identified in the study. The first, progressive problem solving (PPS) was characterized by a stepwise method in which pilots gathered information, formulated hypotheses, and evaluated outcomes. Both high time as well as low time pilots demonstrated this approach. The second method, termed knee-jerk decision making was distinguished by a lack of problem-solving abilities and involved an almost immediate decision with little if any supporting information. Again both high and low time pilots performed in this manner. The result of these findings is a recommendation that the FAA adopt new training methods which will allow pilots to develop the skills required to handle critical inflight situations.

  13. Aiming to complete the matrix: Eye-movement analysis of processing strategies in children's relational thinking.

    PubMed

    Chen, Zhe; Honomichl, Ryan; Kennedy, Diane; Tan, Enda

    2016-06-01

    The present study examines 5- to 8-year-old children's relation reasoning in solving matrix completion tasks. This study incorporates a componential analysis, an eye-tracking method, and a microgenetic approach, which together allow an investigation of the cognitive processing strategies involved in the development and learning of children's relational thinking. Developmental differences in problem-solving performance were largely due to deficiencies in engaging the processing strategies that are hypothesized to facilitate problem-solving performance. Feedback designed to highlight the relations between objects within the matrix improved 5- and 6-year-olds' problem-solving performance, as well as their use of appropriate processing strategies. Furthermore, children who engaged the processing strategies early on in the task were more likely to solve subsequent problems in later phases. These findings suggest that encoding relations, integrating rules, completing the model, and generalizing strategies across tasks are critical processing components that underlie relational thinking. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.

    PubMed

    Esau, Michael; Rozema, Mark; Zhang, Tuo Huang; Zeng, Dawson; Chiu, Stephanie; Kwan, Rachel; Moorhouse, Cadence; Murray, Cameron; Tseng, Nien-Tsu; Ridgway, Doug; Sauvageau, Dominic; Ellison, Michael

    2014-12-19

    The Traveling Salesman Problem involves finding the shortest possible route visiting all destinations on a map only once before returning to the point of origin. The present study demonstrates a strategy for solving Traveling Salesman Problems using modified E. coli cells as processors for massively parallel computing. Sequential, combinatorial DNA assembly was used to generate routes, in the form of plasmids made up of marker genes, each representing a path between destinations, and short connecting linkers, each representing a given destination. Upon growth of the population of modified E. coli, phenotypic selection was used to eliminate invalid routes, and statistical analysis was performed to successfully identify the optimal solution. The strategy was successfully employed to solve a four-destination test problem.

  15. Mathematical learning disabilities and attention deficit and/or hyperactivity disorder: A study of the cognitive processes involved in arithmetic problem solving.

    PubMed

    Iglesias-Sarmiento, Valentín; Deaño, Manuel; Alfonso, Sonia; Conde, Ángeles

    2017-02-01

    The purpose of this study was to examine the contribution of cognitive functioning to arithmetic problem solving and to explore the cognitive profiles of children with attention deficit and/or hyperactivity disorder (ADHD) and with mathematical learning disabilities (MLD). The sample was made up of a total of 90 students of 4th, 5th, and 6th grade organized in three: ADHD (n=30), MLD (n=30) and typically achieving control (TA; n=30) group. Assessment was conducted in two sessions in which the PASS processes and arithmetic problem solving were evaluated. The ADHD group's performance in planning and attention was worse than that of the control group. Children with MLD obtained poorer results than the control group in planning and simultaneous and successive processing. Executive processes predicted arithmetic problem solving in the ADHD group whereas simultaneous processing was the unique predictor in the MLD sample. Children with ADHD and with MLD showed characteristic cognitive profiles. Groups' problem-solving performance can be predicted from their cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of problem structure on problem-solving: an fMRI study of word versus number problems.

    PubMed

    Newman, Sharlene D; Willoughby, Gregory; Pruce, Benjamin

    2011-09-02

    It has long been thought that word problems are more difficult to solve than number/equation problems. However, recent findings have begun to bring this broadly believed idea into question. The current study examined the processing differences between these two types of problems. The behavioral results presented here failed to show an overwhelming advantage for number problems. In fact, there were more errors for the number problems than the word problems. The neuroimaging results reported demonstrate that there is significant overlap in the processing of what, on the surface, appears to be completely different problems that elicit different problem-solving strategies. Word and number problems rely on a general network responsible for problem-solving that includes the superior posterior parietal cortex, the horizontal segment of the intraparietal sulcus which is hypothesized to be involved in problem representation and calculation as well as the regions that have been linked to executive aspects of working memory such as the pre-SMA and basal ganglia. While overlap was observed, significant differences were also found primarily in language processing regions such as Broca's and Wernicke's areas for the word problems and the horizontal segment of the intraparietal sulcus for the number problems. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Energy and the Confused Student V: The Energy/Momentum Approach to Problems Involving Rotating and Deformable Systems

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.

    2008-01-01

    Energy is a critical concept in physics problem-solving, but is often a major source of confusion for students if the presentation is not carefully crafted by the instructor or the textbook. A common approach to problems involving deformable or rotating systems that has been discussed in the literature is to employ the work-kinetic energy theorem…

  18. Good practices in managing work-related indoor air problems: a psychosocial perspective.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari

    2004-07-01

    Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.

  19. Graph pyramids as models of human problem solving

    NASA Astrophysics Data System (ADS)

    Pizlo, Zygmunt; Li, Zheng

    2004-05-01

    Prior theories have assumed that human problem solving involves estimating distances among states and performing search through the problem space. The role of mental representation in those theories was minimal. Results of our recent experiments suggest that humans are able to solve some difficult problems quickly and accurately. Specifically, in solving these problems humans do not seem to rely on distances or on search. It is quite clear that producing good solutions without performing search requires a very effective mental representation. In this paper we concentrate on studying the nature of this representation. Our theory takes the form of a graph pyramid. To verify the psychological plausibility of this theory we tested subjects in a Euclidean Traveling Salesman Problem in the presence of obstacles. The role of the number and size of obstacles was tested for problems with 6-50 cities. We analyzed the effect of experimental conditions on solution time per city and on solution error. The main result is that time per city is systematically affected only by the size of obstacles, but not by their number, or by the number of cities.

  20. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  1. Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability.

    PubMed

    Chuderski, Adam; Jastrzębski, Jan

    2018-02-01

    A battery comprising 4 fluid reasoning tests as well as 13 working memory (WM) tasks that involved storage, recall, updating, binding, and executive control, was applied to 318 adults in order to evaluate the true relationship of reasoning ability and WM capacity (WMC) to insight problem solving, measured using 40 verbal, spatial, math, matchstick, and remote associates problems (insight problems). WMC predicted 51.8% of variance in insight problem solving and virtually explained its almost isomorphic link to reasoning ability (84.6% of shared variance). The strong link between WMC and insight pertained generally to most WM tasks and insight problems, was identical for problems solved with and without reported insight, was linear throughout the ability levels, and was not mediated by age, motivation, anxiety, psychoticism, and openness to experience. In contrast to popular views on the sudden and holistic nature of insight, the solving of insight problems results primarily from typical operations carried out by the basic WM mechanisms that are responsible for the maintenance, retrieval, transformation, and control of information in the broad range of intellectual tasks (including fluid reasoning). Little above and beyond WM is unique about insight. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Human factors involvement in bringing the power of AI to a heterogeneous user population

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary; Nguyen, Trung

    1994-01-01

    The Human Factors involvement in developing COMPAQ QuickSolve, an electronic problem-solving and information system for Compaq's line of networked printers, is described. Empowering customers with expert system technology so they could solve advanced networked printer problems on their own was a major goal in designing this system. This process would minimize customer down-time, reduce the number of phone calls to the Compaq Customer Support Center, improve customer satisfaction, and, most importantly, differentiate Compaq printers in the marketplace by providing the best, and most technologically advanced, customer support. This represents a re-engineering of Compaq's customer support strategy and implementation. In its first generation system, SMART, the objective was to provide expert knowledge to Compaq's help desk operation to more quickly and correctly answer customer questions and problems. QuickSolve is a second generation system in that customer support is put directly in the hands of the consumers. As a result, the design of QuickSolve presented a number of challenging issues. Because the produce would be used by a diverse and heterogeneous set of users, a significant amount of human factors research and analysis was required while designing and implementing the system. Research that shaped the organization and design of the expert system component as well.

  3. Eco-innovative design approach: Integrating quality and environmental aspects in prioritizing and solving engineering problems

    NASA Astrophysics Data System (ADS)

    Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François

    2014-09-01

    This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.

  4. Developing creativity and problem-solving skills of engineering students: a comparison of web- and pen-and-paper-based approaches

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-11-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.

  5. Your Child and Problem Solving, Math and Science. Getting Involved Workshop Guide: A Manual for the Parent Group Trainer. The Best of BES--Basic Educational Skills Materials.

    ERIC Educational Resources Information Center

    Rustling, Ruth; And Others

    This manual offers detailed guidelines for parent group trainers who conduct workshops on problem solving, math, and science for parents of young children. In addition, discussion starters, a list of hands-on activities, directions for drawing and using a poster, and learning activities for children are described. Counting books are briefly…

  6. A Comparison of Brain Wave Patterns of High and Low Grade Point Average Students During Rest, Problem Solving, and Stress Situations.

    ERIC Educational Resources Information Center

    Montor, Karel

    The purpose of this study was to compare brain wave patterns produced by high and low grade point average students, while they were resting, solving problems, and subjected to stress situations. The study involved senior midshipmen at the United States Naval Academy. The high group was comprised of those whose cumulative grade point average was…

  7. HEMP 3D: A finite difference program for calculating elastic-plastic flow, appendix B

    NASA Astrophysics Data System (ADS)

    Wilkins, Mark L.

    1993-05-01

    The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations listed below are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time.

  8. Outcomes-Based Authentic Learning, Portfolio Assessment, and a Systems Approach to "Complex Problem-Solving": Related Pillars for Enhancing the Innovative Role of PBL in Future Higher Education

    ERIC Educational Resources Information Center

    Richards, Cameron

    2015-01-01

    The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…

  9. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Knaeuper, A. E.; Brown, E. N.; Lewis, C. M.; Yoon, W. C.

    1984-01-01

    Two project areas were pursued: the intelligent cockpit and human problem solving. The first area involves an investigation of the use of advanced software engineering methods to aid aircraft crews in procedure selection and execution. The second area is focused on human problem solving in dynamic environments, particulary in terms of identification of rule-based models land alternative approaches to training and aiding. Progress in each area is discussed.

  10. Taking a Common-Sense Approach to Moral Education.

    ERIC Educational Resources Information Center

    Myers, R. E.

    2001-01-01

    Outlines how one veteran high school teacher wrote up an everyday moral dilemma (obliquely involving drug trafficking) for his students to discuss and solve. Notes problem-solving steps and questions, and how the students worked their way to a solution through discussion. (SR)

  11. Health literacy, numeracy, and other characteristics associated with hospitalized patients' preferences for involvement in decision making.

    PubMed

    Goggins, Kathryn M; Wallston, Kenneth A; Nwosu, Samuel; Schildcrout, Jonathan S; Castel, Liana; Kripalani, Sunil

    2014-01-01

    Little research has examined the association of health literacy and numeracy with patients' preferred involvement in the problem-solving and decision-making process in the hospital. Using a sample of 1,249 patients hospitalized with cardiovascular disease from the Vanderbilt Inpatient Cohort Study (VICS), we assessed patients' preferred level of involvement using responses to two scenarios of differing symptom severity from the Problem-Solving Decision-Making Scale. Using multivariable modeling, we determined the relationship of health literacy, subjective numeracy, and other patient characteristics with preferences for involvement in decisions, and how this differed by scenario. The authors found that patients with higher levels of health literacy desired more participation in the problem-solving and decision-making process, as did patients with higher subjective numeracy skills, greater educational attainment, female gender, less perceived social support, or greater health care system distrust (p<.05 for each predictor in multivariable models). Patients also preferred to participate more in the decision-making process when the hypothetical symptom they were experiencing was less severe (i.e., they deferred more to their physician when the hypothetical symptom was more severe). These findings underscore the role that patient characteristics, especially health literacy and numeracy, play in decisional preferences among hospitalized patients.

  12. Math and numeracy in young adults with spina bifida and hydrocephalus.

    PubMed

    Dennis, Maureen; Barnes, Marcia

    2002-01-01

    The developmental stability of poor math skill was studied in 31 young adults with spina bifida and hydrocephalus (SBH), a neurodevelopmental disorder involving malformations of the brain and spinal cord. Longitudinally, individuals with poor math problem solving as children grew into adults with poor problem solving and limited functional numeracy. As a group, young adults with SBH had poor computation accuracy, computation speed, problem solving, a ndfunctional numeracy. Computation accuracy was related to a supporting cognitive system (working memory for numbers), and functional numeracy was related to one medical history variable (number of lifetime shunt revisions). Adult functional numeracy, but not functional literacy, was predictive of higher levels of social, personal, and community independence.

  13. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  14. Neural correlates of mathematical problem solving.

    PubMed

    Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping

    2015-03-01

    This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.

  15. High school students' understanding and problem solving in population genetics

    NASA Astrophysics Data System (ADS)

    Soderberg, Patti D.

    This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.

  16. Efficient dual approach to distance metric learning.

    PubMed

    Shen, Chunhua; Kim, Junae; Liu, Fayao; Wang, Lei; van den Hengel, Anton

    2014-02-01

    Distance metric learning is of fundamental interest in machine learning because the employed distance metric can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. The worst case complexity of solving an SDP problem involving a matrix variable of size D×D with O(D) linear constraints is about O(D(6.5)) using interior-point methods, where D is the dimension of the input data. Thus, the interior-point methods only practically solve problems exhibiting less than a few thousand variables. Because the number of variables is D(D+1)/2, this implies a limit upon the size of problem that can practically be solved around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here, we propose a significantly more efficient and scalable approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is roughly O(D(3)), which is significantly lower than that of the SDP approach. Experiments on a variety of data sets demonstrate that the proposed method achieves an accuracy comparable with the state of the art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius norm regularized SDP problems approximately.

  17. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Informal schooling and problem-solving skills in second-grade science: A naturalistic investigation

    NASA Astrophysics Data System (ADS)

    Griffin, Georgia Inez Hunt

    The influence of informal schooling on the problem solving skills of urban elementary school children is unclear. The relationship between culture and problem solving can be studied using subjective methodologies, particularly when investigating problem solving strategies that are culturally situated. Yet, little research has been conducted to investigate how informal learning of African American children are integrated as part of the problem solving used in school. This study has been designed to expand the existing literature in this area. The purpose of this study is therefore to explore how 15 African American children attending school in Southwest Philadelphia solve problems presented to them in second grade science. This was accomplished by assessing their ability to observe, classify, recall, and perceive space/time relationships. Think-aloud protocols were used for this examination. A naturalistic approach to the investigation was implemented. Individual children were selected because he or she exhibited unique and subjective characteristics associated with individual approaches to problem solving. Children responded to three tasks: interviews of their parents, an essay on community gardens, and a group diorama collaboratively designed. Content analysis was used to infer themes that were evident in the children's work and that revealed the extent to which informal schooling influenced solutions to a community garden problem. The investigations did increase the researcher's ability to understand and build upon the understanding of African American children in their indigenous community. The study also demonstrated how these same strategies can be used to involve parents in the science curriculum. Additionally, the researcher gained insight on how to bridge the gap between home, community, and school.

  19. Students’ Covariational Reasoning in Solving Integrals’ Problems

    NASA Astrophysics Data System (ADS)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  20. Using Summer Faculty-Student Consultant Teams to Solve Industrial Problems

    ERIC Educational Resources Information Center

    Michelsen, Donald L.; And Others

    1977-01-01

    Describes a three-week, faculty-student summer project involving the study of waste-water treatment of refinery effluents. Discusses the use of such projects to aid industry in analyzing their problems. (MLH)

  1. Problem-Based Learning Pedagogies: Psychological Processes and Enhancement of Intelligences

    ERIC Educational Resources Information Center

    Tan, Oon-Seng

    2007-01-01

    Education in this 21st century is concerned with developing intelligences. Problem solving in real-world contexts involves multiple ways of knowing and learning. Intelligence in the real world involves not only learning how to do things effectively but also more importantly the ability to deal with novelty and growing our capacity to adapt, select…

  2. Parent–child problem solving in families of children with or without intellectual disability

    PubMed Central

    Wieland, N.; Green, S.; Ellingsen, R.; Baker, B. L.

    2016-01-01

    Objective To examine differences in child social competence and parent–child interactions involving children with intellectual disability (ID) or typical development (TD) during a Parent–Child Problem-Solving Task. Design Mothers and their 9-year-old children (n = 122) participated in a problem-solving task in which they discussed and tried to resolve an issue they disagreed about. The interactions were coded on child and mother problem solving and affect behaviours, as well as the dyad’s problem resolution. Results Children with ID (n = 35) were rated lower on expression/negotiation skills and higher on resistance to the task than children with TD (n = 87). Mothers in the ID group (vs. TD group) were more likely to direct the conversation. However, there were no group differences on maternal feeling acknowledgement, engagement, warmth or antagonism. The ID dyads were less likely to come to a resolution and to compromise in doing so than the TD dyads. These group differences were not attributable to differences in children’s behaviour problems. Conclusions Children with ID and their mothers had more difficulty resolving problems, and this increased difficulty was not explained by greater behaviour problems. Additionally, with the exception of directiveness, mothers of children with ID displayed similar behaviours and affect towards their children during problem solving as mothers of children with TD. Results suggest that the Parent–Child Problem-Solving Task is a useful way to assess social skills and associated parental behaviours in middle childhood beyond self-report. Implications for future research and intervention are discussed. PMID:23336566

  3. Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow

    NASA Astrophysics Data System (ADS)

    Aida-zade, K. R.; Ashrafova, E. R.

    2017-12-01

    An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.

  4. Neural Activity When People Solve Verbal Problems with Insight

    PubMed Central

    Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J

    2004-01-01

    People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802

  5. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  6. From problem solving to problem definition: scrutinizing the complex nature of clinical practice.

    PubMed

    Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn

    2017-02-01

    In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.

  7. A Study on Intelligence of High School Students

    ERIC Educational Resources Information Center

    Rani, M. Usha; Prakash, Srinivasan

    2015-01-01

    Intelligence involves the ability to think, solve problems, analyze situations, and understand social values, customs, and norms. Intelligence is a general mental capability that involves the ability to reason, plan, think abstractly, comprehend ideas and language, and learn. Intellectual ability involves comprehension, understanding, and learning…

  8. Time-domain finite elements in optimal control with application to launch-vehicle guidance. PhD. Thesis

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.

    1991-01-01

    A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.

  9. Readiness for Solving Story Problems.

    ERIC Educational Resources Information Center

    Dunlap, William F.

    1982-01-01

    Readiness activities are described which are designed to help learning disabled (LD) students learn to perform computations in story problems. Activities proceed from concrete objects to numbers and involve the students in devising story problems. The language experience approach is incorporated with the enactive, iconic, and symbolic levels of…

  10. A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.

    ERIC Educational Resources Information Center

    Williamson, W., Jr.

    1980-01-01

    Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)

  11. Moving Material into Space Without Rockets.

    ERIC Educational Resources Information Center

    Cheng, R. S.; Trefil, J. S.

    1985-01-01

    In response to conventional rocket demands on fuel supplies, electromagnetic launches were developed to give payloads high velocity using a stationary energy source. Several orbital mechanics problems are solved including a simple problem (radial launch with no rotation) and a complex problem involving air resistance and gravity. (DH)

  12. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  13. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    NASA Astrophysics Data System (ADS)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  14. Varying Use of Conceptual Metaphors across Levels of Expertise in Thermodynamics

    NASA Astrophysics Data System (ADS)

    Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.

    2015-04-01

    Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise-undergraduate students of chemistry and Ph.D. students in physical chemistry-identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed. Third contribution to special issue entitled: Conceptual metaphor and embodied cognition in science learning

  15. Visuospatial anatomy comprehension: the role of spatial visualization ability and problem-solving strategies.

    PubMed

    Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D

    2014-01-01

    The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.

  16. How doctors learn: the role of clinical problems across the medical school-to-practice continuum.

    PubMed

    Slotnick, H B

    1996-01-01

    The author proposes a theory of how physicians learn that uses clinical problem solving as its central feature. His theory, which integrates insights from Maslow, Schön, Norman, and others, claims that physicians-in-training and practicing physicians learn largely by deriving insights from clinical experience. These insights allow the learner to solve future problems and thereby address the learner's basic human needs for security, affiliation, and self-esteem. Ensuring that students gain such insights means that the proper roles of the teacher are (1) to select problems for students to solve and offer guidance on how to solve them, and (2) to serve as a role model of how to reflect on the problem, its solution, and the solution's effectiveness. Three principles guide instruction within its framework for learning: (1) learners, whether physicians-in-training or practicing physicians, seek to solve problems they recognize they have; (2) learners want to be involved in their own learning; and (3) instruction must both be time-efficient and also demonstrate the range of ways in which students can apply what they learn. The author concludes by applying the theory to an aspect of undergraduate education and to the general process of continuing medical education.

  17. Qualitative Understanding of Magnetism at Three Levels of Expertise

    NASA Astrophysics Data System (ADS)

    Stefani, Francesco; Marshall, Jill

    2010-03-01

    This work set out to investigate the state of qualitative understanding of magnetism at various stages of expertise, and what approaches to problem-solving are used across the spectrum of expertise. We studied three groups: 10 novices, 10 experts-in-training, and 11 experts. Data collection involved structured interviews during which participants solved a series of non-standard problems designed to test for conceptual understanding of magnetism. The interviews were analyzed using a grounded theory approach. None of the novices and only a few of the experts in training showed a strong understanding of inductance, magnetic energy, and magnetic pressure; and for the most part they tended not to approach problems visually. Novices frequently described gist memories of demonstrations, text book problems, and rules (heuristics). However, these fragmentary mental models were not complete enough to allow them to reason productively. Experts-in-training were able to solve problems that the novices were not able to solve, many times simply because they had greater recall of the material, and therefore more confidence in their facts. Much of their thinking was concrete, based on mentally manipulating objects. The experts solved most of the problems in ways that were both effective and efficient. Part of the efficiency derived from their ability to visualize and thus reason in terms of field lines.

  18. Qualitative Understanding of Magnetism at Three Levels of Expertise

    NASA Astrophysics Data System (ADS)

    Stefani, Francesco; Marshall, Jill

    2009-04-01

    This work set out to investigate the state of qualitative understanding of magnetism at various stages of expertise, and what approaches to problem-solving are used across the spectrum of expertise. We studied three groups: 10 novices, 10 experts-in-training, and 11 experts. Data collection involved structured interviews during which participants solved a series of non-standard problems designed to test for conceptual understanding of magnetism. The interviews were analyzed using a grounded theory approach. None of the novices and only a few of the experts in training showed a strong understanding of inductance, magnetic energy, and magnetic pressure; and for the most part they tended not to approach problems visually. Novices frequently described gist memories of demonstrations, text book problems, and rules (heuristics). However, these fragmentary mental models were not complete enough to allow them to reason productively. Experts-in-training were able to solve problems that the novices were not able to solve, many times simply because they had greater recall of the material, and therefore more confidence in their facts. Much of their thinking was concrete, based on mentally manipulating objects. The experts solved most of the problems in ways that were both effective and efficient. Part of the efficiency derived from their ability to visualize and thus reason in terms of field lines.

  19. A testable theory of problem solving courts: Avoiding past empirical and legal failures.

    PubMed

    Wiener, Richard L; Winick, Bruce J; Georges, Leah Skovran; Castro, Anthony

    2010-01-01

    Recent years have seen a proliferation of problem solving courts designed to rehabilitate certain classes of offenders and thereby resolve the underlying problems that led to their court involvement in the first place. Some commentators have reacted positively to these courts, considering them an extension of the philosophy and logic of Therapeutic Jurisprudence, but others show concern that the discourse surrounding these specialty courts has not examined their process or outcomes critically enough. This paper examines that criticism from historical and social scientific perspectives. The analysis culminates in a model that describes how offenders are likely to respond to the process as they engage in problem solving court programs and the ways in which those courts might impact subsequent offender conduct. This Therapeutic Jurisprudence model of problem solving courts draws heavily on social cognitive psychology and more specifically on theories of procedural justice, motivation, and anticipated emotion to offer an explanation of how offenders respond to these programs. We offer this model as a lens through which social scientists can begin to address the concern that there is not enough critical analysis of the process and outcome of these courts. Applying this model to specialty courts constitutes an important step in critically examining the contribution of problem solving courts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less

  1. New control strategies for longwall armored face conveyors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1998-03-01

    This paper investigates a new control approach for longwall armored face conveyors (AFC`s) using variable-speed drives (VSD`s). Traditionally, AFC`s have used fixed-speed or two-speed motors, with various mechanical solutions employed to try to solve the problems that this causes. The VSD approach to the control problem promises to solve all the significant problems associated with the control of AFC`s. This paper will present the control algorithms developed for a VSD-based AFC drive system and demonstrate potential performance via computer simulation. A full discussion of the problems involved with the control of AFC`s can be found in the companion paper.

  2. Problem Solving and Comprehension. Third Edition.

    ERIC Educational Resources Information Center

    Whimbey, Arthur; Lochhead, Jack

    This book is directed toward increasing students' ability to analyze problems and comprehend what they read and hear. It outlines and illustrates the methods that good problem solvers use in attacking complex ideas, and provides practice in applying these methods to a variety of questions involving comprehension and reasoning. Chapter I includes a…

  3. Activities: Activities to Introduce Maxima-Minima Problems.

    ERIC Educational Resources Information Center

    Pleacher, David

    1991-01-01

    Presented are student activities that involve two standard problems from geometry and calculus--the volume of a box and the bank shot on a pool table. Problem solving is emphasized as a method of inquiry and application with descriptions of the results using graphical, numerical, and physical models. (JJK)

  4. Computer Lab Modules as Problem Solving Tools. Final Report.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.; Ignatz, Milton

    There are many problems involved in upgrading scientific literacy in high schools: poorly qualified teachers, the lack of good instructional materials, and economic and academic disadvantages all contribute to the problem. This document describes a project designed to increase the opportunities available to the high school science student to…

  5. Junior high school students' cognitive process in solving the developed algebraic problems based on information processing taxonomy model

    NASA Astrophysics Data System (ADS)

    Purwoko, Saad, Noor Shah; Tajudin, Nor'ain Mohd

    2017-05-01

    This study aims to: i) develop problem solving questions of Linear Equations System of Two Variables (LESTV) based on levels of IPT Model, ii) explain the level of students' skill of information processing in solving LESTV problems; iii) explain students' skill in information processing in solving LESTV problems; and iv) explain students' cognitive process in solving LESTV problems. This study involves three phases: i) development of LESTV problem questions based on Tessmer Model; ii) quantitative survey method on analyzing students' skill level of information processing; and iii) qualitative case study method on analyzing students' cognitive process. The population of the study was 545 eighth grade students represented by a sample of 170 students of five Junior High Schools in Hilir Barat Zone, Palembang (Indonesia) that were chosen using cluster sampling. Fifteen students among them were drawn as a sample for the interview session with saturated information obtained. The data were collected using the LESTV problem solving test and the interview protocol. The quantitative data were analyzed using descriptive statistics, while the qualitative data were analyzed using the content analysis. The finding of this study indicated that students' cognitive process was just at the step of indentifying external source and doing algorithm in short-term memory fluently. Only 15.29% students could retrieve type A information and 5.88% students could retrieve type B information from long-term memory. The implication was the development problems of LESTV had validated IPT Model in modelling students' assessment by different level of hierarchy.

  6. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  7. Improving the learning of clinical reasoning through computer-based cognitive representation

    PubMed Central

    Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871

  8. Parent-child problem solving in families of children with or without intellectual disability.

    PubMed

    Wieland, N; Green, S; Ellingsen, R; Baker, B L

    2014-01-01

    To examine differences in child social competence and parent-child interactions involving children with intellectual disability (ID) or typical development (TD) during a Parent-Child Problem-Solving Task. Mothers and their 9-year-old children (n = 122) participated in a problem-solving task in which they discussed and tried to resolve an issue they disagreed about. The interactions were coded on child and mother problem solving and affect behaviours, as well as the dyad's problem resolution. Children with ID (n = 35) were rated lower on expression/negotiation skills and higher on resistance to the task than children with TD (n = 87). Mothers in the ID group (vs. TD group) were more likely to direct the conversation. However, there were no group differences on maternal feeling acknowledgement, engagement, warmth or antagonism. The ID dyads were less likely to come to a resolution and to compromise in doing so than the TD dyads. These group differences were not attributable to differences in children's behaviour problems. Children with ID and their mothers had more difficulty resolving problems, and this increased difficulty was not explained by greater behaviour problems. Additionally, with the exception of directiveness, mothers of children with ID displayed similar behaviours and affect towards their children during problem solving as mothers of children with TD. Results suggest that the Parent-Child Problem-Solving Task is a useful way to assess social skills and associated parental behaviours in middle childhood beyond self-report. Implications for future research and intervention are discussed. © 2013 The Authors. Journal of Intellectual Disability Research © 2013 John Wiley & Sons Ltd, MENCAP & IASSIDD.

  9. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  10. A proposal to encourage intuitive learning in a senior-level analogue electronics course

    NASA Astrophysics Data System (ADS)

    Berjano, E.; Lozano-Nieto, A.

    2011-05-01

    One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the particular case of analogue electronics, an additional difficulty seems to be that understanding involves both analytic skills and an intuitive grasp of circuit characteristics. This paper presents a proposal to help senior students to think intuitively in order to identify the common issue involved in a group of problems of analogue electronics and build an abstract concept based on, for example, a theory or a mathematical model in order to use it to solve future problems. The preliminary results suggest that this proposal could be useful to promote intuitive reasoning in analogue electronics courses. The experience would later be useful to graduates in analytically solving new types of problems or in designing new electronic circuits.

  11. Attributes Heeded When Representing an Osmosis Problem.

    ERIC Educational Resources Information Center

    Zuckerman, June Trop

    Eighteen high school science students were involved in a study to determine what attributes in the problem statement they need when representing a typical osmosis problem. In order to realize this goal students were asked to solve problems aloud and to explain their answers. Included as a part of the results are the attributes that the students…

  12. Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling

    NASA Astrophysics Data System (ADS)

    Meika, I.; Suryadi, D.; Darhim

    2018-01-01

    This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.

  13. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  14. Technology Education in South Africa: Evaluating an Innovative Pilot Project

    NASA Astrophysics Data System (ADS)

    Stables, Kay; Kimbell, Richard

    2001-02-01

    Researchers from Goldsmiths College were asked to undertake an evaluation of a three year curriculum initiative introducing technology education, through a learner-centred, problem solving and collaborative approach. The program was developed in a group of high schools in the North West Province of South Africa. We visited ten schools involved in the project and ten parallel schools not involved who acted as a control group. We collected data on student capability (demonstrated through an innovative test activity) and on student attitudes towards technology (demonstrated in evaluation questionnaires and in semi-structured interviews). Collectively the data indicate that in areas of knowledge and skill and in certain aspects of procedures (most notably problem solving) the project has had a marked impact. We also illustrate that greater consideration could have been given in the project to developing skills in generating and developing ideas and in graphic communication. Gender differences are noted, particularly in terms of positive attitudes illustrated by both boys and girls from schools involved in the project. Attention is drawn to the critical impact the project has had on transforming the pedagogy of the teachers from a teacher-centred didactic model, to a learner-centred, problem solving model. Some wider implications of the successes of this project are debated.

  15. An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; Schooler, Lael J.

    1987-01-01

    Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)

  16. Teaching NMR spectra analysis with nmr.cheminfo.org.

    PubMed

    Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien

    2018-06-01

    Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.

  17. A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Rao, C. S. R.

    1976-01-01

    A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.

  18. Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous tDCS-fMRI Study.

    PubMed

    Hauser, Tobias U; Rütsche, Bruno; Wurmitzer, Karoline; Brem, Silvia; Ruff, Christian C; Grabner, Roland H

    A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cost effective campaigning in social networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2016-05-01

    Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.

  20. Building Community in School.

    ERIC Educational Resources Information Center

    Schaps, Eric; And Others

    1996-01-01

    Evaluation studies of the Child Development Project revealed unexpected findings concerning students' sense of classroom community. Teachers should systematically build relationships with students, involve them in planning and problem solving, help them learn classmates' strengths and interests, downplay competition, and involve all children in…

  1. Use of a Computer Language in Teaching Dynamic Programming. Final Report.

    ERIC Educational Resources Information Center

    Trimble, C. J.; And Others

    Most optimization problems of any degree of complexity must be solved using a computer. In the teaching of dynamic programing courses, it is often desirable to use a computer in problem solution. The solution process involves conceptual formulation and computational Solution. Generalized computer codes for dynamic programing problem solution…

  2. Using a Model to Describe Students' Inductive Reasoning in Problem Solving

    ERIC Educational Resources Information Center

    Canadas, Maria C.; Castro, Encarnacion; Castro, Enrique

    2009-01-01

    Introduction: We present some aspects of a wider investigation (Canadas, 2007), whose main objective is to describe and characterize inductive reasoning used by Spanish students in years 9 and 10 when they work on problems that involved linear and quadratic sequences. Method: We produced a test composed of six problems with different…

  3. Sharing Teaching Ideas: Active Participation in the Classroom through Creative Problem Generation.

    ERIC Educational Resources Information Center

    Gonzales, Nancy A.; And Others

    1996-01-01

    Presents an activity to involve students in mathematical communication and creative thinking. The activity is similar to the "pass it along" gossip game in which each person in a chain adds a piece of information. The class analyzes the resulting mathematics problem using George Polya's problem-solving techniques. (MKR)

  4. Differential geometric methods in system theory.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.

    1971-01-01

    Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.

  5. Following the Template: Transferring Modeling Skills to Nonstandard Problems

    ERIC Educational Resources Information Center

    Tyumeneva, Yu. A.; Goncharova, M. V.

    2017-01-01

    This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…

  6. Spacing and the Transition from Calculation to Retrieval

    ERIC Educational Resources Information Center

    Rickard, Timothy C.; Lau, Jonas; Pashler, Harold

    2008-01-01

    Many arithmetic problems can be solved in two ways: by a calculation involving several steps, and by direct retrieval of the answer. With practice on particular problems, memory retrieval tends to supplant calculation--an important aspect of skill learning. We asked how the distribution of practice on particular problems affects this kind of…

  7. The Bright Side of Being Blue: Depression as an Adaptation for Analyzing Complex Problems

    ERIC Educational Resources Information Center

    Andrews, Paul W.; Thomson, J. Anderson, Jr.

    2009-01-01

    Depression is the primary emotional condition for which help is sought. Depressed people often report persistent rumination, which involves analysis, and complex social problems in their lives. Analysis is often a useful approach for solving complex problems, but it requires slow, sustained processing, so disruption would interfere with problem…

  8. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  9. Simulation Insights Using "R"

    ERIC Educational Resources Information Center

    Kostadinov, Boyan

    2013-01-01

    This article attempts to introduce the reader to computational thinking and solving problems involving randomness. The main technique being employed is the Monte Carlo method, using the freely available software "R for Statistical Computing." The author illustrates the computer simulation approach by focusing on several problems of…

  10. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.

  11. Introducing soft systems methodology plus (SSM+): why we need it and what it can contribute.

    PubMed

    Braithwaite, Jeffrey; Hindle, Don; Iedema, Rick; Westbrook, Johanna I

    2002-01-01

    There are many complicated and seemingly intractable problems in the health care sector. Past ways to address them have involved political responses, economic restructuring, biomedical and scientific studies, and managerialist or business-oriented tools. Few methods have enabled us to develop a systematic response to problems. Our version of soft systems methodology, SSM+, seems to improve problem solving processes by providing an iterative, staged framework that emphasises collaborative learning and systems redesign involving both technical and cultural fixes.

  12. Problem solving styles among people who use alcohol and other drugs in South Africa.

    PubMed

    Sorsdahl, Katherine; Stein, Dan J; Carrara, Henri; Myers, Bronwyn

    2014-01-01

    The present study examines the relationship between problem-solving styles, socio-demographic variables and risk of alcohol and other drug (AOD)-related problems among a South African population. The Social Problem-Solving Inventory-Revised, Center for Epidemiologic Studies Depression Scale (CES-D) and the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) were administered to a convenience sample of 1000 respondents. According to the ASSIST, 32% and 49% of respondents met criteria for moderate to high risk of alcohol use and illicit drug use respectively. After adjusting for the effects of other variables in the model, respondents who were of "Coloured" ancestry (PR=1.20, 95% CI 1.0-1.4), male (PR=1.19, 95% CI 1.04-1.37), older (PR=1.01, 95% CI 1.00-1.02), who adopted an avoidance style of coping with problems (PR=1.03, 95% CI 1.01-1.05) and who met criteria for depression (PR=1.42, 95% CI 1.12-1.79) were more likely to be classified as having risky AOD use. This suggests that interventions to improve problem solving and provide people with cognitive strategies to cope better with their problems may hold promise for reducing risky AOD use. © 2013.

  13. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  14. A hybrid nonlinear programming method for design optimization

    NASA Technical Reports Server (NTRS)

    Rajan, S. D.

    1986-01-01

    Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.

  15. Cross-Field Differences in Creative Problem-Solving Skills: A Comparison of Health, Biological, and Social Sciences

    PubMed Central

    Mumford, Michael D.; Antes, Alison L.; Caughron, Jared J.; Connelly, Shane; Beeler, Cheryl

    2010-01-01

    In the present study, 258 doctoral students working in the health, biological, and social sciences were asked to solve a series of field-relevant problems calling for creative thought. Proposed solutions to these problems were scored with respect to critical creative thinking skills such as problem definition, conceptual combination, and idea generation. Results indicated that health, biological, and social scientists differed with respect to their skill in executing various operations, or processes, involved in creative thought. Interestingly, no differences were observed as a function of the students’ level of experience. The implications of these findings for understanding cross-field, and cross-experience level, differences in creative thought are discussed. PMID:20936085

  16. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  17. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

    2009-01-01

    Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

  18. Arithmetic Problems at School: When There Is an Apparent Contradiction between the Situation Model and the Problem Model

    ERIC Educational Resources Information Center

    Coquin-Viennot, Daniele; Moreau, Stephanie

    2007-01-01

    Background: Understanding and solving problems involves different levels of representation. On the one hand, there are logico-mathematical representations, or problem models (PMs), which contain information such as "the size of the flock changed from 31 sheep to 42" while, on the other hand, there are more qualitative representations, or…

  19. Creating an Online Laboratory

    DTIC Science & Technology

    2015-03-18

    Problem (TSP) to solve, a canonical computer science problem that involves identifying the shortest itinerary for a hypothetical salesman traveling among a...also created working versions of the travelling salesperson problem , prisoners’ dilemma, public goods game, ultimatum game, word ladders, and...the task within networks of others performing the task. Thus, we built five problems which could be embedded in networks: the traveling salesperson

  20. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  1. Learning comunication strategies for distributed artificial intelligence

    NASA Astrophysics Data System (ADS)

    Kinney, Michael; Tsatsoulis, Costas

    1992-08-01

    We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.

  2. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization.

    PubMed

    Lu, Canyi; Lin, Zhouchen; Yan, Shuicheng

    2015-02-01

    This paper presents a general framework for solving the low-rank and/or sparse matrix minimization problems, which may involve multiple nonsmooth terms. The iteratively reweighted least squares (IRLSs) method is a fast solver, which smooths the objective function and minimizes it by alternately updating the variables and their weights. However, the traditional IRLS can only solve a sparse only or low rank only minimization problem with squared loss or an affine constraint. This paper generalizes IRLS to solve joint/mixed low-rank and sparse minimization problems, which are essential formulations for many tasks. As a concrete example, we solve the Schatten-p norm and l2,q-norm regularized low-rank representation problem by IRLS, and theoretically prove that the derived solution is a stationary point (globally optimal if p,q ≥ 1). Our convergence proof of IRLS is more general than previous one that depends on the special properties of the Schatten-p norm and l2,q-norm. Extensive experiments on both synthetic and real data sets demonstrate that our IRLS is much more efficient.

  3. Schizotypy and Performance on an Insight Problem-Solving Task: The Contribution of Persecutory Ideation.

    PubMed

    Cosgrave, Jan; Haines, Ross; Golodetz, Stuart; Claridge, Gordon; Wulff, Katharina; van Heugten-van der Kloet, Dalena

    2018-01-01

    Insight problem solving is thought to underpin creative thought as it incorporates both divergent (generating multiple ideas and solutions) and convergent (arriving at the optimal solution) thinking approaches. The current literature on schizotypy and creativity is mixed and requires clarification. An alternate approach was employed by designing an exploratory web-based study using only correlates of schizotypal traits (paranoia, dissociation, cognitive failures, fantasy proneness, and unusual sleep experiences) and examining which (if any) predicted optimal performance on an insight problem-solving task. One hundred and twenty-one participants were recruited online from the general population and completed the number reduction task. The discovery of the hidden rule (HR) was used as a measure of insight. Multivariate logistic regression analyses highlighted persecutory ideation to best predict the discovery of the HR (OR = 1.05; 95% CI 1.01-1.10, p = 0.017), with a one-point increase in persecutory ideas corresponding to the participant being 5% more likely to discover the HR. This result suggests that persecutory ideation, above other schizotypy correlates, may be involved in insight problem solving.

  4. A Metacognitive Profile of Vocational High School Student’s Field Independent in Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Nugraheni, L.; Budayasa, I. K.; Suwarsono, S. T.

    2018-01-01

    The study was designed to discover examine the profile of metacognition of vocational high school student of the Machine Technology program that had high ability and field independent cognitive style in mathematical problem solving. The design of this study was exploratory research with a qualitative approach. This research was conducted at the Machine Technology program of the vocational senior high school. The result revealed that the high-ability student with field independent cognitive style conducted metacognition practices well. That involved the three types of metacognition activities, consisting of planning, monitoring, and evaluating at metacognition level 2 or aware use, 3 or strategic use, 4 or reflective use in mathematical problem solving. The applicability of the metacognition practices conducted by the subject was never at metacognition level 1 or tacit use. This indicated that the participant were already aware, capable of choosing strategies, and able to reflect on their own thinking before, after, or during the process at the time of solving mathematical problems.That was very necessary for the vocational high school student of Machine Technology program.

  5. Sleep promotes analogical transfer in problem solving.

    PubMed

    Monaghan, Padraic; Sio, Ut Na; Lau, Sum Wai; Woo, Hoi Kei; Linkenauger, Sally A; Ormerod, Thomas C

    2015-10-01

    Analogical problem solving requires using a known solution from one problem to apply to a related problem. Sleep is known to have profound effects on memory and information restructuring, and so we tested whether sleep promoted such analogical transfer, determining whether improvement was due to subjective memory for problems, subjective recognition of similarity across related problems, or by abstract generalisation of structure. In Experiment 1, participants were exposed to a set of source problems. Then, after a 12-h period involving sleep or wake, they attempted target problems structurally related to the source problems but with different surface features. Experiment 2 controlled for time of day effects by testing participants either in the morning or the evening. Sleep improved analogical transfer, but effects were not due to improvements in subjective memory or similarity recognition, but rather effects of structural generalisation across problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Constructions with Obstructions Involving Arcs.

    ERIC Educational Resources Information Center

    Wood, Dick A.

    1993-01-01

    Presents six construction problems in which key parts of the figure are made inaccessible, that is, a lake or an obstruction is inserted. Encourages creative thinking while improving problem-solving skills. Students are to show the construction, describe the solution, and verify correctness of the solution. (LDR)

  7. Shooting method for solution of boundary-layer flows with massive blowing

    NASA Technical Reports Server (NTRS)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  8. Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems.

    PubMed

    Berteletti, Ilaria; Prado, Jérôme; Booth, James R

    2014-08-01

    Greater skill in solving single-digit multiplication problems requires a progressive shift from a reliance on numerical to verbal mechanisms over development. Children with mathematical learning disability (MD), however, are thought to suffer from a specific impairment in numerical mechanisms. Here we tested the hypothesis that this impairment might prevent MD children from transitioning toward verbal mechanisms when solving single-digit multiplication problems. Brain activations during multiplication problems were compared in MD and typically developing (TD) children (3rd to 7th graders) in numerical and verbal regions which were individuated by independent localizer tasks. We used small (e.g., 2 × 3) and large (e.g., 7 × 9) problems as these problems likely differ in their reliance on verbal versus numerical mechanisms. Results indicate that MD children have reduced activations in both the verbal (i.e., left inferior frontal gyrus and left middle temporal to superior temporal gyri) and the numerical (i.e., right superior parietal lobule including intra-parietal sulcus) regions suggesting that both mechanisms are impaired. Moreover, the only reliable activation observed for MD children was in the numerical region when solving small problems. This suggests that MD children could effectively engage numerical mechanisms only for the easier problems. Conversely, TD children showed a modulation of activation with problem size in the verbal regions. This suggests that TD children were effectively engaging verbal mechanisms for the easier problems. Moreover, TD children with better language skills were more effective at engaging verbal mechanisms. In conclusion, results suggest that the numerical- and language-related processes involved in solving multiplication problems are impaired in MD children. Published by Elsevier Ltd.

  9. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  10. Gender influences on preschool children's social problem-solving strategies.

    PubMed

    Walker, Sue; Irving, Kym; Berthelsen, Donna

    2002-06-01

    The authors investigated gender influences on the nature and competency of preschool children's social problem-solving strategies. Preschool-age children (N = 179; 91 boys, 88 girls) responded to hypothetical social situations designed to assess their social problem-solving skills in the areas of provocation, peer group entry, and sharing or taking turns. Results indicated that, overall, girls' responses were more competent (i.e., reflective of successful functioning with peers) than those of boys, and girls' strategies were less likely to involve retaliation or verbal or physical aggression. The competency of the children's responses also varied with the gender of the target child. Findings are discussed in terms of the influence of gender-related social experiences on the types of strategies and behaviors that may be viewed as competent for boys and girls of preschool age.

  11. Solving standard traveling salesman problem and multiple traveling salesman problem by using branch-and-bound

    NASA Astrophysics Data System (ADS)

    Saad, Shakila; Wan Jaafar, Wan Nurhadani; Jamil, Siti Jasmida

    2013-04-01

    The standard Traveling Salesman Problem (TSP) is the classical Traveling Salesman Problem (TSP) while Multiple Traveling Salesman Problem (MTSP) is an extension of TSP when more than one salesman is involved. The objective of MTSP is to find the least costly route that the traveling salesman problem can take if he wishes to visit exactly once each of a list of n cities and then return back to the home city. There are a few methods that can be used to solve MTSP. The objective of this research is to implement an exact method called Branch-and-Bound (B&B) algorithm. Briefly, the idea of B&B algorithm is to start with the associated Assignment Problem (AP). A branching strategy will be applied to the TSP and MTSP which is Breadth-first-Search (BFS). 11 nodes of cities are implemented for both problem and the solutions to the problem are presented.

  12. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  13. Solving complex band structure problems with the FEAST eigenvalue algorithm

    NASA Astrophysics Data System (ADS)

    Laux, S. E.

    2012-08-01

    With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.

  14. The Effectiveness of Problem-Based Learning on Teaching the First Law of Thermodynamics

    ERIC Educational Resources Information Center

    Tatar, Erdal; Oktay, Munir

    2011-01-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study…

  15. Providing Formative Assessment to Students Solving Multipath Engineering Problems with Complex Arrangements of Interacting Parts: An Intelligent Tutor Approach

    ERIC Educational Resources Information Center

    Steif, Paul S.; Fu, Luoting; Kara, Levent Burak

    2016-01-01

    Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…

  16. THE APPLICATION OF ENGLISH-WORD MORPHOLOGY TO AUTOMATIC INDEXING AND EXTRACTING. ANNUAL SUMMARY REPORT.

    ERIC Educational Resources Information Center

    DOLBY, J.L.; AND OTHERS

    THE STUDY IS CONCERNED WITH THE LINGUISTIC PROBLEM INVOLVED IN TEXT COMPRESSION--EXTRACTING, INDEXING, AND THE AUTOMATIC CREATION OF SPECIAL-PURPOSE CITATION DICTIONARIES. IN SPITE OF EARLY SUCCESS IN USING LARGE-SCALE COMPUTERS TO AUTOMATE CERTAIN HUMAN TASKS, THESE PROBLEMS REMAIN AMONG THE MOST DIFFICULT TO SOLVE. ESSENTIALLY, THE PROBLEM IS TO…

  17. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  18. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  19. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  20. Writing Plays Using Creative Problem-Solving.

    ERIC Educational Resources Information Center

    Raiser, Lynne; Hinson, Shirley

    1995-01-01

    This article describes a project which involved inner city elementary grade children with disabilities in writing and performing their own plays. A four-step playwriting process focuses on theme and character development, problem finding, and writing dialogue. The project has led to improved reading skills, attention, memory skills,…

  1. From Whole Numbers to Invert and Multiply

    ERIC Educational Resources Information Center

    Cavey, Laurie O.; Kinzel, Margaret T.

    2014-01-01

    Teachers report that engaging students in solving contextual problems is an important part of supporting student understanding of algorithms for fraction division. Meaning for whole-number operations is a crucial part of making sense of contextual problems involving rational numbers. The authors present a developed instructional sequence to…

  2. Experiments with Patterns

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2008-01-01

    This article presents a hands-on experiment that covers many areas of high school mathematics. Included are the notions of patterns, proof, triangular numbers and various aspects of problem solving. The problem involves the arrangements of a school of fish using split peas or buttons to represent the fish. (Contains 4 figures.)

  3. Teaching Integer Operations Using Ring Theory

    ERIC Educational Resources Information Center

    Hirsch, Jenna

    2012-01-01

    A facility with signed numbers forms the basis for effective problem solving throughout developmental mathematics. Most developmental mathematics textbooks explain signed number operations using absolute value, a method that involves considering the problem in several cases (same sign, opposite sign), and in the case of subtraction, rewriting the…

  4. Algorithm Optimally Allocates Actuation of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Motaghedi, Shi

    2007-01-01

    A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.

  5. Building co-management as a process: problem solving through partnerships in Aboriginal country, Australia.

    PubMed

    Zurba, Melanie; Ross, Helen; Izurieta, Arturo; Rist, Philip; Bock, Ellie; Berkes, Fikret

    2012-06-01

    Collaborative problem solving has increasingly become important in the face of the complexities in the management of resources, including protected areas. The strategy undertaken by Girringun Aboriginal Corporation in north tropical Queensland, Australia, for developing co-management demonstrates the potential for a problem solving approach involving sequential initiatives, as an alternative to the more familiar negotiated agreements for co-management. Our longitudinal case study focuses on the development of indigenous ranger units as a strategic mechanism for the involvement of traditional owners in managing their country in collaboration with government and other interested parties. This was followed by Australia's first traditional use of marine resources agreement, and development of a multi-jurisdictional, land to sea, indigenous protected area. In using a relationship building approach to develop regional scale co-management, Girringun has been strengthening its capabilities as collaborator and regional service provider, thus, bringing customary decision-making structures into play to 'care for country'. From this evolving process we have identified the key components of a relationship building strategy, 'the pillars of co-management'. This approach includes learning-by-doing, the building of respect and rapport, sorting out responsibilities, practical engagement, and capacity-building.

  6. Building Co-Management as a Process: Problem Solving Through Partnerships in Aboriginal Country, Australia

    NASA Astrophysics Data System (ADS)

    Zurba, Melanie; Ross, Helen; Izurieta, Arturo; Rist, Philip; Bock, Ellie; Berkes, Fikret

    2012-06-01

    Collaborative problem solving has increasingly become important in the face of the complexities in the management of resources, including protected areas. The strategy undertaken by Girringun Aboriginal Corporation in north tropical Queensland, Australia, for developing co-management demonstrates the potential for a problem solving approach involving sequential initiatives, as an alternative to the more familiar negotiated agreements for co-management. Our longitudinal case study focuses on the development of indigenous ranger units as a strategic mechanism for the involvement of traditional owners in managing their country in collaboration with government and other interested parties. This was followed by Australia's first traditional use of marine resources agreement, and development of a multi-jurisdictional, land to sea, indigenous protected area. In using a relationship building approach to develop regional scale co-management, Girringun has been strengthening its capabilities as collaborator and regional service provider, thus, bringing customary decision-making structures into play to `care for country'. From this evolving process we have identified the key components of a relationship building strategy, `the pillars of co-management'. This approach includes learning-by-doing, the building of respect and rapport, sorting out responsibilities, practical engagement, and capacity-building.

  7. Evaluation of the Effectiveness of a Problem-Solving Intervention Addressing Barriers to Cardiovascular Disease Prevention Behaviors in 3 Underserved Populations: Colorado, North Carolina, West Virginia, 2009

    PubMed Central

    Bryant, Lucinda L.; Leary, Janie M.; Vu, Maihan B.; Hill-Briggs, Felicia; Samuel-Hodge, Carmen D.; McMilin, Colleen R.; Keyserling, Thomas C.

    2014-01-01

    Introduction In low-income and underserved populations, financial hardship and multiple competing roles and responsibilities lead to difficulties in lifestyle change for cardiovascular disease (CVD) prevention. To improve CVD prevention behaviors, we adapted, pilot-tested, and evaluated a problem-solving intervention designed to address barriers to lifestyle change. Methods The sample consisted of 81 participants from 3 underserved populations, including 28 Hispanic or non-Hispanic white women in a western community (site 1), 31 African-American women in a semirural southern community (site 2), and 22 adults in an Appalachian community (site 3). Incorporating focus group findings, we assessed a standardized intervention involving 6-to-8 week group sessions devoted to problem-solving in the fall of 2009. Results Most sessions were attended by 76.5% of participants, demonstrating participant adoption and engagement. The intervention resulted in significant improvement in problem-solving skills (P < .001) and perceived stress (P < .05). Diet, physical activity, and weight remained stable, although 72% of individuals reported maintenance or increase in daily fruit and vegetable intake, and 67% reported maintenance or increase in daily physical activity. Conclusion Study results suggest the intervention was acceptable to rural, underserved populations and effective in training them in problem-solving skills and stress management for CVD risk reduction. PMID:24602586

  8. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  9. Students' understandings of electrochemistry

    NASA Astrophysics Data System (ADS)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory related to the particulate level of representation of knowledge. The findings from this study may contribute further to our understanding of students' conceptions in electrochemistry. Furthermore, understanding the influence of the three categories in the framework of analysis and their inter-relationships on how students make sense of this field may result in a better understanding of classroom practice that could promote the acquisition of conceptual knowledge --- knowledge that is "rich in relationships".

  10. Gender differences in 16-year trends in assault- and police-related problems due to drinking.

    PubMed

    Timko, Christine; Moos, Bernice S; Moos, Rudolf H

    2009-09-01

    This study examined the frequency and predictors of physical assault and having trouble with the police due to drinking over 16 years among women and men who, at baseline, were untreated for their alcohol use disorder. Predictors examined were the personal characteristics of impulsivity, self-efficacy, and problem-solving and emotional-discharge coping, as well as outpatient treatment and Alcoholics Anonymous (AA) participation. Women and men were similar on rates of perpetrating assault due to drinking, but men were more likely to have had trouble with the police due to drinking. Respondents who, at baseline, were more impulsive and relied more on emotional discharge coping, and less on problem-solving coping, assaulted others more frequently during the first year of follow-up. Similarly, less problem-solving coping at baseline was related to having had trouble with the police more often at one and 16 years due to drinking. The association between impulsivity and more frequent assault was stronger for women, whereas associations of self-efficacy and problem-solving coping with less frequent assault and police trouble were stronger for men. Participation in AA was also associated with a lower likelihood of having trouble with the police at one year, especially for men. Interventions aimed at decreasing impulsivity and emotional discharge coping, and bolstering self-efficacy and problem-solving coping, during substance abuse treatment, and encouragement to become involved in AA, may be helpful in reducing assaultive and other illegal behaviors.

  11. Indirection and computer security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Michael J.

    2011-09-01

    The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyzemore » common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.« less

  12. Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima

    2017-01-01

    Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…

  13. Multigrid method for stability problems

    NASA Technical Reports Server (NTRS)

    Ta'asan, Shlomo

    1988-01-01

    The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.

  14. Solving Math Problems Approximately: A Developmental Perspective

    PubMed Central

    Ganor-Stern, Dana

    2016-01-01

    Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224

  15. Topology-changing shape optimization with the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E., Jr.

    The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.

  16. Issues Involved in Developing Ada Real-Time Systems

    DTIC Science & Technology

    1989-02-15

    expensive modifications to the compiler or Ada runtime system to fit a particular application. Whether we can solve the problems of programming real - time systems in...lock in solutions to problems that are not yet well understood in standards as rigorous as the Ada language. Moreover, real - time systems typically have

  17. Learning to See the (W)holes

    ERIC Educational Resources Information Center

    Burns, Barbara A.; Jordan, Thomas M.

    2006-01-01

    Business managers are faced with complex decisions involving a wide range of issues--technical, social, environmental, and financial--and their interaction. Our education system focuses heavily on presenting structured problems and teaching students to apply a set of tools or methods to solve these problems. Yet the most difficult thing to teach…

  18. Probability in Action: The Red Traffic Light

    ERIC Educational Resources Information Center

    Shanks, John A.

    2007-01-01

    Emphasis on problem solving in mathematics has gained considerable attention in recent years. While statistics teaching has always been problem driven, the same cannot be said for the teaching of probability where discrete examples involving coins and playing cards are often the norm. This article describes an application of simple probability…

  19. Guide to Mathematics Released Items: Understanding Scoring

    ERIC Educational Resources Information Center

    Partnership for Assessment of Readiness for College and Careers, 2017

    2017-01-01

    The Partnership for Assessment of Readiness for College and Careers (PARCC) mathematics items measure critical thinking, mathematical reasoning, and the ability to apply skills and knowledge to real-world problems. Students are asked to solve problems involving the key knowledge and skills for their grade level as identified by the Common Core…

  20. Think Inside the Box

    ERIC Educational Resources Information Center

    Spencer, John

    2017-01-01

    Besides "thinking outside the box," the creativity needed to solve problems often involves thinking differently about the box, finding a new approach or off-beat way to use the materials, conditions, and even constraints that one has. Spencer discusses creative constraint--what happens when a problem solver runs into barriers that make…

  1. The Locker Problem: An Open and Shut Case

    ERIC Educational Resources Information Center

    Kimani, Patrick M.; Olanoff, Dana; Masingila, Joanna O.

    2016-01-01

    This article discusses how teaching via problem solving helps enact the Mathematics Teaching Practices and supports students' learning and development of the Standards for Mathematical Practice. This approach involves selecting and implementing mathematical tasks that serve as vehicles for meeting the learning goals for the lesson. For the lesson…

  2. Outdoor Recreation Management

    ERIC Educational Resources Information Center

    Jubenville, Alan

    The complex problems facing the manager of an outdoor recreation area are outlined and discussed. Eighteen chapters cover the following primary concerns of the manager of such a facility: (1) an overview of the management process; (2) the basic outdoor recreation management model; (3) the problem-solving process; (4) involvement of the public in…

  3. Bringing Management Reality into the Classroom--The Development of Interactive Learning.

    ERIC Educational Resources Information Center

    Nicholson, Alastair

    1997-01-01

    Effective learning in management education can be enhanced by reproducing the real-world need to solve problems under pressure of time, inadequate information, and group interaction. An interactive classroom communication system involving problems in decision making and continuous improvement is one method for bridging theory and practice. (SK)

  4. Sociodrama: Group Creative Problem Solving in Action.

    ERIC Educational Resources Information Center

    Riley, John F.

    1990-01-01

    Sociodrama is presented as a structured, yet flexible, method of encouraging the use of creative thinking to examine a difficult problem. An example illustrates the steps involved in putting sociodrama into action. Production techniques useful in sociodrama include the soliloquy, double, role reversal, magic shop, unity of opposites, and audience…

  5. Remote sensing of the Earth from Space: A program in crisis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.

  6. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…

  7. Worrying about the Future: An Episodic Specificity Induction Impacts Problem Solving, Reappraisal, and Well-Being

    PubMed Central

    Jing, Helen G.; Madore, Kevin P.; Schacter, Daniel L.

    2015-01-01

    Previous research has demonstrated that an episodic specificity induction – brief training in recollecting details of a recent experience – enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants’ performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. PMID:26820166

  8. Individual differences in solving arithmetic word problems

    PubMed Central

    2013-01-01

    Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107

  9. Designing Efficient Self-Diagnosis Activities in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'

    2017-12-01

    Self-diagnosis (SD) activities require students to self-diagnose their solutions to problems that they solved on their own. This involves identifying where they went wrong and then explaining the nature of their errors—why they went wrong—aided by some form of support. Worked examples (WEs) are often used to support students in SD activities. A WE is a step-by-step demonstration of how to solve a problem. One unresolved issue is why students fail to exploit WEs in SD exercises. Yerushalmi et al., for instance, provided students with written WEs and asked them to self-diagnose their solutions with respect to these WEs. These authors found no correlation between students' SD performance and their subsequent problem-solving performance on transfer problems, suggesting that students had only superficially exploited the written WEs. The aim of this article is to describe a new SD activity that was developed to prompt students to effectively use written WEs when self-diagnosing, and to examine its effectiveness in advancing students' learning in physics.

  10. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  11. AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems

    PubMed Central

    Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya

    2015-01-01

    A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911

  12. Quality-assurance study of the special - purpose finite-element program - SPECTROM: I. Thermal, thermoelastic, and viscoelastic problems. [Comparison with MARC-CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.A.

    1980-12-01

    This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.

  13. Comparing and Transforming: An Application of Piaget's Morphisms Theory to the Development of Class Inclusion and Arithmetic Problem Solving.

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Poirier, Louise

    1997-01-01

    Outlines Piaget's late ideas on categories and morphisms and the impact of these ideas on the comprehension of the inclusion relationship and the solution of arithmetic problems. Reports a study in which fourth through sixth graders were given arithmetic problems involving two known quantities associated with changes rather than states. Identified…

  14. EFFECTIVENESS OF PROBLEM BASED LEARNING AS A STRATEGY TO FOSTER PROBLEM SOLVING AND CRITICAL REASONING SKILLS AMONG MEDICAL STUDENTS.

    PubMed

    Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad

    2015-01-01

    Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.

  15. [Problem-solving approach in the training of healthcare professionals].

    PubMed

    Batista, Nildo; Batista, Sylvia Helena; Goldenberg, Paulete; Seiffert, Otília; Sonzogno, Maria Cecília

    2005-04-01

    To discuss the problem-solving approach in the training of healthcare professionals who would be able to act both in academic life and in educational practices in services and communities. This is an analytical description of an experience of problem-based learning in specialization-level training that was developed within a university-level healthcare education institution. The analysis focuses on three perspectives: course design, student-centered learning and the teacher's role. The problem-solving approach provided impetus to the learning experience for these postgraduate students. There was increased motivation, leadership development and teamworking. This was translated through their written work, seminars and portfolio preparation. The evaluation process for these experiences presupposes well-founded practices that express the views of the subjects involved: self-assessment and observer assessment. The impact of this methodology on teaching practices is that there is a need for greater knowledge of the educational theories behind the principles of significant learning, teachers as intermediaries and research as an educational axiom. The problem-solving approach is an innovative response to the challenges of training healthcare professionals. Its potential is recognized, while it is noted that educational innovations are characterized by causing ruptures in consolidated methods and by establishing different ways of responding to demands presented at specific moments. The critical problems were identified, while highlighting the risk of considering this approach to be a technical tool that is unconnected with the design of the teaching policy. Experiences and analyses based on the problem-solving assumptions need to be shared, thus enabling the production of knowledge that strengthens the transformation of educational practices within healthcare.

  16. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A sequential solution for anisotropic total variation image denoising with interval constraints

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Noo, Frédéric

    2017-09-01

    We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.

  18. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    NASA Astrophysics Data System (ADS)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  19. Family-Peer Linkages for Children with Intellectual Disability and Children with Learning Disabilities.

    PubMed

    Floyd, Frank J; Olsen, Darren L

    2017-09-01

    Family interactions are potential contexts for children with intellectual and learning disabilities to develop skillful social behaviors needed to relate effectively with peers. This study examined problem solving interactions within families of elementary school-age children (7-11 years) with intellectual disability (n = 37), specific learning disabilities (n =48), and without disabilities (n = 22). After accounting for group differences in children's behaviors and peer acceptance, across all groups, mothers' behaviors that encouraged egalitarian problem solving predicted more engaged and skillful problem solving by the children. However, mothers' controlling, directive behaviors predicted fewer of these behaviors by the children. Fathers' behaviors had mixed associations with the children's actions, possibly because they were reactive to children's unengaged and negative behaviors. For the children, greater involvement, more facilitative behaviors, and less negativity with their families were associated with greater acceptance from their peers, supporting family-peer linkages for children at risk for peer rejection.

  20. Coping with Treatment-Related Stress: Effects on Patient Adherence in Hemodialysis.

    ERIC Educational Resources Information Center

    Christensen, Alan J.; And Others

    1995-01-01

    Examines the relation of coping to adherence among 57 hemodialysis patients. As predicted, coping efforts involving planful problem solving were associated with more favorable adherence when used in response to stressors involving a relatively controllable aspect of the hemodialysis context. For less controllable stressors, coping efforts…

  1. Working from Memory: Artists and Actors

    ERIC Educational Resources Information Center

    Hurwitz, Al

    2004-01-01

    In this article, the author discusses the art of memory-based drawing. Memory-based drawing represents but one part of a broad range of activities used in drawing instruction. Other sources involve the use of fantasy, doodling, problem-solving, and illustrating. Other ways of working from one's personal history involve keeping illustrated…

  2. Fractional Programming for Communication Systems—Part I: Power Control and Beamforming

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.

  3. An Efficient Rank Based Approach for Closest String and Closest Substring

    PubMed Central

    2012-01-01

    This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483

  4. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  5. The use of Galerkin finite-element methods to solve mass-transport equations

    USGS Publications Warehouse

    Grove, David B.

    1977-01-01

    The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)

  6. Fitting Prony Series To Data On Viscoelastic Materials

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1995-01-01

    Improved method of fitting Prony series to data on viscoelastic materials involves use of least-squares optimization techniques. Based on optimization techniques yields closer correlation with data than traditional method. Involves no assumptions regarding the gamma'(sub i)s and higher-order terms, and provides for as many Prony terms as needed to represent higher-order subtleties in data. Curve-fitting problem treated as design-optimization problem and solved by use of partially-constrained-optimization techniques.

  7. Multigrid methods for bifurcation problems: The self adjoint case

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1987-01-01

    This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.

  8. Social Orientation: Problem Behavior and Motivations Toward Interpersonal Problem Solving Among High Risk Adolescents

    PubMed Central

    Kuperminc, Gabriel P.; Allen, Joseph P.

    2006-01-01

    A model of problematic adolescent behavior that expands current theories of social skill deficits in delinquent behavior to consider both social skills and orientation toward the use of adaptive skills was examined in an ethnically and socioeconomically diverse sample of 113 male and female adolescents. Adolescents were selected on the basis of moderate to serious risk for difficulties in social adaptation in order to focus on the population of youth most likely to be targeted by prevention efforts. Structural equation modeling was used to examine cross-sectional data using multiple informants (adolescents, peers, and parents) and multiple methods (performance test and self-report). Adolescent social orientation, as reflected in perceived problem solving effectiveness, identification with adult prosocial values, and self-efficacy expectations, exhibited a direct association to delinquent behavior and an indirect association to drug involvement mediated by demonstrated success in using problem solving skills. Results suggest that the utility of social skill theories of adolescent problem behaviors for informing preventive and remedial interventions can be enhanced by expanding them to consider adolescents’ orientation toward using the skills they may already possess. PMID:16929380

  9. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.

    2016-01-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230

  10. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C

    2015-03-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.

  11. Space or Physics? Children Use Physical Reasoning to Solve the Trap Problem from 2.5 Years of Age

    ERIC Educational Resources Information Center

    Seed, Amanda M.; Call, Josep

    2014-01-01

    By 3 years of age, children can solve tasks involving physical principles such as locating a ball that rolled down a ramp behind an occluder by the position of a partially visible solid wall (Berthier, DeBlois, Poirer, Novak, & Clifton, 2000; Hood, Carey, & Prasada, 2000). However, the extent to which children use physical information (the…

  12. A Computer Program for Solving a Set of Conditional Maximum Likelihood Equations Arising in the Rasch Model for Questionnaires.

    ERIC Educational Resources Information Center

    Andersen, Erling B.

    A computer program for solving the conditional likelihood equations arising in the Rasch model for questionnaires is described. The estimation method and the computational problems involved are described in a previous research report by Andersen, but a summary of those results are given in two sections of this paper. A working example is also…

  13. Using Data Analysis to Explore Class Enrollment.

    ERIC Educational Resources Information Center

    Davis, Gretchen

    1990-01-01

    Describes classroom activities and shows that statistics is a practical tool for solving real problems. Presents a histogram, a stem plot, and a box plot to compare data involving class enrollments. (YP)

  14. Energy overview

    NASA Technical Reports Server (NTRS)

    Slone, H. O.

    1980-01-01

    The experience, capabilities, and facilities being utilized at NASA Lewis in support of energy programs conducted by the Department of Energy and other agencies are discussed. Background information is given regarding NASA's involvement in solving energy problems.

  15. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  16. Secondary School Students' Reasoning about Conditional Probability, Samples, and Sampling Procedures

    ERIC Educational Resources Information Center

    Prodromou, Theodosia

    2016-01-01

    In the Australian mathematics curriculum, Year 12 students (aged 16-17) are asked to solve conditional probability problems that involve the representation of the problem situation with two-way tables or three-dimensional diagrams and consider sampling procedures that result in different correct answers. In a small exploratory study, we…

  17. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  18. Quantitative Literacy across the Curriculum: Integrating Skills from English Composition, Mathematics, and the Substantive Disciplines

    ERIC Educational Resources Information Center

    Miller, Jane E.

    2010-01-01

    Quantitative literacy is an important proficiency that pertains to "word problems" from science, history, and other fields. Unfortunately, teaching how to solve such problems often is relegated to math courses alone. This article examines how quantitative literacy also involves concepts and skills from English composition and the substantive…

  19. Rate Problems: Thinking across the Curriculum

    ERIC Educational Resources Information Center

    Kimani, Patrick; Engelke, Nicole

    2012-01-01

    An important concept in mathematics, yet one that is often elusive for students, is the concept of rate. For many real-life situations--those involving work, distance and speed, interest, and density--reasoning by using rate can be an efficient strategy for problem solving. Students struggle with the concept of rate, despite the many possible…

  20. Understanding Student Use of Differentials in Physics Integration Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In this…

  1. Who's in the Mirror? Finding the Real Me.

    ERIC Educational Resources Information Center

    Herron, Ron; Peter, Val J.

    This book teaches adolescents problem solving techniques to help them as they strive for independence and struggle with responsibility. Each issue is introduced by a story involving a teen dealing with the problem or issue to be discussed. The book discusses eight ways that adolescents can get along better with their parents, thus gaining their…

  2. What's on Your Radar Screen? Distance-Rate-Time Problems from NASA

    ERIC Educational Resources Information Center

    Condon, Gregory W.; Landesman, Miriam F.; Calasanz-Kaiser, Agnes

    2006-01-01

    This article features NASA's FlyBy Math, a series of six standards-based distance-rate-time investigations in air traffic control. Sixth-grade students--acting as pilots, air traffic controllers, and NASA scientists--conduct an experiment and then use multiple mathematical representations to analyze and solve a problem involving two planes flying…

  3. Elementary Students' Metacognitive Processes and Post-Performance Calibration on Mathematical Problem-Solving Tasks

    ERIC Educational Resources Information Center

    García, Trinidad; Rodríguez, Celestino; González-Castro, Paloma; González-Pienda, Julio Antonio; Torrance, Mark

    2016-01-01

    Calibration, or the correspondence between perceived performance and actual performance, is linked to students' metacognitive and self-regulatory skills. Making students more aware of the quality of their performance is important in elementary school settings, and more so when math problems are involved. However, many students seem to be poorly…

  4. Training and Transfer in Combinatorial Problem Solving: The Development of Formal Reasoning During Early Adolescence

    ERIC Educational Resources Information Center

    Barratt, Barnaby B.

    1975-01-01

    This study investigated the emergence of combinatorial competence in early adolescence and the effectiveness of a programmed discovery training procedure. Significant increases in combinatorial skill with age were shown; it was found that the expression of this skill was significantly facilitated if problems involved concrete material of low…

  5. A World-Wide Overview of Migratory Movements. The Education of Migrant Workers -- Where Do We Stand?

    ERIC Educational Resources Information Center

    Blanchard, Francis

    1974-01-01

    A survey of world migration patterns prefaces a declaration of educational problems and ways of solving them as viewed by the International Labour Organization (ILO). The problems are conceptualized on the socio-cultural and occupational levels and involve both the worker and his family. (JH)

  6. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  7. Exploring Essential Conditions: A Commentary on Bull et al. (2008)

    ERIC Educational Resources Information Center

    Borthwick, Arlene; Hansen, Randall; Gray, Lucy; Ziemann, Irina

    2008-01-01

    The editorial by Bull et al. (2008) on connections between informal and formal learning made explicit one element of solving what Koehler and Mishra (2008) termed a "wicked problem." This wicked (complex, ill-structured) problem involves working with teachers for effective integration of technology in support of student learning. The…

  8. Applying Cases to Solve Ethical Problems: The Significance of Positive and Process-Oriented Reflection

    PubMed Central

    Antes, Alison L.; Thiel, Chase E.; Martin, Laura E.; Stenmark, Cheryl K.; Connelly, Shane; Devenport, Lynn D.; Mumford, Michael D.

    2015-01-01

    This study examined the role of reflection on personal cases for making ethical decisions with regard to new ethical problems. Participants assumed the position of a business manager in a hypothetical organization and solved ethical problems that might be encountered. Prior to making a decision for the business problems, participants reflected on a relevant ethical experience. The findings revealed that application of material garnered from reflection on a personal experience was associated with decisions of higher ethicality. However, whether the case was viewed as positive or negative, and whether the outcomes, process, or outcomes and processes embedded in the experience were examined, influenced the application of case material to the new problem. As expected, examining positive experiences and the processes involved in those positive experiences resulted in greater application of case material to new problems. Future directions and implications for understanding ethical decision-making are discussed. PMID:26257506

  9. Conformal mapping for multiple terminals

    PubMed Central

    Wang, Weimin; Ma, Wenying; Wang, Qiang; Ren, Hao

    2016-01-01

    Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems involving two terminals. However, when faced with problems involving three or more terminals, which are more common in practical applications, existing conformal mapping methods apply assumptions or approximations. A general exact method does not exist for a structure with an arbitrary number of terminals. This study presents a conformal mapping method for multiple terminals. Through an accurate analysis of boundary conditions, additional terminals or boundaries are folded into the inner part of a mapped region. The method is applied to several typical situations, and the calculation process is described for two examples of an electrostatic actuator with three electrodes and of a light beam splitter with three ports. Compared with previously reported results, the solutions for the two examples based on our method are more precise and general. The proposed method is helpful in promoting the application of conformal mapping in analysis of practical problems. PMID:27830746

  10. How Does the Degree of Guidance Support Students' Metacognitive and Problem Solving Skills in Educational Robotics?

    NASA Astrophysics Data System (ADS)

    Atmatzidou, Soumela; Demetriadis, Stavros; Nika, Panagiota

    2018-02-01

    Educational robotics (ER) is an innovative learning tool that offers students opportunities to develop higher-order thinking skills. This study investigates the development of students' metacognitive (MC) and problem-solving (PS) skills in the context of ER activities, implementing different modes of guidance in two student groups (11-12 years old, N1 = 30, and 15-16 years old, N2 = 22). The students of each age group were involved in an 18-h group-based activity after being randomly distributed in two conditions: "minimal" (with minimal MC and PS guidance) and "strong" (with strong MC and PS guidance). Evaluations were based on the Metacognitive Awareness Inventory measuring students' metacognitive awareness and on a think-aloud protocol asking students to describe the process they would follow to solve a certain robot-programming task. The results suggest that (a) strong guidance in solving problems can have a positive impact on students' MC and PS skills and (b) students reach eventually the same level of MC and PS skills development independently of their age and gender.

  11. Authentic assessment based showcase portfolio on learning of mathematical problem solving in senior high school

    NASA Astrophysics Data System (ADS)

    Sukmawati, Zuhairoh, Faihatuz

    2017-05-01

    The purpose of this research was to develop authentic assessment model based on showcase portfolio on learning of mathematical problem solving. This research used research and development Method (R & D) which consists of four stages of development that: Phase I, conducting a preliminary study. Phase II, determining the purpose of developing and preparing the initial model. Phase III, trial test of instrument for the initial draft model and the initial product. The respondents of this research are the students of SMAN 8 and SMAN 20 Makassar. The collection of data was through observation, interviews, documentation, student questionnaire, and instrument tests mathematical solving abilities. The data were analyzed with descriptive and inferential statistics. The results of this research are authentic assessment model design based on showcase portfolio which involves: 1) Steps in implementing the authentic assessment based Showcase, assessment rubric of cognitive aspects, assessment rubric of affective aspects, and assessment rubric of skill aspect. 2) The average ability of the students' problem solving which is scored by using authentic assessment based on showcase portfolio was in high category and the students' response in good category.

  12. Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Aittokoski, Timo; Miettinen, Kaisa

    2008-07-01

    Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.

  13. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  14. Genetics Home Reference: GRN-related frontotemporal dementia

    MedlinePlus

    ... temporal lobes . The frontal lobes are involved in reasoning, planning, judgment, and problem-solving, while the temporal ... MND. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008 Mar; ...

  15. Keep Counting Those Boxes--There's More.

    ERIC Educational Resources Information Center

    Mingus, Tabitha T. Y.; Grassl, Richard M.

    1998-01-01

    Poses and solves several related extensions involving enumerating squares and rectangles. Describes how problem extensions can be developed and used in the classroom to motivate and challenge teachers and students to exert themselves mathematically. (ASK)

  16. Becoming a Parent in the NICU

    MedlinePlus

    ... Quality Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems ... org Product Catalog Get Involved Volunteer Volunteer leaders Team Youth National service partners Advocate Get informed Take ...

  17. Neural substrates of similarity and rule-based strategies in judgment

    PubMed Central

    von Helversen, Bettina; Karlsson, Linnea; Rasch, Björn; Rieskamp, Jörg

    2014-01-01

    Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI), we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved. PMID:25360099

  18. (Fish) Food for Thought: Authority Shifts in the Interaction between Mathematics and Reality

    ERIC Educational Resources Information Center

    Peled, Irit

    2010-01-01

    This theoretical paper explores the decision-making process involved in modelling and mathematizing situations during problem solving. Specifically, it focuses on the authority behind these choices (i.e., what or who determines the chosen mathematical models). We show that different types of situations involve different sources of authority,…

  19. Designing and Developing Assessments of Complex Thinking in Mathematics for the Middle Grades

    ERIC Educational Resources Information Center

    Graf, Edith Aurora; Arieli-Attali, Meirav

    2015-01-01

    Designing an assessment system for complex thinking in mathematics involves decisions at every stage, from how to represent the target competencies to how to interpret evidence from student performances. Beyond learning to solve particular problems in a particular area, learning mathematics with understanding involves comprehending connections…

  20. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    ERIC Educational Resources Information Center

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  1. Team Teaching Will Work!

    ERIC Educational Resources Information Center

    Engman, Leila

    Research has indicated that teachers are willing to be involved and are capable of being involved in instructional development. According to Kingham and Benham, team teaching has failed in the past due to three causes: a) no planning time, b) personality clashes, and c) inability to integrate the material. To solve these three problems, one can…

  2. Energy Remote Sensing Applications Projects at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Likens, W. C.; Mouat, D. A.

    1982-01-01

    The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.

  3. A selection of biomechanical research problems: From modeling to experimentation

    NASA Astrophysics Data System (ADS)

    Abbasi, Cyrus Omid

    The research undertakings within this manuscript illustrate the importance of biomechanics in today's science. Without doubt, biomechanics can be utilized to obtain a better understanding of many unsolved mysteries involved in the field of medicine. Moreover, biomechanics can be used to develop better prosthetic or surgical devices as well. Chapter 2 represents a medical problem, which has not been solved for more than a century. With the use of fundamental principles of biomechanics', a better insight of this problem and its possible causes were obtained. Chapter 3 investigates the mechanical interaction between the human teeth and some processed food products during mastication, which is a routine but crucial daily activity of a human being. Chapter 4 looks at a problem within the field of surgery. In this chapter the stability and reliability of two different Suturing-Techniques are explored. Chapters 5 and 6 represent new patent designs as a result of the investigations made in Chapter 4. Chapter 7 studies the impact and load transfer patterns during the collision between a child's head and the ground. All of the above mentioned chapters show the significance of biomechanics in solving a range of different medical problems that involve physical and or mechanical characters.

  4. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  5. An efficient strongly coupled immersed boundary method for deforming bodies

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Colonius, Tim

    2016-11-01

    Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.

  6. Genetics Home Reference: autosomal dominant nocturnal frontal lobe epilepsy

    MedlinePlus

    ... brain are involved in many critical functions, including reasoning, planning, judgment, and problem-solving. It is unclear ... E, Montagna P. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain. ...

  7. Actually, What Is an Actuary?

    ERIC Educational Resources Information Center

    Oudshoorn, Susan; Finkelstein, Gary

    1991-01-01

    The actuarial profession is described to provide secondary school mathematics teachers insights into how actuaries use mathematics in solving real life problems. Examples are provided involving compound interest, the probability of dying, and inflation with computer modeling. (MDH)

  8. Race Car Rally.

    ERIC Educational Resources Information Center

    Anthony, Joan L.

    1994-01-01

    Describes an activity where teams of parents and children work together to solve problems involving matchbox-sized race cars. The teams collect, record, and analyze data; measure distances in metric; and explore concepts related to mass, friction, and force. (PR)

  9. Routine human-competitive machine intelligence by means of genetic programming

    NASA Astrophysics Data System (ADS)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  10. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  11. Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine

    2004-01-01

    We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.

  12. Evaluating Biology Achievement Scores in an ICT Integrated PBL Environment

    ERIC Educational Resources Information Center

    Osman, Kamisah; Kaur, Simranjeet Judge

    2014-01-01

    Students' achievement in Biology is often looked up as a benchmark to evaluate the mode of teaching and learning in higher education. Problem-based learning (PBL) is an approach that focuses on students' solving a problem through collaborative groups. There were eighty samples involved in this study. The samples were divided into three groups: ICT…

  13. Effects of Cluster Location on Human Performance on the Traveling Salesperson Problem

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2013-01-01

    Most models of human performance on the traveling salesperson problem involve clustering of nodes, but few empirical studies have examined effects of clustering in the stimulus array. A recent exception varied degree of clustering and concluded that the more clustered a stimulus array, the easier a TSP is to solve (Dry, Preiss, & Wagemans,…

  14. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    NASA Astrophysics Data System (ADS)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  15. Impulse Control and Aggressive Response Generation as Predictors of Aggressive Behaviour in Children with Mild Intellectual Disabilities and Borderline Intelligence

    ERIC Educational Resources Information Center

    van Nieuwenhuijzen, M.; Orobio de Castro, B.; van Aken, M. A. G.; Matthys, W.

    2009-01-01

    Background: A growing interest exists in mechanisms involved in behaviour problems in children with mild intellectual disabilities and borderline intelligence (MID/BI). Social problem solving difficulties have been found to be an explanatory mechanism for aggressive behaviour in these children. However, recently a discrepancy was found between…

  16. YouTube Fridays: Student Led Development of Engineering Estimate Problems

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.; Vestal, Charles R.; Herring, Andrew M.

    2012-01-01

    YouTube Fridays devotes a small fraction of class time to student-selected videos related to the course topic, e.g., thermodynamics. The students then write and solve a homework-like problem based on the events in the video. Three recent pilots involving over 300 students have developed a database of videos and questions that reinforce important…

  17. A Problem Posing-Based Practicing Strategy for Facilitating Students' Computer Programming Skills in the Team-Based Learning Mode

    ERIC Educational Resources Information Center

    Wang, Xiao-Ming; Hwang, Gwo-Jen

    2017-01-01

    Computer programming is a subject that requires problem-solving strategies and involves a great number of programming logic activities which pose challenges for learners. Therefore, providing learning support and guidance is important. Collaborative learning is widely believed to be an effective teaching approach; it can enhance learners' social…

  18. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles

    NASA Astrophysics Data System (ADS)

    Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi

    2012-09-01

    In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.

  19. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  20. Implicit time-integration method for simultaneous solution of a coupled non-linear system

    NASA Astrophysics Data System (ADS)

    Watson, Justin Kyle

    Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).

  1. High order solution of Poisson problems with piecewise constant coefficients and interface jumps

    NASA Astrophysics Data System (ADS)

    Marques, Alexandre Noll; Nave, Jean-Christophe; Rosales, Rodolfo Ruben

    2017-04-01

    We present a fast and accurate algorithm to solve Poisson problems in complex geometries, using regular Cartesian grids. We consider a variety of configurations, including Poisson problems with interfaces across which the solution is discontinuous (of the type arising in multi-fluid flows). The algorithm is based on a combination of the Correction Function Method (CFM) and Boundary Integral Methods (BIM). Interface and boundary conditions can be treated in a fast and accurate manner using boundary integral equations, and the associated BIM. Unfortunately, BIM can be costly when the solution is needed everywhere in a grid, e.g. fluid flow problems. We use the CFM to circumvent this issue. The solution from the BIM is used to rewrite the problem as a series of Poisson problems in rectangular domains-which requires the BIM solution at interfaces/boundaries only. These Poisson problems involve discontinuities at interfaces, of the type that the CFM can handle. Hence we use the CFM to solve them (to high order of accuracy) with finite differences and a Fast Fourier Transform based fast Poisson solver. We present 2-D examples of the algorithm applied to Poisson problems involving complex geometries, including cases in which the solution is discontinuous. We show that the algorithm produces solutions that converge with either 3rd or 4th order of accuracy, depending on the type of boundary condition and solution discontinuity.

  2. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  3. Problem solving during artificial selection of self-replicating loops

    NASA Astrophysics Data System (ADS)

    Chou, Hui-Hsien; Reggia, James A.

    1998-05-01

    Past cellular automata models of self-replication have generally done only one thing: replicate themselves. However, it has recently been demonstrated that such self-replicating structures can be programmed to also carry out a task during the replication process. Past models of this sort have been limited in that the “program” involved is copied unchanged from parent to child, so that each generation of replicants is executing exactly the same program on exactly the same data. Here we take a different approach in which each replicant receives a distinct partial solution that is modified during replication. Under artificial selection, replicants with promising solutions proliferate while those with failed solutions are lost. We show that this approach can be applied successfully to solve an NP-complete problem, the satisfiability problem. Bounds are given on the cellular space size and time needed to solve a given problem, and simulations demonstrate that this approach works effectively. These and other recent results raise the possibility of evolving self-replicating structures that have a simulated metabolism or that carry out useful tasks.

  4. An optimized treatment for algorithmic differentiation of an important glaciological fixed-point problem

    DOE PAGES

    Goldberg, Daniel N.; Narayanan, Sri Hari Krishna; Hascoet, Laurent; ...

    2016-05-20

    We apply an optimized method to the adjoint generation of a time-evolving land ice model through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-point iteration required to solve the nonlinear stress balance, which differs from a straightforward application of AD software, and leads to smaller memory requirements and in some cases shorter computation times of the adjoint. The optimization is done via implementation of the algorithm of Christianson (1994) for reverse accumulation of fixed-point problems, with the AD tool OpenAD. For test problems, the optimized adjoint is shown to have far lower memory requirements, potentially enablingmore » larger problem sizes on memory-limited machines. In the case of the land ice model, implementation of the algorithm allows further optimization by having the adjoint model solve a sequence of linear systems with identical (as opposed to varying) matrices, greatly improving performance. Finally, the methods introduced here will be of value to other efforts applying AD tools to ice models, particularly ones which solve a hybrid shallow ice/shallow shelf approximation to the Stokes equations.« less

  5. Climate change: could it help develop 'adaptive expertise'?

    PubMed

    Bell, Erica; Horton, Graeme; Blashki, Grant; Seidel, Bastian M

    2012-05-01

    Preparing health practitioners to respond to the rising burden of disease from climate change is emerging as a priority in health workforce policy and planning. However, this issue is hardly represented in the medical education research. The rapidly evolving wide range of direct and indirect consequences of climate change will require health professionals to have not only broad content knowledge but also flexibility and responsiveness to diverse regional conditions as part of complex health problem-solving and adaptation. It is known that adaptive experts may not necessarily be quick at solving familiar problems, but they do creatively seek to better solve novel problems. This may be the result of an acquired approach to practice or a pathway that can be fostered by learning environments. It is also known that building adaptive expertise in medical education involves putting students on a learning pathway that requires them to have, first, the motivation to innovatively problem-solve and, second, exposure to diverse content material, meaningfully presented. Including curriculum content on the health effects of climate change could help meet these two conditions for some students at least. A working definition and illustrative competencies for adaptive expertise for climate change, as well as examples of teaching and assessment approaches extrapolated from rural curricula, are provided.

  6. Applications of NASTRAN to nuclear problems

    NASA Technical Reports Server (NTRS)

    Spreeuw, E.

    1972-01-01

    The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.

  7. Solving the vehicle routing problem by a hybrid meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Yousefikhoshbakht, Majid; Khorram, Esmaile

    2012-08-01

    The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called sweep algorithm (SW) + ant colony system (ACS) for the classical VRP. At the first stage, the VRP is solved by the SW, and at the second stage, the ACS and 3-opt local search are used for improving the solutions. Extensive computational tests on standard instances from the literature confirm the effectiveness of the presented approach.

  8. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  9. Raising Children's Self-Efficacy through Parental Involvement in Homework

    ERIC Educational Resources Information Center

    Williams, Keith; Swift, Jennifer; Williams, Hefin; Van Daal, Victor

    2017-01-01

    Background: This paper is a qualitative evaluation of a small-scale pilot study that attempted to generate parental involvement in children's learning. It used problem-solving mathematics homework in order to raise the children's self-efficacy, or, put another way, the child's belief that success lies in their own hands. Purpose: Homework is often…

  10. Strategies for Effective Faculty Involvement in Online Activities Aimed at Promoting Critical Thinking and Deep Learning

    ERIC Educational Resources Information Center

    Abdul Razzak, Nina

    2016-01-01

    Highly-traditional education systems that mainly offer what is known as "direct instruction" usually result in graduates with a surface approach to learning rather than a deep one. What is meant by deep-learning is learning that involves critical analysis, the linking of ideas and concepts, creative problem solving, and application…

  11. On inconsistency in frictional granular systems

    NASA Astrophysics Data System (ADS)

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  12. Touching the elephant: The search for fluid intelligence.

    PubMed

    Wasserman, Theodore; Wasserman, Lori Drucker

    2017-01-01

    Many constructs that we take for granted in modern neuropsychology, fluid intelligence among them, can best be explained by conceptionalizing them as a collection of task specific processes engaged in by an integrated recruited network involved in problem solving. Fractionalizing the network in an attempt to describe elements of its function leads to arbitrarily defined segments that may be interesting to discuss abstractly, but never occur independently in the real world operation of the system. We will seek to demonstrate that the construct of fluid intelligence is like that. It is a description of a type of operation of a network dedicated to solving problems and the composition of the network that is responsible for the activity changes in a task specific manner. As a result, fluid intelligence is not an independent skill, or a thing that lives on its own, or can be measured independently of the other things that contribute to the overall operation of the network as it seeks to solve problems.

  13. A kinetic approach to magnetospheric modeling

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.

  14. Multilevel acceleration of scattering-source iterations with application to electron transport

    DOE PAGES

    Drumm, Clif; Fan, Wesley

    2017-08-18

    Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less

  15. Solving problems in social-ecological systems: definition, practice and barriers of transdisciplinary research.

    PubMed

    Angelstam, Per; Andersson, Kjell; Annerstedt, Matilda; Axelsson, Robert; Elbakidze, Marine; Garrido, Pablo; Grahn, Patrik; Jönsson, K Ingemar; Pedersen, Simen; Schlyter, Peter; Skärbäck, Erik; Smith, Mike; Stjernquist, Ingrid

    2013-03-01

    Translating policies about sustainable development as a social process and sustainability outcomes into the real world of social-ecological systems involves several challenges. Hence, research policies advocate improved innovative problem-solving capacity. One approach is transdisciplinary research that integrates research disciplines, as well as researchers and practitioners. Drawing upon 14 experiences of problem-solving, we used group modeling to map perceived barriers and bridges for researchers' and practitioners' joint knowledge production and learning towards transdisciplinary research. The analysis indicated that the transdisciplinary research process is influenced by (1) the amount of traditional disciplinary formal and informal control, (2) adaptation of project applications to fill the transdisciplinary research agenda, (3) stakeholder participation, and (4) functional team building/development based on self-reflection and experienced leadership. Focusing on implementation of green infrastructure policy as a common denominator for the delivery of ecosystem services and human well-being, we discuss how to diagnose social-ecological systems, and use knowledge production and collaborative learning as treatments.

  16. Psychrometric chart for physiological research

    NASA Technical Reports Server (NTRS)

    Chambers, A. B.

    1971-01-01

    Chart facilitates use of graphical techniques for solving problems involving thermodynamic properties of moist air. The properties are presented, and their units of measurement are listed. Chart presenting conditions at standard atmosphere pressure at sea level is most useful.

  17. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  18. Young children's use of derived fact strategies for addition and subtraction

    PubMed Central

    Dowker, Ann

    2014-01-01

    Forty-four children between 6;0 and 7;11 took part in a study of derived fact strategy use. They were assigned to addition and subtraction levels on the basis of calculation pretests. They were then given Dowker's (1998) test of derived fact strategies in addition, involving strategies based on the Identity, Commutativity, Addend +1, Addend −1, and addition/subtraction Inverse principles; and test of derived fact strategies in subtraction, involving strategies based on the Identity, Minuend +1, Minuend −1, Subtrahend +1, Subtrahend −1, Complement and addition/subtraction Inverse principles. The exact arithmetic problems given varied according to the child's previously assessed calculation level and were selected to be just a little too difficult for the child to solve unaided. Children were given the answer to a problem and then asked to solve another problem that could be solved quickly by using this answer, together with the principle being assessed. The children also took the WISC Arithmetic subtest. Strategies differed greatly in difficulty, with Identity being the easiest, and the Inverse and Complement principles being most difficult. The Subtrahend +1 and Subtrahend −1 problems often elicited incorrect strategies based on an overextension of the principles of addition to subtraction. It was concluded that children may have difficulty with understanding and applying the relationships between addition and subtraction. Derived fact strategy use was significantly related to both calculation level and to WISC Arithmetic scaled score. PMID:24431996

  19. GEE-WIS Anchored Problem Solving Using Real-Time Authentic Water Quality Data

    NASA Astrophysics Data System (ADS)

    Young, M.; Wlodarczyk, M. S.; Branco, B.; Torgersen, T.

    2002-05-01

    GEE-WIS scientific problem solving consists of observing, hypothesizing, synthesis, argument building and reasoning, in the context of analysis, representation, modeling and sense-making of real-time authentic water quality data. Geoscience Environmental Education - Web-accessible Instrumented Systems, or GEE-WIS, an NSF Geoscience Education grant, has established a set of companion websites that stream real-time data from two campus retention ponds for research and use in secondary and undergraduate water quality lessons. We have targeted scientific problem solving skills because of the nature of the GEE-WIS environment, but further because they are central to state and federal efforts to establish science education curriculum standards and are at the core of performance-based testing. We have used a design experiment process to create and test two Anchored Instruction scenario problems. Customization such as that done through a design process, is acknowledged to be a fundamental component of educational research from an ecological psychology perspective. Our efforts have shared core design elements with other NSF water quality projects. Our method involves the analysis of student written scenario responses for level of scientific problem solving using a qualitative scoring rubric designed from participation in a related NSF project, SCALE (Synergy Communities: Aggregating Learning about Education). Student solutions of GEE-WIS anchor problems from Fall 2001 and Spring 2002 will be summarized. Implications are drawn for those interested in making secondary and high education geoscience more realistic and more motivating for students through the use of real-time authentic data via Internet.

  20. Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems.

    PubMed

    Moreno-Scott, Jorge Humberto; Ortiz-Bayliss, José Carlos; Terashima-Marín, Hugo; Conant-Pablos, Santiago Enrique

    2016-01-01

    Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems.

  1. Experimental Matching of Instances to Heuristics for Constraint Satisfaction Problems

    PubMed Central

    Moreno-Scott, Jorge Humberto; Ortiz-Bayliss, José Carlos; Terashima-Marín, Hugo; Conant-Pablos, Santiago Enrique

    2016-01-01

    Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems. PMID:26949383

  2. Willing Retention of Misbelief

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2003-12-01

    Students also ought to get a better picture of how useful chemistry is and what insights it can provide regarding crucial problems that face society. A student who has completed a general chemistry course ought to have some understanding of how chemists are addressing major problems involving energy resources, adequate supplies of pure food and water, degradation of the environment, poverty, disease, and terrorism. Even better, the student should be aware that these problems are intertwined and solving one of them at the expense of any or all of the others is not a true solution. Better yet, the student should realize that with appropriate education and experience, the student could contribute significantly to society’s efforts to solve these problems. Former ACS President Ronald Breslow has suggested on numerous occasions that students are more likely to be attracted to a field in which the student can participate in solving important problems, but we persist in teaching chemistry as if it is a dead science, where everything is already known. Both learning and the unknown are powerful challenges that can motivate students to put forth their best efforts. We ought to make better use of them.

  3. Pseudo-time methods for constrained optimization problems governed by PDE

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1995-01-01

    In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.

  4. Phases of learning: How skill acquisition impacts cognitive processing.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2016-06-01

    This fMRI study examines the changes in participants' information processing as they repeatedly solve the same mathematical problem. We show that the majority of practice-related speedup is produced by discrete changes in cognitive processing. Because the points at which these changes take place vary from problem to problem, and the underlying information processing steps vary in duration, the existence of such discrete changes can be hard to detect. Using two converging approaches, we establish the existence of three learning phases. When solving a problem in one of these learning phases, participants can go through three cognitive stages: Encoding, Solving, and Responding. Each cognitive stage is associated with a unique brain signature. Using a bottom-up approach combining multi-voxel pattern analysis and hidden semi-Markov modeling, we identify the duration of that stage on any particular trial from participants brain activation patterns. For our top-down approach we developed an ACT-R model of these cognitive stages and simulated how they change over the course of learning. The Solving stage of the first learning phase is long and involves a sequence of arithmetic computations. Participants transition to the second learning phase when they can retrieve the answer, thereby drastically reducing the duration of the Solving stage. With continued practice, participants then transition to the third learning phase when they recognize the problem as a single unit and produce the answer as an automatic response. The duration of this third learning phase is dominated by the Responding stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  6. A model for solving the prescribed burn planning problem.

    PubMed

    Rachmawati, Ramya; Ozlen, Melih; Reinke, Karin J; Hearne, John W

    2015-01-01

    The increasing frequency of destructive wildfires, with a consequent loss of life and property, has led to fire and land management agencies initiating extensive fuel management programs. This involves long-term planning of fuel reduction activities such as prescribed burning or mechanical clearing. In this paper, we propose a mixed integer programming (MIP) model that determines when and where fuel reduction activities should take place. The model takes into account multiple vegetation types in the landscape, their tolerance to frequency of fire events, and keeps track of the age of each vegetation class in each treatment unit. The objective is to minimise fuel load over the planning horizon. The complexity of scheduling fuel reduction activities has led to the introduction of sophisticated mathematical optimisation methods. While these approaches can provide optimum solutions, they can be computationally expensive, particularly for fuel management planning which extends across the landscape and spans long term planning horizons. This raises the question of how much better do exact modelling approaches compare to simpler heuristic approaches in their solutions. To answer this question, the proposed model is run using an exact MIP (using commercial MIP solver) and two heuristic approaches that decompose the problem into multiple single-period sub problems. The Knapsack Problem (KP), which is the first heuristic approach, solves the single period problems, using an exact MIP approach. The second heuristic approach solves the single period sub problem using a greedy heuristic approach. The three methods are compared in term of model tractability, computational time and the objective values. The model was tested using randomised data from 711 treatment units in the Barwon-Otway district of Victoria, Australia. Solutions for the exact MIP could be obtained for up to a 15-year planning only using a standard implementation of CPLEX. Both heuristic approaches can solve significantly larger problems, involving 100-year or even longer planning horizons. Furthermore there are no substantial differences in the solutions produced by the three approaches. It is concluded that for practical purposes a heuristic method is to be preferred to the exact MIP approach.

  7. Fast Algorithms for Structured Least Squares and Total Least Squares Problems

    PubMed Central

    Kalsi, Anoop; O’Leary, Dianne P.

    2006-01-01

    We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z1 and Z2. We develop formulas for the generators of the matrix M HM in terms of the generators of M and show that the Cholesky factorization of the matrix M HM can be computed quickly if Z1 is close to unitary and Z2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices. PMID:27274922

  8. Fast Algorithms for Structured Least Squares and Total Least Squares Problems.

    PubMed

    Kalsi, Anoop; O'Leary, Dianne P

    2006-01-01

    We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These conditions are satisfied for several classes of matrices, including Toeplitz, block Toeplitz, Hankel, and block Hankel, and for matrices whose blocks have such structure. Fast Cholesky factorization enables fast solution of least squares problems, total least squares problems, and regularized total least squares problems involving these classes of matrices.

  9. Novel Problem Solving - The NASA Solution Mechanism Guide

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the use of novel and more cost and time effective problem solving tools such as open innovation, collaborative research, and virtual collaborative project centers. The HH&P envisions changing project management coursework by including the SMG in the teaching of project management problem solving tools.

  10. No Solutions: Resisting Certainty in Water Supply Management

    NASA Astrophysics Data System (ADS)

    Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.

    2017-12-01

    Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management needs. Rather, reconsidering the language used to frame water management concerns can help us recognize our own culpability in creating water problems and our responsibility in continuously managing this most essential resource.

  11. The NASA/Baltimore Applications Project: An experiment in technology transfer

    NASA Technical Reports Server (NTRS)

    Golden, T. S.

    1981-01-01

    Conclusions drawn from the experiment thus far are presented. The problems of a large city most often do not require highly sophisticated solutions; the simpler the solution, the better. A problem focused approach is a greater help to the city than a product focused approach. Most problem situations involve several individuals or organized groups within the city. Mutual trust and good interpersonal relationships between the technologist and the administrator is as important for solving problems as technological know-how.

  12. Fokker-Planck-Based Acceleration for SN Equations with Highly Forward Peaked Scattering in Slab Geometry

    NASA Astrophysics Data System (ADS)

    Patel, Japan

    Short mean free paths are characteristic of charged particles. High energy charged particles often have highly forward peaked scattering cross sections. Transport problems involving such charged particles are also highly optically thick. When problems simultaneously have forward peaked scattering and high optical thickness, their solution, using standard iterative methods, becomes very inefficient. In this dissertation, we explore Fokker-Planck-based acceleration for solving such problems.

  13. Cognitive Load in Percentage Change Problems: Unitary, Pictorial, and Equation Approaches to Instruction

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Tobias, Stephen

    2014-01-01

    Eighth grade students in Australia (N = 60) participated in an experiment on learning how to solve percentage change problems in a regular classroom in three conditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an acquisition phase, and a post-test. The main goal was to test the relative merits of the three…

  14. Change the Placement, the Pace, and the Preparation for the Oral Presentation

    ERIC Educational Resources Information Center

    Bayless, Marsha L.

    2004-01-01

    In this article, the author describes how she changed her process for the oral presentation, which involved looking at its placement in the course, the pace, and the preparation. By moving the team oral presentation earlier in the course, the author hoped to solve two problems. One problem was the increased stress both students and the author…

  15. Developing the Sixth Level of PISA-Like Mathematics Problems for Secondary School Students

    ERIC Educational Resources Information Center

    Kamaliyah; Zulkardi; Darmawijoyo

    2013-01-01

    Indonesia's involvement in the Programme for International Student Assessment (PISA) is one attempt to see how far the development of educational programs in our country compared to other countries in the world. PISA results show that Indonesia is still at the lower level. This means that the ability of Indonesian students in solving problems that…

  16. Are Fourth and Fifth Grade Children Better Scientists through Metacognitive Learning?

    ERIC Educational Resources Information Center

    Dejonckheere, Peter; Van de Keere, Kristof; Tallir, Isabel

    2011-01-01

    Introduction: A way to find out how scientific thinking in children develops is to focus on the processes that are involved. As such, scientific thinking can be seen as a particular form of problem solving in which the problem solver selects a strategy from the space of possible experiments that can reveal the cause of an event. Notwithstanding…

  17. Factors Related to Problem Solving by College Students in Developmental Algebra.

    ERIC Educational Resources Information Center

    Schonberger, Ann K.

    A study was conducted to contrast the characteristics of three groups of college students who completed a developmental algebra course at the University of Maine at Orono during 1980-81. On the basis of a two-part final examination, involving a multiple-choice test of algebraic concepts and skills and a free-response test of problem-solving…

  18. BGK-MD, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haack, Jeffrey; Shohet, Gil

    2016-12-02

    The software implements a heterogeneous multiscale method (HMM), which involves solving a classical molecular dynamics (MD) problem and then computes the entropy production in order to compute the relaxation times towards equilibrium for use in a Bhatnagar-Gross-Krook (BGK) solver.

  19. Thinking Frames.

    ERIC Educational Resources Information Center

    Perkins, D. N.

    1986-01-01

    Sifts through confusing intelligence theories, arguing that intelligence is a combination of influences involving power, tactics, and content. Good thinking is an unnatural act demanding evenhanded reasoning, problem finding (versus solving), and knowledge as invention. Discusses thinking frames guiding thought processes and the implications for…

  20. Discrete Dynamical Modeling.

    ERIC Educational Resources Information Center

    Sandefur, James T.

    1991-01-01

    Discussed is the process of translating situations involving changing quantities into mathematical relationships. This process, called dynamical modeling, allows students to learn new mathematics while sharpening their algebraic skills. A description of dynamical systems, problem-solving methods, a graphical analysis, and available classroom…

  1. Pasta Predation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  2. Technology Education and the Elementary School.

    ERIC Educational Resources Information Center

    Thode, Terry

    1996-01-01

    In the technology education program at Hemingway School in Ketchum, Idaho, students are involved in hands-on activities that encourage the use of critical thinking skills, tools, and high-tech equipment to solve problems related to real world situations. (Author)

  3. Joining Others for Community Economic Development.

    ERIC Educational Resources Information Center

    Borgen, Joseph A.; Shade, William B.

    1984-01-01

    Examines the basic principles of economic development and provides a case study of the Communitywide Work Force Development Project, which was designed to involve the community in solving the economic development and work force problems of Terre Haute, Indiana. (DMM)

  4. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  5. Incubation and Intuition in Creative Problem Solving.

    PubMed

    Gilhooly, Kenneth J

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation.

  6. Incubation and Intuition in Creative Problem Solving

    PubMed Central

    Gilhooly, Kenneth J.

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  7. Mesoscale modeling: solving complex flows in biology and biotechnology.

    PubMed

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  9. Perceptual learning modules in mathematics: enhancing students' pattern recognition, structure extraction, and fluency.

    PubMed

    Kellman, Philip J; Massey, Christine M; Son, Ji Y

    2010-04-01

    Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.

  10. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  11. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  12. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  13. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  14. Identification and addressing reduction-related misconceptions

    NASA Astrophysics Data System (ADS)

    Gal-Ezer, Judith; Trakhtenbrot, Mark

    2016-07-01

    Reduction is one of the key techniques used for problem-solving in computer science. In particular, in the theory of computation and complexity (TCC), mapping and polynomial reductions are used for analysis of decidability and computational complexity of problems, including the core concept of NP-completeness. Reduction is a highly abstract technique that involves revealing close non-trivial connections between problems that often seem to have nothing in common. As a result, proper understanding and application of reduction is a serious challenge for students and a source of numerous misconceptions. The main contribution of this paper is detection of such misconceptions, analysis of their roots, and proposing a way to address them in an undergraduate TCC course. Our observations suggest that the main source of the misconceptions is the false intuitive rule "the bigger is a set/problem, the harder it is to solve". Accordingly, we developed a series of exercises for proactive prevention of these misconceptions.

  15. A study of the performance of patients with frontal lobe lesions in a financial planning task.

    PubMed

    Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D

    1997-10-01

    It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.

  16. Educating Youth about AIDS: A Model Program.

    ERIC Educational Resources Information Center

    Amer-Hirsch, Wendy

    1989-01-01

    Describes a New York Girls Club program designed to educate children and young adults about AIDS. Program involves use of prevention posters, puzzles, compositions, simulated game shows, debates, problem-solving and role-playing exercises, risk assessment exercises, and rap groups. (RJC)

  17. Numerical Optimization Algorithms and Software for Systems Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  18. Illinois Manufacturing Technology Curriculum.

    ERIC Educational Resources Information Center

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,…

  19. Solving Power Tool Problems in the School Shop

    ERIC Educational Resources Information Center

    Irvin, Daniel W.

    1976-01-01

    The school shop instructor is largely responsible for the preventive maintenance of power tools. These preventive measures primarily involve proper alignment, good lubrication, a reasonable maintenance program, and good operating procedures. Suggestions for maintenance of specific equipment is provided. (Author/BP)

  20. Determination of optimal self-drive tourism route using the orienteering problem method

    NASA Astrophysics Data System (ADS)

    Hashim, Zakiah; Ismail, Wan Rosmanira; Ahmad, Norfaieqah

    2013-04-01

    This paper was conducted to determine the optimal travel routes for self-drive tourism based on the allocation of time and expense by maximizing the amount of attraction scores assigned to each city involved. Self-drive tourism represents a type of tourism where tourists hire or travel by their own vehicle. It only involves a tourist destination which can be linked with a network of roads. Normally, the traveling salesman problem (TSP) and multiple traveling salesman problems (MTSP) method were used in the minimization problem such as determination the shortest time or distance traveled. This paper involved an alternative approach for maximization method which is maximize the attraction scores and tested on tourism data for ten cities in Kedah. A set of priority scores are used to set the attraction score at each city. The classical approach of the orienteering problem was used to determine the optimal travel route. This approach is extended to the team orienteering problem and the two methods were compared. These two models have been solved by using LINGO12.0 software. The results indicate that the model involving the team orienteering problem provides a more appropriate solution compared to the orienteering problem model.

  1. What Type of Communication during Conflict is Beneficial for Intimate Relationships?

    PubMed Central

    Overall, Nickola C.; McNulty, James K.

    2016-01-01

    What constitutes effective communication during conflict? Answering this question requires (a) clarifying whether communication expresses opposition versus cooperation and is direct versus indirect, (b) assessing the mechanisms through which communication effects relationships, and (c) identifying the contextual factors that determine the impact of communication. Recent research incorporating these components illustrates that direct opposition is beneficial when serious problems need to be addressed and partners are able to change, but can be harmful when partners are not confident or secure enough to be responsive. In contrast, cooperative communication involving affection and validation can be harmful when serious problems need to changed, but may be beneficial when problems are minor, cannot be changed, or involve partners whose defensiveness curtails problem solving. PMID:28025652

  2. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  3. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  4. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  5. Novel Numerical Methods for Optimal Control Problems Involving Fractional-Order Differential Equations

    DTIC Science & Technology

    2018-03-14

    pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M

  6. An Assessment of Operational Energy Capability Improvement Fund (OECIF) Programs 17-S-2544

    DTIC Science & Technology

    2017-09-19

    persistently attack key operational energy problems . OECIF themes are summarized in Table 1, and Appendix A includes more detail on the programs within... problems FY 2014 Analytical methods and tools FY 2015 Improving fuel economy for the current tactical ground fleet FY 2016 Increasing the operational...involve a variety of organizations to solve operational energy problems . In FY 2015, the OECIF program received a one-time $14.1M Congressional plus-up

  7. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  8. Is Word-Problem Solving a Form of Text Comprehension?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461

  9. Supplier Selection Using Weighted Utility Additive Method

    NASA Astrophysics Data System (ADS)

    Karande, Prasad; Chakraborty, Shankar

    2015-10-01

    Supplier selection is a multi-criteria decision-making (MCDM) problem which mainly involves evaluating a number of available suppliers according to a set of common criteria for choosing the best one to meet the organizational needs. For any manufacturing or service organization, selecting the right upstream suppliers is a key success factor that will significantly reduce purchasing cost, increase downstream customer satisfaction and improve competitive ability. The past researchers have attempted to solve the supplier selection problem employing different MCDM techniques which involve active participation of the decision makers in the decision-making process. This paper deals with the application of weighted utility additive (WUTA) method for solving supplier selection problems. The WUTA method, an extension of utility additive approach, is based on ordinal regression and consists of building a piece-wise linear additive decision model from a preference structure using linear programming (LP). It adopts preference disaggregation principle and addresses the decision-making activities through operational models which need implicit preferences in the form of a preorder of reference alternatives or a subset of these alternatives present in the process. The preferential preorder provided by the decision maker is used as a restriction of a LP problem, which has its own objective function, minimization of the sum of the errors associated with the ranking of each alternative. Based on a given reference ranking of alternatives, one or more additive utility functions are derived. Using these utility functions, the weighted utilities for individual criterion values are combined into an overall weighted utility for a given alternative. It is observed that WUTA method, having a sound mathematical background, can provide accurate ranking to the candidate suppliers and choose the best one to fulfill the organizational requirements. Two real time examples are illustrated to prove its applicability and appropriateness in solving supplier selection problems.

  10. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  11. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  12. Challenges in building intelligent systems for space mission operations

    NASA Technical Reports Server (NTRS)

    Hartman, Wayne

    1991-01-01

    The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.

  13. Verbal problem solving in high functioning autistic individuals.

    PubMed

    Minshew, N J; Siegel, D J; Goldstein, G; Weldy, S

    1994-01-01

    The verbal problem-solving and abstract reasoning ability of 25 high-functioning autistic individuals ages 11 to 41 was compared with normal controls individually matched on age, gender, race, IQ, and educational level. The Twenty Questions Procedure was administered using a grid of 42 common objects. Time to complete the task, number of correct solutions, and number and type of questions asked were analyzed. Results indicated that controls were more often successful in achieving solutions, and in formulating constraint seeking questions that conceptually grouped, ordered, and sorted the objects. In contrast, the autistics relied primarily on guessing. Findings are consistent with prior studies reporting a core deficit in autism involving abstract reasoning ability.

  14. Solving a layout design problem by analytic hierarchy process (AHP) and data envelopment analysis (DEA) approach

    NASA Astrophysics Data System (ADS)

    Tuzkaya, Umut R.; Eser, Arzum; Argon, Goner

    2004-02-01

    Today, growing amounts of waste due to fast consumption rate of products started an irreversible environmental pollution and damage. A considerable part of this waste is caused by packaging material. With the realization of this fact, various waste policies have taken important steps. Here we considered a firm, where waste Aluminum constitutes majority of raw materials for this fir0m. In order to achieve a profitable recycling process, plant layout should be well designed. In this study, we propose a two-step approach involving Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) to solve facility layout design problems. A case example is considered to demonstrate the results achieved.

  15. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  16. Paper simulation techniques in user requirements analysis for interactive computer systems

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1979-01-01

    This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task

  17. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  18. Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement

    NASA Astrophysics Data System (ADS)

    Suwono, Hadi; Wibowo, Agung

    2018-01-01

    Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.

  19. Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment.

    PubMed

    Tik, Martin; Sladky, Ronald; Luft, Caroline Di Bernardi; Willinger, David; Hoffmann, André; Banissy, Michael J; Bhattacharya, Joydeep; Windischberger, Christian

    2018-04-17

    Finding creative solutions to difficult problems is a fundamental aspect of human culture and a skill highly needed. However, the exact neural processes underlying creative problem solving remain unclear. Insightful problem solving tasks were shown to be a valid method for investigating one subcomponent of creativity: the Aha!-moment. Finding insightful solutions during a remote associates task (RAT) was found to elicit specific cortical activity changes. Considering the strong affective components of Aha!-moments, as manifested in the subjectively experienced feeling of relief following the sudden emergence of the solution of the problem without any conscious forewarning, we hypothesized the subcortical dopaminergic reward network to be critically engaged during Aha. To investigate those subcortical contributions to insight, we employed ultra-high-field 7 T fMRI during a German Version of the RAT. During this task, subjects were exposed to word triplets and instructed to find a solution word being associated with all the three given words. They were supposed to press a button as soon as they felt confident about their solution without further revision, allowing us to capture the exact event of Aha!-moment. Besides the finding on cortical involvement of the left anterior middle temporal gyrus (aMTG), here we showed for the first time robust subcortical activity changes related to insightful problem solving in the bilateral thalamus, hippocampus, and the dopaminergic midbrain comprising ventral tegmental area (VTA), nucleus accumbens (NAcc), and caudate nucleus. These results shed new light on the affective neural mechanisms underlying insightful problem solving. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. The effect of problem solving and decision making skills on tendency to depression and anxiety in patients with type 2 diabetes.

    PubMed

    Abazarian, Elaheh; Baboli, M Teimourzadeh; Abazarian, Elham; Ghashghaei, F Esteki

    2015-01-01

    Diabetes is the most prevalent disease that has involved 177 million people all over the world and, due to this, these patients suffer from depression and anxiety and they should use special methods for controlling the same. The aim of this research is the study of the effect of problem solving and decision making skill on the rate of the tendency to depression and anxiety. This research is a quasi-experimental (case-control) study. Statistically, the population of the present study was all diabetic patients of Qaemshahr who were controlled by physicians in 2011-2012. Thirty files were selected randomly from them and divided into two 15 patients' groups (control and subject group) randomly. The measurement tools were Back depression inventory (21 items) and Zank anxiety questionnaire that were distributed among two groups. Then, the subject group participated in eight sessions of teaching problem solving and decision making courses separately, and the second group (control group) did not receive any instruction. Finally, both groups had passed post-test and the data obtained from the questionnaires were studied by variance analysis statistical methods. The results showed that teaching problem solving and decision making skills was very effective in reducing diabetic patients' depression and anxiety and resulted in reducing their depression and anxiety.

Top