Paradigms and Problem-Solving: A Literature Review.
ERIC Educational Resources Information Center
Berner, Eta S.
1984-01-01
Thomas Kuhn's conceptions of the influence of paradigms on the progress of science form the framework for analyzing how medical educators have approached research on medical problem solving. A new paradigm emphasizing multiple types of problems with varied solution strategies is proposed. (Author/MLW)
ERIC Educational Resources Information Center
Ohlsson, Stellan
2012-01-01
The research paradigm invented by Allen Newell and Herbert A. Simon in the late 1950s dominated the study of problem solving for more than three decades. But in the early 1990s, problem solving ceased to drive research on complex cognition. As part of this decline, Newell and Simon's most innovative research practices--especially their method for…
Use of Practical Worksheet in Teacher Education at the Undergraduate and Postgraduate Levels
ERIC Educational Resources Information Center
Toh, Pee Choon; Toh, Tin Lam; Ho, Foo Him; Quek, Khiok Seng
2012-01-01
We have applied the "practical paradigm" in teaching problem solving to secondary school students. The key feature of the practical paradigm is the use of a practical worksheet to guide the students' processes in problem solving. In this paper, we report the diffusion of the practical paradigm to university level courses for prospective…
Using the Relational Paradigm: Effects on Pupils' Reasoning in Solving Additive Word Problems
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie
2018-01-01
Pupils' difficulties in solving word problems continue to attract attention: while researchers highlight the importance of relational reasoning and modelling, school curricula typically use short word problems to develop pupils' knowledge of arithmetic operations and calculation strategies. The Relational Paradigm attributes the leading role in…
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Problem Solving Under Time-Constraints.
ERIC Educational Resources Information Center
Richardson, Michael; Hunt, Earl
A model of how automated and controlled processing can be mixed in computer simulations of problem solving is proposed. It is based on previous work by Hunt and Lansman (1983), who developed a model of problem solving that could reproduce the data obtained with several attention and performance paradigms, extending production-system notation to…
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Reflections on the relationship between artificial intelligence and operations research
NASA Technical Reports Server (NTRS)
Fox, Mark S.
1989-01-01
Historically, part of Artificial Intelligence's (AI's) roots lie in Operations Research (OR). How AI has extended the problem solving paradigm developed in OR is explored. In particular, by examining how scheduling problems are solved using OR and AI, it is demonstrated that AI extends OR's model of problem solving through the opportunistic use of knowledge, problem reformulation and learning.
Problems with a Play Paradigm: A Reply to Dansky.
ERIC Educational Resources Information Center
Simon, Tony; Smith, Peter K.
1986-01-01
In answer to points raised by Dansky (1985) about specific inferences from Simon and Smith's study (1985) and broader issues about a single-session paradigm used in play and problem solving studies, Simon and Smith argue that their study adequately demonstrated how methodological factors in paradigm can swamp the effects of any treatment…
Blackboard system generator (BSG) - An alternative distributed problem-solving paradigm
NASA Technical Reports Server (NTRS)
Silverman, Barry G.; Feggos, Kostas; Chang, Joseph Shih
1989-01-01
A status review is presented for a generic blackboard-based distributed problem-solving environment in which multiple-agent cooperation can be effected. This environment is organized into a shared information panel, a chairman control panel, and a metaplanning panel. Each panel contains a number of embedded AI techniques that facilitate its operation and that provide heuristics for solving the underlying team-agent decision problem. The status of these panels and heuristics is described along with a number of robustness considerations. The techniques for each of the three panels and for four sets of paradigm-related advances are described, along with selected results from classroom teaching experiments and from three applications.
ERIC Educational Resources Information Center
Gauthier, Benoit; And Others
1997-01-01
Identifies the more representative problem-solving models in environmental education. Suggests the addition of a strategy for defining a problem situation using Soft Systems Methodology to environmental education activities explicitly designed for the development of critical thinking. Contains 45 references. (JRH)
Negotiations in Small School Districts.
ERIC Educational Resources Information Center
Freers, Ann M.
Four paradigms of labor-management relations are found in American small schools: paternalism, collective bargaining, collegial problem solving, and community problem solving. Examination of the conditions under which each is likely to exist and their unique characteristics, reveals the circumstance which will enhance the effectiveness of each.…
Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko
2013-06-18
Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.
ERIC Educational Resources Information Center
Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.
2017-01-01
One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to…
Decision Making and Systems Thinking: Educational Issues
ERIC Educational Resources Information Center
Yurtseven, M. Kudret; Buchanan, Walter W.
2016-01-01
Decision making in most universities is taught within the conventional OR/MS (Operations Research/Management Science) paradigm. This paradigm is known to be "hard" since it is consisted of mathematical tools, and normally suitable for solving structured problems. In complex situations the conventional OR/MS paradigm proves to be…
Fostering and Assessing Creativity in Technology Education
ERIC Educational Resources Information Center
Buelin-Biesecker, Jennifer Katherine
2012-01-01
This study compared the creative outcomes in student work resulting from two pedagogical approaches to creative problem solving activities. A secondary goal was to validate the Consensual Assessment Technique (CAT) as a means of assessing creativity. Linear models for problem solving and design processes serve as the current paradigm in classroom…
Commentary:Deja vu All Over Again: What Will It Take To Solve Big Instructional Problems.
ERIC Educational Resources Information Center
Ysseldyke, Jim
2000-01-01
Presents a response to "School Psychology from an Instructional Perspective: Solving Big, Not Little Problems" (this issue). The author supports Shapiro's arguments but worries much about the barriers that would have to be overcome to enable such a paradigm shift to occur. (GCP)
Project-Based Pedagogy for the Facilitation of Webpage Design
ERIC Educational Resources Information Center
Jakovljevic, Maria; Ankiewicz, Piet
2016-01-01
Real issues of web design and development include many problem-solving tasks. There are, however, some inadequacies associated with the implementation of appropriate pedagogy for organised and structured instruction that supports the rational problem-solving paradigm. The purpose of this article is to report on a study for the design and…
The Neural Basis of Insight Problem Solving: An Event-Related Potential Study
ERIC Educational Resources Information Center
Qiu, Jiang; Li, Hong; Yang, Dong; Luo, Yuejia; Li, Ying; Wu, Zhenzhen; Zhang, Qinglin
2008-01-01
The electrophysiological correlates of successful insight problem solving (Chinese logogriphs) were studied in 18 healthy subjects using high-density event-related potentials (ERPs). A new experimental paradigm (learning-testing model) was adopted in order to make subjects find a solution on their own initiative rather than receive an answer…
NASA Astrophysics Data System (ADS)
Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.
2017-05-01
One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.
Pure science and the problem of progress.
Douglas, Heather
2014-06-01
How should we understand scientific progress? Kuhn famously discussed science as its own internally driven venture, structured by paradigms. He also famously had a problem describing progress in science, as problem-solving ability failed to provide a clear rubric across paradigm change--paradigm changes tossed out problems as well as solving them. I argue here that much of Kuhn's inability to articulate a clear view of scientific progress stems from his focus on pure science and a neglect of applied science. I trace the history of the distinction between pure and applied science, showing how the distinction came about, the rhetorical uses to which the distinction has been put, and how pure science came to be both more valued by scientists and philosophers. I argue that the distinction between pure and applied science does not stand up to philosophical scrutiny, and that once we relinquish it, we can provide Kuhn with a clear sense of scientific progress. It is not one, though, that will ultimately prove acceptable. For that, societal evaluations of scientific work are needed.
ERIC Educational Resources Information Center
Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.
2016-01-01
We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…
Behavioral flexibility and problem solving in an invasive bird.
Logan, Corina J
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.
24-Month-Olds Use Conceptual Similarity to Solve New Problems after a Delay
ERIC Educational Resources Information Center
Hayne, Harlene; Gross, Julien
2015-01-01
In this experiment, we used the deferred imitation paradigm to assess 24-month-olds' ability to use conceptual similarity to solve new problems after a delay. Infants in the experimental condition participated in four sessions that were each separated by 24 h. In Session 1, the experimenter modeled three target actions using one set of stimuli and…
ERIC Educational Resources Information Center
Umoren, Grace
2007-01-01
The aim of this study was to investigate the effect of Science-Technology-Society (STS) curriculum on students' scientific literacy, problem solving and decision making. Four hundred and eighty (480) Senior Secondary two science and non-science students were randomly selected from intact classes in six secondary schools in Calabar Municipality of…
Behavioral flexibility and problem solving in an invasive bird
2016-01-01
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984
Information processing psychology: A promising paradigm for research in science teaching
NASA Astrophysics Data System (ADS)
Stewart, James H.; Atkin, Julia A.
Three research paradigms, those of Ausubel, Gagné and Piaget, have received a great deal of attention in the literature of science education. In this article a fourth paradigm is presented - an information processing psychology paradigm. The article is composed of two sections. The first section describes a model of memory developed by information processing psychologists. The second section describes how such a model could be used to guide science education research on learning and problem solving.Received: 19 October 1981
Generic Tasks for Knowledge-Based Problem Solving: Extension and New Directions
1991-02-01
Report. i 3] D. Brown and B. Chandrasekaran. Design: An information processing level analy- sis. In Design Problem Solving: Knowledge Structures and...generic information processing tasks. In Proceedings of the Internaoional Joint Conference on Artificial Inte!lzjence. IJCAI, 1987. [181 B...Chandrasekaran. What kind of information processing is intelligence? a perspective I on ai paradigms and a proposal. In D. Partridge and Y. Wilks, editors
A review of estimation of distribution algorithms in bioinformatics
Armañanzas, Rubén; Inza, Iñaki; Santana, Roberto; Saeys, Yvan; Flores, Jose Luis; Lozano, Jose Antonio; Peer, Yves Van de; Blanco, Rosa; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro
2008-01-01
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain. PMID:18822112
Laakkonen, Simo; Laurila, Sari
2007-04-01
The study examines the history of strategic decision-making concerning water protection in Helsinki, 1850-2000. We identified five major strategic decisions that occurred during the study period. The results indicate that strategic decision-making evolves in long-term policy cycles that last on average 20-30 years. New policy cycles are caused by paradigm shifts. Paradigms are shared and predominant ways of understanding reality that help when groups must act to solve common and complex environmental problems. However the internal structure and external dynamics of paradigms are contradictory. Although paradigms serve initially as means to redefine problems and find creative solutions, as time goes by each paradigm seems to become also a barrier that restricts the introduction of new ways of thinking and acting. The power of paradigms lies in the fact that they can be defined as scientific but also social, political, or cultural agreements depending on the context.
Signature neural networks: definition and application to multidimensional sorting problems.
Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo
2011-01-01
In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.
The application of artificial intelligence techniques to large distributed networks
NASA Technical Reports Server (NTRS)
Dubyah, R.; Smith, T. R.; Star, J. L.
1985-01-01
Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.
Solving Math and Science Problems in the Real World with a Computational Mind
ERIC Educational Resources Information Center
Olabe, Juan Carlos; Basogain, Xabier; Olabe, Miguel Ángel; Maíz, Inmaculada; Castaño, Carlos
2014-01-01
This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n = 242) was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in…
The Paradigm Recursion: Is It More Accessible When Introduced in Middle School?
ERIC Educational Resources Information Center
Gunion, Katherine; Milford, Todd; Stege, Ulrike
2009-01-01
Recursion is a programming paradigm as well as a problem solving strategy thought to be very challenging to grasp for university students. This article outlines a pilot study, which expands the age range of students exposed to the concept of recursion in computer science through instruction in a series of interesting and engaging activities. In…
Undermining belief in false memories leads to less efficient problem-solving behaviour.
Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia
2017-08-01
Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.
ERIC Educational Resources Information Center
Luthans, Fred; Youssef, Carolyn M.; Rawski, Shannon L.
2011-01-01
This study drew from two distinct paradigms: the social cognitively based emerging field of positive organizational behavior or POB and the more established behaviorally based area of organizational behavior modification or OB Mod. The intent was to show that both can contribute to complex challenges facing today's organizations. Using a…
Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient
NASA Astrophysics Data System (ADS)
Aryani, F.; Amin, S. M.; Sulaiman, R.
2018-01-01
Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.
Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning
ERIC Educational Resources Information Center
Yeo, Jennifer; Tan, Seng Chee
2014-01-01
The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…
Video Game-Based Learning: An Emerging Paradigm for Instruction
ERIC Educational Resources Information Center
Squire, Kurt D.
2008-01-01
Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…
Video Game-Based Learning: An Emerging Paradigm for Instruction
ERIC Educational Resources Information Center
Squire, Kurt D.
2013-01-01
Interactive digital media, or video games, are a powerful new medium. They offer immersive experiences in which players solve problems. Players learn more than just facts--ways of seeing and understanding problems so that they "become" different kinds of people. "Serious games" coming from business strategy, advergaming, and entertainment gaming…
Contemporary HIV/AIDS research: Insights from knowledge management theory.
Callaghan, Chris William
2017-12-01
Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
Software Reviews. PC Software for Artificial Intelligence Applications.
ERIC Educational Resources Information Center
Epp, Helmut; And Others
1988-01-01
Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)
The nonequilibrium quantum many-body problem as a paradigm for extreme data science
NASA Astrophysics Data System (ADS)
Freericks, J. K.; Nikolić, B. K.; Frieder, O.
2014-12-01
Generating big data pervades much of physics. But some problems, which we call extreme data problems, are too large to be treated within big data science. The nonequilibrium quantum many-body problem on a lattice is just such a problem, where the Hilbert space grows exponentially with system size and rapidly becomes too large to fit on any computer (and can be effectively thought of as an infinite-sized data set). Nevertheless, much progress has been made with computational methods on this problem, which serve as a paradigm for how one can approach and attack extreme data problems. In addition, viewing these physics problems from a computer-science perspective leads to new approaches that can be tried to solve more accurately and for longer times. We review a number of these different ideas here.
Sparsity and Nullity: Paradigm for Analysis Dictionary Learning
2016-08-09
16. SECURITY CLASSIFICATION OF: Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and...we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role...and may be utilized to solve dictionary learning problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12
Signal-transducing proteins for nanoelectronics.
Pichierri, Fabio
2006-12-01
This aim of this article is to provide novel paradigms for 21st century nanoelectronics by taking inspiration from the biology of signal transduction events where Nature has solved many complex problems, particularly those concerned with signal integration and amplification.
Hao, Xin; Cui, Shuai; Li, Wenfu; Yang, Wenjing; Qiu, Jiang; Zhang, Qinglin
2013-10-09
Insight can be the first step toward creating a groundbreaking product. As evident in anecdotes and major inventions in history, heuristic events (heuristic prototypes) prompted inventors to acquire insight when solving problems. Bionic imitation in scientific innovation is an example of this kind of problem solving. In particular, heuristic prototypes (e.g., the lotus effect; the very high water repellence exhibited by lotus leaves) help solve insight problems (e.g., non-stick surfaces). We speculated that the biological functional feature of prototypes is a critical factor in inducing insightful scientific problem solving. In this functional magnetic resonance imaging (fMRI) study, we selected scientific innovation problems and utilized "learning prototypes-solving problems" two-phase paradigm to test the supposition. We also explored its neural mechanisms. Functional MRI data showed that the activation of the middle temporal gyrus (MTG, BA 37) and the middle occipital gyrus (MOG, BA 19) were associated with the highlighted functional feature condition. fMRI data also indicated that the MTG (BA 37) could be responsible for the semantic processing of functional features and for the formation of novel associations based on related functions. In addition, the MOG (BA 19) could be involved in the visual imagery of formation and application of function association between the heuristic prototype and problem. Our findings suggest that both semantic processing and visual imagery could be crucial components underlying scientific problem solving. © 2013 Elsevier B.V. All rights reserved.
The application of hybrid artificial intelligence systems for forecasting
NASA Astrophysics Data System (ADS)
Lees, Brian; Corchado, Juan
1999-03-01
The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.
RESPONDING TO WATER CONTAMINATION THREATS
Drinking water safety has traditionally been linked to water quality. The possibility of terrorism directed against the drinking water supply has emphasized the link between water safety and water security. The traditional paradigm in solving water quality problems is to develop ...
Development of weighting value for ecodrainage implementation assessment criteria
NASA Astrophysics Data System (ADS)
Andajani, S.; Hidayat, D. P. A.; Yuwono, B. E.
2018-01-01
This research aim to generate weighting value for each factor and find out the most influential factor for identify implementation of ecodrain concept using loading factor and Cronbach Alpha. The drainage problem especially in urban areas are getting more complex and need to be handled as soon as possible. Flood and drought problem can’t be solved by the conventional paradigm of drainage (to drain runoff flow as faster as possible to the nearest drainage area). The new paradigm of drainage that based on environmental approach called “ecodrain” can solve both of flood and drought problems. For getting the optimal result, ecodrain should be applied in smallest scale (domestic scale), until the biggest scale (city areas). It is necessary to identify drainage condition based on environmental approach. This research implement ecodrain concept by a guidelines that consist of parameters and assessment criteria. It was generating the 2 variables, 7 indicators and 63 key factors from previous research and related regulations. the conclusion of the research is the most influential indicator on technical management variable is storage system, while on non-technical management variable is government role.
Galerkin Spectral Method for the 2D Solitary Waves of Boussinesq Paradigm Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christou, M. A.; Christov, C. I.
2009-10-29
We consider the 2D stationary propagating solitary waves of the so-called Boussinesq Paradigm equation. The fourth- order elliptic boundary value problem on infinite interval is solved by a Galerkin spectral method. An iterative procedure based on artificial time ('false transients') and operator splitting is used. Results are obtained for the shapes of the solitary waves for different values of the dispersion parameters for both subcritical and supercritical phase speeds.
An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.
Boon, Mieke
2017-10-01
In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moving to Learn: How Guiding the Hands Can Set the Stage for Learning
ERIC Educational Resources Information Center
Brooks, Neon; Goldin-Meadow, Susan
2016-01-01
Previous work has found that guiding problem-solvers' movements can have an immediate effect on their ability to solve a problem. Here we explore these processes in a learning paradigm. We ask whether guiding a learner's movements can have a delayed effect on learning, setting the stage for change that comes about only after instruction. Children…
Contemporary HIV/AIDS research: Insights from knowledge management theory
Callaghan, Chris William
2017-01-01
Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967
ERIC Educational Resources Information Center
Kivunja, Charles
2014-01-01
As Michael Fullan (2001) so cogently asserts, the moral purpose of education is to equip students with the skills that will enable them to be productive citizens when they finish school. Whereas pre-21st century learning paradigms catered reasonably well for the pursuit of this moral purpose in turning out school leavers with specialized skills…
Tschentscher, Nadja; Hauk, Olaf
2014-05-15
A number of previous studies have interpreted differences in brain activation between arithmetic operation types (e.g. addition and multiplication) as evidence in favor of distinct cortical representations, processes or neural systems. It is still not clear how differences in general task complexity contribute to these neural differences. Here, we used a mental arithmetic paradigm to disentangle brain areas related to general problem solving from those involved in operation type specific processes (addition versus multiplication). We orthogonally varied operation type and complexity. Importantly, complexity was defined not only based on surface criteria (for example number size), but also on the basis of individual participants' strategy ratings, which were validated in a detailed behavioral analysis. We replicated previously reported operation type effects in our analyses based on surface criteria. However, these effects vanished when controlling for individual strategies. Instead, procedural strategies contrasted with memory retrieval reliably activated fronto-parietal and motor regions, while retrieval strategies activated parietal cortices. This challenges views that operation types rely on partially different neural systems, and suggests that previously reported differences between operation types may have emerged due to invalid measures of complexity. We conclude that mental arithmetic is a powerful paradigm to study brain networks of abstract problem solving, as long as individual participants' strategies are taken into account. Copyright © 2014 Elsevier Inc. All rights reserved.
Benefits of Incubation on Divergent Thinking
ERIC Educational Resources Information Center
Chiang, Noelle C.; Chen, Meng-Liang
2017-01-01
Studies on whether fixation cues provided in the first episode of divergent thinking tasks influence creative outcomes after incubation, as they do for convergent problem-solving tasks, remain limited. This research examined the beneficial effects of incubation using the delayed- and immediate-incubation paradigms. Participants in Experiment 1…
The Strategic Nature of Changing Your Mind
ERIC Educational Resources Information Center
Walsh, Matthew M.; Anderson, John R.
2009-01-01
In two experiments, we studied how people's strategy choices emerge through an initial and then a more considered evaluation of available strategies. The experiments employed a computer-based paradigm where participants solved multiplication problems using mental and calculator solutions. In addition to recording responses and solution times, we…
School-University Partnerships in Action: Concepts, Cases,
ERIC Educational Resources Information Center
Sirotnik, Kenneth A., Ed.; Goodlad, John I., Ed.
A general paradigm for ideal collaboration between schools and universities is proposed. It is based on a mutually collaborative arrangement between equal partners working together to meet self-interests while solving common problems. It is suggested that reasonable approximations to this ideal have great potential to effect significant…
Swarm intelligence metaheuristics for enhanced data analysis and optimization.
Hanrahan, Grady
2011-09-21
The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
CABINS: Case-based interactive scheduler
NASA Technical Reports Server (NTRS)
Miyashita, Kazuo; Sycara, Katia
1992-01-01
In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants’ strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research. PMID:26321997
NASA Astrophysics Data System (ADS)
Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael
2016-08-01
Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.
Thinking outside the Teacher's Box
ERIC Educational Resources Information Center
Darn, Steve
2006-01-01
This article applies theories of alternative thinking and problem solving to the teaching context. Teachers working in static situations are prone to stagnation leading to a paradigm crisis where they are forced to question the status quo. Techniques for confronting such situations are examined, along with personal management strategies and the…
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Ideological Paradigms and Their Impact on Environmental Problems Solutions in Coal Mining Regions
NASA Astrophysics Data System (ADS)
Zolotukhin, Vladimir; Zolotukhina, Natalia; Yazevich, Maria; Rodionov, Alexey; Kozyreva, Marina
2017-11-01
The work presents the analysis of the influence of the ideological paradigms of technology in solving environmental problems in the conditions of modernization of production, where a significant role is given to the protection and preservation of the natural environment and the protection of the rights of a citizen to a favourable environment. The attention is focused on the fact that in a civilized society, the needs of the individual and society are formed within the right social and cultural fields. The main importance of the regulation of everyday reality allotted to the phenomenon of law as a certain ideological paradigm. Stressed that at different stages in the coexistence of ideology and power detected General forms and principles of their influence on social practices, and on consciousness. The article substantiates the position that any interaction of subjects of economic activities leads to the existence of "constructive tension".
Case-based medical informatics
Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R
2004-01-01
Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching mechanisms), technical solutions are challenging. Finally, we discuss the major challenges for a technical solution: case record comprehensiveness, organization of information on similarity principles, development of pattern recognition and solving ethical issues. Summary Medical Informatics is an applied science that should be committed to advancing patient-centered medicine through individual knowledge processing. Case-based reasoning is the technical solution that enables a continuous individual knowledge processing and could be applied providing that challenges and ethical issues arising are addressed appropriately. PMID:15533257
A new learning paradigm: learning using privileged information.
Vapnik, Vladimir; Vashist, Akshay
2009-01-01
In the Afterword to the second edition of the book "Estimation of Dependences Based on Empirical Data" by V. Vapnik, an advanced learning paradigm called Learning Using Hidden Information (LUHI) was introduced. This Afterword also suggested an extension of the SVM method (the so called SVM(gamma)+ method) to implement algorithms which address the LUHI paradigm (Vapnik, 1982-2006, Sections 2.4.2 and 2.5.3 of the Afterword). See also (Vapnik, Vashist, & Pavlovitch, 2008, 2009) for further development of the algorithms. In contrast to the existing machine learning paradigm where a teacher does not play an important role, the advanced learning paradigm considers some elements of human teaching. In the new paradigm along with examples, a teacher can provide students with hidden information that exists in explanations, comments, comparisons, and so on. This paper discusses details of the new paradigm and corresponding algorithms, introduces some new algorithms, considers several specific forms of privileged information, demonstrates superiority of the new learning paradigm over the classical learning paradigm when solving practical problems, and discusses general questions related to the new ideas.
Drea, Christine M
2006-03-01
Learning commonly refers to the modification of behavior through experience, whereby an animal gains information about stimulus-response contingencies from interacting with its physical environment. Social learning, on the other hand, occurs when the same information originates, not from the animal's personal experience, but from the actions of others. Socially biased learning is the 'collective outcome of interacting physical, social, and individual factors' [D. Fragaszy, E. Visalberghi, Learn. Behav. 32 (2004) 24-35.] (see p. 24). Mounting interest in animal social learning has brought with it certain innovations in animal testing procedures. Variants of the observer-demonstrator and cooperation paradigms, for instance, have been used widely in captive settings to examine the transmission or coordination of behavior, respectively, between two animals. Relatively few studies, however, have examined social learning in more complex group settings and even fewer have manipulated the social environment to empirically test the effect of group dynamics on problem solving. The present paper outlines procedures for group testing captive non-human primates, in spacious arenas, to evaluate the social modulation of learning and performance. These methods are illustrated in the context of (1) naturalistic social foraging problems, modeled after traditional visual discrimination paradigms, (2) response to novel objects and novel extractive foraging tasks, and (3) cooperative problem solving. Each example showcases the benefits of experimentally manipulating social context to compare an animal's performance in intact groups (or even pairs) against its performance under different social circumstances. Broader application of group testing procedures and manipulation of group composition promise to provide meaningful insight into socially biased learning.
A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M
2015-11-01
Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brier, Soren; Joslyn, Cliff A.
2013-04-01
This paper presents a critical analysis of code-semiotics, which we see as the latest attempt to create paradigmatic foundation for solving the question of the emergence of life and consciousness. We view code semiotics as a an attempt to revise the empirical scientific Darwinian paradigm, and to go beyond the complex systems, emergence, self-organization, and informational paradigms, and also the selfish gene theory of Dawkins and the Peircean pragmaticist semiotic theory built on the simultaneous types of evolution. As such it is a new and bold attempt to use semiotics to solve the problems created by the evolutionary paradigm’s commitmentmore » to produce a theory of how to connect the two sides of the Cartesian dualistic view of physical reality and consciousness in a consistent way.« less
Learning to Solve Problems by Searching for Macro-Operators
1983-07-01
executing generalized robot plans. Aritificial Intelligence 3:25 1-288, 1972. [Frey 821 Frey, Alexander Ii. Jr., and David Singmaster. Handbook of Cubik...and that searching for macros may be a useful general learning paradigm. 1.1. Introduction One view of die die field of artificial intelligence is that... intelligence literature [Schofield 67, Gaschnig 79, Ericsson 761 and provides one of the simplest examples of the operation of the Macro Problem Solver. It
Mind Wandering and the Incubation Effect in Insight Problem Solving
ERIC Educational Resources Information Center
Tan, Tengteng; Zou, Hong; Chen, Chuansheng; Luo, Jin
2015-01-01
Although many anecdotes suggest that creative insights often arise during mind wandering, empirical research is still sparse. In this study, the number reduction task (NRT) was used to assess whether insightful solutions were related to mind wandering during the incubation stage of the creative process. An experience sampling paradigm was used to…
A New Paradigm for Intelligent Tutoring Systems: Example-Tracing Tutors
ERIC Educational Resources Information Center
Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; Koedinger, Kenneth R.
2009-01-01
The Cognitive Tutor Authoring Tools (CTAT) support creation of a novel type of tutors called example-tracing tutors. Unlike other types of ITSs (e.g., model-tracing tutors, constraint-based tutors), example-tracing tutors evaluate student behavior by flexibly comparing it against generalized examples of problem-solving behavior. Example-tracing…
Kuhn's Paradigm and Example-Based Teaching of Newtonian Mechanics.
ERIC Educational Resources Information Center
Whitaker, M. A. B.
1980-01-01
Makes a recommendation for more direct teaching of the basic principles of mechanics. Contends that students currently learn mechanics in terms of standard examples. This causes difficulty when the student is confronted with a problem that can be solved from basic principles, but which does not fit a standard category. (GS)
ERIC Educational Resources Information Center
Kwak, Duck-Joo
2001-01-01
Essay on Kierkegaard's notion of subjectivity in the formulation of the ethical self. Suggests that Kierkegaard's self-reflecting ethical model offers an alternative approach to the teaching of moral education in South Korean schools, currently dominated by a theory-oriented, problem-solving paradigm. (PKP)
Early Childhood Care and Education: A Child Perspective Paradigm
ERIC Educational Resources Information Center
Sommer, Dion; Pramling Samuelsson, Ingrid; Hundeide, Karsten
2013-01-01
From research we know that there is no specific early childhood education programme that is superior to other approaches (National Research Council. 2001). At the same time, historically it looks like people think there is a specific programme that will solve all problems and guarantee a high quality in early years education, since different…
Global Trends in Workplace Learning
ERIC Educational Resources Information Center
Lee, Lung-Sheng; Lai, Chun-Chin
2012-01-01
The paradigm of human resource development has shifted to workplace learning and performance. Workplace can be an organization, an office, a kitchen, a shop, a farm, a website, even a home. Workplace learning is a dynamic process to solve workplace problems through learning. An identification of global trends of workplace learning can help us to…
ERIC Educational Resources Information Center
Daly, Alan J.; Chrispeels, Janet
2008-01-01
Recent studies have suggested that educational leaders enacting a balance of technical and adaptive leadership have an effect on increasing student achievement. Technical leadership focuses on problem-solving or first-order changes within existing structures and paradigms. Adaptive leadership involves deep or second-order changes that alter…
ERIC Educational Resources Information Center
Castro-Villarreal, Felicia; Rodriguez, Billie Jo
2017-01-01
The National Association of School Psychologists (NASP) describes consultation as a practice that permeates all aspects of school psychological service delivery, and school consultation is increasingly recognized as a central and essential feature of practice in school-based problem-solving paradigms. This research examined teachers' experiences…
Incubation and Intuition in Creative Problem Solving.
Gilhooly, Kenneth J
2016-01-01
Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation.
Incubation and Intuition in Creative Problem Solving
Gilhooly, Kenneth J.
2016-01-01
Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745
Using hybrid expert system approaches for engineering applications
NASA Technical Reports Server (NTRS)
Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.
1987-01-01
In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
Metcalfe, Arron W S; Campbell, Jamie I D
2011-05-01
Accurate measurement of cognitive strategies is important in diverse areas of psychological research. Strategy self-reports are a common measure, but C. Thevenot, M. Fanget, and M. Fayol (2007) proposed a more objective method to distinguish different strategies in the context of mental arithmetic. In their operand recognition paradigm, speed of recognition memory for problem operands after solving a problem indexes strategy (e.g., direct memory retrieval vs. a procedural strategy). Here, in 2 experiments, operand recognition time was the same following simple addition or multiplication, but, consistent with a wide variety of previous research, strategy reports indicated much greater use of procedures (e.g., counting) for addition than multiplication. Operation, problem size (e.g., 2 + 3 vs. 8 + 9), and operand format (digits vs. words) had interactive effects on reported procedure use that were not reflected in recognition performance. Regression analyses suggested that recognition time was influenced at least as much by the relative difficulty of the preceding problem as by the strategy used. The findings indicate that the operand recognition paradigm is not a reliable substitute for strategy reports and highlight the potential impact of difficulty-related carryover effects in sequential cognitive tasks.
Blended Learning Improves Science Education.
Stockwell, Brent R; Stockwell, Melissa S; Cennamo, Michael; Jiang, Elise
2015-08-27
Blended learning is an emerging paradigm for science education but has not been rigorously assessed. We performed a randomized controlled trial of blended learning. We found that in-class problem solving improved exam performance, and video assignments increased attendance and satisfaction. This validates a new model for science communication and education. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Cuellar-Padilla, Mamen; Calle-Collado, Angel
2011-01-01
This paper reports on an experiment linking science with people. Taking as a paradigm the holistic scientific approach fostered by agroecology, we present a methodological proposal for the implementation of participatory action research in rural areas. Our aims were various: to solve a specific problem, i.e. the exclusion of small- and…
ERIC Educational Resources Information Center
BERNHEIM, GLORIA D.
THREE- AND 4-YEAR-OLDS WERE GIVEN VERBAL LEARNING PRETRAINING TO DETERMINE ITS EFFECT UPON THE PERFORMANCE OF REVERSAL AND NONREVERSAL SHIFT DISCRIMINATION TASKS. THE EXPERIMENTAL TASK WAS THE CLASSICAL REVERSAL-NONREVERSAL SHIFT PARADIGM. THE 96 PRE-SCHOOLERS, PRIMARILY FROM THE PENNSYLVANIA STATE UNIVERSITY NURSERY SCHOOL, WERE DIVIDED INTO 4…
ERIC Educational Resources Information Center
Wilkinson, Lee A.
2006-01-01
An international trend in school psychology services is a shift from an emphasis on assessment-based activities to a paradigm of consultation problem-solving and behavioural intervention. As the profession experiences an expansion of roles and functions, school psychologists should have an understanding of a critical aspect of behaviour change:…
The Pendulum: A Paradigm for the Linear Oscillator
ERIC Educational Resources Information Center
Newburgh, Ronald
2004-01-01
The simple pendulum is a model for the linear oscillator. The usual mathematical treatment of the problem begins with a differential equation that one solves with the techniques of the differential calculus, a formal process that tends to obscure the physics. In this paper we begin with a kinematic description of the motion obtained by experiment…
Object oriented development of engineering software using CLIPS
NASA Technical Reports Server (NTRS)
Yoon, C. John
1991-01-01
Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.
The place of SGML and HTML in building electronic patient records.
Pitty, D; Gordon, C; Reeves, P; Capey, A; Vieyra, P; Rickards, T
1997-01-01
The authors are concerned that, although popular, SGML (Standard Generalized Markup Language) is only one approach to capturing, storing, viewing and exchanging healthcare information and does not provide a suitable paradigm for solving most of the problems associated with paper based patient record systems. Although a discussion of the relative merits of SGML, HTML (HyperText Markup Language) may be interesting, we feel such a discussion is avoiding the real issues associated with the most appropriate way to model, represent, and store electronic patient information in order to solve healthcare problems, and therefore the medical informatics community should firstly concern itself with these issues. The paper substantiates this viewpoint and concludes with some suggestions of how progress can be made.
Search and Coherence-Building in Intuition and Insight Problem Solving.
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.
Search and Coherence-Building in Intuition and Insight Problem Solving
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes. PMID:28611702
ERIC Educational Resources Information Center
Coke, Pamela K.
2005-01-01
Van Allen (1996) supports a paradigm shift in how Americans think about education, from a view of school as hierarchy to school as continuum. While the relationship between elementary and secondary education is not always visible, teachers can model cooperative learning for students by working as a team across grade levels to solve problem,…
ERIC Educational Resources Information Center
Huang, Jian
2010-01-01
With the increasing wealth of information on the Web, information integration is ubiquitous as the same real-world entity may appear in a variety of forms extracted from different sources. This dissertation proposes supervised and unsupervised algorithms that are naturally integrated in a scalable framework to solve the entity resolution problem,…
ERIC Educational Resources Information Center
Polotskaia, Elena
2017-01-01
The main goal of this paper is to show how Vasily Davydov's powerful ideas about the nature of mathematical thinking and learning can transform the teaching and learning of additive word problem solving. The name Vasily Davydov is well known in the field of mathematics education in Russia. However, the transformative value of Davydov's theoretical…
ERIC Educational Resources Information Center
DeVane, Ben; Steward, Cody; Tran, Kelly M.
2016-01-01
This article reports on a project that used a game-creation tool to introduce middle-school students ages 10 to 13 to problem-solving strategies similar to those in computer science through the lens of studio-based design arts. Drawing on historic paradigms in design pedagogy and contemporary educational approaches in the digital arts to teach…
A practical approach to virtualization in HEP
NASA Astrophysics Data System (ADS)
Buncic, P.; Aguado Sánchez, C.; Blomer, J.; Harutyunyan, A.; Mudrinic, M.
2011-01-01
In the attempt to solve the problem of processing data coming from LHC experiments at CERN at a rate of 15PB per year, for almost a decade the High Enery Physics (HEP) community has focused its efforts on the development of the Worldwide LHC Computing Grid. This generated large interest and expectations promising to revolutionize computing. Meanwhile, having initially taken part in the Grid standardization process, industry has moved in a different direction and started promoting the Cloud Computing paradigm which aims to solve problems on a similar scale and in equally seamless way as it was expected in the idealized Grid approach. A key enabling technology behind Cloud computing is server virtualization. In early 2008, an R&D project was established in the PH-SFT group at CERN to investigate how virtualization technology could be used to improve and simplify the daily interaction of physicists with experiment software frameworks and the Grid infrastructure. In this article we shall first briefly compare Grid and Cloud computing paradigms and then summarize the results of the R&D activity pointing out where and how virtualization technology could be effectively used in our field in order to maximize practical benefits whilst avoiding potential pitfalls.
Paradigms in epidemiology textbooks: in the footsteps of Thomas Kuhn.
Bhopal, R
1999-01-01
This article attempts to contribute to the debate on the future of epidemiology by combining Thomas Kuhn's ideas on scientific paradigms with the author's observations on some epidemiology textbooks. The author's interpretations were based on his readings of Kuhn's The Structure of Scientific Revolutions, epidemiology textbooks, and papers on the future of epidemiology. Thomas Kuhn's view is that sciences mostly work with a single paradigm driven by exemplars of successful work, and that proposals for paradigm change are resisted. Sciences that are maturing or changing do not have a dominant paradigm. Epidemiology textbooks showed diversity in their concepts, content, and approach. Most exemplars related to etiologic research rather than public health practice. One key focus of the recent controversy regarding the role of epidemiology has been the increasing inability of epidemiology to solve socially based public health problems. Kuhn's views help explain the polarization of views expressed. Kuhn's philosophy of science offers insights into controversies such as whether a paradigm shift is needed or imminent and the gap between epidemiology and public health practice. Interaction between science philosophers, epidemiologists, and public health practitioners may be valuable. PMID:10432899
Paradigms in epidemiology textbooks: in the footsteps of Thomas Kuhn.
Bhopal, R
1999-08-01
This article attempts to contribute to the debate on the future of epidemiology by combining Thomas Kuhn's ideas on scientific paradigms with the author's observations on some epidemiology textbooks. The author's interpretations were based on his readings of Kuhn's The Structure of Scientific Revolutions, epidemiology textbooks, and papers on the future of epidemiology. Thomas Kuhn's view is that sciences mostly work with a single paradigm driven by exemplars of successful work, and that proposals for paradigm change are resisted. Sciences that are maturing or changing do not have a dominant paradigm. Epidemiology textbooks showed diversity in their concepts, content, and approach. Most exemplars related to etiologic research rather than public health practice. One key focus of the recent controversy regarding the role of epidemiology has been the increasing inability of epidemiology to solve socially based public health problems. Kuhn's views help explain the polarization of views expressed. Kuhn's philosophy of science offers insights into controversies such as whether a paradigm shift is needed or imminent and the gap between epidemiology and public health practice. Interaction between science philosophers, epidemiologists, and public health practitioners may be valuable.
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
On Reformulating Planning as Dynamic Constraint Satisfaction
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)
2000-01-01
In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.
NASA Astrophysics Data System (ADS)
Puusepp, Vivian
2018-03-01
In the area of social cognition, several questions that were first discussed by philosophers, have inspired empirical scientists to invent new experimental paradigms in order to tackle related issues. The results of experiments conducted within these paradigms have in turn contributed to theoretical discussions. For example, the first false belief task [1] was developed after three philosophers, Dennett, Bennett, and Harman [2-4] independently argued that possession of the concept of belief is crucial to understanding others' mental states.
Vincent, J F V
2009-11-01
Biology can inform technology at all levels (materials, structures, mechanisms, machines, and control) but there is still a gap between biology and technology. This review itemizes examples of biomimetic products and concludes that the Russian system for inventive problem solving (teoriya resheniya izobreatatelskikh zadatch (TRIZ)) is the best system to underpin the technology transfer. Biomimetics also challenges the current paradigm of technology and suggests more sustainable ways to manipulate the world.
Quantum Optical Implementations of Current Quantum Computing Paradigms
2005-05-01
Conferences and Proceedings: The results were presented at several conferences. These include: 1. M. O. Scully, " Foundations of Quantum Mechanics ", in...applications have revealed a strong connection between the fundamental aspects of quantum mechanics that governs physical systems and the informational...could be solved in polynomial time using quantum computers. Another set of problems where quantum mechanics can carry out computations substantially
Sign use and cognition in automated scientific discovery: are computers only special kinds of signs?
NASA Astrophysics Data System (ADS)
Giza, Piotr
2018-04-01
James Fetzer criticizes the computational paradigm, prevailing in cognitive science by questioning, what he takes to be, its most elementary ingredient: that cognition is computation across representations. He argues that if cognition is taken to be a purposive, meaningful, algorithmic problem solving activity, then computers are incapable of cognition. Instead, they appear to be signs of a special kind, that can facilitate computation. He proposes the conception of minds as semiotic systems as an alternative paradigm for understanding mental phenomena, one that seems to overcome the difficulties of computationalism. Now, I argue, that with computer systems dealing with scientific discovery, the matter is not so simple as that. The alleged superiority of humans using signs to stand for something other over computers being merely "physical symbol systems" or "automatic formal systems" is only easy to establish in everyday life, but becomes far from obvious when scientific discovery is at stake. In science, as opposed to everyday life, the meaning of symbols is, apart from very low-level experimental investigations, defined implicitly by the way the symbols are used in explanatory theories or experimental laws relevant to the field, and in consequence, human and machine discoverers are much more on a par. Moreover, the great practical success of the genetic programming method and recent attempts to apply it to automatic generation of cognitive theories seem to show, that computer systems are capable of very efficient problem solving activity in science, which is neither purposive nor meaningful, nor algorithmic. This, I think, undermines Fetzer's argument that computer systems are incapable of cognition because computation across representations is bound to be a purposive, meaningful, algorithmic problem solving activity.
Friedman, T L
1978-04-01
It is difficult to apply Piaget's theory to psychotherapy because the place of affect in it is ambiguous. When the alternatives are considered, it seems most consistent with Piaget's ideas to regard both cognitive and affective phenomena as problem-solving organizations. Piaget's remarkable discoveries in the cognitive sphere are a consequence of the easy access in that sphere to the kind of problems that need solving, and the phasic development of solutions. But the nature of the problems to be solved or the values to be guarded by a patient in psychotherapy are not knowable independently of the patient's actual behavior. In one respect all that is left from Piaget's approach for psychotherapy generally is the truism that therapy fosters differentiation and integration. However, even if we cannot frame a peculiarly Piagetian paradigm of psychotherapy, Piaget is valuable in posing a subsidiary question, namely, what in therapy fosters problem-solving activity. A reading of Piaget suggests that a patient learns by acting on his therapist and tacitly interpreting the results of his actions, that difficulties in therapy are the material from which therapy proceeds, and that in order to grasp the situation of the patient, the therapist himself may need to act on him and not just think about him. An implied lesson for training would be that supervision should instill a professional identity that is reinforced rather than challenged by therapy difficulties, and does not rely solely on theoretical categorizing.
Parallel Computing Strategies for Irregular Algorithms
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Parallel Computing for Probabilistic Response Analysis of High Temperature Composites
NASA Technical Reports Server (NTRS)
Sues, R. H.; Lua, Y. J.; Smith, M. D.
1994-01-01
The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.
Surprise-Based Learning for Autonomous Systems
2009-02-28
paradigm stems from Piaget’s theory of Developmental Psychology [5], Herben Simon’s theory on dual-space search for knowledge and problem solving [6...for scientific theories containing recursive theoretical terms". British Journal of Philosophy of Science, 44. 641-652, 1993. Piaget J.. "The Origins...34Learning to use a lever", Child Development , 43:790-799, 1972. Nolfi S ., Floreano D.. "Evolutionary robotics: The biology, intelligence, and
Intelligent Real-Time Problem Solving
1990-01-01
uncertainty, its preferences, and its attitude towards risk . 14 Control Theory This paradigm has culminated in a mature academic discipline that has produced a...systems offer the obvious advantages of evaluating against reality, but they are often cumbersome or even unavailable, may pose unacceptable risks , etc. In... return an answer. For the sorts of anytime algorithms wc are interested in, one can determine the expected utility of the answers returned by the
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.
The New ROSIE Reference Manual and User’s Guide
1987-06-01
control structures found in most symbolic languages Features such as rulesets and the pattern matcher blend with the naturalness of ROSIE’s English-like...tasks and does not embody any particular problem-solving techniques or paradigms. Because of its "general-purpose" flavor, it is less structured and... structure . Some operations required special arguments, others performed actions that were considered expedient in n programming language. As the number of
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.
Non-Boolean computing with nanomagnets for computer vision applications
NASA Astrophysics Data System (ADS)
Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep
2016-02-01
The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.
Hypertext-based design of a user interface for scheduling
NASA Technical Reports Server (NTRS)
Woerner, Irene W.; Biefeld, Eric
1993-01-01
Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.
Context Oriented Information Integration
NASA Astrophysics Data System (ADS)
Mohania, Mukesh; Bhide, Manish; Roy, Prasan; Chakaravarthy, Venkatesan T.; Gupta, Himanshu
Faced with growing knowledge management needs, enterprises are increasingly realizing the importance of seamlessly integrating critical business information distributed across both structured and unstructured data sources. Academicians have focused on this problem but there still remain a lot of obstacles for its widespread use in practice. One of the key problems is the absence of schema in unstructured text. In this paper we present a new paradigm for integrating information which overcomes this problem - that of Context Oriented Information Integration. The goal is to integrate unstructured data with the structured data present in the enterprise and use the extracted information to generate actionable insights for the enterprise. We present two techniques which enable context oriented information integration and show how they can be used for solving real world problems.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David
2015-02-01
Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.
A Novel Analog Reasoning Paradigm: New Insights in Intellectually Disabled Patients.
Curie, Aurore; Brun, Amandine; Cheylus, Anne; Reboul, Anne; Nazir, Tatjana; Bussy, Gérald; Delange, Karine; Paulignan, Yves; Mercier, Sandra; David, Albert; Marignier, Stéphanie; Merle, Lydie; de Fréminville, Bénédicte; Prieur, Fabienne; Till, Michel; Mortemousque, Isabelle; Toutain, Annick; Bieth, Eric; Touraine, Renaud; Sanlaville, Damien; Chelly, Jamel; Kong, Jian; Ott, Daniel; Kassai, Behrouz; Hadjikhani, Nouchine; Gollub, Randy L; des Portes, Vincent
2016-01-01
Intellectual Disability (ID) is characterized by deficits in intellectual functions such as reasoning, problem-solving, planning, abstract thinking, judgment, and learning. As new avenues are emerging for treatment of genetically determined ID (such as Down's syndrome or Fragile X syndrome), it is necessary to identify objective reliable and sensitive outcome measures for use in clinical trials. We developed a novel visual analogical reasoning paradigm, inspired by the Progressive Raven's Matrices, but appropriate for Intellectually Disabled patients. This new paradigm assesses reasoning and inhibition abilities in ID patients. We performed behavioural analyses for this task (with a reaction time and error rate analysis, Study 1) in 96 healthy controls (adults and typically developed children older than 4) and 41 genetically determined ID patients (Fragile X syndrome, Down syndrome and ARX mutated patients). In order to establish and quantify the cognitive strategies used to solve the task, we also performed an eye-tracking analysis (Study 2). Down syndrome, ARX and Fragile X patients were significantly slower and made significantly more errors than chronological age-matched healthy controls. The effect of inhibition on error rate was greater than the matrix complexity effect in ID patients, opposite to findings in adult healthy controls. Interestingly, ID patients were more impaired by inhibition than mental age-matched healthy controls, but not by the matrix complexity. Eye-tracking analysis made it possible to identify the strategy used by the participants to solve the task. Adult healthy controls used a matrix-based strategy, whereas ID patients used a response-based strategy. Furthermore, etiologic-specific reasoning differences were evidenced between ID patients groups. We suggest that this paradigm, appropriate for ID patients and developmental populations as well as adult healthy controls, provides an objective and quantitative assessment of visual analogical reasoning and cognitive inhibition, enabling testing for the effect of pharmacological or behavioural intervention in these specific populations.
Restful API Architecture Based on Laravel Framework
NASA Astrophysics Data System (ADS)
Chen, Xianjun; Ji, Zhoupeng; Fan, Yu; Zhan, Yongsong
2017-10-01
Web service has been an industry standard tech for message communication and integration between heterogeneous systems. RESTFUL API has become mainstream web service development paradigm after SOAP, how to effectively construct RESTFUL API remains a research hotspots. This paper presents a development model of RESTFUL API construction based on PHP language and LARAVEL framework. The key technical problems that need to be solved during the construction of RESTFUL API are discussed, and implementation details based on LARAVEL are given.
2011-06-01
2009, p.2). Given the wide adoption of principles and structures associated with the Incident Command System (ICS) in emergency management , it was...relationships in disaster response but also the factors that might lead to a more effective response and management . The cases were analysed...team was guided by the following considerations: 1. Use of an extended timeline – The model was conceptualized within a risk management paradigm in
An energy-efficient transmission scheme for real-time data in wireless sensor networks.
Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun
2015-05-20
The Internet of things (IoT) is a novel paradigm where all things or objects in daily life can communicate with other devices and provide services over the Internet. Things or objects need identifying, sensing, networking and processing capabilities to make the IoT paradigm a reality. The IEEE 802.15.4 standard is one of the main communication protocols proposed for the IoT. The IEEE 802.15.4 standard provides the guaranteed time slot (GTS) mechanism that supports the quality of service (QoS) for the real-time data transmission. In spite of some QoS features in IEEE 802.15.4 standard, the problem of end-to-end delay still remains. In order to solve this problem, we propose a cooperative medium access scheme (MAC) protocol for real-time data transmission. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the network performance.
An Energy-Efficient Transmission Scheme for Real-Time Data in Wireless Sensor Networks
Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun
2015-01-01
The Internet of things (IoT) is a novel paradigm where all things or objects in daily life can communicate with other devices and provide services over the Internet. Things or objects need identifying, sensing, networking and processing capabilities to make the IoT paradigm a reality. The IEEE 802.15.4 standard is one of the main communication protocols proposed for the IoT. The IEEE 802.15.4 standard provides the guaranteed time slot (GTS) mechanism that supports the quality of service (QoS) for the real-time data transmission. In spite of some QoS features in IEEE 802.15.4 standard, the problem of end-to-end delay still remains. In order to solve this problem, we propose a cooperative medium access scheme (MAC) protocol for real-time data transmission. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the network performance. PMID:26007722
Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm.
Giovannoni, Gavin
2018-06-01
The treatment of multiple sclerosis is evolving rapidly with 11 classes of disease-modifying therapies (DMTs). This article provides an overview of a new classification system for DMTs and treatment paradigm for using these DMTs effectively and safely. A summary of research into the use of more active approaches to early and effective treatment of multiple sclerosis with defined treatment targets of no evident disease activity (NEDA). New insights are discussed that is allowing the field to begin to tackle more advanced multiple sclerosis, including people with multiple sclerosis using wheelchairs. However, the need to modify expectations of what can be achieved in more advanced multiple sclerosis are discussed; in particular, the focus on neuronal systems with reserve capacity, for example, upper limb, bulbar and visual function. The review describes a new more active way of managing multiple sclerosis and concludes with a call to action in solving the problem of slow adoption of innovations and the global problem of untreated, or undertreated, multiple sclerosis.
Huang, Xiuzhen; Jennings, Steven F; Bruce, Barry; Buchan, Alison; Cai, Liming; Chen, Pengyin; Cramer, Carole L; Guan, Weihua; Hilgert, Uwe Kk; Jiang, Hongmei; Li, Zenglu; McClure, Gail; McMullen, Donald F; Nanduri, Bindu; Perkins, Andy; Rekepalli, Bhanu; Salem, Saeed; Specker, Jennifer; Walker, Karl; Wunsch, Donald; Xiong, Donghai; Zhang, Shuzhong; Zhang, Yu; Zhao, Zhongming; Moore, Jason H
2015-01-01
Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century. Big data is not "lots of data" as a phenomena anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of data. Big data overall is disconnecting researchers and science challenges. We propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem defining to address science challenges.
[Hippocrates is sick of misunderstanding and fatigue in society. How do I cure it?].
Vázquez-Benítez, Efraín
2010-10-01
Is taken as a paradigm of the physician Hippocrates devoted to care of the sick individual. Under the format of a fictional history focus aspects of the existential problems that affect the current physician in the exercise of their profession to analyze its causes and suggests some possible interventions of the doctors themselves to solve them. It insists that medicine is the art of applying science and technology to solving health problems of the individual and society, in which doctors study and practice the profession to serve others and that medicine not a commodity to be bought or sold according to market rules. Also emphasizes the concept that health is a basic right of man and not a gift or compliment to anyone or only product of legislation. The medical fee is fair, but not enough on a salary or wage, let alone the terms of a tab based on the benefit to investors, institutions or intermediaries, must be complemented with additional features that guarantee a dignified life. These principles must be preserved at all costs and prevent the market outside interests or "industrialize." The first step to solving problems is to become aware of them and understand them. We present possible solutions.
Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.
Tschentscher, Nadja; Hauk, Olaf
2016-08-01
Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
The Concept of Resource Use Efficiency as a Theoretical Basis for Promising Coal Mining Technologies
NASA Astrophysics Data System (ADS)
Mikhalchenko, Vadim
2017-11-01
The article is devoted to solving one of the most relevant problems of the coal mining industry - its high resource use efficiency, which results in high environmental and economic costs of operating enterprises. It is shown that it is the high resource use efficiency of traditional, historically developed coal production systems that generates a conflict between indicators of economic efficiency and indicators of resistance to uncertainty and variability of market environment parameters. The traditional technological paradigm of exploitation of coal deposits also predetermines high, technology-driven, economic risks. The solution is shown and a real example of the problem solution is considered.
An Analysis of Categorical and Quantitative Methods for Planning Under Uncertainty
Langlotz, Curtis P.; Shortliffe, Edward H.
1988-01-01
Decision theory and logical reasoning are both methods for representing and solving medical decision problems. We analyze the usefulness of these two approaches to medical therapy planning by establishing a simple correspondence between decision theory and non-monotonic logic, a formalization of categorical logical reasoning. The analysis indicates that categorical approaches to planning can be viewed as comprising two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of desirability of planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of categorical (nonmonotonic) reasoning: (1) Decision theory and artificial intelligence techniques are intended to solve different components of the planning problem. (2) When considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical logical reasoning for planning under certainty. (3) Because certain nonmonotonic programming paradigms (e.g., frame-based inheritance, rule-based planning, protocol-based reminders) are inherently problem-specific, they may be inappropriate to employ in the solution of certain types of planning problems. We discuss how these conclusions affect several current medical informatics research issues, including the construction of “very large” medical knowledge bases.
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Wobber, Victoria; Hare, Brian
2009-07-01
Relative to non-human primates, domestic dogs possess a number of social skills that seem exceptional-particularly in solving problems involving cooperation and communication with humans. However, the degree to which dogs' unusual skills are contextually specialized is still unclear. Here, we presented dogs with a social problem that did not require them to use cooperative-communicative cues and compared their performance to that of chimpanzees to assess the extent of dogs' capabilities relative to those of non-human primates. We tested the abilities of dogs and chimpanzees to inhibit previously learned responses by using a social and a non-social version of a reversal learning task. In contrast to previous findings in cooperative-communicative social tasks, dogs were not more skilled on the social task than the non-social task, while chimpanzees were significantly better in the social paradigm. Chimpanzees were able to inhibit their prior learning better and more quickly in the social paradigm than they were in the non-social paradigm, while dogs took more time to inhibit what they had learned in both versions of the task. These results suggest that the dogs' sophisticated social skills in using human social cues may be relatively specialized as a result of domestication.
Zoller, U; Scholz, R W
2004-01-01
Given the current world state of affairs, striving for sustainability and the consequent paradigm shift: growth-to-sustainable development, correction-to-prevention and options selection-to-options generation: the corresponding paradigm shift in science-technology-environment-society (STES) education is unavoidable. Accordingly, the essence of the current reform in STES education, worldwide, is a purposed effort to develop students' higher-order cognitive skills (HOCS) capability; i.e., question-asking, critical system thinking, decision making and problem solving, at the expense of the "delivery" of lower-order cognitive skills (LOCS)-oriented knowledge. This means a paradigm shift from the contemporary prevalent LOCS algorithmic teaching to HOCS evaluative learning and HOCS-promoting courses, curricula, teaching strategies and assessment methodologies, leading, hopefully to evaluative thinking and transfer. Following the formulation of selected relevant axioms, major paradigm shift in STES research and education for sustainability have been identified. The consequent shift, in the STES context, from disciplinary to inter- and transdisciplinary learning, in science technology and environmental engineering education is discussed, followed by selected examples of successfully implemented HOCS-promoting courses, and assessment methodologies. It is argued, that transferable "HOCS learning" for sustainability can and should be done.
Motivating Students to Write in Engineering Courses
NASA Astrophysics Data System (ADS)
Narayanan, M.
2005-12-01
Several scholars in the area of cognitive science have promoted new articulation guidelines for generating learning objectives such that student accomplishments become much more apparent and easily measurable. Technical writing has been a part of engineering education for a long time. Regardless, it appears that engineering students are more interested in spending productive time learning the mathematical aspects of subject matter. The students are reluctant to devote time and effort that involves descriptive writing. It is essential for the students to recognize that writing indeed enhances their grasp over technical content. In this paper, the author promotes such a practice and outlines how it could indeed help the instructor in assessing one's own teaching effectiveness. Leading educators and scholars in the area of cognitive science agree that in the modern era, a new paradigm for assessment called a learning paradigm must be generated to observe, measure and document the success of creative, new educational methods and practices. Educators have understood the implications and importance of Bloom's Taxonomy. Teachers have recognized that the students must be provided with an opportunity to develop their problem-solving skills in addition to mastering a particular body of information. Furthermore, many of our educational institutions have tried to move away from emphasizing the establishment of strong knowledge-base. The trend is to develop an interactive problem-solving pedagogy that encourages the development of learner's creativity, understanding, written and oral communication skills. (Saxe, 1988; Senge, 1990; Sims, 1995; Young & Young, 1999). In a learning paradigm, it is observed that evaluation is holistic, and student success outcomes are what is measured. Many scholars have recommended and supported a value-added concept of education by doing assessments before, during, and after a course. (Barr & Tagg, 1995). Other scholars have argued that achievement of educational objectives is becoming less and less measurable whereas the need for accountability is raising to the surface more frequently. The literature supports our intuitive belief that education in a new learning paradigm will prepare students for the work ahead of them. (Cox, Grasha, & Richlin 1997, March). Saxe, Senge and Sims all believe that in order to lead in a postmodern world, students need flexibility and problem-solving skills more than they need to master any particular body of information (Saxe, 1988; Senge, 1990; Sims, 1995). It is important that faculty members aspire to become masters of cognitive studies. They should be motivated and be driven to develop scholarship of pedagogy and a curriculum structure that can draw upon and embody learning principles. For example, the Wharton School of the University of Pennsylvania has embarked on a mission to educate students with a broader perspective. In this paper, the author tries to provide guidelines for articulating learning objectives using writing as an effective tool. In addition, he promotes the use of certain set of assessment methods that could benefit the learner as well as the instructor. References : Barr, R. B., & Tagg, J. (1995, November/December). From teaching to learning: A new paradigm for undergraduate education. Change: The Magazine of Higher Education, 13-24.
Li, Yadan; Xiao, Xiao; Ma, Wenjuan; Jiang, Jun; Qiu, Jiang; Zhang, Qinglin
2013-11-13
Accumulating evidence suggests that insight can be substantially influenced by task-irrelevant emotion stimuli and interpersonal competitive situation, and a close link might exist between them. Using a learning-testing paradigm and Event-Related Potentials (ERPs), the present study investigated the independent and joint effects of emotional and competitive information on insight problem solving especially their neural mechanisms. Subjects situated in either competitive or non-competitive condition learned heuristic logogriphs first and then viewed task-irrelevant positive or negative emotional pictures, which were followed by test logogriphs to solve. Both behavioral and ERP findings showed a more evident insight boost following negative emotional pictures in competitive context. Results demonstrated that negative emotion and competitive situation might promote insight by a defocused mode of attention (as indicated by N1 and P2), the enhanced semantic integration and breaking mental set (as indicated by N450), and the increased forming of novel associations activated by motivational arousal originating from competition (as indicated by P800-1600 and P1600-2500). These results indicate that the dynamic interactions between emotional valence and competitive arousal effects on insight. © 2013 Elsevier B.V. All rights reserved.
Boutet, Isabelle; Collin, Charles A; MacLeod, Lindsey S; Messier, Claude; Holahan, Matthew R; Berry-Kravis, Elizabeth; Gandhi, Reno M; Kogan, Cary S
2018-01-01
To generate meaningful information, translational research must employ paradigms that allow extrapolation from animal models to humans. However, few studies have evaluated translational paradigms on the basis of defined validation criteria. We outline three criteria for validating translational paradigms. We then evaluate the Hebb-Williams maze paradigm (Hebb and Williams, 1946; Rabinovitch and Rosvold, 1951) on the basis of these criteria using Fragile X syndrome (FXS) as model disease. We focused on this paradigm because it allows direct comparison of humans and animals on tasks that are behaviorally equivalent (criterion #1) and because it measures spatial information processing, a cognitive domain for which FXS individuals and mice show impairments as compared to controls (criterion #2). We directly compared the performance of affected humans and mice across different experimental conditions and measures of behavior to identify which conditions produce comparable patterns of results in both species. Species differences were negligible for Mazes 2, 4, and 5 irrespective of the presence of visual cues, suggesting that these mazes could be used to measure spatial learning in both species. With regards to performance on the first trial, which reflects visuo-spatial problem solving, Mazes 5 and 9 without visual cues produced the most consistent results. We conclude that the Hebb-Williams mazes paradigm has the potential to be utilized in translational research to measure comparable cognitive functions in FXS humans and animals (criterion #3).
Voegtlin, T; Verschure, P F
1999-01-01
This paper argues for the development of synthetic approaches towards the study of brain and behavior as a complement to the more traditional empirical mode of research. As an example we present our own work on learning and problem solving which relates to the behavioral paradigms of classical and operant conditioning. We define the concept of learning in the context of behavior and lay out the basic methodological requirements a model needs to satisfy, which includes evaluations using robots. In addition, we define a number of design principles neuronal models should obey to be considered relevant. We present in detail the construction of a neural model of short- and long-term memory which can be applied to an artificial behaving system. The presented model (DAC4) provides a novel self-consistent implementation of these processes, which satisfies our principles. This model will be interpreted towards the present understanding of the neuronal substrate of memory.
Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1999-01-01
The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.
Scientific Revolutions to the nth power: n = 0, 1, 2, 3.
NASA Astrophysics Data System (ADS)
Beichler, James
2008-04-01
Thomas Kuhn's description and characterization of scientific revolutions set the standard for interpreting and understanding these events, but his characterization introduced an anomaly. Newtonian science was at the pinnacle of its success immediately prior to the Second Scientific Revolution. From an evolutionary point-of-view, there were no crises to be solved just problems within the Newtonian paradigm, whereas the specific crises that initiated the revolution are evident from everyone's point-of-view after the revolution. This paradox is well recognized, but it seems not to be a problem and is just ignored as if it were not important or significant. Yet this discrepancy strikes at the very heart of physics and the overall progress of science. Historical conditions currently parallel the period immediately prior to the Second Scientific Revolution indicating that a new scientific revolution is approaching. When a comparison of the two periods is made, new characteristics of scientific revolutions are identified, the paradox is solved and evidence of a Zeroth Scientific Revolution emerges from the historical record.
Frontal P300 decrement and executive dysfunction in adolescents with conduct problems.
Kim, M S; Kim, J J; Kwon, J S
2001-01-01
This study investigated the cognitive and cerebral function of adolescents with conduct problems by neuropsychological battery (STIM) and event-related potential (ERP). Eighteen adolescents with conduct disorder, and 18 age-matched normal subjects were included. Such cognitive functions as attention, memory, executive function and problem solving were evaluated using subtests of STIM. ERP was measured using an auditory oddball paradigm. The conduct group showed a significantly lower hit rate on the Wisconsin Card Sorting Test (WCST) than the control group. In addition, the conduct group showed reduced P300 amplitude at Fz and Cz, and prolonged P300 latency at Fz, and there was a significant correlation between P300 amplitude and Stroop test performance. These results indicate that adolescents with conduct problems have impairments of executive function and inhibition, and that these impairments are associated with frontal dysfunction.
NASA Astrophysics Data System (ADS)
Neumann, Karl
1987-06-01
In the methodological discussion of recent years it has become apparent that many research problems, including problems relating to the theory of educational science, cannot be solved by using quantitative methods. The multifaceted aspects of human behaviour and all its environment-bound subtle nuances, especially the process of education or the development of identity, cannot fully be taken into account within a rigid neopositivist approach. In employing the paradigm of symbolic interactionism as a suitable model for the analysis of processes of education and formation, the research has generally to start out from complex reciprocal social interactions instead of unambigious connections of causes. In analysing several particular methodological problems, the article demonstrates some weaknesses of quantitative approaches and then shows the advantages in and the necessity for using qualitative research tools.
Solving the Nonlocality Riddle by Conformal Quantum Geometrodynamics
NASA Astrophysics Data System (ADS)
Santamato, Enrico; de Martini, Francesco
2012-01-01
Since the 1935 proposal by Einstein, Podolsky and Rosen the riddle of nonlocality, today demonstrated by the violation of Bell's inequalities within innumerable experiments, has been a cause of concern and confusion within the debate over the foundations of quantum mechanics. The present paper tackles the problem by a nonrelativistic approach based on conformal differential geometry applied to the solution of the dynamical problem of two entangled spin 1/2 particles. It is found that the quantum nonlocality may be understood on the basis of a conformal quantum geometrodynamics acting necessarily on the full "configuration space" of the entangled particles. At the end, the violation of the Bell inequalities is demonstrated without making recourse to the common nonlocality paradigm.
Reyes, Joseph Anthony L
2015-04-01
This paper explores public attitudes towards science and nature in twelve countries using data from the International Social Survey Programme environment modules of 1993, 2000, and 2010. Analysis of attitude items indicates technocentric and pessimistic dimensions broadly related to the Dominant Social Paradigm and New Environmental Paradigm. A bi-axial dimension scale is utilized to classify respondents among four environmental knowledge orientations. Discernible and significant patterns are found among countries and their populations. Relationships with other substantial variables in the surveys are discussed and findings show that the majority of industrialized countries are clustered in the rational ecologist categorization with respondents possessing stronger ecological consciousness and optimism towards the role of modern institutions, science, and technology in solving environmental problems. © The Author(s) 2013.
Computing with dynamical systems based on insulator-metal-transition oscillators
NASA Astrophysics Data System (ADS)
Parihar, Abhinav; Shukla, Nikhil; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit
2017-04-01
In this paper, we review recent work on novel computing paradigms using coupled oscillatory dynamical systems. We explore systems of relaxation oscillators based on linear state transitioning devices, which switch between two discrete states with hysteresis. By harnessing the dynamics of complex, connected systems, we embrace the philosophy of "let physics do the computing" and demonstrate how complex phase and frequency dynamics of such systems can be controlled, programmed, and observed to solve computationally hard problems. Although our discussion in this paper is limited to insulator-to-metallic state transition devices, the general philosophy of such computing paradigms can be translated to other mediums including optical systems. We present the necessary mathematical treatments necessary to understand the time evolution of these systems and demonstrate through recent experimental results the potential of such computational primitives.
Quantum simulations with noisy quantum computers
NASA Astrophysics Data System (ADS)
Gambetta, Jay
Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.
a Non-Overlapping Discretization Method for Partial Differential Equations
NASA Astrophysics Data System (ADS)
Rosas-Medina, A.; Herrera, I.
2013-05-01
Mathematical models of many systems of interest, including very important continuous systems of Engineering and Science, lead to a great variety of partial differential equations whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by engineering and scientific applications. The emergence of parallel computing prompted on the part of the computational-modeling community a continued and systematic effort with the purpose of harnessing it for the endeavor of solving boundary-value problems (BVPs) of partial differential equations. Very early after such an effort began, it was recognized that domain decomposition methods (DDM) were the most effective technique for applying parallel computing to the solution of partial differential equations, since such an approach drastically simplifies the coordination of the many processors that carry out the different tasks and also reduces very much the requirements of information-transmission between them. Ideally, DDMs intend producing algorithms that fulfill the DDM-paradigm; i.e., such that "the global solution is obtained by solving local problems defined separately in each subdomain of the coarse-mesh -or domain-decomposition-". Stated in a simplistic manner, the basic idea is that, when the DDM-paradigm is satisfied, full parallelization can be achieved by assigning each subdomain to a different processor. When intensive DDM research began much attention was given to overlapping DDMs, but soon after attention shifted to non-overlapping DDMs. This evolution seems natural when the DDM-paradigm is taken into account: it is easier to uncouple the local problems when the subdomains are separated. However, an important limitation of non-overlapping domain decompositions, as that concept is usually understood today, is that interface nodes are shared by two or more subdomains of the coarse-mesh and, therefore, even non-overlapping DDMs are actually overlapping when seen from the perspective of the nodes used in the discretization. In this talk we present and discuss a discretization method in which the nodes used are non-overlapping, in the sense that each one of them belongs to one and only one subdomain of the coarse-mesh.
A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research.
Addicott, M A; Pearson, J M; Sweitzer, M M; Barack, D L; Platt, M L
2017-09-01
Foraging is a fundamental behavior, and many types of animals appear to have solved foraging problems using a shared set of mechanisms. Perhaps the most common foraging problem is the choice between exploiting a familiar option for a known reward and exploring unfamiliar options for unknown rewards-the so-called explore/exploit trade-off. This trade-off has been studied extensively in behavioral ecology and computational neuroscience, but is relatively new to the field of psychiatry. Explore/exploit paradigms can offer psychiatry research a new approach to studying motivation, outcome valuation, and effort-related processes, which are disrupted in many mental and emotional disorders. In addition, the explore/exploit trade-off encompasses elements of risk-taking and impulsivity-common behaviors in psychiatric disorders-and provides a novel framework for understanding these behaviors within an ecological context. Here we explain relevant concepts and some common paradigms used to measure explore/exploit decisions in the laboratory, review clinically relevant research on the neurobiology and neuroanatomy of explore/exploit decision making, and discuss how computational psychiatry can benefit from foraging theory.
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe
NASA Astrophysics Data System (ADS)
Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.
2006-10-01
We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ms˜1eV. This could result in better light element probes of (constraints on) these particles.
Coherent active-sterile neutrino flavor transformation in the early universe.
Kishimoto, Chad T; Fuller, George M; Smith, Christel J
2006-10-06
We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses m(s) approximately 1 eV. This could result in better light element probes of (constraints on) these particles.
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
Cancer systems biology: signal processing for cancer research
Yli-Harja, Olli; Ylipää, Antti; Nykter, Matti; Zhang, Wei
2011-01-01
In this editorial we introduce the research paradigms of signal processing in the era of systems biology. Signal processing is a field of science traditionally focused on modeling electronic and communications systems, but recently it has turned to biological applications with astounding results. The essence of signal processing is to describe the natural world by mathematical models and then, based on these models, develop efficient computational tools for solving engineering problems. Here, we underline, with examples, the endless possibilities which arise when the battle-hardened tools of engineering are applied to solve the problems that have tormented cancer researchers. Based on this approach, a new field has emerged, called cancer systems biology. Despite its short history, cancer systems biology has already produced several success stories tackling previously impracticable problems. Perhaps most importantly, it has been accepted as an integral part of the major endeavors of cancer research, such as analyzing the genomic and epigenomic data produced by The Cancer Genome Atlas (TCGA) project. Finally, we show that signal processing and cancer research, two fields that are seemingly distant from each other, have merged into a field that is indeed more than the sum of its parts. PMID:21439242
Influence of the large-small split effect on strategy choice in complex subtraction.
Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei
2018-04-01
Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.
Dark Matter and Cosmic Web Story
NASA Astrophysics Data System (ADS)
Einasto, Jaan
2014-01-01
The development of concepts of dark matter and cosmic web are described as paradigm changes in cosmology. As characteristic in paradigm shifts, there is no single discovery; the new concepts were developed step-by-step by many scientists. The book describes the classical cosmological paradigm, elaborated in the first half of the 20th century. Next the book describes problems in the classical picture, and steps to solve the discrepancies, which eventually led to the formation of the modern cosmological paradigm. The new paradigm tells that the Universe is dominated by dark matter and dark energy, that it has the structure in the form of the cosmic web, and that it has evolved through an inflationary initial stage. The story is told from the perspective of one of the participants of events. The book concentrates to the path of the research, difficulties encountered, and discussions in favour or against new concepts. A special flavour gives to the story the description of difficulties of doing revolutionary research in an occupied country behind the Iron Curtain -- as well as convincing scientists in the West -- and the development of Estonia towards a free country. The book is accompanied by a website (http://www.aai.ee/~einasto/DarkMatter) which contains additional material: copies of originals of some crucial papers, astronomical movies, and also movies which show the private life of the author.
Jung, Nadine; Wranke, Christina; Hamburger, Kai; Knauff, Markus
2014-01-01
Recent experimental studies show that emotions can have a significant effect on the way we think, decide, and solve problems. This paper presents a series of four experiments on how emotions affect logical reasoning. In two experiments different groups of participants first had to pass a manipulated intelligence test. Their emotional state was altered by giving them feedback, that they performed excellent, poor or on average. Then they completed a set of logical inference problems (with if p, then q statements) either in a Wason selection task paradigm or problems from the logical propositional calculus. Problem content also had either a positive, negative or neutral emotional value. Results showed a clear effect of emotions on reasoning performance. Participants in negative mood performed worse than participants in positive mood, but both groups were outperformed by the neutral mood reasoners. Problem content also had an effect on reasoning performance. In a second set of experiments, participants with exam or spider phobia solved logical problems with contents that were related to their anxiety disorder (spiders or exams). Spider phobic participants' performance was lowered by the spider-content, while exam anxious participants were not affected by the exam-related problem content. Overall, unlike some previous studies, no evidence was found that performance is improved when emotion and content are congruent. These results have consequences for cognitive reasoning research and also for cognitively oriented psychotherapy and the treatment of disorders like depression and anxiety.
Jung, Nadine; Wranke, Christina; Hamburger, Kai; Knauff, Markus
2014-01-01
Recent experimental studies show that emotions can have a significant effect on the way we think, decide, and solve problems. This paper presents a series of four experiments on how emotions affect logical reasoning. In two experiments different groups of participants first had to pass a manipulated intelligence test. Their emotional state was altered by giving them feedback, that they performed excellent, poor or on average. Then they completed a set of logical inference problems (with if p, then q statements) either in a Wason selection task paradigm or problems from the logical propositional calculus. Problem content also had either a positive, negative or neutral emotional value. Results showed a clear effect of emotions on reasoning performance. Participants in negative mood performed worse than participants in positive mood, but both groups were outperformed by the neutral mood reasoners. Problem content also had an effect on reasoning performance. In a second set of experiments, participants with exam or spider phobia solved logical problems with contents that were related to their anxiety disorder (spiders or exams). Spider phobic participants' performance was lowered by the spider-content, while exam anxious participants were not affected by the exam-related problem content. Overall, unlike some previous studies, no evidence was found that performance is improved when emotion and content are congruent. These results have consequences for cognitive reasoning research and also for cognitively oriented psychotherapy and the treatment of disorders like depression and anxiety. PMID:24959160
Attentional bias induced by solving simple and complex addition and subtraction problems.
Masson, Nicolas; Pesenti, Mauro
2014-01-01
The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants. The constituents of the addition and subtraction problems (first operand; operator; second operand) were flashed sequentially in the centre of a screen, then followed by a target on the left or the right side of the screen, which the participants had to detect. This paradigm was employed with arithmetic facts (Experiment 1) and with more complex arithmetic problems (Experiment 2) in order to assess the effects of the operation, the magnitude of the operands, the magnitude of the results, and the presence or absence of a requirement for the participants to carry or borrow numbers. The results showed that arithmetic operations induce some spatial shifts of attention, possibly through a semantic link between the operation and space.
Logic, probability, and human reasoning.
Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P
2015-04-01
This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum annealing with parametrically driven nonlinear oscillators
NASA Astrophysics Data System (ADS)
Puri, Shruti
While progress has been made towards building Ising machines to solve hard combinatorial optimization problems, quantum speedups have so far been elusive. Furthermore, protecting annealers against decoherence and achieving long-range connectivity remain important outstanding challenges. With the hope of overcoming these challenges, I introduce a new paradigm for quantum annealing that relies on continuous variable states. Unlike the more conventional approach based on two-level systems, in this approach, quantum information is encoded in two coherent states that are stabilized by parametrically driving a nonlinear resonator. I will show that a fully connected Ising problem can be mapped onto a network of such resonators, and outline an annealing protocol based on adiabatic quantum computing. During the protocol, the resonators in the network evolve from vacuum to coherent states representing the ground state configuration of the encoded problem. In short, the system evolves between two classical states following non-classical dynamics. As will be supported by numerical results, this new annealing paradigm leads to superior noise resilience. Finally, I will discuss a realistic circuit QED realization of an all-to-all connected network of parametrically driven nonlinear resonators. The continuous variable nature of the states in the large Hilbert space of the resonator provides new opportunities for exploring quantum phase transitions and non-stoquastic dynamics during the annealing schedule.
Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.
Pizzie, Rachel G; Kraemer, David J M
2017-11-01
Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Albiach-Serrano, Anna; Bugnyar, Thomas; Call, Josep
2012-11-01
Apes (Gorilla gorilla, Pan paniscus, P. troglodytes, Pong abelii) and corvids (Corvus corax, C. corone) are among the most proficient and flexible tool users in the animal kingdom. Although it has been proposed that this is the result of convergent evolution, little is known about whether this is limited to behavior or also includes the underlying cognitive mechanisms. We compared several species of apes (bonobos, chimpanzees, gorillas, and orangutans) and corvids (carrion crows and common ravens) using exactly the same paradigm: a support task with elements from the classical patterned-string tasks. Corvids proved able to solve at least an easy pattern, whereas apes outperformed corvids with respect to the complexity of the patterns solved, the relative number of subjects solving each problem, and the speed to reach criterion. We addressed the question of whether subjects based their choices purely on perceptual cues or on a more abstract understanding of the problem. This was done by using a perceptually very similar but causally different condition where instead of paper strips there were strip shapes painted on a platform. Corvids' performance did not differ between conditions, whereas apes were able to solve the real but not the painted task. This shows that apes were not basing their choices just on spatial or arbitrary perceptual cues. Instead, and unlike corvids, they must have had some causal knowledge of the task.
One-dimensional swarm algorithm packaging
NASA Astrophysics Data System (ADS)
Lebedev, Boris K.; Lebedev, Oleg B.; Lebedeva, Ekaterina O.
2018-05-01
The paper considers an algorithm for solving the problem of onedimensional packaging based on the adaptive behavior model of an ant colony. The key role in the development of the ant algorithm is the choice of representation (interpretation) of the solution. The structure of the solution search graph, the procedure for finding solutions on the graph, the methods of deposition and evaporation of pheromone are described. Unlike the canonical paradigm of an ant algorithm, an ant on the solution search graph generates sets of elements distributed across blocks. Experimental studies were conducted on IBM PC. Compared with the existing algorithms, the results are improved.
NASA Astrophysics Data System (ADS)
Hrdinová, Gabriela; Sakál, Peter
2012-12-01
The critical system analysis of the current status of all areas of human activity on the planet Earth (in Europe and the Slovak Republic) convinces us, that this development is unsustainable. Many prominent personalities of scientific, cultural, social and political life stated that our planet Earth and mankind with it, and all that man has created during its existence is only one step finds itself on the brink of disaster and it will turn against man. Many theoretical concepts, based on the historical development and experience notes that this status is natural and inevitable. However, we hold a different opinion. If the man is team, that is declared, it must show (now at the turning point) themselves and future generations, that it thinks with its existence on planet Earth seriously and responsibly. Given by the current global crisis and also our belief that the fundamental problem of humanity is unfair creation and distribution of wealth on planet Earth, we maintain opinion for changing the paradigm of thinking in this area. As the only alternative for solving this problem we see in the application of the concept of sustainable corporate social responsibility. The article presents our idea.
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
Parallel computing for probabilistic fatigue analysis
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.
1993-01-01
This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.
Machine learning in motion control
NASA Technical Reports Server (NTRS)
Su, Renjeng; Kermiche, Noureddine
1989-01-01
The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.
Operator priming and generalization of practice in adults' simple arithmetic.
Chen, Yalin; Campbell, Jamie I D
2016-04-01
There is a renewed debate about whether educated adults solve simple addition problems (e.g., 2 + 3) by direct fact retrieval or by fast, automatic counting-based procedures. Recent research testing adults' simple addition and multiplication showed that a 150-ms preview of the operator (+ or ×) facilitated addition, but not multiplication, suggesting that a general addition procedure was primed by the + sign. In Experiment 1 (n = 36), we applied this operator-priming paradigm to rule-based problems (0 + N = N, 1 × N = N, 0 × N = 0) and 1 + N problems with N ranging from 0 to 9. For the rule-based problems, we found both operator-preview facilitation and generalization of practice (e.g., practicing 0 + 3 sped up unpracticed 0 + 8), the latter being a signature of procedure use; however, we also found operator-preview facilitation for 1 + N in the absence of generalization, which implies the 1 + N problems were solved by fact retrieval but nonetheless were facilitated by an operator preview. Thus, the operator preview effect does not discriminate procedure use from fact retrieval. Experiment 2 (n = 36) investigated whether a population with advanced mathematical training-engineering and computer science students-would show generalization of practice for nonrule-based simple addition problems (e.g., 1 + 4, 4 + 7). The 0 + N problems again presented generalization, whereas no nonzero problem type did; but all nonzero problems sped up when the identical problems were retested, as predicted by item-specific fact retrieval. The results pose a strong challenge to the generality of the proposal that skilled adults' simple addition is based on fast procedural algorithms, and instead support a fact-retrieval model of fast addition performance. (c) 2016 APA, all rights reserved).
Passive motion paradigm: an alternative to optimal control.
Mohan, Vishwanathan; Morasso, Pietro
2011-01-01
IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.
Partially acoustic dark matter, interacting dark radiation, and large scale structure
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz
2016-12-01
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.
Partially acoustic dark matter, interacting dark radiation, and large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
Partially acoustic dark matter, interacting dark radiation, and large scale structure
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; ...
2016-12-21
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Using the Social Web to Supplement Classical Learning
NASA Astrophysics Data System (ADS)
Trausan-Matu, Stefan; Posea, Vlad; Rebedea, Traian; Chiru, Costin
The paper describes a complex e-learning experiment that has involved over 700 students that attended the Human-Computer Interaction course at the “Politehnica” University of Bucharest during the last 4 years. The experiment consisted in using social web technologies like blogs and chat conferences to engage students in collaborative learning. The paper presents the learning scenario, the problems encountered and the tools developed for solving these problems and assisting tutors in evaluating the activity of the students. The results of the experiment and of using the blog and chat analysis tools are also covered. Moreover, we show the benefits of using such a scenario for the learning community formed by the students that attended this course in order to supplement the classical teaching and learning paradigm.
Distributed and parallel approach for handle and perform huge datasets
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Big Data refers to the dynamic, large and disparate volumes of data comes from many different sources (tools, machines, sensors, mobile devices) uncorrelated with each others. It requires new, innovative and scalable technology to collect, host and analytically process the vast amount of data. Proper architecture of the system that perform huge data sets is needed. In this paper, the comparison of distributed and parallel system architecture is presented on the example of MapReduce (MR) Hadoop platform and parallel database platform (DBMS). This paper also analyzes the problem of performing and handling valuable information from petabytes of data. The both paradigms: MapReduce and parallel DBMS are described and compared. The hybrid architecture approach is also proposed and could be used to solve the analyzed problem of storing and processing Big Data.
De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H
2018-05-15
In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be involved in resolution of proactive interference. Besides, no correlation between the neural problem size effect and multiplication performance was found. This study supports the idea that the interference due to similarities/overlap of physical traits (the digits) is crucial in memorizing arithmetic facts and in determining individual differences in arithmetic. Copyright © 2018 Elsevier Inc. All rights reserved.
Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach
NASA Astrophysics Data System (ADS)
Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar
2010-10-01
To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.
Science and Technology Education in the STES Context in Primary Schools: What Should It Take?
NASA Astrophysics Data System (ADS)
Zoller, Uri
2011-10-01
Striving for sustainability requires a paradigm shift in conceptualization, thinking, research and education, particularly concerning the science-technology-environment-society (STES) interfaces. Consequently, `STES literacy' requires the development of students' question asking, critical, evaluative system thinking, decision making and problem solving capabilities, in this context, via innovative implementable higher-order cognitive skills (HOCS)-promoting teaching, assessment and learning strategies. The corresponding paradigms shift in science and technology education, such as from algorithmic teaching to HOCS-promoting learning is unavoidable, since it reflects the social pressure, worldwide, towards more accountable socially- and environmentally-responsible sustainable development. Since most of the STES- and, recently STEM (science-technology-engineering-mathematics)-related research in science education has been focused on secondary and tertiary education, it is vital to demonstrate the relevance of this multifaceted research to the science and technology teaching in primary schools. Our longitudinal STES education-related research and curriculum development point to the very little contribution, if any, of the traditional science teaching to "know", to the development of students' HOCS capabilities. On the other hand, there appears to be a `general agreement', that the contemporary dominant lower-order cognitive skills (LOCS) teaching and assessment strategies applied in science and technology education are, in fact, restraining the natural curiosity and creativity of primary school (and younger?) pupils/children. Since creative thinking as well as evaluative system thinking, decision making, problem solving and … transfer constitute an integral part of the HOCS conceptual framework, the appropriateness of "HOCS promoting" teaching, and the relevance of science and technology, to elementary education in the STES context, is apparent. Therefore, our overriding guiding purpose was to provide any evidence-based research to the vital LOCS-to-HOCS paradigm shift in STES education. The findings of, and conclusions derived from our longitudinal research on HOCS development within STES-oriented and traditional education, suggest that both—science and technology education (STE) and STES education—are relevant to primary school education. Based on this, what it should take to insure success in this context, is thoroughly discussed.
Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.
2000-01-01
We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469
Mulder, Samuel A; Wunsch, Donald C
2003-01-01
The Traveling Salesman Problem (TSP) is a very hard optimization problem in the field of operations research. It has been shown to be NP-complete, and is an often-used benchmark for new optimization techniques. One of the main challenges with this problem is that standard, non-AI heuristic approaches such as the Lin-Kernighan algorithm (LK) and the chained LK variant are currently very effective and in wide use for the common fully connected, Euclidean variant that is considered here. This paper presents an algorithm that uses adaptive resonance theory (ART) in combination with a variation of the Lin-Kernighan local optimization algorithm to solve very large instances of the TSP. The primary advantage of this algorithm over traditional LK and chained-LK approaches is the increased scalability and parallelism allowed by the divide-and-conquer clustering paradigm. Tours obtained by the algorithm are lower quality, but scaling is much better and there is a high potential for increasing performance using parallel hardware.
The representation of multiplication and division facts in memory.
De Brauwer, Jolien; Fias, Wim
2011-01-01
Recently, using a training paradigm, Campbell and Agnew (2009) observed cross-operation response time savings with nonidentical elements (e.g., practice 3 + 2, test 5 - 2) for addition and subtraction, showing that a single memory representation underlies addition and subtraction performance. Evidence for cross-operation savings between multiplication and division have been described frequently (e.g., Campbell, Fuchs-Lacelle, & Phenix, 2006) but they have always been attributed to a mediation strategy (reformulating a division problem as a multiplication problem, e.g., Campbell et al., 2006). Campbell and Agnew (2009) therefore concluded that there exists a fundamental difference between addition and subtraction on the one hand and multiplication and division on the other hand. However, our results suggest that retrieval savings between inverse multiplication and division problems can be observed. Even for small problems (solved by direct retrieval) practicing a division problem facilitated the corresponding multiplication problem and vice versa. These findings indicate that shared memory representations underlie multiplication and division retrieval. Hence, memory and learning processes do not seem to differ fundamentally between addition-subtraction and multiplication-division.
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
The riches of the cyclopean paradigm
NASA Astrophysics Data System (ADS)
Tyler, Christopher W.
2005-03-01
The cyclopean paradigm introduced by Bela Julesz remains one of the richest probes into the neural organization of sensory processing, by virtue of both its specificity for purely stereoscopic form and the sophistication of the processing required to retrieve it. The introduction of the sinusoidal stereograting showed that the perceptual limitations of human depth processing are very different from those for monocular form. Their use has also revealed the existence of hypercyclopean form channels selective for specific aspects of the monocularly invisible depth form. The natural extension of stereogratings to patches of stereoGabor ripple has allowed the measurement of the summation properties for depth structure, which is specific for narrow horizontal bars in depth. Consideration of the apparent motion between two cyclopean depth structures reveals the existence of a novel surface correspondence problem operating for cyclopean surfaces over time after the binocular correspondence has been solved. Such concepts imply that remains to be discovered about cyclopean stereopsis and its relationship to 3D form perception from other depth cues.
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Davelaar, Eddy J
2012-11-01
This article outlines a methodology for probing working memory (WM) content in high-level cognitive tasks (e.g., decision making, problem solving, and memory retrieval) by capitalizing on attentional and oculomotor biases evidenced in top-down capture paradigms. This method would be of great use, as it could measure the information resident in WM at any point in a task and, hence, track information use over time as tasks dynamically evolve. Above and beyond providing a measure of information occupancy in WM, such a method would benefit from sensitivity to the specific activation levels of individual items in WM. This article additionally forwards a novel fusion of standard free recall and visual search paradigms in an effort to assess the sensitivity of eye movements in top-down capture, on which this new measurement technique relies, to item-specific memory activation (ISMA). The results demonstrate eye movement sensitivity to ISMA in some, but not all, cases.
Agile manufacturing and constraints management: a strategic perspective
NASA Astrophysics Data System (ADS)
Stratton, Roy; Yusuf, Yahaya Y.
2000-10-01
The definition of the agile paradigm has proved elusive and is often viewed as a panacea, in contention with more traditional approaches to operations strategy development and Larkin its own methodology and tools. The Theory of Constraints (TOC) is also poorly understood, as it is commonly solely associated with production planning and control systems and bottleneck management. This paper will demonstrate the synergy between these two approaches together with the Theory of Inventive Problem Solving (TRIZ), and establish how the systematic elimination of trade-offs can support the agile paradigm. Whereas agility is often seen as a trade-off free destination, both TOC and TRIZ may be considered to be route finders, as they comprise methodologies that focus on the identification and elimination of the trade-offs that constrain the purposeful improvement of a system, be it organizational or mechanical. This paper will also show how the TOC thinking process may be combined with the TRIZ knowledge based approach and used in breaking contradictions within agile logistics.
Reasoning about real-time systems with temporal interval logic constraints on multi-state automata
NASA Technical Reports Server (NTRS)
Gabrielian, Armen
1991-01-01
Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.
Small Universal Bacteria and Plasmid Computing Systems.
Wang, Xun; Zheng, Pan; Ma, Tongmao; Song, Tao
2018-05-29
Bacterial computing is a known candidate in natural computing, the aim being to construct "bacterial computers" for solving complex problems. In this paper, a new kind of bacterial computing system, named the bacteria and plasmid computing system (BP system), is proposed. We investigate the computational power of BP systems with finite numbers of bacteria and plasmids. Specifically, it is obtained in a constructive way that a BP system with 2 bacteria and 34 plasmids is Turing universal. The results provide a theoretical cornerstone to construct powerful bacterial computers and demonstrate a concept of paradigms using a "reasonable" number of bacteria and plasmids for such devices.
New Control Paradigms for Resources Saving: An Approach for Mobile Robots Navigation.
Socas, Rafael; Dormido, Raquel; Dormido, Sebastián
2018-01-18
In this work, an event-based control scheme is presented. The proposed system has been developed to solve control problems appearing in the field of Networked Control Systems (NCS). Several models and methodologies have been proposed to measure different resources consumptions. The use of bandwidth, computational load and energy resources have been investigated. This analysis shows how the parameters of the system impacts on the resources efficiency. Moreover, the proposed system has been compared with its equivalent discrete-time solution. In the experiments, an application of NCS for mobile robots navigation has been set up and its resource usage efficiency has been analysed.
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
New Control Paradigms for Resources Saving: An Approach for Mobile Robots Navigation
2018-01-01
In this work, an event-based control scheme is presented. The proposed system has been developed to solve control problems appearing in the field of Networked Control Systems (NCS). Several models and methodologies have been proposed to measure different resources consumptions. The use of bandwidth, computational load and energy resources have been investigated. This analysis shows how the parameters of the system impacts on the resources efficiency. Moreover, the proposed system has been compared with its equivalent discrete-time solution. In the experiments, an application of NCS for mobile robots navigation has been set up and its resource usage efficiency has been analysed. PMID:29346321
Childhood obesity: Current and novel approaches.
Sabin, Matthew A; Kiess, Wieland
2015-06-01
The prevalence of childhood obesity has increased over the last fifty years by approximately 5% per decade, and approximately a quarter of all children are now either overweight or obese. These children have a significantly increased risk of many future health problems including adult obesity, type 2 diabetes and heart disease. Despite this relentless increase, common-sense approaches aimed at prevention and treatment have failed to solve the problem. Current approaches at prevention have faced major challenges with some progress in implementing smaller scale programs and social marketing, but little action on broad public policy approaches which often appears unpalatable to society or individual governments. Meanwhile, treatment approaches have mainly focused on lifestyle change, and novel approaches are urgently needed. Prevention needs to shift to improving maternal health prior to conception, with more research focussed on the impact of early years in programming offspring to future overweight/obesity. Likewise, treatment paradigms need to move from simply thinking that obesity can be solved by readdressing diet and activity levels. Novel approaches are needed which take into consideration the complex physiology which regulates early childhood growth and the development of obesity in susceptible individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Foundations of resilience thinking.
Curtin, Charles G; Parker, Jessica P
2014-08-01
Through 3 broad and interconnected streams of thought, resilience thinking has influenced the science of ecology and natural resource management by generating new multidisciplinary approaches to environmental problem solving. Resilience science, adaptive management (AM), and ecological policy design (EPD) contributed to an internationally unified paradigm built around the realization that change is inevitable and that science and management must approach the world with this assumption, rather than one of stability. Resilience thinking treats actions as experiments to be learned from, rather than intellectual propositions to be defended or mistakes to be ignored. It asks what is novel and innovative and strives to capture the overall behavior of a system, rather than seeking static, precise outcomes from discrete action steps. Understanding the foundations of resilience thinking is an important building block for developing more holistic and adaptive approaches to conservation. We conducted a comprehensive review of the history of resilience thinking because resilience thinking provides a working context upon which more effective, synergistic, and systems-based conservation action can be taken in light of rapid and unpredictable change. Together, resilience science, AM, and EPD bridge the gaps between systems analysis, ecology, and resource management to provide an interdisciplinary approach to solving wicked problems. © 2014 Society for Conservation Biology.
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope
NASA Astrophysics Data System (ADS)
Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.
2017-06-01
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
Toward Solving the Problem of Problem Solving: An Analysis Framework
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
Data interoperability software solution for emergency reaction in the Europe Union
NASA Astrophysics Data System (ADS)
Casado, R.; Rubiera, E.; Sacristan, M.; Schütte, F.; Peters, R.
2014-09-01
Emergency management becomes more challenging in international crisis episodes because of cultural, semantic and linguistic differences between all stakeholders, especially first responders. Misunderstandings between first responders makes decision-making slower and more difficult. However, spread and development of networks and IT-based Emergency Management Systems (EMS) has improved emergency responses, becoming more coordinated. Despite improvements made in recent years, EMS have not still solved problems related to cultural, semantic and linguistic differences which are the real cause of slower decision-making. In addition, from a technical perspective, the consolidation of current EMS and the different formats used to exchange information offers another problem to be solved in any solution proposed for information interoperability between heterogeneous EMS surrounded by different contexts. To overcome these problems we present a software solution based on semantic and mediation technologies. EMERGency ELements (EMERGEL) (Fundacion CTIC and AntwortING Ingenieurbüro PartG 2013), a common and modular ontology shared by all the stakeholders, has been defined. It offers the best solution to gather all stakeholders' knowledge in a unique and flexible data model, taking into account different countries cultural linguistic issues. To deal with the diversity of data protocols and formats, we have designed a Service Oriented Architecture for Data Interoperability (named DISASTER) providing a flexible extensible solution to solve the mediation issues. Web Services have been adopted as specific technology to implement such paradigm that has the most significant academic and industrial visibility and attraction. Contributions of this work have been validated through the design and development of a cross-border realistic prototype scenario, actively involving both emergency managers and emergency first responders: the Netherlands-Germany border fire.
Data interoperability software solution for emergency reaction in the Europe Union
NASA Astrophysics Data System (ADS)
Casado, R.; Rubiera, E.; Sacristan, M.; Schütte, F.; Peters, R.
2015-07-01
Emergency management becomes more challenging in international crisis episodes because of cultural, semantic and linguistic differences between all stakeholders, especially first responders. Misunderstandings between first responders makes decision making slower and more difficult. However, spread and development of networks and IT-based emergency management systems (EMSs) have improved emergency responses, which have become more coordinated. Despite improvements made in recent years, EMSs have not still solved problems related to cultural, semantic and linguistic differences which are the real cause of slower decision making. In addition, from a technical perspective, the consolidation of current EMSs and the different formats used to exchange information offers another problem to be solved in any solution proposed for information interoperability between heterogeneous EMSs in different contexts. To overcome these problems, we present a software solution based on semantic and mediation technologies. EMERGency ELements (EMERGEL) (Fundacion CTIC and AntwortING Ingenieurbüro PartG, 2013), a common and modular ontology shared by all the stakeholders, has been defined. It offers the best solution to gather all stakeholders' knowledge in a unique and flexible data model, taking into account different countries' cultural and linguistic issues. To deal with the diversity of data protocols and formats, we have designed a service-oriented architecture for data interoperability (named DISASTER: Data Interoperability Solution At STakeholders Emergency Reaction) providing a flexible extensible solution to solve the mediation issues. Web services have been adopted as specific technology to implement this paradigm that has the most significant academic and industrial visibility and attraction. Contributions of this work have been validated through the design and development of a cross-border realistic prototype scenario, actively involving both emergency managers and emergency-first responders: the Netherlands-Germany border fire.
[The dimension of the paradigm of complexity in health systems].
Fajardo-Ortiz, Guillermo; Fernández-Ortega, Miguel Ángel; Ortiz-Montalvo, Armando; Olivares-Santos, Roberto Antonio
2015-01-01
This article presents elements to better understand health systems from the complety paradigm, innovative perspective that offers other ways in the conception of the scientific knowledge prevalent away from linear, characterized by the arise of emerging dissociative and behaviors, based on the intra and trans-disciplinarity concepts such knowledges explain and understand in a different way what happens in the health systems with a view to efficiency and effectiveness. The complexity paradigm means another way of conceptualizing the knowledge, is different from the prevalent epistemology, is still under construction does not separate, not isolated, is not reductionist, or fixed, does not solve the problems, but gives other bases to know them and study them, is a different strategy, a perspective that has basis in the systems theory, informatics and cybernetics beyond traditional knowledge, the positive logics, the newtonian physics and symmetric mathematics, in which everything is centered and balanced, joint the "soft sciences and hard sciences", it has present the Social Determinants of Health and organizational culture. Under the complexity paradigm the health systems are identified with the following concepts: entropy, neguentropy, the thermodynamic second law, attractors, chaos theory, fractals, selfmanagement and self-organization, emerging behaviors, percolation, uncertainty, networks and robusteness; such expressions open new possibilities to improve the management and better understanding of the health systems, giving rise to consider health systems as complex adaptive systems. Copyright © 2015. Published by Masson Doyma México S.A.
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
Current trends in geomathematics
Griffiths, J.C.
1970-01-01
Geoscience has extended its role and improved its applications by the development of geophysics since the nineteen-thirties, geochemistry since the nineteen-fifties and now, in the late nineteen-sixties, a new synergism leads to geomathematics; again the greatest pressure for change arises from areas of application of geoscience and, as the problems to which geoscience is applied increase in complexity, the analytical tools become more sophisticated, a development which is accelerated by growth in the use of computers in geological problem-solving. In the next decade the problems with greatest public impact appear to be the ones which will receive greatest emphasis and support. This will require that the geosciences comprehend exceedingly complex probabilistic systems and these, in turn, demand the use of operations research, cybernetics and systems analysis. Such a development may well lead to a change in the paradigms underlying geoscience; they will certainly include more realistic models of "real-world" systems and the tool of simulation with cybernetic models may well become the basis for rejuvenation of experimentation in the geosciences. ?? 1970.
PC Software for Artificial Intelligence Applications.
Epp, H; Kalin, M; Miller, D
1988-05-06
Our review has emphasized that AI tools are programming languages inspired by some problem-solving paradigm. We want to underscore their status as programming languages; even if an AI tool seems to fit a problem perfectly, its proficient use still requires the training and practice associated with any programming language. The programming manuals for PC-Plus, Smalltalk/ V, and Nexpert Object are all tutorial in nature, and the corresponding software packages come with sample applications. We find the manuals to be uniformly good introductions that try to anticipate the problems of a user who is new to the technology. All three vendors offer free technical support by telephone to licensed users. AI tools are sometimes oversold as a way to make programming easy or to avoid it altogether. The truth is that AI tools demand programming-but programming that allows you to concentrate on the essentials of the problem. If we had to implement a diagnostic system, we would look first to a product such as PC-Plus rather than BASIC or C, because PC-Plus is designed specifically for such a problem, whereas these conventional languages are not. If we had to implement a system that required graphical interfaces and could benefit from inheritance, we would look first to an object-oriented system such as Smalltalk/V that provides built-in mechanisms for both. If we had to implement an expert system that called for some mix of AI and conventional techniques, we would look first to a product such as Nexpert Object that integrates various problem-solving technologies. Finally, we might use FORTRAN if we were concerned primarily with programming a well-defined numerical algorithm. AI tools are a valuable complement to traditional languages.
Hybrid discrete ordinates and characteristics method for solving the linear Boltzmann equation
NASA Astrophysics Data System (ADS)
Yi, Ce
With the ability of computer hardware and software increasing rapidly, deterministic methods to solve the linear Boltzmann equation (LBE) have attracted some attention for computational applications in both the nuclear engineering and medical physics fields. Among various deterministic methods, the discrete ordinates method (SN) and the method of characteristics (MOC) are two of the most widely used methods. The SN method is the traditional approach to solve the LBE for its stability and efficiency. While the MOC has some advantages in treating complicated geometries. However, in 3-D problems requiring a dense discretization grid in phase space (i.e., a large number of spatial meshes, directions, or energy groups), both methods could suffer from the need for large amounts of memory and computation time. In our study, we developed a new hybrid algorithm by combing the two methods into one code, TITAN. The hybrid approach is specifically designed for application to problems containing low scattering regions. A new serial 3-D time-independent transport code has been developed. Under the hybrid approach, the preferred method can be applied in different regions (blocks) within the same problem model. Since the characteristics method is numerically more efficient in low scattering media, the hybrid approach uses a block-oriented characteristics solver in low scattering regions, and a block-oriented SN solver in the remainder of the physical model. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. Either the characteristics solver or the SN solver can be chosen to solve the LBE within a coarse mesh. A coarse mesh can be filled with fine meshes or characteristic rays depending on the solver assigned to the coarse mesh. Furthermore, with its object-oriented programming paradigm and layered code structure, TITAN allows different individual spatial meshing schemes and angular quadrature sets for each coarse mesh. Two quadrature types (level-symmetric and Legendre-Chebyshev quadrature) along with the ordinate splitting techniques (rectangular splitting and PN-TN splitting) are implemented. In the S N solver, we apply a memory-efficient 'front-line' style paradigm to handle the fine mesh interface fluxes. In the characteristics solver, we have developed a novel 'backward' ray-tracing approach, in which a bi-linear interpolation procedure is used on the incoming boundaries of a coarse mesh. A CPU-efficient scattering kernel is shared in both solvers within the source iteration scheme. Angular and spatial projection techniques are developed to transfer the angular fluxes on the interfaces of coarse meshes with different discretization grids. The performance of the hybrid algorithm is tested in a number of benchmark problems in both nuclear engineering and medical physics fields. Among them are the Kobayashi benchmark problems and a computational tomography (CT) device model. We also developed an extra sweep procedure with the fictitious quadrature technique to calculate angular fluxes along directions of interest. The technique is applied in a single photon emission computed tomography (SPECT) phantom model to simulate the SPECT projection images. The accuracy and efficiency of the TITAN code are demonstrated in these benchmarks along with its scalability. A modified version of the characteristics solver is integrated in the PENTRAN code and tested within the parallel engine of PENTRAN. The limitations on the hybrid algorithm are also studied.
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
Sexton, Ken
2013-01-01
Significance for public health Risk-based decision making is a core feature of government actions aimed at protecting public health from the adverse effects of environmental hazards. In the past, it has often been an expert-driven, mostly obscure process used by federal agencies to justify and defend regulatory decisions made outside the public arena. But the nature of decision making has changed as it has become apparent that environmental health problems are more complicated, controversial, and costly to solve than originally thought. Meaningful public engagement is now an inherent component of all phases of the risk assessment – risk management paradigm because it promotes stakeholder buy in, taps into unique stakeholder knowledge, and promotes the concept of environmental democracy. In the United States, the risk assessment – risk management paradigm that underpins federal decisions about environmental health risks was first established in 1983. In the beginning, the importance of public participation was not explicitly recognized within the paradigm. Over time, however, it has become evident that not only must risk-based decisions be founded on the best available scientific knowledge and understanding, but also that they must take account of the knowledge, values, and preferences of interested and affected parties, including community members, business people, and environmental advocates. This article examines the gradually expanding role of public participation in risk-based decision making in the United States, and traces its evolution from a peripheral issue labeled as an external pressure to an integral element of the 21st century risk assessment – risk management paradigm. Today, and into the foreseeable future, public participation and stakeholder involvement are intrinsic features of the emerging American regulatory landscape, which emphasizes collaborative approaches for achieving cooperative and cost-effective solutions to complicated and often controversial environmental health problems. PMID:25170489
Sexton, Ken
2013-09-02
Significance for public healthRisk-based decision making is a core feature of government actions aimed at protecting public health from the adverse effects of environmental hazards. In the past, it has often been an expert-driven, mostly obscure process used by federal agencies to justify and defend regulatory decisions made outside the public arena. But the nature of decision making has changed as it has become apparent that environmental health problems are more complicated, controversial, and costly to solve than originally thought. Meaningful public engagement is now an inherent component of all phases of the risk assessment - risk management paradigm because it promotes stakeholder buy in, taps into unique stakeholder knowledge, and promotes the concept of environmental democracy.In the United States, the risk assessment - risk management paradigm that underpins federal decisions about environmental health risks was first established in 1983. In the beginning, the importance of public participation was not explicitly recognized within the paradigm. Over time, however, it has become evident that not only must risk-based decisions be founded on the best available scientific knowledge and understanding, but also that they must take account of the knowledge, values, and preferences of interested and affected parties, including community members, business people, and environmental advocates. This article examines the gradually expanding role of public participation in risk-based decision making in the United States, and traces its evolution from a peripheral issue labeled as an external pressure to an integral element of the 21st century risk assessment - risk management paradigm. Today, and into the foreseeable future, public participation and stakeholder involvement are intrinsic features of the emerging American regulatory landscape, which emphasizes collaborative approaches for achieving cooperative and cost-effective solutions to complicated and often controversial environmental health problems.
Learning to learn: step one for survival in the new paradigm.
Muller-Smith, P
1997-08-01
New challenges require new approaches and many of the suggested solutions are in conflict with how we were taught in our formative years. Team work in high school and college was mostly found in sports-related activities. Collaboration in a classroom was not encouraged and could be viewed as cheating. We did not learn to share knowledge in a group nor to group problem solving, yet we are told that those are the very skills we need to have to survive in today's workplace. The first step to success is to look at how we were taught to learn and make the shift to learning in a different manner.
Isolated Operation at Hachinohe Micro-Grid Project
NASA Astrophysics Data System (ADS)
Takano, Tomihiro; Kojima, Yasuhiro; Temma, Koji; Simomura, Masaru
To meet the global warming, renewable energy sources like wind, solar and biomass generations are dramatically increasing. Cogeneration systems are also ever-growing to save consumers' energy costs among factories, buildings and homes where lots of thermal loads are expected. According to these dispersed generators growth, their negative impacts to commercial power systems quality become non-negligible, because their unstable output causes network voltage and frequency fluctuation. Micro-grid technology comes to the front to solve the problem and many demonstrative field tests are now going all over the world. This paper presents the control paradigm and its application to Hachinohe micro-gird project, especially focusing on the power quality at isolated operation on which strict condition is imposed.
Demonstration Of Ultra HI-FI (UHF) Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2004-01-01
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.
Quantum annealing with all-to-all connected nonlinear oscillators
Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre
2017-01-01
Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952
Two implementations of the Expert System for the Flight Analysis System (ESFAS) project
NASA Technical Reports Server (NTRS)
Wang, Lui
1988-01-01
A comparison is made between the two most sophisticated expert system building tools, the Automated Reasoning Tool (ART) and the Knowledge Engineering Environment (KEE). The same problem domain (ESFAS) was used in making the comparison. The Expert System for the Flight Analysis System (ESFAS) acts as an intelligent front end for the Flight Analysis System (FAS). FAS is a complex configuration controlled set of interrelated processors (FORTRAN routines) which will be used by the Mission Planning and Analysis Div. (MPAD) to design and analyze Shuttle and potential Space Station missions. Implementations of ESFAS are described. The two versions represent very different programming paradigms; ART uses rules and KEE uses objects. Due to each of the tools philosophical differences, KEE is implemented using a depth first traversal algorithm, whereas ART uses a user directed traversal method. Either tool could be used to solve this particular problem.
Development of a case tool to support decision based software development
NASA Technical Reports Server (NTRS)
Wild, Christian J.
1993-01-01
A summary of the accomplishments of the research over the past year are presented. Achievements include: made demonstrations with DHC, a prototype supporting decision based software development (DBSD) methodology, for Paramax personnel at ODU; met with Paramax personnel to discuss DBSD issues, the process of integrating DBSD and Refinery and the porting process model; completed and submitted a paper describing DBSD paradigm to IFIP '92; completed and presented a paper describing the approach for software reuse at the Software Reuse Workshop in April 1993; continued to extend DHC with a project agenda, facility necessary for a better project management; completed a primary draft of the re-engineering process model for porting; created a logging form to trace all the activities involved in the process of solving the reengineering problem, and developed a primary chart with the problems involved by the reengineering process.
Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S
2012-12-01
Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
Resource Letter RPS-1: Research in problem solving
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.
2004-09-01
This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
A linear-encoding model explains the variability of the target morphology in regeneration
Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael
2014-01-01
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915
D'Aniello, Biagio; Scandurra, Anna
2016-05-01
Life experiences and living conditions can influence the problem-solving strategies and the communicative abilities of dogs with humans. The goals of this study were to determine any behavioural differences between Labrador Retrievers living in a kennel and those living in a house as pets and to assess whether kennel dogs show preferences in social behaviours for their caretaker relative to a stranger when they are faced with an unsolvable task. Nine Labrador Retrievers living in a kennel from birth and ten Labrador Retrievers living in a family as pets were tested. The experimental procedure consisted of three "solvable" tasks in which the dogs could easily retrieve food from a container followed by an "unsolvable" task in which the container was hermetically locked. Dogs of both groups spent the same amount of time interacting with the experimental apparatus. Kennel dogs gazed towards people for less time and with higher latency than pet dogs; however, there were no significant preferences in gazing towards the stranger versus the caretaker in both groups. These findings demonstrated that kennel dogs are less prone to use human-directed gazing behaviour when they are faced with an unsolvable problem, taking the humans into account to solve a task less than do the pet dogs.
Projection decomposition algorithm for dual-energy computed tomography via deep neural network.
Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei
2018-03-15
Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.
Dong, Junzi; Colburn, H. Steven
2016-01-01
In multisource, “cocktail party” sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem. PMID:26866056
Dong, Junzi; Colburn, H Steven; Sen, Kamal
2016-01-01
In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi
2007-01-01
Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.
Spontaneous gestures influence strategy choices in problem solving.
Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro
2011-09-01
Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.
A Structured Public Health Approach to Increasing Rates and Duration of Breastfeeding in Romania
Brînzaniuc, Alexandra; Oprescu, Florin; Cherecheş, Răzvan M.; Mureşan, Marta; Dungy, Claibourne I.
2011-01-01
Abstract Background Studies indicate that since 1990, rates of breastfeeding initiation and duration in Eastern Europe, including Romania, have decreased. Most breastfeeding promotion efforts in Romania have focused on in-hospital care, with an emphasis on training clinicians. Prior studies report that about 88% of Romanian mothers initiate breastfeeding in the hospital; however, these same studies report limited breastfeeding duration. We posit that an important problem is lack of support and education in the weeks and months following the birth. The nature of this problem suggests the need for an integrated and structured public health solution. Methods Based on our independent research, the results of an international maternal and child health (MCH) conference, and consultation with Romanian and American experts, we propose use of the public health problem-solving paradigm to support breastfeeding in Romania. Results This article presents a conceptual model showing the integration of input, output, and process components and a logic model explicating possible interventions (or needs) and barriers to breastfeeding. We propose a public health solution that begins with a new MCH within the public health training structure at a major Romanian university and a summer course bringing together Romanian and American students to study MCH, including breastfeeding. Conclusions We believe that these two courses will promote enthusiasm and generate ideas to develop community-based interventions as well as policy recommendations to increase breastfeeding duration in Romania. We suggest that this public health problem-solving approach provides an integrated way of maintaining and increasing breastfeeding; furthermore, this approach could be broadly used in Eastern Europe. PMID:21675866
Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris
2011-10-01
Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
NASA Astrophysics Data System (ADS)
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.
2014-01-01
Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213
Superiority of artificial neural networks for a genetic classification procedure.
Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D
2015-08-19
The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.
NASA Astrophysics Data System (ADS)
Yang, Qingsong; Cong, Wenxiang; Wang, Ge
2016-10-01
X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.
Extraction of a group-pair relation: problem-solving relation from web-board documents.
Pechsiri, Chaveevan; Piriyakul, Rapepun
2016-01-01
This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hafner, Robert; Stewart, Jim
Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).
Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.
2016-01-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604
Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M
2016-12-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.
Kraines, Morganne A; Wells, Tony T
2017-01-01
Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
Learning problem-solving skills in a distance education physics course
NASA Astrophysics Data System (ADS)
Rampho, G. J.; Ramorola, M. Z.
2017-10-01
In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
An experience sampling study of learning, affect, and the demands control support model.
Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth
2009-07-01
The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.
What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective
ERIC Educational Resources Information Center
Wareham, Todd; Evans, Patricia; van Rooij, Iris
2011-01-01
Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
Investigating Problem-Solving Perseverance Using Lesson Study
ERIC Educational Resources Information Center
Bieda, Kristen N.; Huhn, Craig
2017-01-01
Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…
Lincoln, Don
2018-01-16
With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed idea is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Interoperable and standard e-Health solution over Bluetooth.
Martinez, I; Del Valle, P; Munoz, P; Trigo, J D; Escayola, J; Martínez-Espronceda, M; Muñoz, A; Serrano, L; Garcia, J
2010-01-01
The new paradigm of e-Health demands open sensors and middleware components that permit transparent integration and end-to-end interoperability of new personal health devices. The use of standards seems to be the internationally adopted way to solve these problems. This paper presents the implementation of an end-to-end standards-based e-Health solution. This includes ISO/IEEE11073 standard for the interoperability of the medical devices in the patient environment and EN13606 standard for the interoperable exchange of the Electronic Healthcare Record. The design strictly fulfills all the technical features of the most recent versions of both standards. The implemented prototype has been tested in a laboratory environment to demonstrate its feasibility for its further transfer to the healthcare system.
Neural networks for data mining electronic text collections
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Truman, Gregory
1997-04-01
The use of neural networks in information retrieval and text analysis has primarily suffered from the issues of adequate document representation, the ability to scale to very large collections, dynamism in the face of new information and the practical difficulties of basing the design on the use of supervised training sets. Perhaps the most important approach to begin solving these problems is the use of `intermediate entities' which reduce the dimensionality of document representations and the size of documents collections to manageable levels coupled with the use of unsupervised neural network paradigms. This paper describes the issues, a fully configured neural network-based text analysis system--dataHARVEST--aimed at data mining text collections which begins this process, along with the remaining difficulties and potential ways forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
2014-04-28
With the discovery of what looks to be the Higgs boson, LHC researchers are turning their attention to the next big question, which is the predicted mass of the newly discovered particles. When the effects of quantum mechanics is taken into account, the mass of the Higgs boson should be incredibly high...perhaps upwards of a quadrillion times higher than what was observed. In this video, Fermilab's Dr. Don Lincoln explains how it is that the theory predicts that the mass is so large and gives at least one possible theoretical idea that might solve the problem. Whether the proposed ideamore » is the answer or not, this question must be answered by experiments at the LHC or today's entire theoretical paradigm could be in jeopardy.« less
[Psychological research on the cognitive aspect of emotional processes in schizophrenia patients].
Kurek, N S
1988-01-01
Cognitive aspects of emotionality were psychologically investigated in 250 patients with continuous and paroxysmal progredient schizophrenia and differently pronounced defect. The control group consisted of 100 normal subjects. A set of 7 techniques was applied. In cases of the patient's defect accentuated, cognitive emotional disorder was marked with the emotions and emotiogenic situations underestimation in dealing with other people and cognitive activities. This underestimation was not a uniform one concerning to a larger extent the strong emotions in other subjects, patients' own positive emotions, success in individual problem solving and degree of success in cooperative performance. Weak emotions, negative ones and failure situations were underestimated to a lesser degree, as was the success rating in competitive paradigms.
Overcoming cellular barriers for RNA therapeutics.
Dowdy, Steven F
2017-03-01
RNA-based therapeutics, such as small-interfering (siRNAs), microRNAs (miRNAs), antisense oligonucleotides (ASOs), aptamers, synthetic mRNAs and CRISPR-Cas9, have great potential to target a large part of the currently undruggable genes and gene products and to generate entirely new therapeutic paradigms in disease, ranging from cancer to pandemic influenza to Alzheimer's disease. However, for these RNA modalities to reach their full potential, they first need to overcome a billion years of evolutionary defenses that have kept RNAs on the outside of cells from invading the inside of cells. Overcoming the lipid bilayer to deliver RNA into cells has remained the major problem to solve for widespread development of RNA therapeutics, but recent chemistry advances have begun to penetrate this evolutionary armor.
Problem-solving deficits in Iranian people with borderline personality disorder.
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.
Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.
Gonzalez, Vivian M; Neander, Lucía L
2018-03-15
This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.
Krasheninnikova, Anastasia
2013-01-01
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…
ERIC Educational Resources Information Center
Higgins, Karen M.
This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…
Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A
2016-05-01
This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder participation and the intensive communication throughout the project resulted in broad support for both the scientific approaches and results, as well as for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Student’s scheme in solving mathematics problems
NASA Astrophysics Data System (ADS)
Setyaningsih, Nining; Juniati, Dwi; Suwarsono
2018-03-01
The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.
2011-01-01
Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885
Implementing thinking aloud pair and Pólya problem solving strategies in fractions
NASA Astrophysics Data System (ADS)
Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.
2017-12-01
This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."
ERIC Educational Resources Information Center
Pestel, Beverly C.
1993-01-01
Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…
Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children
ERIC Educational Resources Information Center
Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.
2007-01-01
This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…
Personality, problem solving, and adolescent substance use.
Jaffee, William B; D'Zurilla, Thomas J
2009-03-01
The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.
Perspective: Machine learning potentials for atomistic simulations
NASA Astrophysics Data System (ADS)
Behler, Jörg
2016-11-01
Nowadays, computer simulations have become a standard tool in essentially all fields of chemistry, condensed matter physics, and materials science. In order to keep up with state-of-the-art experiments and the ever growing complexity of the investigated problems, there is a constantly increasing need for simulations of more realistic, i.e., larger, model systems with improved accuracy. In many cases, the availability of sufficiently efficient interatomic potentials providing reliable energies and forces has become a serious bottleneck for performing these simulations. To address this problem, currently a paradigm change is taking place in the development of interatomic potentials. Since the early days of computer simulations simplified potentials have been derived using physical approximations whenever the direct application of electronic structure methods has been too demanding. Recent advances in machine learning (ML) now offer an alternative approach for the representation of potential-energy surfaces by fitting large data sets from electronic structure calculations. In this perspective, the central ideas underlying these ML potentials, solved problems and remaining challenges are reviewed along with a discussion of their current applicability and limitations.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Decision-Making and Problem-Solving Approaches in Pharmacy Education
Martin, Lindsay C.; Holdford, David A.
2016-01-01
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823
Decision-Making and Problem-Solving Approaches in Pharmacy Education.
Martin, Lindsay C; Donohoe, Krista L; Holdford, David A
2016-04-25
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.
Social problem-solving in Chinese baccalaureate nursing students.
Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia
2016-11-01
To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.
ERIC Educational Resources Information Center
Camacho, Moises; Good, Ron
1989-01-01
Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…
Paradigms and progress in vocal fold restoration.
Ford, Charles N
2008-09-01
Science advances occur through orderly steps, puzzle-solving leaps, or divergences from the accepted disciplinary matrix that occasionally result in a revolutionary paradigm shift. Key advances must overcome bias, criticism, and rejection. Examples in biological science include use of embryonic stem cells, recognition of Helicobacter pylori in the etiology of ulcer disease, and the evolution of species. Our work in vocal fold restoration reflects these patterns. We progressed through phases of tissue replacement with fillers and biological implants, to current efforts at vocal fold regeneration through tissue engineering, and face challenges of a new "systems biology" paradigm embracing genomics and proteomics.
Worry and problem-solving skills and beliefs in primary school children.
Parkinson, Monika; Creswell, Cathy
2011-03-01
To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Social problem-solving among adolescents treated for depression.
Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S
2010-01-01
Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
Anderson, Caitlin L; Kasumovic, Michael M
2017-01-01
Cognitive functioning is vital for enabling animals of all taxa to optimise their chances of survival and reproductive success. Learning and memory in particular are drivers of many evolutionary processes. In this study, we examine how developmental plasticity can affect cognitive ability by exploring the role the early social environment has on problem solving ability and learning of female black field crickets, Teleogryllus commodus. We used two learning paradigms, an analog of the Morris water maze and a novel linear maze, to examine cognitive differences between individuals reared in two acoustic treatments: silence or calling. Although there was no evidence of learning or memory, individuals that took longer to mature solved the Morris water maze more quickly. Our results suggest that increased investment into cognitive development is likely associated with increased development time during immature stages. Inconsistent individual performance and motivation during the novel linear maze task highlights the difficulties of designing ecologically relevant learning tasks within a lab setting. The role of experimental design in understanding cognitive ability and learning in more natural circumstances is discussed.
Resolving the chicken-and-egg problem in VO2: a new paradigm for the Mott transition
NASA Astrophysics Data System (ADS)
Najera, Oscar; Civelli, Marcello; Dobrosavljevi, Vladimir; Rozenberg, Marcelo
We consider a minimal model to investigate the metal-insulator transition in VO2. We adopt a Hubbard model with two orbital per unit cell, which captures the competition between Mott and singlet-dimer localization. We solve the model within Dynamical Mean Field Theory, characterizing in detail the metal-insulator transition and finding new features in the electronic states. We compare our results with available experimental data obtaining good agreement in the relevant model parameter range. Crucially, we can account for puzzling optical conductivity data obtained within the hysteresis region, which we associate to a novel metallic state characterized by a split heavy quasiparticle band. Our results show that the thermal-driven insulator-to-metal transition in VO2 is entirely compatible with a Mott electronic mechanism, solving a long standing ''chicken-and-egg'' debate and calling for further research of ``Mottronics'' applications of this system. This work was partially supported by public Grants from the French National Research Agency (ANR), project LACUNES No ANR-13-BS04-0006-01, the NSF DMR-1005751 and DMR-1410132.
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
Problem-Solving Deficits in Iranian People with Borderline Personality Disorder
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Measuring Family Problem Solving: The Family Problem Solving Diary.
ERIC Educational Resources Information Center
Kieren, Dianne K.
The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…
Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J
2004-12-01
Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes
Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.
2017-01-01
Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.
Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G
2017-08-01
To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Choi, Yun-Jung
2016-01-01
Through this research the author explored immigrant women's mental health problems with the goal of deepening understanding to develop a framework for preventing mental disorders and improving their mental health. A qualitative research design was used to examine the women's lived experiences. The data were collected from February 2014 to October 2014. Twenty women were recruited from multicultural community service centers. Inclusion criteria were the ability to communicate and the absence of acute physical or psychological problems; participants were excluded if they were under 18 years old or separated. Individual in-depth interviews were conducted with participants regarding their experiences of living in Korean society. The data were analyzed using the grounded theory approach. A conceptual framework-Embracing Cultural Conflict Model-was constructed based on the personal-family-community context as well as the paradigm of the immigrant woman using eleven concepts. The conceptual framework suggests that multicultural programs and services should take into account a historical understanding of Korean society and family, address problem-solving strategies including improving mental health literacy, build support from both the Korean family and family of origin, and offer multicultural activities to satisfy homeland-related cultural needs.
ERIC Educational Resources Information Center
Zhang, Yin; Chu, Samuel K. W.
2016-01-01
In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…
Perceived problem solving, stress, and health among college students.
Largo-Wight, Erin; Peterson, P Michael; Chen, W William
2005-01-01
To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving
ERIC Educational Resources Information Center
Both, Lilly; Needham, Douglas; Wood, Eileen
2004-01-01
The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
ERIC Educational Resources Information Center
Maries, Alexandru; Singh, Chandralekha
2018-01-01
Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…
ERIC Educational Resources Information Center
Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen
2009-01-01
In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…
The Place of Problem Solving in Contemporary Mathematics Curriculum Documents
ERIC Educational Resources Information Center
Stacey, Kaye
2005-01-01
This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding
ERIC Educational Resources Information Center
Domin, Daniel; Bodner, George
2012-01-01
The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…
Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving
ERIC Educational Resources Information Center
Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2012-01-01
People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Problem Solving with the Elementary Youngster.
ERIC Educational Resources Information Center
Swartz, Vicki
This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
The needs analysis of learning Inventive Problem Solving for technical and vocational students
NASA Astrophysics Data System (ADS)
Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi
2017-08-01
Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.
Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion
2013-08-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.
Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion
2012-01-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm
NASA Astrophysics Data System (ADS)
Myers, J. D.; Campbell-Stone, E.; Massey, G.
2008-12-01
Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to promoting scientific literacy, L(SC)2 courses explicitly promote mastery of fundamental quantitative and qualitative skills critical to science and commonly a barrier to student success in science. Scientific content addresses the principles and disciplines necessary to tackle the multifaceted problems that must be solved in any sustainability transition and illustrates the limitations on what can be accomplished. Finally, social context adds the place-based component that is critical to sustainability science while revealing how science impacts students' everyday lives. Experience in addressing realistic, real-life problems fosters the habits of mind necessary to address these problems and instills a sense of social and political efficacy and responsibility. The L(SC)2 course paradigm employs a variety of educational tools (active problem-based learning, collaborative work, peer instruction, interdisciplinarity, and global context-based instruction) that improve lasting comprehension by creating a more effective learning environment. In this paradigm, STEM students learn that although there may be a technically or scientifically optimal solution to a problem, it must be responsive to a society's social, legal, cultural and religious parameters. Conversely, students in non-STEM fields learn that solutions to societal problems must be scientifically valid and technologically feasible. The interaction of STEM and non-STEM students in L(SC)2 courses builds bridges between the natural and social sciences that are critical for a successful sustainability transition and lacking in most traditional science courses.
Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.
Parrado, Natalia; Donoso, Yezid
2015-03-31
The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network.
Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing
2017-04-20
The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.
Congestion Based Mechanism for Route Discovery in a V2I-V2V System Applying Smart Devices and IoT
Parrado, Natalia; Donoso, Yezid
2015-01-01
The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra’s approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle’s trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185
Higher order thinking skills competencies required by outcomes-based education from learners.
Chabeli, M M
2006-08-01
Outcomes-Based Education (OBE) brought about a significant paradigm shift in the education and training of learners in South Africa. OBE requires a shift from focusing on the teacher input (instruction offerings or syllabuses expressed in terms of content), to focusing on learner outcomes. OBE is moving away from 'transmission' models to constructivistic, learner-centered models that put emphasis on learning as an active process (Nieburh, 1996:30). Teachers act as facilitators and mediators of learning (Norms and Standards, Government Gazette vol 415, no 20844 of 2000). Facilitators are responsible to create the environment that is conducive for learners to construct their own knowledge, skills and values through interaction (Peters, 2000). The first critical cross-field outcome accepted by the South African Qualification Framework (SAQA) is that learners should be able to identify and solve problems by using critical and creative thinking skills. This paper seeks to explore some higher order thinking skills competencies required by OBE from learners such as critical thinking, reflective thinking, creative thinking, dialogic / dialectic thinking, decision making, problem solving and emotional intelligence and their implications in facilitating teaching and learning from the theoretical perspective. The philosophical underpinning of these higher order thinking skills is described to give direction to the study. It is recommended that a study focusing on the assessment of these intellectual concepts be made. The study may be qualitative, quantitative or mixed methods in nature (Creswell 2005).
I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.
Kofler, Walter
2007-01-01
There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
NASA Astrophysics Data System (ADS)
Pujiastuti, E.; Waluya, B.; Mulyono
2018-03-01
There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.
Flexibility in Mathematics Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Dina, N. A.; Amin, S. M.; Masriyah
2018-01-01
Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Security and Cloud Outsourcing Framework for Economic Dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
Security and Cloud Outsourcing Framework for Economic Dispatch
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi; ...
2017-04-24
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
NASA Astrophysics Data System (ADS)
de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia
Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.
Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks
NASA Astrophysics Data System (ADS)
Yang, Chao; Fu, Yuli; Yang, Junjie
2016-07-01
Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.
Insightful problem solving and emulation in brown capuchin monkeys.
Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A
2017-05-01
We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2014-02-01
This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Problem solving therapy - use and effectiveness in general practice.
Pierce, David
2012-09-01
Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah
2016-06-01
This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.
NASA Astrophysics Data System (ADS)
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-10-01
This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.
Pedagogy and/or technology: Making difference in improving students' problem solving skills
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.
2013-01-01
Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Szetela, W.; Super, D.
A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Problem Solving: How Can We Help Students Overcome Cognitive Difficulties
ERIC Educational Resources Information Center
Cardellini, Liberato
2014-01-01
The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment
ERIC Educational Resources Information Center
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…
Achieving High Performance on the i860 Microprocessor
NASA Technical Reports Server (NTRS)
Lee, King; Kutler, Paul (Technical Monitor)
1998-01-01
The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.
Reach, Gérard
2016-01-01
According to the concept developed by Thomas Kuhn, a scientific revolution occurs when scientists encounter a crisis due to the observation of anomalies that cannot be explained by the generally accepted paradigm within which scientific progress has thereto been made: a scientific revolution can therefore be described as a change in paradigm aimed at solving a crisis. Described herein is an application of this concept to the medical realm, starting from the reflection that during the past decades, the medical community has encountered two anomalies that, by their frequency and consequences, represent a crisis in the system, as they deeply jeopardize the efficiency of care: nonadherence of patients who do not follow the prescriptions of their doctors, and clinical inertia of doctors who do not comply with good practice guidelines. It is proposed that these phenomena are caused by a contrast between, on the one hand, the complex thought of patients and doctors that sometimes escapes rationalization, and on the other hand, the simplification imposed by the current paradigm of medicine dominated by the technical rationality of evidence-based medicine. It is suggested therefore that this crisis must provoke a change in paradigm, inventing a new model of care defined by an ability to take again into account, on an individual basis, the complex thought of patients and doctors. If this overall analysis is correct, such a person-centered care model should represent a solution to the two problems of patients’ nonadherence and doctors’ clinical inertia, as it tackles their cause. These considerations may have important implications for the teaching and the practice of medicine. PMID:27103790
Problem Solving Appraisal of Delinquent Adolescents.
ERIC Educational Resources Information Center
Perez, Ruperto M.; And Others
The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…
Computer Programming: A Medium for Teaching Problem Solving.
ERIC Educational Resources Information Center
Casey, Patrick J.
1997-01-01
Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…
Perceived Problem Solving, Stress, and Health among College Students
ERIC Educational Resources Information Center
Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William
2005-01-01
Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…
THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.
ERIC Educational Resources Information Center
DAVIS, GARY A.
PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…
Developing Creativity through Collaborative Problem Solving
ERIC Educational Resources Information Center
Albert, Lillie R.; Kim, Rina
2013-01-01
This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…
The effects of expected reward on creative problem solving.
Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan
2018-06-12
Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.
Find the Dimensions: Students Solving a Tiling Problem
ERIC Educational Resources Information Center
Obara, Samuel
2018-01-01
Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.
Marshall, R C; McGurk, S R; Karow, C M; Kairy, T J; Flashman, L A
2006-06-01
Severe mental illness is associated with impairments in executive functions, such as conceptual reasoning, planning, and strategic thinking all of which impact problem solving. The present study examined the utility of a novel assessment tool for problem solving, the Rapid Assessment of Problem Solving Test (RAPS) in persons with severe mental illness. Subjects were 47 outpatients with severe mental illness and an equal number healthy controls matched for age and gender. Results confirmed all hypotheses with respect to how subjects with severe mental illness would perform on the RAPS. Specifically, the severely mentally ill subjects (1) solved fewer problems on the RAPS, (2) when they did solve problems on the test, they did so far less efficiently than their healthy counterparts, and (3) the two groups differed markedly in the types of questions asked on the RAPS. The healthy control subjects tended to take a systematic, organized, but not always optimal approach to solving problems on the RAPS. The subjects with severe mental illness used some of the problem solving strategies of the healthy controls, but their performance was less consistent and tended to deteriorate when the complexity of the problem solving task increased. This was reflected by a high degree of guessing in lieu of asking constraint questions, particularly if a category-limited question was insufficient to continue the problem solving effort.
NASA Astrophysics Data System (ADS)
Lundahl, Allison A.
Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.
The Missing Curriculum in Physics Problem-Solving Education
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2018-05-01
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.
Crooks, Noelle M.; Alibali, Martha W.
2013-01-01
This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454
NASA Astrophysics Data System (ADS)
Steen-Eibensteiner, Janice Lee
2006-07-01
A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.
Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.
Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J
1992-01-01
This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.
NASA Astrophysics Data System (ADS)
Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li
2016-05-01
As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.
Reactive power planning under high penetration of wind energy using Benders decomposition
Xu, Yan; Wei, Yanli; Fang, Xin; ...
2015-11-05
This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less
D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L
1998-12-01
The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.
An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
1996-01-01
Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)
Surveying Graduate Students' Attitudes and Approaches to Problem Solving
ERIC Educational Resources Information Center
Mason, Andrew; Singh, Chandralekha
2010-01-01
Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…
Facilitating Case Reuse during Problem Solving in Algebra-Based Physics
ERIC Educational Resources Information Center
Mateycik, Frances Ann
2010-01-01
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…
Problem Solving. Research Brief
ERIC Educational Resources Information Center
Muir, Mike
2004-01-01
No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
LEGO Robotics: An Authentic Problem Solving Tool?
ERIC Educational Resources Information Center
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
ERIC Educational Resources Information Center
Kelly, Ronald R.
2003-01-01
Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)
Enhancing Students' Problem-Solving Skills through Context-Based Learning
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi
2015-01-01
Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…
Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving
ERIC Educational Resources Information Center
Ramani, Geetha B.; Brownell, Celia A.
2014-01-01
Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry
ERIC Educational Resources Information Center
Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John
2014-01-01
Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…
The Role of Expository Writing in Mathematical Problem Solving
ERIC Educational Resources Information Center
Craig, Tracy S.
2016-01-01
Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…
Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.
ERIC Educational Resources Information Center
Sabourin, Stephane; And Others
1990-01-01
Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…
How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.
ERIC Educational Resources Information Center
Niaz, Mansoor
1996-01-01
Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…
NASA Astrophysics Data System (ADS)
Hartatiek; Yudyanto; Haryoto, Dwi
2017-05-01
A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.
Assertiveness and problem solving in midwives.
Yurtsal, Zeliha Burcu; Özdemir, Levent
2015-01-01
Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.
Journey into Problem Solving: A Gift from Polya
ERIC Educational Resources Information Center
Lederman, Eric
2009-01-01
In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…
Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda
2013-01-01
Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394
NASA Astrophysics Data System (ADS)
Hobri; Suharto; Rifqi Naja, Ahmad
2018-04-01
This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.
NASA Astrophysics Data System (ADS)
Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.
2016-07-01
An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.
Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era
ERIC Educational Resources Information Center
Sumitha, S.; Jose, Rexlin
2016-01-01
Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…
How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.
ERIC Educational Resources Information Center
Scarl, Donald
To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…
Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems
ERIC Educational Resources Information Center
Bahar, Abdulkadir; Maker, C. June
2015-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…
Moving your eyes to solution: effects of movements on the perception of a problem-solving task.
Werner, K; Raab, M
2014-01-01
There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.
ERIC Educational Resources Information Center
Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth
2015-01-01
This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…
Software Systems for High-performance Quantum Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Britt, Keith A
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventionalmore » computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.« less
Visualizing a silicon quantum computer
NASA Astrophysics Data System (ADS)
Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew
2008-12-01
Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.
A 3D particle visualization system for temperature management
NASA Astrophysics Data System (ADS)
Lange, B.; Rodriguez, N.; Puech, W.; Rey, H.; Vasques, X.
2011-01-01
This paper deals with a 3D visualization technique proposed to analyze and manage energy efficiency from a data center. Data are extracted from sensors located in the IBM Green Data Center in Montpellier France. These sensors measure different information such as hygrometry, pressure and temperature. We want to visualize in real-time the large among of data produced by these sensors. A visualization engine has been designed, based on particles system and a client server paradigm. In order to solve performance problems, a Level Of Detail solution has been developed. These methods are based on the earlier work introduced by J. Clark in 1976. In this paper we introduce a particle method used for this work and subsequently we explain different simplification methods applied to improve our solution.
Active Targeted Drug Delivery for Microbes Using Nano-Carriers
Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang
2015-01-01
Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093
Quantum ergonomics: shifting the paradigm of the systems agenda.
Walker, Guy H; Salmon, Paul M; Bedinger, Melissa; Stanton, Neville A
2017-02-01
A paradigm is an accepted world view. If we do not continually question our paradigm then wider trends and movements will overtake the discipline leaving it ill adapted to future challenges. This Special Issue is an opportunity to keep systems thinking at the forefront of ergonomics theory and practice. Systems thinking prompts us to ask whether ergonomics, as a discipline, has been too timid? Too preoccupied with the resolution of immediate problems with industrial-age methods when, approaching fast, are developments which could render these operating assumptions an irrelevance. Practical case studies are presented to show how abstract systems problems can be tackled head-on to deliver highly innovative and cost-effective insights. The strategic direction of the discipline foregrounds high-quality systems problems. These are something the discipline is well able to respond to provided that the appropriate operating paradigms are selected. Practitioner Summary: High-quality systems problems are the future of the discipline. How do we convert obtuse sounding systems concepts into practical interventions? In this paper, the essence of systems thinking is distilled and practical case studies used to demonstrate the benefits of this new paradigm.
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Bernstein, Jennifer M.
This dissertation explored the attitudes, values, and beliefs underlying the contemporary environmental movement. At present, the most widely used means of measuring environmental attitudes is the New Environmental Paradigm (NEP) Scale. This dissertation chronicles the development and establishment of the NEP and the important role it has played in social science research. It also reviews key empirical and theoretical critiques of the scale, arguing that the worldview embodied by the NEP is representative of a narrow understanding of pro-environmental thought and that there remains the need for a new scale built using the core dimensions underlying contemporary environmentalism's diversity. Based on an assessment of contemporary environmental discourse, it was theorized that the key areas in which environmentalists diverge are with respect to nature, technology, and scale of societal response. To test this assertion, this project deeply explored a small sample of carefully selected participants with strong environmental identities and diverse attitudes and values. Quantitative and qualitative data was collected using survey question items and in-depth Repertory Grid interviews. Foremost, analysis showed that the sample of environmentalists studied were far from ideologically homogenous. While they agreed with respect to certain issues, such as the seriousness of environmental problems and the inability of the earth to accommodate unlimited resource demands, they also disagreed in key areas, such as the ability of technology to solve environmental problems and the scale at which effective change occurs. With respect to effective environmental problem solving, respondents mentioned green technologies, reducing resource consumption, and policy changes, and they differentiated between these solutions based on cost, the type of social change needed to bring these solutions to fruition, and how difficult they would be to enact. Demographic differences were also assessed: younger respondents were more likely to mention green technology and alternative transportation while older respondents discussed individual political engagement and education and awareness. Respondents were also clustered on the basis of their shared worldviews, which suggested that participants formed four key ideologically coherent groups. Analysis of the attitudes, values, and worldviews of each group and its members showed both internal cohesiveness as well as heterogeneity. The conclusion suggests the components of the NEP that should be retained, points to topical and theoretical additions, and establishes a framework for future research at the population level.
From spare change to real change. The social sector as beta site for business innovation.
Kanter, R M
1999-01-01
Corporations are continually looking for new sources of innovation. Today several leading companies are beginning to find inspiration in an unexpected place: the social sector. That includes public schools, welfare-to-work programs, and the inner city. Indeed, a new paradigm for innovation is emerging: a partnership between private enterprise and public interest that produces profitable and sustainable change for both sides. In this article, the author shows how some companies are moving beyond corporate social responsibility to corporate social innovation. Traditionally, companies viewed the social sector as a dumping ground for their spare cash, obsolete equipment, and tired executives. But that mind-set hardly created lasting change. Now companies are viewing community needs as opportunities to develop ideas and demonstrate business technologies; find and serve new markets; and solve long-standing business problems. They focus on inventing sophisticated solutions through a hands-on approach. This is not charity; it is R & D, a strategic business investment. The author concedes that it isn't easy to make the new paradigm work. But she has found that successful private-public partnerships share six characteristics: a clear business agenda, strong partners committed to change, investment by both parties, rootedness in the user community, links to other organizations, and a commitment to sustain and replicate the results. Drawing on examples of successful companies such as IBM and Bell Atlantic, the author illustrates how this paradigm has produced innovations that have both business and community payoffs.
Decomposing intuitive components in a conceptual problem solving task.
Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J
2007-06-01
Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.
Self-Affirmation Improves Problem-Solving under Stress
Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751
The effects of monitoring environment on problem-solving performance.
Laird, Brian K; Bailey, Charles D; Hester, Kim
2018-01-01
While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.
Mayo, Ann M.; Wallhagen, Margaret; Cooper, Bruce A.; Mehta, Kala; Ross, Leslie; Miller, Bruce
2012-01-01
Objective To determine the relationship between functional status (independent activities of daily living) and judgment/problem solving and the extent to which select demographic characteristics such as dementia subtype and cognitive measures may moderate that relationship in older adult individuals with dementia. Methods The National Alzheimer’s Coordinating Center Universal Data Set was accessed for a study sample of 3,855 individuals diagnosed with dementia. Primary variables included functional status, judgment/problem solving, and cognition. Results Functional status was related to judgment/problem solving (r= 0.66; p< .0005). Functional status and cognition jointly predicted 56% of the variance in judgment/problem solving (R-squared = .56, p <.0005). As cognition decreases, the prediction of poorer judgment/problem solving by functional status became stronger. Conclusions Among individuals with a diagnosis of dementia, declining functional status as well as declining cognition should raise concerns about judgment/problem solving. PMID:22786576
The semantic system is involved in mathematical problem solving.
Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng
2018-02-01
Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-affirmation improves problem-solving under stress.
Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M
2013-01-01
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.
On the Analysis of Two-Person Problem Solving Protocols.
ERIC Educational Resources Information Center
Schoenfeld, Alan H.
Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…
The Development and Nature of Problem-Solving among First-Semester Calculus Students
ERIC Educational Resources Information Center
Dawkins, Paul Christian; Epperson, James A. Mendoza
2014-01-01
This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia
2009-01-01
A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…
ERIC Educational Resources Information Center
Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka
2011-01-01
This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…
Problem Solving in the School Curriculum from a Design Perspective
ERIC Educational Resources Information Center
Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng
2010-01-01
In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…
The Development, Implementation, and Evaluation of a Problem Solving Heuristic
ERIC Educational Resources Information Center
Lorenzo, Mercedes
2005-01-01
Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…
ERIC Educational Resources Information Center
Cormas, Peter C.
2016-01-01
Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style
ERIC Educational Resources Information Center
Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.
2016-01-01
This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…
Teaching Social Problem Solving to Individuals with Mental Retardation
ERIC Educational Resources Information Center
Crites, Steven A.; Dunn, Caroline
2004-01-01
The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…
The Microcomputer--A Problem Solving Tool.
ERIC Educational Resources Information Center
Hoelscher, Karen J.
Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…
Working Memory Components as Predictors of Children's Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.
2011-01-01
This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…
The Reliability and Construct Validity of Scores on the Attitudes toward Problem Solving Scale
ERIC Educational Resources Information Center
Zakaria, Effandi; Haron, Zolkepeli; Daud, Md Yusoff
2004-01-01
The Attitudes Toward Problem Solving Scale (ATPSS) has received limited attention concerning its reliability and validity with a Malaysian secondary education population. Developed by Charles, Lester & O'Daffer (1987), the instruments assessed attitudes toward problem solving in areas of Willingness to Engage in Problem Solving Activities,…
Using Digital Mapping Tool in Ill-Structured Problem Solving
ERIC Educational Resources Information Center
Bai, Hua
2013-01-01
Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…
Independence Pending: Teacher Behaviors Preceding Learner Problem Solving
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2017-01-01
The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... Agencies: Proposed Collection; Comments Requested Census of Problem-Solving Courts 2012 ACTION: 30-Day...-Solving Courts (CPSC), 201 2. The title of the form/collection: Census of Problem-Solving Courts or CPSC... Abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics...
A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem
ERIC Educational Resources Information Center
Sidhu, S. Manjit; Selvanathan, N.
2005-01-01
Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…
ERIC Educational Resources Information Center
Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei
2008-01-01
This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…
ERIC Educational Resources Information Center
Özyurt, Özcan
2015-01-01
Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…
Capturing Problem-Solving Processes Using Critical Rationalism
ERIC Educational Resources Information Center
Chitpin, Stephanie; Simon, Marielle
2012-01-01
The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…
[Investigation of problem solving skills among psychiatric patients].
Póos, Judit; Annus, Rita; Perczel Forintos, Dóra
2008-01-01
According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.
Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody
2017-10-24
Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.
Physical activity problem-solving inventory for adolescents: Development and initial validation
USDA-ARS?s Scientific Manuscript database
Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...
Dubow, E F; Tisak, J
1989-12-01
This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.
The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems
NASA Astrophysics Data System (ADS)
Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.
2018-01-01
This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.
Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving
NASA Astrophysics Data System (ADS)
E Siswono, T. Y.; Kohar, A. W.; Hartono, S.
2017-02-01
This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.
Fitzpatrick, Stephanie L.; Schumann, Kristina P.; Hill-Briggs, Felicia
2013-01-01
Aims Problem solving is deemed a core skill for patient diabetes self-management education. The purpose of this systematic review is to examine the published literature on the effect of problem-solving interventions on diabetes self-management and disease control. Data Sources We searched PubMed and PsychINFO electronic databases for English language articles published between November 2006 and September 2012. Reference lists from included studies were reviewed to capture additional studies. Study Selection Studies reporting problem-solving intervention or problem solving as an intervention component for diabetes self-management training and disease control were included. Twenty-four studies met inclusion criteria. Data Extraction Study design, sample characteristics, measures, and results were reviewed. Data Synthesis Sixteen intervention studies (11 adult, 5 children/adolescents) were randomized controlled trials, and 8 intervention studies (6 adult, 2 children/adolescents) were quasi-experimental designs. Conclusions Studies varied greatly in their approaches to problem-solving use in patient education. To date, 36% of adult problem-solving interventions and 42% of children/adolescent problem-solving interventions have demonstrated significant improvement in HbA1c, while psychosocial outcomes have been more promising. The next phase of problem-solving intervention research should employ intervention characteristics found to have sufficient potency and intensity to reach therapeutic levels needed to demonstrate change. PMID:23312614
Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.
Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T
2012-06-01
Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.
Analysis of mathematical problem-solving ability based on metacognition on problem-based learning
NASA Astrophysics Data System (ADS)
Mulyono; Hadiyanti, R.
2018-03-01
Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.
Hoskinson, A-M; Caballero, M D; Knight, J K
2013-06-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.
Analysis of problem solving skill in learning biology at senior high school of Surakarta
NASA Astrophysics Data System (ADS)
Rahmawati, D.; Sajidan; Ashadi
2018-04-01
Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.
Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen
2012-11-01
To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.
Innovation and problem solving: a review of common mechanisms.
Griffin, Andrea S; Guez, David
2014-11-01
Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
ERIC Educational Resources Information Center
Chandralekha; Singh
2008-01-01
In this paper, we explore the use of isomorphic problem pairs (IPPs) to assess introductory physics students' ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems "isomorphic" because they require the same physics principle to solve them. We analyze written…
ERIC Educational Resources Information Center
Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel
2016-01-01
This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…
Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804
Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.
Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B
2016-01-01
Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Kolkman, M. J.; Kok, M.; van der Veen, A.
The solution of complex, unstructured problems is faced with policy controversy and dispute, unused and misused knowledge, project delay and failure, and decline of public trust in governmental decisions. Mental model mapping (also called concept mapping) is a technique to analyse these difficulties on a fundamental cognitive level, which can reveal experiences, perceptions, assumptions, knowledge and subjective beliefs of stakeholders, experts and other actors, and can stimulate communication and learning. This article presents the theoretical framework from which the use of mental model mapping techniques to analyse this type of problems emerges as a promising technique. The framework consists of the problem solving or policy design cycle, the knowledge production or modelling cycle, and the (computer) model as interface between the cycles. Literature attributes difficulties in the decision-making process to communication gaps between decision makers, stakeholders and scientists, and to the construction of knowledge within different paradigm groups that leads to different interpretation of the problem situation. Analysis of the decision-making process literature indicates that choices, which are made in all steps of the problem solving cycle, are based on an individual decision maker’s frame of perception. This frame, in turn, depends on the mental model residing in the mind of the individual. Thus we identify three levels of awareness on which the decision process can be analysed. This research focuses on the third level. Mental models can be elicited using mapping techniques. In this way, analysing an individual’s mental model can shed light on decision-making problems. The steps of the knowledge production cycle are, in the same manner, ultimately driven by the mental models of the scientist in a specific discipline. Remnants of this mental model can be found in the resulting computer model. The characteristics of unstructured problems (complexity, uncertainty and disagreement) can be positioned in the framework, as can the communities of knowledge construction and valuation involved in the solution of these problems (core science, applied science, and professional consultancy, and “post-normal” science). Mental model maps, this research hypothesises, are suitable to analyse the above aspects of the problem. This hypothesis is tested for the case of the Zwolle storm surch barrier. Analysis can aid integration between disciplines, participation of public stakeholders, and can stimulate learning processes. Mental model mapping is recommended to visualise the use of knowledge, to analyse difficulties in problem solving process, and to aid information transfer and communication. Mental model mapping help scientists to shape their new, post-normal responsibilities in a manner that complies with integrity when dealing with unstructured problems in complex, multifunctional systems.
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina
2015-04-01
Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem-solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation among suicide attempters and nonattempters. Young adults (n = 324, 73% female, mean age = 19, standard deviation = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and suicidal ideation at baseline, and a self-report measure of suicidal ideation at 6-month follow-up. Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future suicidal ideation. Among attempters, active problem solving buffered against depressive symptoms in predicting future suicidal ideation. Suicide prevention should foster active problem solving, especially among suicide attempters. © 2015 Wiley Periodicals, Inc.
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina
2016-01-01
Objective Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation (SI) among suicide attempters and non-attempters. Method Young adults (n = 324, 73% female, Mage = 19, SD = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and SI at baseline, and also completed a self-report measure of SI at 6-month follow-up. Results Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future SI. Among attempters, active problem solving buffered against depressive symptoms in predicting future SI. Conclusions Suicide prevention should foster active problem solving, especially among suicide attempters. PMID:25760651
Conceptual problem solving in high school physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-12-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.
Bell, Kathryn M; Higgins, Lorrin
2015-04-16
The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.
The social problem-solving abilities of people with borderline personality disorder.
Bray, Stephanie; Barrowclough, Christine; Lobban, Fiona
2007-06-01
Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behaviour therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group. In this study, the social problem-solving (SPS) abilities of three groups of participants were assessed: a BPD group (n=25), a clinical control (CC) group (n=25) procedure and a non-clinical control (NCC) group (n=25). SPS ability was assessed using the means-end problem-solving (MEPS) procedure and the Social Problem-Solving Inventory-Revised (SPSI-R). The BPD group exhibited deficits in their SPS abilities, however the majority of these deficits were not specific to the BPD group but were also found in the CC group, indicating that a common factor between these two groups, such as negative affect, may account for these observed deficits. Specific SPS deficits were identified in the BPD group: they provided less specific solutions on the MEPS and reported higher levels of negative problem orientation and a more impulsive/carelessness style towards solving social problems. The results of this study provide empirical support for the use of problem-solving interventions with people suffering from BPD.
Bell, Kathryn M.; Higgins, Lorrin
2015-01-01
The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person’s ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk. PMID:25893570
Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks
Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen
2018-01-01
During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620
Factors affecting the social problem-solving ability of baccalaureate nursing students.
Lau, Ying
2014-01-01
The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, p<.0001), clinical interaction (ß=.129, p=.047), and interpersonal dysfunction (ß=-.402, p<.0001) were associated with social problem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assertiveness and problem solving in midwives
Yurtsal, Zeliha Burcu; Özdemir, Levent
2015-01-01
Background: Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. Materials and Methods: This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. Results: The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say “no” when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). Conclusions: There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession. PMID:26793247
NASA Astrophysics Data System (ADS)
Allen, Arthur William
The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.
Heuristics and Problem Solving.
ERIC Educational Resources Information Center
Abel, Charles F.
2003-01-01
Defines heuristics as cognitive "rules of thumb" that can help problem solvers work more efficiently and effectively. Professors can use a heuristic model of problem solving to guide students in all disciplines through the steps of problem-solving. (SWM)
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.
Prevost, Luanna B; Lemons, Paula P
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Assessing the Internal Dynamics of Mathematical Problem Solving in Small Groups.
ERIC Educational Resources Information Center
Artzt, Alice F.; Armour-Thomas, Eleanor
The purpose of this exploratory study was to examine the problem-solving behaviors and perceptions of (n=27) seventh-grade students as they worked on solving a mathematical problem within a small-group setting. An assessment system was developed that allowed for this analysis. To assess problem-solving behaviors within a small group a Group…
ERIC Educational Resources Information Center
Artzt, Alice F.; Armour-Thomas, Eleanor
The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…
ERIC Educational Resources Information Center
Overton, Tina L.; Potter, Nicholas M.
2011-01-01
Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…
Perspectives on Problem Solving and Instruction
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
2013-01-01
Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…
ERIC Educational Resources Information Center
She, Hsiao-Ching; Cheng, Meng-Tzu; Li, Ta-Wei; Wang, Chia-Yu; Chiu, Hsin-Tien; Lee, Pei-Zon; Chou, Wen-Chi; Chuang, Ming-Hua
2012-01-01
This study investigates the effect of Web-based Chemistry Problem-Solving, with the attributes of Web-searching and problem-solving scaffolds, on undergraduate students' problem-solving task performance. In addition, the nature and extent of Web-searching strategies students used and its correlation with task performance and domain knowledge also…
The Internet: Problem Solving Friend or Foe?
ERIC Educational Resources Information Center
Wanko, Jeffrey J.
2007-01-01
Teaching problem solving to today's students requires teachers to be aware of the ways their students may use the internet as both a resource and as a tool for solving problems. In this article, I describe some of my own experiences in teaching problem solving to preservice teachers and how the existence of the internet has affected the ways in…
Chinese and Singaporean Sixth-Grade Students' Strategies for Solving Problems about Speed
ERIC Educational Resources Information Center
Jiang, Chunlian; Hwang, Stephen; Cai, Jinfa
2014-01-01
This study examined 361 Chinese and 345 Singaporean sixth-grade students' performance and problem-solving strategies for solving 14 problems about speed. By focusing on students from two distinct high-performing countries in East Asia, we provide a useful perspective on the differences that exist in the preparation and problem-solving strategies…
ERIC Educational Resources Information Center
Yakubova, Gulnoza
2013-01-01
Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…
KidTech: Hands-On Problem Solving with Design Technology for Grades 5-8.
ERIC Educational Resources Information Center
Miller, Lucy
Design technology integrates problem solving with an awareness of the effects of technology on society and the environment. This book places problem solving in a realistic context and addresses situations that are meaningful to students. Design technology aims to develop confidence in problem solving and competence in using technology wisely. This…
The Influence of Cognitive Abilities on Mathematical Problem Solving Performance
ERIC Educational Resources Information Center
Bahar, Abdulkadir
2013-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…
ERIC Educational Resources Information Center
Mumford, Michael D.; Hester, Kimberly S.; Robledo, Issac C.; Peterson, David R.; Day, Eric A.; Hougen, Dean F.; Barrett, Jamie D.
2012-01-01
Knowledge, or expertise, has been held to contribute to creative problem-solving. In this effort, the relationship of one form of knowledge, mental models, to creative problem-solving was assessed. Undergraduates were asked to solve either a marketing or an education problem calling for creative thought. Prior to generating solutions to these…
ERIC Educational Resources Information Center
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-01-01
Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…
ERIC Educational Resources Information Center
Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha
2016-01-01
Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…
Problem Solving of Newton's Second Law through a System of Total Mass Motion
ERIC Educational Resources Information Center
Abdullah, Helmi
2014-01-01
Nowadays, many researchers discovered various effective strategies in teaching physics, from traditional to modern strategy. However, research on physics problem solving is still inadequate. Physics problem is an integral part of physics learning and requires strategy to solve it. Besides that, problem solving is the best way to convey principle,…
Problem Solving in the PISA and TIMSS 2003 Assessments. Technical Report. NCES 2007-049
ERIC Educational Resources Information Center
Dossey, John A.; McCrone, Sharon S.; O'Sullivan, Christine
2006-01-01
In 2003, the Program for International Student Assessment (PISA) and Trends in International Mathematics and Science Study (TIMSS) included a special focus on problem-solving. This report reviews the problem-solving aspects of each study in order to compare and contrast the nature of problem solving in each assessment. The report's authors develop…
ERIC Educational Resources Information Center
Barak, Moshe
2013-01-01
This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…
Influence of Efficacy and Resilience on Problem Solving in the United States, Taiwan, and China
ERIC Educational Resources Information Center
Li, Ming-hui; Eschenauer, Robert; Yang, Yan
2013-01-01
This study explores factors that influence problem-solving coping style across cultures. There was no significant difference in applying problem solving across U.S., Taiwanese, and Chinese samples. The effective predictors of problem solving in the U.S. and Chinese samples were self-efficacy and trait resilience, respectively. In the Taiwanese…
ERIC Educational Resources Information Center
Dyer, James E.; Osborne, Edward W.
1996-01-01
One group of Illinois secondary agriculture students was taught using a problem-solving approach (PSA), the other with a subject-matter approach (SMA). A problem-solving posttest and Group Embedded Figures Test showed significantly higher problem-solving ability in the PSA group. Field independent learners in the PSA group significantly increased…
Are Middle School Mathematics Teachers Able to Solve Word Problems without Using Variable?
ERIC Educational Resources Information Center
Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tugba; Soylu, Yasin
2018-01-01
Many people consider problem solving as a complex process in which variables such as "x," "y" are used. Problems may not be solved by only using "variable." Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is…
Improving the Efficiency of Problem-Solving Practice for Children with Retrieval Difficulties
ERIC Educational Resources Information Center
Hopkins, Sarah; de Villiers, Celeste
2016-01-01
Despite the importance placed on how children come to solve single-digit addition problems, many children count on to solve these problems when they are expected to use accurate retrieval-based strategies. In this study, we assessed if a subitising intervention improved the rate at which problem-solving practice promoted retrieval, using a…
ERIC Educational Resources Information Center
Bullock, Audrey N.
2017-01-01
Problem solving in mathematics has been a goal for students for decades. In the reviewed literature, problem solving was most often treated as the dependent variable and was defined very broadly; however, few studies were found that included problem solving as a treatment or independent variable. The purpose of this study was to investigate the…
Do Scaffolded Supports between Aspects of Problem Solving Enhance Assessment Usability?
ERIC Educational Resources Information Center
McCoy, Jan D.; Braun-Monegan, Jenelle; Bettesworth, Leanne; Tindal, Gerald
2015-01-01
While problem solving as an instructional technique is widely advocated, educators are often challenged in effectively assessing student skill in this area. Students failing to solve a problem might fail in any of several aspects of the effort. The purpose of this research was to validate a scaffolded technique for assessing problem solving in…
Rewarding Multitasking: Negative Effects of an Incentive on Problem Solving under Divided Attention
ERIC Educational Resources Information Center
Wieth, Mareike B.; Burns, Bruce D.
2014-01-01
Research has consistently shown negative effects of multitasking on tasks such as problem solving. This study was designed to investigate the impact of an incentive when solving problems in a multitasking situation. Incentives have generally been shown to increase problem solving (e.g., Wieth & Burns, 2006), however, it is unclear whether an…
Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics
ERIC Educational Resources Information Center
Kargas, Christine Anestis; Stephens, Max
2014-01-01
This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…
ERIC Educational Resources Information Center
Palumbo, Debra L; Palumbo, David B.
1993-01-01
Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…
Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts1
Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye
2012-01-01
In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes. PMID:23397430
Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts().
Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye
2013-01-01
In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes.
Examining problem solving in physics-intensive Ph.D. research
NASA Astrophysics Data System (ADS)
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris
2017-12-01
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.
NASA Astrophysics Data System (ADS)
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
ERIC Educational Resources Information Center
Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia
2013-01-01
This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…
Problem representation and mathematical problem solving of students of varying math ability.
Krawec, Jennifer L
2014-01-01
The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.
Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting
2012-01-01
A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…