ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Computer Programming: A Medium for Teaching Problem Solving.
ERIC Educational Resources Information Center
Casey, Patrick J.
1997-01-01
Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
ERIC Educational Resources Information Center
Treffinger, Donald J.; Solomon, Marianne; Woythal, Deb
2012-01-01
E. Paul Torrance, a pioneer in creative education, and his associates founded the Future Problem Solving Program (now FPSPI, or Future Problem Solving Program International) in the mid-1970s as a competitive, interscholastic program and as a curriculum project integrating creative problem-solving and future studies. Since its founding, the program…
Solving Integer Programs from Dependence and Synchronization Problems
1993-03-01
DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
ERIC Educational Resources Information Center
Kim, SugHee; Chung, KwangSik; Yu, HeonChang
2013-01-01
The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
ERIC Educational Resources Information Center
Szetela, W.; Super, D.
A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…
Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum
ERIC Educational Resources Information Center
Tseng, Shian-Shyong; Weng, Jui-Feng
2010-01-01
The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…
ERIC Educational Resources Information Center
Palumbo, Debra L; Palumbo, David B.
1993-01-01
Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…
The Future Problem Solving Program.
ERIC Educational Resources Information Center
Crabbe, Anne B.
1989-01-01
Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…
Li, Shuai; Li, Yangming; Wang, Zheng
2013-03-01
This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Garey, Robert W.
The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
A Rubric for Assessing Students' Experimental Problem-Solving Ability
ERIC Educational Resources Information Center
Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.
2012-01-01
The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…
Effects of Pascal and FORTRAN Programming on the Problem-Solving Abilities of College Students.
ERIC Educational Resources Information Center
Choi, Won Sik; Repman, Judi
1993-01-01
Describes a study that was conducted to determine whether learning to program a computer in Pascal or FORTRAN improved problem-solving skills of college students when compared to a control group and to determine which programing language was more effective in the development of problem-solving abilities. (26 references) (LRW)
ERIC Educational Resources Information Center
Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.
2008-01-01
Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with…
A new neural network model for solving random interval linear programming problems.
Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza
2017-05-01
This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Crisis in Space--A Futuristic Simulation Using Creative Problem Solving.
ERIC Educational Resources Information Center
Clode, Linda
1992-01-01
An enrichment program developed for sixth-grade gifted students combined creative problem solving with future studies in a way that would simulate real life crisis problem solving. The program involved forecasting problems of the future requiring evacuation of Earth, assuming roles on a spaceship, and simulating crises as the spaceship traveled to…
NASA Astrophysics Data System (ADS)
Shorikov, A. F.
2017-10-01
In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.
ERIC Educational Resources Information Center
Spiropoulos, Georgia V.; Spruance, Lisa; Van Voorhis, Patricia; Schmitt, Michelle M.
2005-01-01
The effects of "Problem Solving" (Taymans & Parese, 1998) are compared across small diversion and prison samples for men and women. A second program, "Pathfinders" (Hansen, 1993), was compared to the Problem Solving program among incarcerated women offenders to determine whether its focus upon empowerment and relationships enhanced the effects of…
Problem Solving on a Monorail.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; And Others
1994-01-01
This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
ERIC Educational Resources Information Center
Lower, Stephen K.
A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…
A Case Study in an Integrated Development and Problem Solving Environment
ERIC Educational Resources Information Center
Deek, Fadi P.; McHugh, James A.
2003-01-01
This article describes an integrated problem solving and program development environment, illustrating the application of the system with a detailed case study of a small-scale programming problem. The system, which is based on an explicit cognitive model, is intended to guide the novice programmer through the stages of problem solving and program…
Problem Solving Software for Math Classes.
ERIC Educational Resources Information Center
Troutner, Joanne
1987-01-01
Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)
Introduction to LogoWriter and Problem Solving for Educators.
ERIC Educational Resources Information Center
Yoder, Sharon Burrowes; Moursund, Dave
This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…
A Case Study of an Induction Year Teacher's Problem-Solving Using the LIBRE Model Activity
ERIC Educational Resources Information Center
Guerra, Norma S.; Flores, Belinda Bustos; Claeys, Lorena
2009-01-01
Background: A federally-funded program at the University of Texas at San Antonio adopted a holistic problem solving mentoring approach for novice teachers participating in an accelerated teacher certification program. Aims/focus of discussion: To investigate a novice teacher's problem-solving activity through self-expression of challenges and…
Assessing Leadership and Problem-Solving Skills and Their Impacts in the Community.
ERIC Educational Resources Information Center
Rohs, F. Richard; Langone, Christine A.
1993-01-01
A pretest-posttest control group design was used to assess the leadership and problem-solving skills of 281 participants and 110 controls in a statewide community leadership development program. Quantitative and qualitative data demonstrate that the program has been a catalyst to influence leadership and problem-solving skills for community…
ERIC Educational Resources Information Center
Webster-Stratton, Carolyn; Reid, M. Jamila
2003-01-01
This article describes the Dina Dinosaur Social, Emotional and Problem Solving Child Training Program for young children with conduct problems. The program emphasizes training children in skills such as emotional literacy, empathy or perspective taking, friendship and communication skills, anger management, interpersonal problem solving, and…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
A recent study, "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability," examined the effectiveness of "Solve It!," a program intended to improve the problem-solving skills of seventh-grade math students. During the program, students are taught cognitive strategies of…
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
New computer program solves wide variety of heat flow problems
NASA Technical Reports Server (NTRS)
Almond, J. C.
1966-01-01
Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.
Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program
ERIC Educational Resources Information Center
Akcaoglu, Mete
2014-01-01
Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…
2015-03-26
benefit by no longer having to allocate resources to inventory management . When the inventory routing problem is solved , three key decisions are made at...industries rely on the transportation and manage – ment of goods. To aid in understanding the formulation and techniques for solving the military inventory...Using Approximate Dynamic Programming to Solve the Military Inventory Routing Problem with Direct Delivery THESIS MARCH 2015 Rebekah S. McKenna
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P
2008-01-01
Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
Teaching Social Problem Solving to Individuals with Mental Retardation
ERIC Educational Resources Information Center
Crites, Steven A.; Dunn, Caroline
2004-01-01
The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…
Automated Test Assembly Using lp_Solve Version 5.5 in R
ERIC Educational Resources Information Center
Diao, Qi; van der Linden, Wim J.
2011-01-01
This article reviews the use of the software program lp_solve version 5.5 for solving mixed-integer automated test assembly (ATA) problems. The program is freely available under Lesser General Public License 2 (LGPL2). It can be called from the statistical language R using the lpSolveAPI interface. Three empirical problems are presented to…
EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.
ERIC Educational Resources Information Center
Jarvis, John J.; And Others
Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…
ERIC Educational Resources Information Center
Crabtree, John; Zhang, Xihui
2015-01-01
Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…
Solving intuitionistic fuzzy multi-objective nonlinear programming problem
NASA Astrophysics Data System (ADS)
Anuradha, D.; Sobana, V. E.
2017-11-01
This paper presents intuitionistic fuzzy multi-objective nonlinear programming problem (IFMONLPP). All the coefficients of the multi-objective nonlinear programming problem (MONLPP) and the constraints are taken to be intuitionistic fuzzy numbers (IFN). The IFMONLPP has been transformed into crisp one and solved by using Kuhn-Tucker condition. Numerical example is provided to illustrate the approach.
Developing Student Programming and Problem-Solving Skills with Visual Basic
ERIC Educational Resources Information Center
Siegle, Del
2009-01-01
Although most computer users will never need to write a computer program, many students enjoy the challenge of creating one. Computer programming enhances students' problem solving by forcing students to break a problem into its component pieces and reassemble it in a generic format that can be understood by a nonsentient entity. It promotes…
Problem Solving in the PISA and TIMSS 2003 Assessments. Technical Report. NCES 2007-049
ERIC Educational Resources Information Center
Dossey, John A.; McCrone, Sharon S.; O'Sullivan, Christine
2006-01-01
In 2003, the Program for International Student Assessment (PISA) and Trends in International Mathematics and Science Study (TIMSS) included a special focus on problem-solving. This report reviews the problem-solving aspects of each study in order to compare and contrast the nature of problem solving in each assessment. The report's authors develop…
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
ERIC Educational Resources Information Center
Chilvers, Amanda Leigh
2013-01-01
Researchers have noted that mathematics achievement for deaf and hard-of-hearing (d/hh) students has been a concern for many years, including the ability to problem solve. This quasi-experimental study investigates the use of the Exemplars mathematics program with students in grades 2-8 in a school for the deaf that utilizes American Sign Language…
A computer program to find the kernel of a polynomial operator
NASA Technical Reports Server (NTRS)
Gejji, R. R.
1976-01-01
This paper presents a FORTRAN program written to solve for the kernel of a matrix of polynomials with real coefficients. It is an implementation of Sain's free modular algorithm for solving the minimal design problem of linear multivariable systems. The structure of the program is discussed, together with some features as they relate to questions of implementing the above method. An example of the use of the program to solve a design problem is included.
How Does Early Feedback in an Online Programming Course Change Problem Solving?
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2012-01-01
How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…
Knowledge Intensive Programming: A New Educational Computing Environment.
ERIC Educational Resources Information Center
Seidman, Robert H.
1990-01-01
Comparison of the process of problem solving using a conventional procedural computer programing language (e.g., BASIC, Logo, Pascal), with the process when using a logic programing language (i.e., Prolog), focuses on the potential of the two types of programing languages to facilitate the transfer of problem-solving skills, cognitive development,…
ERIC Educational Resources Information Center
Chen, Chiu-Jung; Liu, Pei-Lin
2007-01-01
This study evaluated the effects of a personalized computer-assisted mathematics problem-solving program on the performance and attitude of Taiwanese fourth grade students. The purpose of this study was to determine whether the personalized computer-assisted program improved student performance and attitude over the nonpersonalized program.…
The Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program
The Environmental Justice Collaborative Problem-Solving (CPS) Cooperative Agreement Program provides financial assistance to eligible organizations working on or planning to work on projects to address local environmental and/or public health issues
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
Programming and Problem Solving.
ERIC Educational Resources Information Center
Elias, Barbara P.
A study was conducted to examine computer programming as a problem solving activity. Thirteen fifth grade children were selected by their teacher from an above average class to use Apple IIe microcomputers. The investigator conducted sessions of 40-50 minutes with the children in groups of two or three. Four problems, incorporating the programming…
REACTT: an algorithm for solving spatial equilibrium problems.
D.J. Brooks; J. Kincaid
1987-01-01
The problem of determining equilibrium prices and quantities in spatially separated markets is reviewed. Algorithms that compute spatial equilibria are discussed. A computer program using the reactive programming algorithm for solving spatial equilibrium problems that involve multiple commodities is presented, along with detailed documentation. A sample data set,...
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
The Effect of TMPT Program on Pre-School Children's Social Problem Solving Skills
ERIC Educational Resources Information Center
Gur, Cagla; Kocak, Nurcan
2018-01-01
Purpose: Starting Thinking Training at an early age is important. However, few studies were found regarding Thinking Training programs for pre-school children and the contributions of these programs to children's social problem-solving. In this context, the TMPT Program was developed for pre-school children and the effect of the program on 5-6…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
RunJumpCode: An Educational Game for Educating Programming
ERIC Educational Resources Information Center
Hinds, Matthew; Baghaei, Nilufar; Ragon, Pedrito; Lambert, Jonathon; Rajakaruna, Tharindu; Houghton, Travers; Dacey, Simon
2017-01-01
Programming promotes critical thinking, problem solving and analytic skills through creating solutions that can solve everyday problems. However, learning programming can be a daunting experience for a lot of students. "RunJumpCode" is an educational 2D platformer video game, designed and developed in Unity, to teach players the…
Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…
Gaebelein, Claude J.; Grice, Gloria R.; Crannage, Andrew J.; Weck, Margaret A.; Hurd, Peter; Walter, Brenda; Duncan, Wendy
2013-01-01
Objective. To determine the feasibility of using a validated set of assessment rubrics to assess students’ critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Methods. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. Results. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Conclusions. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program. PMID:24159207
Gleason, Brenda L; Gaebelein, Claude J; Grice, Gloria R; Crannage, Andrew J; Weck, Margaret A; Hurd, Peter; Walter, Brenda; Duncan, Wendy
2013-10-14
To determine the feasibility of using a validated set of assessment rubrics to assess students' critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program.
Can Television Enhance Children's Mathematical Problem Solving?
ERIC Educational Resources Information Center
Fisch, Shalom M.; And Others
1994-01-01
A summative evaluation of "Square One TV," an educational mathematics series produced by the Children's Television Workshop, shows that children who regularly viewed the program showed significant improvement in solving unfamiliar, complex mathematical problems, and viewers showed improvement in their mathematical problem-solving ability…
Opportunities to Pose Problems Using Digital Technology in Problem Solving Environments
ERIC Educational Resources Information Center
Aguilar-Magallón, Daniel Aurelio; Fernández, Willliam Enrique Poveda
2017-01-01
This article reports and analyzes different types of problems that nine students in a Master's Program in Mathematics Education posed during a course on problem solving. What opportunities (affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training teachers to formulate and solve problems, and what type of…
Solving Common Mathematical Problems
NASA Technical Reports Server (NTRS)
Luz, Paul L.
2005-01-01
Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.
ERIC Educational Resources Information Center
Seidel, Robert J.; Hunter, Harold G.
In continuing research into the technology of training, a study was undertaken to devise guidelines for applying programed instruction to training courses that involve the learning of principles and rules for use in problem solving. As a research vehicle, a portion of the material in the Army's Programing Specialist Course was programed to explore…
About the mechanism of ERP-system pilot test
NASA Astrophysics Data System (ADS)
Mitkov, V. V.; Zimin, V. V.
2018-05-01
In the paper the mathematical problem of defining the scope of pilot test is stated, which is a task of quadratic programming. The procedure of the problem solving includes the method of network programming based on the structurally similar network representation of the criterion and constraints and which reduces the original problem to a sequence of simpler evaluation tasks. The evaluation tasks are solved by the method of dichotomous programming.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
Semilinear programming: applications and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.
Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less
Robotics and Children: Science Achievement and Problem Solving.
ERIC Educational Resources Information Center
Wagner, Susan Preston
1999-01-01
Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…
Solving Optimization Problems with Spreadsheets
ERIC Educational Resources Information Center
Beigie, Darin
2017-01-01
Spreadsheets provide a rich setting for first-year algebra students to solve problems. Individual spreadsheet cells play the role of variables, and creating algebraic expressions for a spreadsheet to perform a task allows students to achieve a glimpse of how mathematics is used to program a computer and solve problems. Classic optimization…
Teaching People to Manage Constraints: Effects on Creative Problem-Solving
ERIC Educational Resources Information Center
Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.
2013-01-01
Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…
An Action-Research Program for Increasing Employee Involvement in Problem Solving.
ERIC Educational Resources Information Center
Pasmore, William; Friedlander, Frank
1982-01-01
Describes the use of participative action research to solve problems of work-related employee injuries in a rural midwestern electronics plant by increasing employee involvement. The researchers established an employee problem-solving group that interviewed and surveyed workers, analyzed the results, and suggested new work arrangements. (Author/RW)
Problem Solving Variations in an Online Programming Course
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2007-01-01
An observation on teaching introductory programming courses on SLN for a period of two terms led me to believe that online students try various ways to solve a problem. In the beginning, I got the impression that some of their approaches for a solution were wrong; but after a little investigation, I found that some of the problem-solving…
A dynamic model of functioning of a bank
NASA Astrophysics Data System (ADS)
Malafeyev, Oleg; Awasthi, Achal; Zaitseva, Irina; Rezenkov, Denis; Bogdanova, Svetlana
2018-04-01
In this paper, we analyze dynamic programming as a novel approach to solve the problem of maximizing the profits of a bank. The mathematical model of the problem and the description of bank's work is described in this paper. The problem is then approached using the method of dynamic programming. Dynamic programming makes sure that the solutions obtained are globally optimal and numerically stable. The optimization process is set up as a discrete multi-stage decision process and solved with the help of dynamic programming.
Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
NASA Astrophysics Data System (ADS)
Muruganandam, P.; Adhikari, S. K.
2009-10-01
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.
The Strengthening Families Program 10-14: influence on parent and youth problem-solving skill.
Semeniuk, Y; Brown, R L; Riesch, S K; Zywicki, M; Hopper, J; Henriques, J B
2010-06-01
The aim of this paper is to report the results of a preliminary examination of the efficacy of the Strengthening Families Program (SFP) 10-14 in improving parent and youth problem-solving skill. The Hypotheses in this paper include: (1) youth and parents who participated in SFP would have lower mean scores immediately (T2) and 6 months (T3) post intervention on indicators of hostile and negative problem-solving strategies; (2) higher mean scores on positive problem-solving strategies; and (3) youth who participated in SFP would have higher mean scores at T2 and at T3 on indicators of individual problem solving and problem-solving efficacy than youth in the comparison group. The dyads were recruited from elementary schools that had been stratified for race and assigned randomly to intervention or comparison conditions. Mean age of youth was 11 years (SD = 1.04). Fifty-seven dyads (34-intervention&23-control) were videotaped discussing a frequently occurring problem. The videotapes were analysed using the Iowa Family Interaction Rating Scale (IFIRS) and data were analysed using Dyadic Assessment Intervention Model. Most mean scores on the IFIRS did not change. One score changed as predicted: youth hostility decreased at T3. Two scores changed contrary to prediction: parent hostility increased T3 and parent positive problem solving decreased at T2. SFP demonstrated questionable efficacy for problem-solving skill in this study.
Huang, Kuo -Ling; Mehrotra, Sanjay
2016-11-08
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
ERIC Educational Resources Information Center
Feldhusen, John F.; And Others
1992-01-01
The COMET summer residential program at Purdue University (Indiana) offers gifted and talented youth in grades 4-6 a week of intensive study in a single content area. Courses stress specific problem-solving skills and development of a rich knowledge base. Extensive program evaluation by students, teachers, counselors, and parents was highly…
Mathematical programming formulations for satellite synthesis
NASA Technical Reports Server (NTRS)
Bhasin, Puneet; Reilly, Charles H.
1987-01-01
The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.
2016-01-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604
Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M
2016-12-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.
The Role of Mental Models in Learning to Program.
ERIC Educational Resources Information Center
Pirolli, Peter L.; Anderson, John R.
This study reports two experiments which indicate that the processes of providing subjects with insightful representations of example programs and guiding subjects through an "ideal" problem solving strategy facilitate learning. A production system model (GRAPES) has been developed that simulates problem-solving and learning in the…
Generalised Assignment Matrix Methodology in Linear Programming
ERIC Educational Resources Information Center
Jerome, Lawrence
2012-01-01
Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…
Teaching Thinking and Problem Solving.
ERIC Educational Resources Information Center
Bransford, John; And Others
1986-01-01
This article focuses on two approaches to teaching reasoning and problem solving. One emphasizes the role of domain-specific knowledge; the other emphasizes general strategic and metacognitive knowledge. Many instructional programs are based on the latter approach. The article concludes that these programs can be strengthened by focusing on domain…
Ailey, Sarah H.; Friese, Tanya R.; Nezu, Arthur M.
2016-01-01
Social problem-solving programs have shown success in reducing aggressive/challenging behaviors among individuals with intellectual disabilities in clinical settings, but have not been adapted for health promotion in community settings. We modified a social problem-solving program for the community setting of the group home. Multiple sequential methods were used to seek advice from community members on making materials understandable and on intervention delivery. A committee of group home supervisory staff gave advice on content and delivery. Cognitive interviews with individuals with intellectual disabilities and residential staff provided input on content wording and examples. Piloting the program provided experience with content and delivery. The process provides lessons on partnering with vulnerable populations and community stakeholders to develop health programs. PMID:22753149
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
ERIC Educational Resources Information Center
Hu, Yiling; Wu, Bian; Gu, Xiaoqing
2017-01-01
Test results from the Program for International Student Assessment (PISA) reveal that Shanghai students performed less well in solving interactive problems (those that require uncovering necessary information) than in solving analytical problems (those having all information disclosed at the outset). Accordingly, this study investigates…
The Problem-Solving Approach of Environmental Education.
ERIC Educational Resources Information Center
Connect, 1983
1983-01-01
The problem-solving approach in environmental education (EE), reports on EE programs and activities in selected foreign countries, and a report on the Asian Subregional Workshop on Teacher Training in EE are provided in this newsletter. The nature of the problem-solving approach and brief discussions of such methodologies as group discussion,…
ERIC Educational Resources Information Center
Bush, Sarah A.; Friedel, Curtis R.; Hoerbert, Lindsey R.; Broyles, Thomas W.
2017-01-01
With an evolving and expanding agricultural industry, it is crucial to provide future professionals with valuable experiences and skills in problem solving, communication, and teamwork. Agricultural summer programs for secondary students, which provide cooperative learning experiences with a focus on group work and problem solving, aim to help…
Backtrack Programming: A Computer-Based Approach to Group Problem Solving.
ERIC Educational Resources Information Center
Scott, Michael D.; Bodaken, Edward M.
Backtrack problem-solving appears to be a viable alternative to current problem-solving methodologies. It appears to have considerable heuristic potential as a conceptual and operational framework for small group communication research, as well as functional utility for the student group in the small group class or the management team in the…
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Fong, Kenneth N K; Howie, Dorothy R
2009-01-01
We investigated the effects of an explicit problem-solving skills training program using a metacomponential approach with 33 outpatients with moderate acquired brain injury, in the Hong Kong context. We compared an experimental training intervention with this explicit problem-solving approach, which taught metacomponential strategies, with a conventional cognitive training approach that did not have this explicit metacognitive training. We found significant advantages for the experimental group on the Metacomponential Interview measure in association with the explicit metacomponential training, but transfer to the real-life problem-solving measures was not evidenced in statistically significant findings. Small sample size, limited time of intervention, and some limitations with these tools may have been contributing factors to these results. The training program was demonstrated to have a significantly greater effect than the conventional training approach on metacomponential functioning and the component of problem representation. However, these benefits were not transferable to real-life situations.
The Computer as a Tutorial Laboratory: The Stanford BIP Project.
ERIC Educational Resources Information Center
Barr, Avron; And Others
The BASIC Instructional Program (BIP) is an interactive problem-solving laboratory that offers tutorial assistance to students solving introductory programing problems in the BASIC language. After a brief review of the rationale and origins of the BIP instructional system, the design and implementation of BIP's curriculum information network are…
Competitive Facility Location with Fuzzy Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2010-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops, with uncertainty and vagueness including demands for the facilities in a plane. By representing the demands for facilities as fuzzy random variables, the location problem can be formulated as a fuzzy random programming problem. For solving the fuzzy random programming problem, first the α-level sets for fuzzy numbers are used for transforming it to a stochastic programming problem, and secondly, by using their expectations and variances, it can be reformulated to a deterministic programming problem. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic oscillation. The efficiency of the proposed method is shown by applying it to numerical examples of the facility location problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kuo -Ling; Mehrotra, Sanjay
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
Mess Management for Gifted Students.
ERIC Educational Resources Information Center
Awkerman, Gary; Teller, Paul
1979-01-01
Mess Management is considered here as collective problem solving. Describes an example of a program for gifted elementary students emphasizing problem solving skills. A sample strategy is included. (MA)
The mathematical statement for the solving of the problem of N-version software system design
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.
2015-10-01
The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
ERIC Educational Resources Information Center
National Center for Education Statistics, 2017
2017-01-01
The Program for International Student Assessment (PISA) is a global education study of 15-year-old students' reading, mathematics, and science literacy and, in 2015, two optional components: financial literacy and collaborative problem solving. Fifty-one education systems administered the collaborative problem solving assessment, including 32 of…
The Impact of Parental Attitudes on Problem Solving Skills in High School Students
ERIC Educational Resources Information Center
Tösten, Rasim; Han, Bünyamin; Anik, Sabri
2017-01-01
Problem solving skill is one of the important skills which are expected to be gained during the educational programs. In the development of children's skills and shaping the behaviors, parental attitudes are believed to be effective. That means problem-solving skills and behavioral characteristics of individuals are closely related. From that…
Research and applications: Artificial intelligence
NASA Technical Reports Server (NTRS)
Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.
1971-01-01
A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.
Linear decomposition approach for a class of nonconvex programming problems.
Shen, Peiping; Wang, Chunfeng
2017-01-01
This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.
Partitioning problems in parallel, pipelined and distributed computing
NASA Technical Reports Server (NTRS)
Bokhari, S.
1985-01-01
The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.
Communications oriented programming of parallel iterative solutions of sparse linear systems
NASA Technical Reports Server (NTRS)
Patrick, M. L.; Pratt, T. W.
1986-01-01
Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.
Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.
ERIC Educational Resources Information Center
Nunokawa, Kazuhiko
1996-01-01
The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)
Problem-Solving Management Training Effects on Sales Productivity and Job Satisfaction.
ERIC Educational Resources Information Center
Ross, Paul C.; And Others
Research suggests that effective organizational change must be led by line personnel rather than by outside consultants. The Performance Management Program (PMP) implemented in two Bell Telephone companies is a line-led, self-help program in which managers participate in problem-solving activities within their own jobs. Marketing and sales…
ERIC Educational Resources Information Center
Fessakis, G.; Gouli, E.; Mavroudi, E.
2013-01-01
Computer programming is considered an important competence for the development of higher-order thinking in addition to algorithmic problem solving skills. Its horizontal integration throughout all educational levels is considered worthwhile and attracts the attention of researchers. Towards this direction, an exploratory case study is presented…
Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language
ERIC Educational Resources Information Center
Unuakhalu, Mike F.
2009-01-01
This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…
Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving
ERIC Educational Resources Information Center
Kim, H. S.; Prevost, L.; Lemons, P. P.
2015-01-01
The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…
ERIC Educational Resources Information Center
Murray, Stephen L.; And Others
This report presents data collected about the impact of the Research Utilizing Problem Solving (RUPS) instructional system on the classrooms of teachers trained in two RUPS workshops, which were part of the Improving Teaching Competencies Program at the Northwest Regional Educational Laboratory. The report is divided into four chapters, the first…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moryakov, A. V., E-mail: sailor@yauza.ru; Pylyov, S. S.
This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.
Structuring an Adult Learning Environment. Part IV: Establishing an Environment for Problem Solving.
ERIC Educational Resources Information Center
Frankel, Alan; Brennan, James
Through the years, many researchers have advanced theories of problem solving. Probably the best definition of problem solving to apply to adult learning programs is Wallas' (1926) four-stage theory. The stages are (1) a preparation, (2) an incubation period, (3) a moment of illumination, and (4) final application or verification of the solution.…
I Can Problem Solve (ICPS): A Cognitive Approach to Preventing Early High Risk Behaviors.
ERIC Educational Resources Information Center
Shure, Myrna B.; And Others
This outline presents a program designed to teach children "how" to think, not what to think--so as to help them solve typical interpersonal problems with peers and adults. Through games, stories, puppets, illustrations, and role plays, children learn a pre-problem solving vocabulary, feeling word concepts, and ways to arrive at solutions to…
Randomized Controlled Trial of Problem-Solving Therapy for Minor Depression in Home Care
ERIC Educational Resources Information Center
Gellis, Zvi D.; McGinty, Jean; Tierney, Lynda; Jordan, Cindy; Burton, Jean; Misener, Elizabeth
2008-01-01
Objective: Data are presented from a pilot research program initiated to develop, refine, and test the outcomes of problem-solving therapy that targets the needs of older adults with minor depression in home care settings. Method: A pilot randomized clinical trial compares the impact of problem-solving therapy for home care to treatment as usual…
Enhanced algorithms for stochastic programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, Alamuru S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less
Planning and problem-solving training for patients with schizophrenia: a randomized controlled trial
2011-01-01
Background The purpose of this study was to assess whether planning and problem-solving training is more effective in improving functional capacity in patients with schizophrenia than a training program addressing basic cognitive functions. Methods Eighty-nine patients with schizophrenia were randomly assigned either to a computer assisted training of planning and problem-solving or a training of basic cognition. Outcome variables included planning and problem-solving ability as well as functional capacity, which represents a proxy measure for functional outcome. Results Planning and problem-solving training improved one measure of planning and problem-solving more strongly than basic cognition training, while two other measures of planning did not show a differential effect. Participants in both groups improved over time in functional capacity. There was no differential effect of the interventions on functional capacity. Conclusion A differential effect of targeting specific cognitive functions on functional capacity could not be established. Small differences on cognitive outcome variables indicate a potential for differential effects. This will have to be addressed in further research including longer treatment programs and other settings. Trial registration ClinicalTrials.gov NCT00507988 PMID:21527028
Constraint Programming to Solve Maximal Density Still Life
NASA Astrophysics Data System (ADS)
Chu, Geoffrey; Petrie, Karen Elizabeth; Yorke-Smith, Neil
The Maximum Density Still Life problem fills a finite Game of Life board with a stable pattern of cells that has as many live cells as possible. Although simple to state, this problem is computationally challenging for any but the smallest sizes of board. Especially difficult is to prove that the maximum number of live cells has been found. Various approaches have been employed. The most successful are approaches based on Constraint Programming (CP). We describe the Maximum Density Still Life problem, introduce the concept of constraint programming, give an overview on how the problem can be modelled and solved with CP, and report on best-known results for the problem.
ERIC Educational Resources Information Center
Mossuto, Mark
2009-01-01
The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…
ERIC Educational Resources Information Center
Friedman, Robert S.; Deek, Fadi P.
2002-01-01
Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…
ERIC Educational Resources Information Center
Korkmaz, Özgen
2016-01-01
The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…
HEMP 3D: A finite difference program for calculating elastic-plastic flow, appendix B
NASA Astrophysics Data System (ADS)
Wilkins, Mark L.
1993-05-01
The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations listed below are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time.
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
2016-04-01
Practical Problem Solving Method RMD Resource Management Decision ROI Return on Investment SECAF Secretary of the Air Force SECNAV Secretary of...AFSO21 and now AF CPI, this program seeks to train and certify an organic cadre of CPI practitioners to support the use of its standard problem solving ...process known as the AF Practical Problem Solving Method (PPSM) to solve mission critical process deficiencies. The PPSM leverages several industry
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
Interactive Problem Solving Tutorials Through Visual Programming
NASA Astrophysics Data System (ADS)
Undreiu, Lucian; Schuster, David; Undreiu, Adriana
2008-10-01
We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.
A hybrid nonlinear programming method for design optimization
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1986-01-01
Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.
ERIC Educational Resources Information Center
Duquette, Lise
1999-01-01
Examines the role of metacognition, particularly problem solving strategies, in how second language students learn in a multimedia environment, studying problem solving strategies used by students completing exercises in Mydlarski and Paramskas' program, Vi-Conte. Presents recommendations for training teachers, noting that the flexibility of…
Parsing Protocols Using Problem Solving Grammars. AI Memo 385.
ERIC Educational Resources Information Center
Miller, Mark L.; Goldstein, Ira P.
A theory of the planning and debugging of computer programs is formalized as a context free grammar, which is used to reveal the constituent structure of problem solving episodes by parsing protocols in which programs are written, tested, and debugged. This is illustrated by the detailed analysis of an actual session with a beginning student…
Solving Drug-Related Problems in the Professional Experience Program.
ERIC Educational Resources Information Center
Kane, Michael P.; And Others
1993-01-01
A study investigated the effectiveness of using the Pharmacist's Work-up of Drug Therapy (PWDT) in teaching 91 pharmacy students in a clinical clerkship program to identify and solve drug-related problems. Because the instructional technique was recently implemented, the study looked at effects of 3 different quantities of training (0, 1, and 3…
Pre-Service Teachers' Level of Problem Solving and Its Relation with Creative Drama Education
ERIC Educational Resources Information Center
Arslan, Suna
2015-01-01
This study seeks an answer to the question "Can Creative Drama programs be benefited from in developing the experiences of noticing educational and psychosocial problems and solving them in relation with the teaching profession?." The importance given to Creative Drama method in educational programs increases day by day. Drama education…
ERIC Educational Resources Information Center
Smith, Ruth Baynard
1994-01-01
Intermediate level academically talented students learn essential elements of computer programming by working with robots at enrichment workshops at Dwight-Englewood School in Englewood, New Jersey. The children combine creative thinking and problem-solving skills to program the robots' microcomputers to perform a variety of movements. (JDD)
Structural design using equilibrium programming formulations
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1995-01-01
Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.
NASA Technical Reports Server (NTRS)
Tapia, R. A.; Vanrooy, D. L.
1976-01-01
A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.
The application of dynamic programming in production planning
NASA Astrophysics Data System (ADS)
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
ERIC Educational Resources Information Center
Wang, Jing; Matthews, Judith T.; Sereika, Susan M.; Chasens, Eileen R.; Ewing, Linda J.; Burke, Lora E.
2013-01-01
Problem solving is a key component of weight loss programs. The Social Problem Solving Inventory-Revised (SPSI-R) has not been evaluated in weight loss studies. The purpose of this study was to evaluate the psychometrics of the SPSI-R. Cronbach's a (0.95 for total score; 0.67-0.92 for subscales) confirmed internal consistency reliability. The…
ERIC Educational Resources Information Center
Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin
2011-01-01
In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…
Using Programmable Calculators to Solve Electrostatics Problems.
ERIC Educational Resources Information Center
Yerian, Stephen C.; Denker, Dennis A.
1985-01-01
Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)
A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints
NASA Astrophysics Data System (ADS)
Estiningsih, Y.; Farikhin; Tjahjana, R. H.
2018-03-01
Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.
Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries
ERIC Educational Resources Information Center
Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han
2009-01-01
The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…
Moisture and Home Energy Conservation: How to Detect, Solve and Avoid Related Problems.
ERIC Educational Resources Information Center
National Center for Appropriate Technology, Butte, MT.
Moisture problems are identified as an important element in home energy conservation programs. A systematic approach to understanding, recognizing, solving, and preventing moisture-related problems is offered in this four-section report. Section I examines the root of moisture problems. Section II discusses symptoms and causes of excess moisture…
The Cognitive Toolkit of Programming--Algorithmic Abstraction, Decomposition-Superposition
ERIC Educational Resources Information Center
Szlávi,Péter; Zsakó, László
2017-01-01
As a programmer when solving a problem, a number of conscious and unconscious cognitive operations are being performed. Problem-solving is a gradual and cyclic activity; as the mind is adjusting the problem to its schemas formed by its previous experiences, the programmer gets closer and closer to understanding and defining the problem. The…
2017-03-01
AFRL-AFOSR-JP-TR-2017-0026 Adaptive Problem Solving Michael Barley THE UNIVERSITY OF AUCKLAND Final Report 03/01/2017 DISTRIBUTION A: Distribution...May 2015 to 26 Nov 2016 4. TITLE AND SUBTITLE Adaptive Problem Solving 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-4069 5c. PROGRAM ELEMENT...Report for AOARD Grant FA2386-15-1-4069 “ Adaptive Problem Solving” 25 February 2017 Name of Principal Investigators (PI): Michael W. Barley - e
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
Chemical Calculations; An Audiotutorial Approach.
ERIC Educational Resources Information Center
Lower, Stephen K.
An audiotutorial approach to problem-solving in college chemistry relying upon audio tapes is available. The program is designed to increase the teacher's effectiveness by providing individualized attention to student difficulties related to problem-solving. Problem solutions are recorded on audio tapes (designed for use with Sony TC-160 cassettes…
ERIC Educational Resources Information Center
Kayili, Gökhan; Ari, Ramazan
2016-01-01
The current research was conducted with the purpose of analyzing the effect of Montessori method supported by Social Skills Training Program on kindergarten children's skills of understanding feelings and social problem solving. 53 children attending Ihsan Dogramaci Applied Nursery School affiliated to Selcuk University, Faculty of Health Sciences…
ERIC Educational Resources Information Center
Kalelioglu, Filiz; Gülbahar, Yasemin
2014-01-01
Computer programming is perceived as an important competence for the development of problem solving skills in addition to logical reasoning. Hence, its integration throughout all educational levels, as well as the early ages, is considered valuable and research studies are carried out to explore the phenomenon in more detail. In light of these…
ERIC Educational Resources Information Center
Psycharis, Sarantos; Kallia, Maria
2017-01-01
In this paper we investigate whether computer programming has an impact on high school student's reasoning skills, problem solving and self-efficacy in Mathematics. The quasi-experimental design was adopted to implement the study. The sample of the research comprised 66 high school students separated into two groups, the experimental and the…
ERIC Educational Resources Information Center
Ismail, Mohd Nasir; Ngah, Nor Azilah; Umar, Irfan Naufal
2010-01-01
The purpose of the study is to investigate the effects of mind mapping with cooperative learning (MMCL) and cooperative learning (CL) on: (a) programming performance; (b) problem solving skill; and (c) metacognitive knowledge among computer science students in Malaysia. The moderating variable is the students' logical thinking level with two…
The Effectiveness of a CBI Program for Teaching Problem Solving Skills to Middle Level Students.
ERIC Educational Resources Information Center
Langholz, Judith; Smaldino, Sharon E.
This study focuses on the effectiveness of "Solutions Unlimited," a computer software program developed to teach problem solving to middle level students. Fifty-one fourth, fifth, and sixth graders (21 girls and 30 boys) attending a private school in a small mid-west community were the subjects for this experiment; none had received…
ERIC Educational Resources Information Center
Miles, David T.
The purpose of this first phase of a continuing research program was the development of a test of creative problem solving in general design. A design class of 186 members was divided into an experimental and control group; a non-design control group (an educational psychology class) of 45 was also tested. Multivariate interpretation of creative…
ERIC Educational Resources Information Center
Boh, Larry E.; And Others
1987-01-01
A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…
Supporting Organizational Problem Solving with a Workstation.
1982-07-01
G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
Solving the water jugs problem by an integer sequence approach
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.
NASA Astrophysics Data System (ADS)
Nugraheni, L.; Budayasa, I. K.; Suwarsono, S. T.
2018-01-01
The study was designed to discover examine the profile of metacognition of vocational high school student of the Machine Technology program that had high ability and field independent cognitive style in mathematical problem solving. The design of this study was exploratory research with a qualitative approach. This research was conducted at the Machine Technology program of the vocational senior high school. The result revealed that the high-ability student with field independent cognitive style conducted metacognition practices well. That involved the three types of metacognition activities, consisting of planning, monitoring, and evaluating at metacognition level 2 or aware use, 3 or strategic use, 4 or reflective use in mathematical problem solving. The applicability of the metacognition practices conducted by the subject was never at metacognition level 1 or tacit use. This indicated that the participant were already aware, capable of choosing strategies, and able to reflect on their own thinking before, after, or during the process at the time of solving mathematical problems.That was very necessary for the vocational high school student of Machine Technology program.
Towards lexicographic multi-objective linear programming using grossone methodology
NASA Astrophysics Data System (ADS)
Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.
2016-10-01
Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.
NASA Astrophysics Data System (ADS)
Pradanti, Paskalia; Hartono
2018-03-01
Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
ERIC Educational Resources Information Center
Streveler, Ruth A.; King, Robert H.
2000-01-01
Describes and evaluates a four-session training program for Multidisciplinary Engineering Laboratory (MEL) teaching assistants at the Colorado School of Mines. The sessions focus attention on student development approaches to learning. (EV)
PAN AIR summary document (version 1.0)
NASA Technical Reports Server (NTRS)
Derbyshire, T.; Sidwell, K. W.
1982-01-01
The capabilities and limitations of the panel aerodynamics (PAN AIR) computer program system are summarized. This program uses a higher order panel method to solve boundary value problems involving the Prandtl-Glauert equation for subsonic and supersonic potential flows. Both aerodynamic and hydrodynamic problems can be solved using this modular software which is written for the CDC 6600 and 7600, and the CYBER 170 series computers.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…
Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary
1980-01-01
Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.
Engineering calculations for solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.
1988-01-01
Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.
Methodological Innovations in Public Health Education: Transdisciplinary Problem Solving
Lawlor, Edward F.; Sebert-Kuhlmann, Anne K.; McBride, Timothy D.
2015-01-01
In 2008, the faculty of the Brown School at Washington University in St. Louis designed a Master of Public Health program centered on transdisciplinary problem solving in public health. We have described the rationale for our approach, guiding principles and pedagogy for the program, and specific transdisciplinary competencies students acquire. We have explained how transdisciplinary content has been organized and delivered, how the program is being evaluated, and how we have demonstrated the feasibility of this approach for a Master of Public Health degree. PMID:25706031
Methodological innovations in public health education: transdisciplinary problem solving.
Lawlor, Edward F; Kreuter, Matthew W; Sebert-Kuhlmann, Anne K; McBride, Timothy D
2015-03-01
In 2008, the faculty of the Brown School at Washington University in St. Louis designed a Master of Public Health program centered on transdisciplinary problem solving in public health. We have described the rationale for our approach, guiding principles and pedagogy for the program, and specific transdisciplinary competencies students acquire. We have explained how transdisciplinary content has been organized and delivered, how the program is being evaluated, and how we have demonstrated the feasibility of this approach for a Master of Public Health degree.
ERIC Educational Resources Information Center
Shure, Myrna Beth
1979-01-01
Descriptive and evaluative information is presented about the Interpersonal Cognitive Problem Solving (ICPS) program, which utilizes sequenced games and dialogs to teach young children new ways of thinking about and coping with interpersonal difficulties. (SJL)
Routine human-competitive machine intelligence by means of genetic programming
NASA Astrophysics Data System (ADS)
Koza, John R.; Streeter, Matthew J.; Keane, Martin
2004-01-01
Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.
Asking the Right Questions: Action Learning and PMT 401
2016-08-01
program aimed at improving leadership, critical thinking , problem solving and decisionmaking skills. Participants in this rigorous, inresidence...problem • Skill Development • Urgent and complex problems requiring unique systems thinking • Groups charged with implementing the solution as...most pressing organi zational issues: problem solving, organizational learning, team building, leadership development, and professional growth and
The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.
Pang, Haotian; Liu, Han; Vanderbei, Robert
2014-02-01
We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.
The Development and Assessment of an NIH-Funded Research Ethics Training Program
DuBois, James M.; Dueker, Jeffrey M.; Anderson, Emily E.; Campbell, Jean
2015-01-01
In an effort to increase the number of researchers with skills “in identifying and addressing the ethical, legal, and social implications of their research,” the National Institutes of Health (NIH) solicited training grant proposals from 1999 to 2004 and subsequently funded approved programs. The authors describe the content, format, and outcomes of one such training program that ran from 2002–2006 and shares key lessons learned about program formats and assessment methods. Jointly developed by the Saint Louis University Center for Health Care Ethics and the Missouri Institute of Mental Health Continuing Education department, the training program focused on mental health research and adopted a train-the-trainer model. It was offered in onsite and distance-learning formats. Key outcomes of the program included educational products (such as 70 case studies posted on the course website, a textbook, and an instructional DVD) and program completion by 40 trainees. Assessment involved pre- and post-testing focused on knowledge of research ethics, ethical problem-solving skills, and levels of confidence in addressing ethical issues in mental health research. The program succeeded in increasing participants’ knowledge of ethical issues and their beliefs that they could identify issues, identify problem-solving resources, and solve ethical problems. However, scores on the case-based problem-solving assessment dropped in post-testing, apparently due to diminished confidence about the right course of action in the specific dilemma presented; the implications of this finding for ethics assessment are discussed. Overall satisfaction was high and dropout rates were low, but 3 times higher for distance-learners than onsite participants. PMID:18520469
ERIC Educational Resources Information Center
Prins, Esther; Monnat, Shannon; Clymer, Carol; Toso, Blaire Wilson
2015-01-01
This paper uses data from the Program for the International Assessment of Adult Competencies (PIAAC) to analyze the relationship between U.S. adults' self-reported health and proficiencies in literacy, numeracy, and technological problem solving. Ordinal logistic regression analyses showed that scores on all three scales were positively and…
NASA Astrophysics Data System (ADS)
Kassa, Semu Mitiku; Tsegay, Teklay Hailay
2017-08-01
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.
Problem Solving with Spreadsheets.
ERIC Educational Resources Information Center
Catterall, P.; Lewis, R.
1985-01-01
Documents the educational use of spreadsheets through a description of exploratory work which utilizes spreadsheets to achieve the objectives of Conway's Game of Life, a scientific method game for the development of problem-solving techniques. The implementation and classroom use of the spreadsheet programs are discussed. (MBR)
Temperament and problem solving in a population of adolescent guide dogs.
Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L
2017-09-01
It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.
Jun, Won-Hee; Lee, Gyungjoo
2017-02-01
Problem-solving is a core ability that nursing students should develop during their education. There is a need to better understand the importance of problem-solving and the factors related to it among nursing students. This study aimed to identify the role of ego-resiliency in the relationship between social anxiety and problem-solving ability in Korean nursing students. Data were collected from a total of 329 nursing students who were enrolled in three nursing programs in South Korea, using a self-administrated questionnaire. Data were mainly analyzed by Baron and Kenny's three-step regression analysis and the Sobel test. Ego-resiliency played a partial mediating role in the relationship between social anxiety and problem-solving ability. Further, the Sobel test suggested a mediating effect of ego-resiliency on the relationship between social anxiety and problem-solving (Z=-9.079, p<0.001). To enhance problem-solving ability in nursing students, nursing educators should establish educational strategies that decrease social anxiety and improve ego-resiliency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimization techniques applied to spectrum management for communications satellites
NASA Astrophysics Data System (ADS)
Ottey, H. R.; Sullivan, T. M.; Zusman, F. S.
This paper describes user requirements, algorithms and software design features for the application of optimization techniques to the management of the geostationary orbit/spectrum resource. Relevant problems include parameter sensitivity analyses, frequency and orbit position assignment coordination, and orbit position allotment planning. It is shown how integer and nonlinear programming as well as heuristic search techniques can be used to solve these problems. Formalized mathematical objective functions that define the problems are presented. Constraint functions that impart the necessary solution bounds are described. A versatile program structure is outlined, which would allow problems to be solved in stages while varying the problem space, solution resolution, objective function and constraints.
High profile students’ growth of mathematical understanding in solving linier programing problems
NASA Astrophysics Data System (ADS)
Utomo; Kusmayadi, TA; Pramudya, I.
2018-04-01
Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.
A testable theory of problem solving courts: Avoiding past empirical and legal failures.
Wiener, Richard L; Winick, Bruce J; Georges, Leah Skovran; Castro, Anthony
2010-01-01
Recent years have seen a proliferation of problem solving courts designed to rehabilitate certain classes of offenders and thereby resolve the underlying problems that led to their court involvement in the first place. Some commentators have reacted positively to these courts, considering them an extension of the philosophy and logic of Therapeutic Jurisprudence, but others show concern that the discourse surrounding these specialty courts has not examined their process or outcomes critically enough. This paper examines that criticism from historical and social scientific perspectives. The analysis culminates in a model that describes how offenders are likely to respond to the process as they engage in problem solving court programs and the ways in which those courts might impact subsequent offender conduct. This Therapeutic Jurisprudence model of problem solving courts draws heavily on social cognitive psychology and more specifically on theories of procedural justice, motivation, and anticipated emotion to offer an explanation of how offenders respond to these programs. We offer this model as a lens through which social scientists can begin to address the concern that there is not enough critical analysis of the process and outcome of these courts. Applying this model to specialty courts constitutes an important step in critically examining the contribution of problem solving courts. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Learning as a Problem Solving Tool. Technical Report CS74018-R.
ERIC Educational Resources Information Center
Claybrook, Billy G.
This paper explores the use of learning as a practical tool in problem solving. The idea that learning should and eventually will be a vital component of most Artificial Intelligence programs is pursued. Current techniques in learning systems are compared. A detailed discussion of the problems of representing, modifying, and creating heuristics is…
Marco A. Contreras; Woodam Chung; Greg Jones
2008-01-01
Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of timber management to more holistic problems that also consider the environmental impacts of roads. These additional requirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP) has been used to solve FTPP, but...
A hybrid symbolic/finite-element algorithm for solving nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1991-01-01
The general code described is capable of solving difficult nonlinear optimal control problems by using finite elements and a symbolic manipulator. Quick and accurate solutions are obtained with a minimum for user interaction. Since no user programming is required for most problems, there are tremendous savings to be gained in terms of time and money.
Writing for Business: A Graduate-Level Course in Problem-Solving
ERIC Educational Resources Information Center
Seifert, Christine
2009-01-01
This paper details an assignment sequence that requires graduate students in an applied communication program to identify problems that clients may not be aware of. Good writing and good problem-solving are "inextricably linked to [a student's] ability to frame an issue, gather, and analyze information, and to structure a helpful response" (Musso,…
ERIC Educational Resources Information Center
Sole, Marla A.
2016-01-01
Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…
Pourmovahed, Zahra; Mazloomy Mahmoodabad, Seyed Saied; Zareei Mahmoodabadi, Hassan; Tavangar, Hossein; Yassini Ardekani, Seyed Mojtaba; Vaezi, Ali Akbar
2018-01-01
Objective: Problem-solving ability is one of the most important means of family stability that enables the families to understand their roles, functions, and performances. Self-efficacy deficiency in problem-solving runs through many families. This qualitative study was conducted to investigate and describe how couples solve problems in their families. Method: This study was conducted to detect couples' self-efficacy deficiency in problem-solving using purposive sampling method. Several deep semi-structured interviews based on McMaster model and observations were conducted by nine family therapists and psychiatrists on four couples (eight persons) living in Yazd (Iran).The interviews were performed, audio-recorded, and transcribed verbatim. The analysis was interpreted through directed content analysis methods. Results: Families in Yazd (Iran) made some attempts to solve their problems, but their efforts were not enough, and thus they suffered from self-efficacy deficiency, which included 8 categories. The main theme distilled from the data of 17 participants was self-efficacy deficiency, which included the following categories: avoidance, insolvency, interference from others, ineffective self-treatment, behavioral problems, stubbornness, superficiality, and denial. Conclusion: It is of paramount importance to identify self-efficacy deficiency in families and promote problem- solving programs to increase family stability. In the present study, the main deficiencies in problem-solving were detected.
Serang, Oliver
2012-01-01
Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741
Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms wemore » have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.« less
On the complexity of a combined homotopy interior method for convex programming
NASA Astrophysics Data System (ADS)
Yu, Bo; Xu, Qing; Feng, Guochen
2007-03-01
In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.
Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem
NASA Astrophysics Data System (ADS)
Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang
2015-09-01
A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less
Use of a Computer Language in Teaching Dynamic Programming. Final Report.
ERIC Educational Resources Information Center
Trimble, C. J.; And Others
Most optimization problems of any degree of complexity must be solved using a computer. In the teaching of dynamic programing courses, it is often desirable to use a computer in problem solution. The solution process involves conceptual formulation and computational Solution. Generalized computer codes for dynamic programing problem solution…
Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept
NASA Astrophysics Data System (ADS)
Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.
2017-09-01
This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.
NASA Astrophysics Data System (ADS)
Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.
2015-12-01
The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
Computer Systems for Teaching Complex Concepts.
ERIC Educational Resources Information Center
Feurzeig, Wallace
Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…
Roles of Variables in Teaching
ERIC Educational Resources Information Center
Sorva, Juha; Karavirta, Ville; Korhonen, Ari
2007-01-01
Expert programmers possess schemas, abstractions of concrete experiences, which help them solve programming problems and lessen the load on their working memory during problem solving. Possession of schemas is a key difference between novices and experts, which is why instructors need to help students construct them. One recent tool for…
Teaming to Teach the Information Problem-Solving Process.
ERIC Educational Resources Information Center
Sine, Lynn; Murphy, Becky
1992-01-01
Explains a problem-solving format developed by a school media specialist and first grade teacher that used the framework of Eisenberg and Berkowitz's "Big Six Skills" for library media programs. The application of the format to a science unit on the senses is described. (two references) (MES)
ERIC Educational Resources Information Center
Burton, Megan; Mims, Patricia
2012-01-01
Learning through meaningful problem solving is integral in any successful mathematics program (Carpenter et al. 1999). The National Council of Teachers of Mathematics (NCTM) promotes the use of problem solving as a means to deepen understanding of all content areas within mathematics (NCTM 2000). This article describes a first-grade lesson that…
Solving LP Relaxations of Large-Scale Precedence Constrained Problems
NASA Astrophysics Data System (ADS)
Bienstock, Daniel; Zuckerberg, Mark
We describe new algorithms for solving linear programming relaxations of very large precedence constrained production scheduling problems. We present theory that motivates a new set of algorithmic ideas that can be employed on a wide range of problems; on data sets arising in the mining industry our algorithms prove effective on problems with many millions of variables and constraints, obtaining provably optimal solutions in a few minutes of computation.
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Web-Based Problem-Solving Assignment and Grading System
NASA Astrophysics Data System (ADS)
Brereton, Giles; Rosenberg, Ronald
2014-11-01
In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.
1972-01-01
Continuing research is reported in a program aimed at the development of a robot computer problem solving system. The motivation and results are described of a theoretical investigation concerning the general properties of behavioral systems. Some of the important issues which a general theory of behavioral organization should encompass are outlined and discussed.
Design and Implementation of the Game-Design and Learning Program
ERIC Educational Resources Information Center
Akcaoglu, Mete
2016-01-01
Design involves solving complex, ill-structured problems. Design tasks are consequently, appropriate contexts for children to exercise higher-order thinking and problem-solving skills. Although creating engaging and authentic design contexts for young children is difficult within the confines of traditional schooling, recently, game-design has…
Computer Problem-Solving Coaches for Introductory Physics: Design and Usability Studies
ERIC Educational Resources Information Center
Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew
2016-01-01
The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how…
Polyomino Problems to Confuse Computers
ERIC Educational Resources Information Center
Coffin, Stewart
2009-01-01
Computers are very good at solving certain types combinatorial problems, such as fitting sets of polyomino pieces into square or rectangular trays of a given size. However, most puzzle-solving programs now in use assume orthogonal arrangements. When one departs from the usual square grid layout, complications arise. The author--using a computer,…
ERIC Educational Resources Information Center
Marston, Doug; Muyskens, Paul; Lau, Matthew; Canter, Andrea
2003-01-01
This article describes the problem-solving model (PSM) used in the Minneapolis Public Schools to guide decisions regarding intervention in general education, special education referral, and evaluation for special education eligibility for high-incidence disabilities. Program evaluation indicates students received special education services earlier…
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
Research and applications: Artificial intelligence
NASA Technical Reports Server (NTRS)
Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.
1970-01-01
The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.
ERIC Educational Resources Information Center
Peddibhotla, Naren
2016-01-01
The case study is a classic tool used in several educational programs that emphasizes solving of illdefined problems. Though it has been used in classroom-based teaching and educators have developed a rich repertoire of methods, its use in online courses presents different challenges. To explore factors that develop skills in solving ill-defined…
Robot, computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.
1972-01-01
The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.
ERIC Educational Resources Information Center
National Center for Education Statistics, 2013
2013-01-01
This paper provides Appendix D, Standard Error tables, for the full report, entitled. "Literacy, Numeracy, and Problem Solving in Technology-Rich Environments among U.S. Adults: Results from the Program for the International Assessment of Adult Competencies 2012. First Look. NCES 2014-008." The full report presents results of the Program…
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Sunarsih; Kartono
2018-01-01
In this paper, a mathematical model in quadratic programming with fuzzy parameter is proposed to determine the optimal strategy for integrated inventory control and supplier selection problem with fuzzy demand. To solve the corresponding optimization problem, we use the expected value based fuzzy programming. Numerical examples are performed to evaluate the model. From the results, the optimal amount of each product that have to be purchased from each supplier for each time period and the optimal amount of each product that have to be stored in the inventory for each time period were determined with minimum total cost and the inventory level was sufficiently closed to the reference level.
Contribution of problem-solving skills to fear of recurrence in breast cancer survivors.
Akechi, Tatuo; Momino, Kanae; Yamashita, Toshinari; Fujita, Takashi; Hayashi, Hironori; Tsunoda, Nobuyuki; Iwata, Hiroji
2014-05-01
Although fear of recurrence is a major concern among breast cancer survivors after surgery, no standard strategies exist that alleviate their distress. This study examined the association of patients' problem-solving skills and fear of recurrence and psychological distress among breast cancer survivors. Randomly selected, ambulatory, female patients with breast cancer participated in this study. They were asked to complete the Concerns about Recurrence Scale (CARS) and the Hospital Anxiety and Depression Scale. Multiple regression analyses were used to examine their associations. Data were obtained from 317 patients. Patients' problem-solving skills were significantly associated with all subscales of fear of recurrence and overall worries measured by the CARS. In addition, patients' problem-solving skills were significantly associated with both their anxiety and depression. Our findings warrant clinical trials to investigate effectiveness of psychosocial intervention program, including enhancing patients' problem-solving skills and reducing fear of recurrence among breast cancer survivors.
Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie
2004-11-01
A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.
NASA Astrophysics Data System (ADS)
Guo, Sangang
2017-09-01
There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.
NASA Astrophysics Data System (ADS)
Akben, Nimet
2018-05-01
The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Program for the solution of multipoint boundary value problems of quasilinear differential equations
NASA Technical Reports Server (NTRS)
1973-01-01
Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.
Software Reviews: Programs Worth a Second Look.
ERIC Educational Resources Information Center
Classroom Computer Learning, 1989
1989-01-01
Reviews three computer software programs: (1) "The Children's Writing and Publishing Center"--writing and creative arts, grades 2-8, Apple II; (2) "Slide Shop"--graphics and desktop presentations, grades 4-12, Apple II and IBM; and (3) "Solve It"--problem solving and language arts, grades 4-12, Apple II. (MVL)
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.
ERIC Educational Resources Information Center
Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita
2012-01-01
The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…
Raising a Thinking Preteen: The "I Can Problem Solve" Program for 8- to 12-Year-Olds.
ERIC Educational Resources Information Center
Shure, Myrna B.
Aimed at parents of early adolescents, this book helps parents provide the skills teens need to cope with life's everyday frustrations and to make informed decisions about problems such as the stresses of homework, friendship, contending with peer pressure, and dealing with bullies. The foundation of the book is the "I Can Problem Solve" (ICPS)…
SOLVE The performance analyst for hardwood sawmills
Jeff Palmer; Jan Wiedenbeck; Elizabeth Porterfield
2009-01-01
Presents the users manual and CD-ROM for SOLVE, a computer program that helps sawmill managers improve efficiency and solve problems commonly found in hardwood sawmills. SOLVE provides information on key operational factors including log size distribution, lumber grade yields, lumber recovery factor and overrun, and break-even log costs. (Microsoft Windows? Edition)...
Teachers as Thinking Coaches: Creating Strategic Learners and Problem Solvers.
ERIC Educational Resources Information Center
Gaskins, Irene W.
1989-01-01
An across-the-curriculum program was developed to teach learning, thinking, and problem-solving skills to bright middle-school underachievers. This article describes the pilot program's theoretical basis, axioms of program development, guidelines for teaching metacognitive strategies, and a framework for strategy implementation. (Author/JDD)
The program LOPT for least-squares optimization of energy levels
NASA Astrophysics Data System (ADS)
Kramida, A. E.
2011-02-01
The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.
Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem
Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849
One cutting plane algorithm using auxiliary functions
NASA Astrophysics Data System (ADS)
Zabotin, I. Ya; Kazaeva, K. E.
2016-11-01
We propose an algorithm for solving a convex programming problem from the class of cutting methods. The algorithm is characterized by the construction of approximations using some auxiliary functions, instead of the objective function. Each auxiliary function bases on the exterior penalty function. In proposed algorithm the admissible set and the epigraph of each auxiliary function are embedded into polyhedral sets. In connection with the above, the iteration points are found by solving linear programming problems. We discuss the implementation of the algorithm and prove its convergence.
Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.
2016-01-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230
Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C
2015-03-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.
Conrad, Patricia A; Hird, Dave; Arzt, Jonathan; Hayes, Rick H; Magliano, Dave; Kasper, Janine; Morfin, Saul; Pinney, Stephen
2007-01-01
This article describes a computerized case-based CD-ROM (CD) on international animal health that was developed to give veterinary students an opportunity to "virtually" work alongside veterinarians and other veterinary students as they try to solve challenging disease problems relating to tuberculosis in South African wildlife, bovine abortion in Mexico, and neurologic disease in horses in Rapa Nui, Chile. Each of the three case modules presents, in a highly interactive format, a problem or mystery that must be solved by the learner. As well as acquiring information via video clips and text about the specific health problem, learners obtain information about the different countries, animal-management practices, diagnostic methods, related disease-control issues, economic factors, and the opinions of local experts. After assimilating this information, the learner must define the problem and formulate an action plan or make a recommendation or diagnosis. The computerized program invokes three principles of adult education: active learning, learner-centered education, and experiential learning. A medium that invokes these principles is a potentially efficient learning tool and template for developing other case-based problem-solving computerized programs. The program is accessible on the World Wide Web at
Application of evolutionary computation in ECAD problems
NASA Astrophysics Data System (ADS)
Lee, Dae-Hyun; Hwang, Seung H.
1998-10-01
Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.
Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers
ERIC Educational Resources Information Center
Evans, Brian R.
2012-01-01
It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…
ERIC Educational Resources Information Center
Kramarski, Bracha; Friedman, Sheli
2014-01-01
The study examined how student control over metacognitive prompts in a multimedia environment affects students' ability to solve mathematical problems in immediate comprehension tasks using a multimedia program and a delayed-transfer test. It also examined the effect on metacognitive discourse, mental effort, and engagement with multimedia-based…
Dispositional Predictors of Problem Solving in the Field of Office Work
ERIC Educational Resources Information Center
Rausch, Andreas
2017-01-01
It was investigated how domain-specific knowledge, fluid intelligence, vocational interest and work-related self-efficacy predicted domain-specific problem-solving performance in the field of office work. The participants included 100 German VET (vocational education and training) students nearing the end of a 3-year apprenticeship program as an…
Solving the Water Jugs Problem by an Integer Sequence Approach
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
A Study of Collaborative Software Development Using Groupware Tools
ERIC Educational Resources Information Center
Defranco-Tommarello, Joanna; Deek, Fadi P.
2005-01-01
The experimental results of a collaborative problem solving and program development model that takes into consideration the cognitive and social activities that occur during software development is presented in this paper. This collaborative model is based on the Dual Common Model that focuses on individual cognitive aspects of problem solving and…
Students' Explanations in Complex Learning of Disciplinary Programming
ERIC Educational Resources Information Center
Vieira, Camilo
2016-01-01
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…
Prospective Teachers' Beliefs about Problem Solving in Multiple Ways
ERIC Educational Resources Information Center
Arikan, Elif Esra
2016-01-01
The purpose of this study is to analyze whether prospective teachers believe solving a mathematics problem involves in using different solution methods. 60 mathematics prospective teachers who take the pedagogic training program in a state university were participated in this study. Five open-ended questions were asked. The study was carried out…
ERIC Educational Resources Information Center
Anderson, William L.; Sensibaugh, Cheryl A.; Osgood, Marcy P.; Mitchell, Steven M.
2011-01-01
The evaluation of higher-level cognitive skills can augment traditional discipline-based knowledge testing by providing timely assessment of individual student problem-solving abilities that are critical for success in any professional development program. However, the wide-spread acceptance and implementation of higher level cognitive skills…
Results and Implications of a Problem-Solving Treatment Program for Obesity.
ERIC Educational Resources Information Center
Mahoney, B. K.; And Others
Data are from a large scale experimental study which was designed to evaluate a multimethod problem solving approach to obesity. Obese adult volunteers (N=90) were randomly assigned to three groups: maximal treatment, minimal treatment, and no treatment control. In the two treatment groups, subjects were exposed to bibliographic material and…
NASA Technical Reports Server (NTRS)
Morozov, S. K.; Krasitskiy, O. P.
1978-01-01
A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.A.
1980-12-01
This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Frequency assignments for HFDF receivers in a search and rescue network
NASA Astrophysics Data System (ADS)
Johnson, Krista E.
1990-03-01
This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.
Using Problem Solving to Teach a Programming Language.
ERIC Educational Resources Information Center
Milbrandt, George
1995-01-01
Computer studies courses should incorporate as many computer concepts and programming language experiences as possible. A gradual increase in problem difficulty will help the student to understand various computer concepts, and the programming language's syntax and structure. A sidebar provides two examples of how to establish a learning…
Harford, Joe B; Otero, Isabel V; Anderson, Benjamin O; Cazap, Eduardo; Gradishar, William J; Gralow, Julie R; Kane, Gabrielle M; Niëns, Laurens M; Porter, Peggy L; Reeler, Anne V; Rieger, Paula T; Shockney, Lillie D; Shulman, Lawrence N; Soldak, Tanya; Thomas, David B; Thompson, Beti; Winchester, David P; Zelle, Sten G; Badwe, Rajendra A
2011-04-01
International collaborations like the Breast Health Global Initiative (BHGI) can help low and middle income countries (LMCs) to establish or improve breast cancer control programs by providing evidence-based, resource-stratified guidelines for the management and control of breast cancer. The Problem Solving Working Group of the BHGI 2010 Global Summit met to develop a consensus statement on problem-solving strategies addressing breast cancer in LMCs. To better assess breast cancer burden in poorly studied populations, countries require accurate statistics regarding breast cancer incidence and mortality. To better identify health care system strengths and weaknesses, countries require reasonable indicators of true health system quality and capacity. Using qualitative and quantitative research methods, countries should formulate cancer control strategies to identify both system inefficiencies and patient barriers. Patient navigation programs linked to public advocacy efforts feed and strengthen functional early detection and treatment programs. Cost-effectiveness research and implementation science are tools that can guide and expand successful pilot programs. Copyright © 2011 Elsevier Ltd. All rights reserved.
An exact algorithm for optimal MAE stack filter design.
Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior
2007-02-01
We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.
Digital program for solving the linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, B.
1975-01-01
A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.
Reasoning by analogy as an aid to heuristic theorem proving.
NASA Technical Reports Server (NTRS)
Kling, R. E.
1972-01-01
When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes. This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.
2015-01-01
programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa
Teaching the tacit knowledge of programming to noviceswith natural language tutoring
NASA Astrophysics Data System (ADS)
Lane, H. Chad; Vanlehn, Kurt
2005-09-01
For beginning programmers, inadequate problem solving and planning skills are among the most salient of their weaknesses. In this paper, we test the efficacy of natural language tutoring to teach and scaffold acquisition of these skills. We describe ProPL (Pro-PELL), a dialogue-based intelligent tutoring system that elicits goal decompositions and program plans from students in natural language. The system uses a variety of tutoring tactics that leverage students' intuitive understandings of the problem, how it might be solved, and the underlying concepts of programming. We report the results of a small-scale evaluation comparing students who used ProPL with a control group who read the same content. Our primary findings are that students who received tutoring from ProPL seem to have developed an improved ability to solve the composition problem and displayed behaviors that suggest they were able to think at greater levels of abstraction than students in the read-only group.
Fast scaffolding with small independent mixed integer programs
Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko
2011-01-01
Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153
An electromagnetism-like metaheuristic for open-shop problems with no buffer
NASA Astrophysics Data System (ADS)
Naderi, Bahman; Najafi, Esmaeil; Yazdani, Mehdi
2012-12-01
This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem.
Gaffney, Hannah; Mansell, Warren; Edwards, Rachel; Wright, Jason
2014-11-01
Computerized self-help that has an interactive, conversational format holds several advantages, such as flexibility across presenting problems and ease of use. We designed a new program called MYLO that utilizes the principles of METHOD of Levels (MOL) therapy--based upon Perceptual Control Theory (PCT). We tested the efficacy of MYLO, tested whether the psychological change mechanisms described by PCT mediated its efficacy, and evaluated effects of client expectancy. Forty-eight student participants were randomly assigned to MYLO or a comparison program ELIZA. Participants discussed a problem they were currently experiencing with their assigned program and completed measures of distress, resolution and expectancy preintervention, postintervention and at 2-week follow-up. MYLO and ELIZA were associated with reductions in distress, depression, anxiety and stress. MYLO was considered more helpful and led to greater problem resolution. The psychological change processes predicted higher ratings of MYLO's helpfulness and reductions in distress. Positive expectancies towards computer-based problem solving correlated with MYLO's perceived helpfulness and greater problem resolution, and this was partly mediated by the psychological change processes identified. The findings provide provisional support for the acceptability of the MYLO program in a non-clinical sample although its efficacy as an innovative computer-based aid to problem solving remains unclear. Nevertheless, the findings provide tentative early support for the mechanisms of psychological change identified within PCT and highlight the importance of client expectations on predicting engagement in computer-based self-help.
ERIC Educational Resources Information Center
Yagci, Mustafa
2016-01-01
High-level thinking and problem solving skill is one requirement of computer programming that most of the students experience problems with. Individual differences such as motivation, attitude towards programming, thinking style of the student, and complexity of the programming language have influence on students' success on programming. Thus,…
Solving multi-objective optimization problems in conservation with the reference point method
Dujardin, Yann; Chadès, Iadine
2018-01-01
Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650
Computer problem-solving coaches for introductory physics: Design and usability studies
NASA Astrophysics Data System (ADS)
Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew
2016-06-01
The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.
Application of artificial intelligence to pharmacy and medicine.
Dasta, J F
1992-04-01
Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Application of NASA management approach to solve complex problems on earth
NASA Technical Reports Server (NTRS)
Potate, J. S.
1972-01-01
The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.
ERIC Educational Resources Information Center
Flor, Richard F.; Troskey, Matthew D.
This paper explores the dynamics of managing collective problem solving and decision making, and the application of tools and strategies to deal with the emergent complexity of systems in which educators work. Schools and educational programs are complex adaptive systems that respond to changes in internal and external environments. Functioning…
ERIC Educational Resources Information Center
Castillo, Jose Michael
2009-01-01
This program evaluation study examined the relationship between Problem Solving/Response to Intervention (PS/RtI) training and technical assistance and educator and implementation outcomes following the first year of a 3-year project. Educators from 40 pilot schools in eight districts participating in the study received ongoing professional…
The Art of Problem Solving: A Resource for the Mathematics Teacher.
ERIC Educational Resources Information Center
Posamentier, Alfred S.; Schulz, Wolfgang
This book is designed to give mathematics teachers a host of interesting and useful ideas thereby raising their consciousness level and enabling an enrichment of the mathematics instruction program. The chapters in this book capture a broad spectrum of ideas in the area of mathematics problem solving. Chapters are: (1) "Strategies for Problem…
ERIC Educational Resources Information Center
Pugliese, Cara E.; White, Susan W.
2014-01-01
Students with autism spectrum disorder (ASD), though academically capable, can have difficulty succeeding in college. Evidence-based intervention to promote effective problem solving may improve quality of life, as well as success and satisfaction in college. This study adapted and piloted a group-based cognitive-behavioral intervention program,…
ERIC Educational Resources Information Center
Grizzle-Martin, Tamieka
2014-01-01
Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…
Solving Wicked Problems through Action Learning
ERIC Educational Resources Information Center
Crul, Liselore
2014-01-01
This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…
MOFA Software for the COBRA Toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griesemer, Marc; Navid, Ali
MOFA-COBRA is a software code for Matlab that performs Multi-Objective Flux Analysis (MOFA), a solving of linear programming problems. Teh leading software package for conducting different types of analyses using constrain-based models is the COBRA Toolbox for Matlab. MOFA-COBRA is an added tool for COBRA that solves multi-objective problems using a novel algorithm.
Understanding Problem Solving Behavior of 6-8 Graders in a Debugging Game
ERIC Educational Resources Information Center
Liu, Zhongxiu; Zhi, Rui; Hicks, Andrew; Barnes, Tiffany
2017-01-01
Debugging is an over-looked component in K-12 computational thinking education. Few K-12 programming environments are designed to teach debugging, and most debugging research were conducted on college-aged students. In this paper, we presented debugging exercises to 6th-8th grade students and analyzed their problem solving behaviors in a…
Problem Solving in the Borderland between Mathematics and Physics
ERIC Educational Resources Information Center
Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas
2017-01-01
The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems,…
Mobile App Development to Increase Student Engagement and Problem Solving Skills
ERIC Educational Resources Information Center
Dekhane, Sonal; Xu, Xin; Tsoi, Mai Yin
2013-01-01
This paper describes a project designed to promote problem solving and critical thinking skills in a general education, computing course at an open access institution. A visual programming tool, GameSalad, was used to enable students to create educational apps for mobile platforms. The students worked on a game development project for the entire…
A review of the Los Alamos effort in the development of nuclear rocket propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, F.P.; Kirk, W.L.; Bohl, R.J.
1991-01-01
This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.
The checkpoint ordering problem
Hungerländer, P.
2017-01-01
Abstract We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality. PMID:29170574
Heidari, Mohammad; Shahbazi, Sara
2016-01-01
Background: The aim of this study was to determine the effect of problem-solving training on decision-making skill and critical thinking in emergency medical personnel. Materials and Methods: This study is an experimental study that performed in 95 emergency medical personnel in two groups of control (48) and experimental (47). Then, a short problem-solving course based on 8 sessions of 2 h during the term, was performed for the experimental group. Of data gathering was used demographic and researcher made decision-making and California critical thinking skills questionnaires. Data were analyzed using SPSS software. Results: The finding revealed that decision-making and critical thinking score in emergency medical personnel are low and problem-solving course, positively affected the personnel’ decision-making skill and critical thinking after the educational program (P < 0.05). Conclusions: Therefore, this kind of education on problem-solving in various emergency medicine domains such as education, research, and management, is recommended. PMID:28149823
The profile of problem-solving ability of students of distance education in science learning
NASA Astrophysics Data System (ADS)
Widiasih; Permanasari, A.; Riandi; Damayanti, T.
2018-05-01
This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.
Recent research in network problems with applications
NASA Technical Reports Server (NTRS)
Thompson, G. L.
1980-01-01
The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.
Portfolio optimization using fuzzy linear programming
NASA Astrophysics Data System (ADS)
Pandit, Purnima K.
2013-09-01
Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.
An Ada Based Expert System for the Ada Version of SAtool II. Volume 1 and 2
1991-06-06
Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF 0 stands for ICAM Definition Method Zero . IDEF0 defines a subset of SA that omits...reasoning that has been programmed). An expert’s knowledge is specific to one problem domain as opposed to knowledge about general problem-solving...techniques. General problem domains are medicine, finance, science or engineering and so forth in which an expert can solve specific problems very well
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
ERIC Educational Resources Information Center
Meszaros, Bonnie; Saunders, Phillip
The guide is designed to accompany fifteen 20-minute economic education film/television programs for ages nine to 13. The emphasis is on economic decision making and problem solving. A statement of key concepts, suggestions for introducing the program, a summary, questions to help students resolve the problem posed at the end of the program, and…
ERIC Educational Resources Information Center
Deek, Fadi; Espinosa, Idania
2005-01-01
Traditionally, novice programmers have had difficulties in three distinct areas: breaking down a given problem, designing a workable solution, and debugging the resulting program. Many programming environments, software applications, and teaching tools have been developed to address the difficulties faced by these novices. Along with advancements…
Computer Applications in Teaching and Learning.
ERIC Educational Resources Information Center
Halley, Fred S.; And Others
Some examples of the usage of computers in teaching and learning are examination generation, automatic exam grading, student tracking, problem generation, computational examination generators, program packages, simulation, and programing skills for problem solving. These applications are non-trivial and do fulfill the basic assumptions necessary…
The generalized quadratic knapsack problem. A neuronal network approach.
Talaván, Pedro M; Yáñez, Javier
2006-05-01
The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.
Exploiting Symmetry on Parallel Architectures.
NASA Astrophysics Data System (ADS)
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).
NASA Astrophysics Data System (ADS)
Susilawati, Enny; Mawengkang, Herman; Efendi, Syahril
2018-01-01
Generally a Vehicle Routing Problem with time windows (VRPTW) can be defined as a problem to determine the optimal set of routes used by a fleet of vehicles to serve a given set of customers with service time restrictions; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we address a variant of the VRPTW in which the fleet of vehicle is heterogenic due to the different size of demand from customers. The problem, called Heterogeneous VRP (HVRP) also includes service levels. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model.
ERIC Educational Resources Information Center
Cain, Jim; Jolliff, Barry
Challenge and adventure programs create situations that challenge the abilities of individuals and groups and that are metaphors for the problems and challenges of daily life. This book describes dozens of group activities that foster individual and group skills such as cooperation, problem solving, and communication. Each activity has a…
ERIC Educational Resources Information Center
Callejo, Maria Luz
1994-01-01
Reports, in French, an investigation on the use of graphic representations in problem-solving tasks of the type in Spanish Mathematical Olympiads. Analysis showed that the choice and interpretation of the first graphic representation played a decisive role in the discovery of the solution. (34 references) (Author/MKR)
Heuristic algorithms for solving of the tool routing problem for CNC cutting machines
NASA Astrophysics Data System (ADS)
Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.
2015-11-01
The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.
Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M
2008-01-01
This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.
Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2009-01-01
This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074
Computer-aided programming for message-passing system; Problems and a solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.Y.; Gajski, D.D.
1989-12-01
As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.
Improving Learning of Programming through E-Learning by Using Asynchronous Virtual Pair Programming
ERIC Educational Resources Information Center
Zin, Abdullah Mohd; Idris, Sufian; Subramaniam, Nantha Kumar
2006-01-01
The problem of learning programming subjects, especially through distance learning and E-Learning, has been widely reported in literatures. Many attempts have been made to solve these problems. This has led to many new approaches in the techniques of learning of programming. One of the approaches that have been proposed is the use of virtual pair…
Problem solving in the borderland between mathematics and physics
NASA Astrophysics Data System (ADS)
Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas
2017-01-01
The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization.
ERIC Educational Resources Information Center
Weaver, Ronald F.
1980-01-01
Cooperation between business and higher education can help solve problems of future shortages of engineering faculty, can increase hiring of liberal arts graduates with appropriate training programs, can deal with employment cycles by co-op fellowship programs, and can reduce problems relating to EEOC guidelines on employee selection procedures.…
Workplace Learning: A Concept in Off-Campus Teaching.
ERIC Educational Resources Information Center
Rose, Emma; McKee, Willie; Temple, Bryan K.; Harrison, David K.; Kirkwood, D.
2001-01-01
Discusses types of university-provided workplace learning; identifies problems posed by employee turnover and lack of equipment. Suggests that the problem of too few students to have a cost-effective program can be solved by clustering program offerings for small businesses. (Contains 25 references.) (SK)
ERIC Educational Resources Information Center
Leithwood, Kenneth; Steinbach, Rosanne
Findings of a study that examined the relationship between variations in patterns of school leadership and group problem-solving process are presented in this paper. Interviews were conducted at the beginning and end of the school year with 12 principals in British Columbia who had implemented the Primary Program. The initiative was designed to…
Study on Group-Based Problem-Solving of Pre-Service Teachers in Early Childhood Education Program
ERIC Educational Resources Information Center
Prachagool, Veena; Nuangchalerm, Prasart
2012-01-01
This research aims to investigate how to develop pre-service teachers in early childhood education through employing group-based problem-solving. Participant in this research are 4th year study of pre-service teachers in early childhood education. Forty seven pre-service teachers were selected in the second semester, academic year 2010 by…
Study of Historical Geometric Problems by Means of CAS and DGS
ERIC Educational Resources Information Center
Hašek, Roman; Zahradník, Jan
2015-01-01
The use of the dynamic mathematics software GeoGebra to solve geometric problems on conics and loci from an 18th century textbook will be presented. In particular, examples will be shown of how the use of this program helped the authors to understand the method that our predecessors used to deal with conic sections together with solving loci…
Problem Solving Techniques in Child Rearing: A Training Script for Parents of Young Children.
ERIC Educational Resources Information Center
Shure, Myrna B.; Spivack, George
Presented is a sequenced series of approximately 25 lessons designed to help mothers increase the interpersonal problem solving ability and behavioral adjustment of their 4- and 5-year-old children. It is explained that the program which takes 20 minutes per day over a 3 month period, combines an educational and preventive mental health approach.…
ERIC Educational Resources Information Center
Guerra, Norma S.; Hernandez, Art; Hector, Alison M.; Crosby, Shane
2015-01-01
Special education teacher attrition rates continue to challenge the profession. A cognitive-behavioral problem-solving approach was used to examine three alternative certification program special education teachers' professional development through a series of 41 interviews conducted over a 2-year period. Beginning when they were novice special…
ERIC Educational Resources Information Center
Kozbelt, Aaron; Dexter, Scott; Dolese, Melissa; Meredith, Daniel; Ostrofsky, Justin
2015-01-01
We applied computer-based text analyses of regressive imagery to verbal protocols of individuals engaged in creative problem-solving in two domains: visual art (23 experts, 23 novices) and computer programming (14 experts, 14 novices). Percentages of words involving primary process and secondary process thought, plus emotion-related words, were…
Problem Solving in Mathematics: Focus for the Future. 1987. Senior High School Monograph.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Branch.
This monograph was developed with the intention of addressing the concerns of high school mathematics teachers in Alberta (Canada) who want to base their programs on problem solving but have questions about effective and efficient ways to do so. Considered are the most basic philosophical questions, and a framework is provided to use in solving…
ERIC Educational Resources Information Center
Garcia, Criselda G.; Hooper, H. H., Jr.
2011-01-01
The purpose of the qualitative study using a phenomenological approach was to gain insight of preservice teachers' experiences with a WebCT seminar designed to develop critical thinking and problem-solving skills in a Hispanic-Serving Institution's teacher education program. By applying a "holistic approach" to analyze data, NVivo software was…
ERIC Educational Resources Information Center
Abramovich, S.
2014-01-01
The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…
ERIC Educational Resources Information Center
Utah State Office of Education, Salt Lake City.
This guide, which has been developed for Utah's home economics and family life education program, contains materials for use in teaching a life management course emphasizing the problem-solving skills required for independent living. Discussed first are the assumptions underlying the curriculum, development of the guide, and suggestions for its…
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
ERIC Educational Resources Information Center
Schlundt, David G.; Flannery, Mary Ellen; Davis, Dianne L.; Kinzer, Charles K.; Pichert, James W.
1999-01-01
Examines a two-week summer program using problem-based learning and behavior therapy to help adolescents with insulin-dependent diabetes improve their ability to cope with obstacles to dietary management. Improvements were observed in self-efficacy, problem-solving skills, and self-reported coping strategies. No significant changes were observed…
Coker, Kendell L.; Ikpe, Uduakobong N.; Brooks, Jeannie S.; Page, Brian; Sobell, Mark B.
2014-01-01
This study examined the relationship between traumatic stress, social problem solving, and moral disengagement among African American inner-city high school students. Participants consisted of 45 (25 males and 20 females) African American students enrolled in grades 10 through 12. Mediation was assessed by testing for the indirect effect using the confidence interval derived from 10,000 bootstrapped resamples. The results revealed that social problem-solving skills have an indirect effect on the relationship between traumatic stress and moral disengagement. The findings suggest that African American youth that are negatively impacted by trauma evidence deficits in their social problem solving skills and are likely to be at an increased risk to morally disengage. Implications for culturally sensitive and trauma-based intervention programs are also provided. PMID:25071874
Behaviour of mathematics and physics students in solving problem of Vector-Physics context
NASA Astrophysics Data System (ADS)
Sardi; Rizal, M.; Mansyur, J.
2018-04-01
This research aimed to describe behaviors of mathematics and physics students in solving problem of the vector concept in physics context. The subjects of the research were students who enrolled in Mathematics Education Study Program and Physics Education Study Program of FKIP Universitas Tadulako. The selected participants were students who received the highest score in vector fundamental concept test in each study program. The data were collected through thinking-aloud activity followed by an interview. The steps of data analysis included data reduction, display, and conclusion drawing. The credibility of the data was tested using a triangulation method. Based on the data analysis, it can be concluded that the two groups of students did not show fundamental differences in problem-solving behavior, especially in the steps of understanding the problem (identifying, collecting and analyzing facts and information), planning (looking for alternative strategies) and conducting the alternative strategy. The two groups were differ only in the evaluation aspect. In contrast to Physics students who evaluated their answer, mathematics students did not conducted an evaluation activity on their work. However, the difference was not caused by the differences in background knowledge.
NASA Technical Reports Server (NTRS)
Gupta, Kajal K.
1991-01-01
The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.
Chimpanzee Problem-Solving: A Test for Comprehension.
ERIC Educational Resources Information Center
Premack, David; Woodruff, Guy
1978-01-01
Investigates a chimpanzee's capacity to recognize representations of problems and solutions, as well as its ability to perceive the relationship between each type of problem and its appropriate solutions using televised programs and photographic solutions. (HM)
Describes EPA's Tribal ecoAmbassadors Program that partners with Tribal College and University (TCU) with EPA scientists to solve the environmental problems most important to their tribal communities.
Constraints in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
1996-01-01
Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.
Analysis of Learning Behavior in a Flipped Programing Classroom Adopting Problem-Solving Strategies
ERIC Educational Resources Information Center
Chiang, Tosti Hsu-Cheng
2017-01-01
Programing is difficult for beginners because they need to learn the new language of computers. Developing software, especially complex software, is bound to result in problems, frustration, and the need to think in new ways. Identifying the learning behavior behind programing by way of empirical studies can help beginners learn more easily. In…
ERIC Educational Resources Information Center
Myers-Breslin, Linda
Addressing the issues and problems faced by writing program administrators (WPAs) and writing center directors (WCDs), and how they can most effectively resolve the political, pedagogical, and financial questions that arise, this book presents essays from experienced WPAs and WCDs at a wide variety of institutions that offer scenarios and case…
ERIC Educational Resources Information Center
Wang, Xiao-Ming; Hwang, Gwo-Jen
2017-01-01
Computer programming is a subject that requires problem-solving strategies and involves a great number of programming logic activities which pose challenges for learners. Therefore, providing learning support and guidance is important. Collaborative learning is widely believed to be an effective teaching approach; it can enhance learners' social…
Can Linear Superiorization Be Useful for Linear Optimization Problems?
Censor, Yair
2017-01-01
Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? and (ii) How does linear superiorization fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: “yes” and “very well”, respectively. PMID:29335660
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Can linear superiorization be useful for linear optimization problems?
NASA Astrophysics Data System (ADS)
Censor, Yair
2017-04-01
Linear superiorization (LinSup) considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are: (i) does LinSup provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? (ii) How does LinSup fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: ‘yes’ and ‘very well’, respectively.
HIPPO Unit Commitment Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-17
Developed for the Midcontinent Independent System Operator, Inc. (MISO), HIPPO-Unit Commitment Version 1 is for solving security constrained unit commitment problem. The model was developed to solve MISO's cases. This version of codes includes I/O module to read in MISO's csv files, modules to create a state-based mixed integer programming formulation for solving MIP, and modules to test basic procedures to solve MIP via HPC.
ERIC Educational Resources Information Center
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima
2009-01-01
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Biyikli, Emre; To, Albert C.
2015-01-01
A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org. PMID:26678849
NASA Astrophysics Data System (ADS)
Aurah, Catherine Muhonja
Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.
Ways of problem solving as predictors of relapse in alcohol dependent male inpatients.
Demirbas, Hatice; Ilhan, Inci Ozgur; Dogan, Yildirim Beyatli
2012-01-01
The purpose of this study was to identify how remitters and relapsers view their everyday problem solving strategies. A total of 128 male alcohol dependent male inpatients who were hospitalized at the Ankara University Psychiatry Clinic, Alcohol and Substance Abuse Treatment Unit were recruited for the study. Subjects demographic status and alcohol use histories were assessed by a self-report questionnaire. Also, patients were evaluated with The Coopersmith Self-esteem Inventory (CSI), The Spielberger State-Trait Anxiety Scale (STAI-I-II), and The Problem Solving Inventory (PSI). Patients were followed for six months with monthly intervals after hospital discharge. Drinking status was assessed in terms of abstinence and relapse. Data were assessed with Student t-test, and univariate and multivariate analyses. In the logistic regression analysis, age, marital status, employment status and PSI subscores were taken as the independent variables and drinking state at the end of six months as the dependent variable. There were significant differences in reflective and avoidant styles, and monitoring style of problem solving between abstainers and relapses. It was found that subjects who perceived their problem solving style as less avoidant and less reflective were at greater risk to relapse. The findings demonstrated that active engagement in problem solving like utilizing avoidant and reflective styles of problem solving enhances abstinence. In treatment, expanding the behavior repertoire and increasing the variety of ways of problem solving ways that can be utilized in daily life should be one of the major goals of the treatment program. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carmack, Gay Lynn Dickinson
2000-10-01
This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.
Xia, Bisheng; Qian, Xin; Yao, Hong
2017-11-01
Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.
Direct Method Transcription for a Human-Class Translunar Injection Trajectory Optimization
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Zeiler, Tom
2012-01-01
This paper presents a new trajectory optimization software package developed in the framework of a low-to-high fidelity 3 degrees-of-freedom (DOF)/6-DOF vehicle simulation program named Mission Analysis Simulation Tool in Fortran (MASTIF) and its application to a translunar trajectory optimization problem. The functionality of the developed optimization package is implemented as a new "mode" in generalized settings to make it applicable for a general trajectory optimization problem. In doing so, a direct optimization method using collocation is employed for solving the problem. Trajectory optimization problems in MASTIF are transcribed to a constrained nonlinear programming (NLP) problem and solved with SNOPT, a commercially available NLP solver. A detailed description of the optimization software developed is provided as well as the transcription specifics for the translunar injection (TLI) problem. The analysis includes a 3-DOF trajectory TLI optimization and a 3-DOF vehicle TLI simulation using closed-loop guidance.
A genetic algorithm used for solving one optimization problem
NASA Astrophysics Data System (ADS)
Shipacheva, E. N.; Petunin, A. A.; Berezin, I. M.
2017-12-01
A problem of minimizing the length of the blank run for a cutting tool during cutting of sheet materials into shaped blanks is discussed. This problem arises during the preparation of control programs for computerized numerical control (CNC) machines. A discrete model of the problem is analogous in setting to the generalized travelling salesman problem with limitations in the form of precursor conditions determined by the technological features of cutting. A certain variant of a genetic algorithm for solving this problem is described. The effect of the parameters of the developed algorithm on the solution result for the problem with limitations is investigated.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.
Technology Management Education for Students with Educational Background of Engineering
NASA Astrophysics Data System (ADS)
Aoyama, Atsushi; Abe, Atsushi
Japanese industry has been encouraged to transform from a mode of ‘recovery’ to one of 'front-runner' in effective innovation and creation of new businesses and markets based in accomplishments of basic research. Graduate School of Technology Management at Ritsumeikan University strives to not only offer knowledge and skills, but also business experiences to its students so that they may acquire the abilities to discover and solve practical problems logically, analytically and systematically. To achieve these aims, it has inaugurated the Ritsumeikan University Practicum Program by enhancing existing internship programs. Under the guidance of its faculties, this program will allow its students a chance to set and solve actual problems in real world business environments.
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993
NASA Technical Reports Server (NTRS)
1994-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
Software For Genetic Algorithms
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steve E.
1992-01-01
SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.
User's Manual: Thermal Radiation Analysis System TRASYS 2
NASA Technical Reports Server (NTRS)
Jensen, C. L.
1981-01-01
A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.
Competitive Facility Location with Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2009-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops and stores, with uncertain demands in the plane. By representing the demands for facilities as random variables, the location problem is formulated to a stochastic programming problem, and for finding its solution, three deterministic programming problems: expectation maximizing problem, probability maximizing problem, and satisfying level maximizing problem are considered. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic vibration. Efficiency of the solution method is shown by applying to numerical examples of the facility location problems.
ERIC Educational Resources Information Center
Putra, Mulia; Novita, Rita
2015-01-01
This study aimed to describe the profile of secondary school students with high mathematics ability in solving shape and space problem in PISA (Program for International Student Assessment). It is a descriptive research with a qualitative approach, in which the subjects in this study were students of class VIII SMP N 1 Banda Aceh. The results show…
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to solve problems and make decisions in an efficient and effective manner. The first section of the module is an introduction that includes a terminal…
Hoyt, Pamela
2006-05-01
This article describes the international component of the Problem Solving for Better Health Nursing (PSBHN) program initiated by the Dreyfus Health Foundation (DHF) in 2002. PSBHN is operational in 14 countries in addition to the United States. A PSBHN initiative is described, and attention is given to lessons learned and plans for the future.
ERIC Educational Resources Information Center
Farley, Roy C.
1984-01-01
Examined the effects of a psychoeducational program on employability enhancement of 23 rehabilitation clients. The program had a significant, positive impact on clients' thinking, feeling, acting, and vocational outcome and reduced task-interfering beliefs, thoughts, emotions, and problem behavior. Participants had a lower vocational training…
101 Short Problems from EQUALS = 101 Problemas Cortos del programma EQUALS.
ERIC Educational Resources Information Center
Stenmark, Jean Kerr, Ed.
EQUALS is a teacher advisory program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. The program supports a problem-solving approach to mathematics, including having students working in groups, using active assessment methods, and incorporating a broad mathematics…
Neil R. Honeycutt
1995-01-01
The urban and wildland interface (mix) problem exists in many communities in the United States. To effectively deal with these complex issues, cooperative approaches should be used to solve regional problems. This panel discussed the unique programs currently at work in Alameda and Contra Costa Counties in northern California. These programs were designed after the...
Application of the boundary integral method to immiscible displacement problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masukawa, J.; Horne, R.N.
1988-08-01
This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it canmore » accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.« less
Design of Intelligent Power Supply System for Expressway Tunnel
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Yutong; Lin, Zimian
2018-01-01
Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.
NASA Technical Reports Server (NTRS)
Mitchell, Paul H.
1991-01-01
F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.
Solving cyclical nurse scheduling problem using preemptive goal programming
NASA Astrophysics Data System (ADS)
Sundari, V. E.; Mardiyati, S.
2017-07-01
Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.
On unified modeling, theory, and method for solving multi-scale global optimization problems
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-10-01
A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.
Based on the principle that drug abuse is no longer a problem restricted to certain economic, social, educational, or intellectual levels or ethnic groups, this pamphlet relates some examples of on-going community action programs and projects. Essentially, these programs are striving to solve some of the drug related problems in their immediate…
Administrative Problems of Early Immersion.
ERIC Educational Resources Information Center
McGillivray, W. R.
1978-01-01
Administrative problems that have been solved or accepted during eight years of early immersion programs are discussed including choosing locations, staffing, costs, logistics, and the need for suitable pupil progress reporting. (JMF)
A New Architecture for Extending the Capabilities of the Copernicus Trajectory Optimization Program
NASA Technical Reports Server (NTRS)
Williams, Jacob
2015-01-01
This paper describes a new plugin architecture developed for the Copernicus spacecraft trajectory optimization program. Details of the software architecture design and development are described, as well as examples of how the capability can be used to extend the tool in order to expand the type of trajectory optimization problems that can be solved. The inclusion of plugins is a significant update to Copernicus, allowing user-created algorithms to be incorporated into the tool for the first time. The initial version of the new capability was released to the Copernicus user community with version 4.1 in March 2015, and additional refinements and improvements were included in the recent 4.2 release. It is proving quite useful, enabling Copernicus to solve problems that it was not able to solve before.
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Software For Least-Squares And Robust Estimation
NASA Technical Reports Server (NTRS)
Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James
1990-01-01
GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.
Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A
2016-10-01
Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Andersen, Erling B.
A computer program for solving the conditional likelihood equations arising in the Rasch model for questionnaires is described. The estimation method and the computational problems involved are described in a previous research report by Andersen, but a summary of those results are given in two sections of this paper. A working example is also…
An Assessment of Operational Energy Capability Improvement Fund (OECIF) Programs 17-S-2544
2017-09-19
persistently attack key operational energy problems . OECIF themes are summarized in Table 1, and Appendix A includes more detail on the programs within... problems FY 2014 Analytical methods and tools FY 2015 Improving fuel economy for the current tactical ground fleet FY 2016 Increasing the operational...involve a variety of organizations to solve operational energy problems . In FY 2015, the OECIF program received a one-time $14.1M Congressional plus-up
Decision-making and problem-solving methods in automation technology
NASA Technical Reports Server (NTRS)
Hankins, W. W.; Pennington, J. E.; Barker, L. K.
1983-01-01
The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming.
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
Graphical models for optimal power flow
Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...
2016-09-13
Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
A scalable parallel algorithm for multiple objective linear programs
NASA Technical Reports Server (NTRS)
Wiecek, Malgorzata M.; Zhang, Hong
1994-01-01
This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.
Workplace Literacy: From Survival to Empowerment and Human Development.
ERIC Educational Resources Information Center
Rhoder, Carol A.; French, Joyce N.
1994-01-01
Describes an effective literacy program in two hospitals, which benefited both the employer and employee by empowering participants to solve problems, think critically and creatively, and make decisions. Discusses criteria for effective workplace literacy programs, the program's framework, and program evaluation. (RS)
A Comparative Study of Optimization Algorithms for Engineering Synthesis.
1983-03-01
the ADS program demonstrates the flexibility a design engineer would have in selecting an optimization algorithm best suited to solve a particular...demonstrates the flexibility a design engineer would have in selecting an optimization algorithm best suited to solve a particular problem. 4 TABLE OF...algorithm to suit a particular problem. The ADS library of design optimization algorithms was . developed by Vanderplaats in response to the first
Problem solving during artificial selection of self-replicating loops
NASA Astrophysics Data System (ADS)
Chou, Hui-Hsien; Reggia, James A.
1998-05-01
Past cellular automata models of self-replication have generally done only one thing: replicate themselves. However, it has recently been demonstrated that such self-replicating structures can be programmed to also carry out a task during the replication process. Past models of this sort have been limited in that the “program” involved is copied unchanged from parent to child, so that each generation of replicants is executing exactly the same program on exactly the same data. Here we take a different approach in which each replicant receives a distinct partial solution that is modified during replication. Under artificial selection, replicants with promising solutions proliferate while those with failed solutions are lost. We show that this approach can be applied successfully to solve an NP-complete problem, the satisfiability problem. Bounds are given on the cellular space size and time needed to solve a given problem, and simulations demonstrate that this approach works effectively. These and other recent results raise the possibility of evolving self-replicating structures that have a simulated metabolism or that carry out useful tasks.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
Solving Infeasibility Problems in Computerized Test Assembly.
ERIC Educational Resources Information Center
Timminga, Ellen
1998-01-01
Discusses problems of diagnosing and repairing infeasible linear-programming models in computerized test assembly. Demonstrates that it is possible to localize the causes of infeasibility, although this is not always easy. (SLD)
Efficient dual approach to distance metric learning.
Shen, Chunhua; Kim, Junae; Liu, Fayao; Wang, Lei; van den Hengel, Anton
2014-02-01
Distance metric learning is of fundamental interest in machine learning because the employed distance metric can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. The worst case complexity of solving an SDP problem involving a matrix variable of size D×D with O(D) linear constraints is about O(D(6.5)) using interior-point methods, where D is the dimension of the input data. Thus, the interior-point methods only practically solve problems exhibiting less than a few thousand variables. Because the number of variables is D(D+1)/2, this implies a limit upon the size of problem that can practically be solved around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here, we propose a significantly more efficient and scalable approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is roughly O(D(3)), which is significantly lower than that of the SDP approach. Experiments on a variety of data sets demonstrate that the proposed method achieves an accuracy comparable with the state of the art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius norm regularized SDP problems approximately.
Using Probabilistic Information in Solving Resource Allocation Problems for a Decentralized Firm
1978-09-01
deterministic equivalent form of HIQ’s problem (5) by an approach similar to the one used in stochastic programming with simple recourse. See Ziemba [38) or, in...1964). 38. Ziemba , W.T., "Stochastic Programs with Simple Recourse," Technical Report 72-15, Stanford University, Department of Operations Research
ERIC Educational Resources Information Center
Archbald, Doug
2010-01-01
This article offers lessons from an initiative refashioning the doctoral thesis in an education leadership program. The program serves a practitioner clientele; most are teachers and administrators. The new model for the thesis emphasizes leadership, problem solving, decision making, and organizational improvement. The former model was a…
Small Business Management Volume III: Curriculum. An Adult Education Program.
ERIC Educational Resources Information Center
Persons, Edgar A.; Swanson, Gordon I.
The small business management adult education program outlined in this curriculum guide is designed to help small business entrepreneurs solve their business management problems and attain the goals they have established for their businesses and their families. (An instructor's manual and practice problems are in separate volumes.) The 3-year…
Taking the Incredible Years Child and Teacher Programs to Scale in Wales
ERIC Educational Resources Information Center
Hutchings, Judy; Williams, Margiad Elen
2017-01-01
Students who demonstrate conduct problems pose ongoing challenges for teachers. Therefore, prevention programs that all families and teachers of young children can use to promote social and emotional learning, emotion regulation, and problem solving are of great interest to researchers and practitioners alike. This article describes the Incredible…
Cartreine, James Albert; Locke, Steven E; Buckey, Jay C; Sandoval, Luis; Hegel, Mark T
2012-09-25
Computer-automated depression interventions rely heavily on users reading text to receive the intervention. However, text-delivered interventions place a burden on persons with depression and convey only verbal content. The primary aim of this project was to develop a computer-automated treatment for depression that is delivered via interactive media technology. By using branching video and audio, the program simulates the experience of being in therapy with a master clinician who provides six sessions of problem-solving therapy. A secondary objective was to conduct a pilot study of the program's usability, acceptability, and credibility, and to obtain an initial estimate of its efficacy. The program was produced in a professional multimedia production facility and incorporates video, audio, graphics, animation, and text. Failure analyses of patient data are conducted across sessions and across problems to identify ways to help the user improve his or her problem solving. A pilot study was conducted with persons who had minor depression. An experimental group (n = 7) used the program while a waitlist control group (n = 7) was provided with no treatment for 6 weeks. All of the experimental group participants completed the trial, whereas 1 from the control was lost to follow-up. Experimental group participants rated the program high on usability, acceptability, and credibility. The study was not powered to detect clinical improvement, although these pilot data are encouraging. Although the study was not powered to detect treatment effects, participants did find the program highly usable, acceptable, and credible. This suggests that the highly interactive and immersive nature of the program is beneficial. Further clinical trials are warranted. ClinicalTrials.gov NCT00906581; http://clinicaltrials.gov/ct2/show/NCT00906581 (Archived by WebCite at http://www.webcitation.org/6A5Ni5HUp).
This article examines the development and implementation of the NOx Budget Trading Program (NBP) and the lessons the Environmental Protection Agency has learned from this seasonal emissions cap-and-trade program.
ERIC Educational Resources Information Center
Proctor, Tony
1988-01-01
Explores the conceptual components of a computer program designed to enhance creative thinking and reviews software that aims to stimulate creative thinking. Discusses BRAIN and ORACLE, programs intended to aid in creative problem solving. (JOW)
ERIC Educational Resources Information Center
Donoghue, John R.
2015-01-01
At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…
34 CFR 606.22 - What are the selection criteria for development grants?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Realistic and defined in terms of measurable results; and (2) Directly related to the problems to be solved...) The strengths, weaknesses, and significant problems of the institution's academic programs...
Wise, K; Rief, W; Goebel, G
1998-06-01
Two different group treatments were evaluated in 144 in-patients suffering from impairment due to chronic tinnitus. A tinnitus management therapy (TMT) was developed using principles of cognitive-behavioral therapy and compared with problem solving group therapy. Self-ratings were used to evaluate the help patients found in dealing with life problems and tinnitus as well as the degree to which they felt they were being properly treated and taken seriously. Patients showed significantly more satisfaction with the TMT group and evaluated the help they found in coping with tinnitus and life problems significantly higher. Thus, in the light of unsatisfactory medical solutions and the poor acceptance of some psychological treatments for tinnitus, TMT appears to be an acceptable and helpful treatment program.
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.
Choi, Sou-Cheng T; Saunders, Michael A
2014-02-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.
2000-01-01
Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.
NASA Technical Reports Server (NTRS)
Zyla, L. V.
1979-01-01
The modifications are described as necessary to give the Houston Operations Predictor/Estimator (HOPE) program the capability to solve for or consider vent forces for orbit determination. The model implemented in solving for vent forces is described along with the integrator problems encountered. A summary derivation of the mathematical principles applicable to solve/consider methodology is provided.
Matching by linear programming and successive convexification.
Jiang, Hao; Drew, Mark S; Li, Ze-Nian
2007-06-01
We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.
NASA Astrophysics Data System (ADS)
Kunze, Herb; La Torre, Davide; Lin, Jianyi
2017-01-01
We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.
Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables
NASA Astrophysics Data System (ADS)
Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.
2018-02-01
In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Doctoral training in behavior analysis: Training generalized problem-solving skills
Chase, Philip N.; Wylie, Ruth G.
1985-01-01
This essay provides guidelines for designing a doctoral program in behavior analysis. First, we propose a general accomplishment for all behavior analytic doctoral students: that they be able to solve problems concerning individual behavior within a range of environments. Second, in order to achieve this goal, we propose that students be trained in conceptual and experimental analysis of behavior, the application of behavioral principles and the administration of behavioral programs. This training should include class work, but it should emphasize the immersion of students in a variety of environments in which they are required to use behavior analytic strategies. Third, we provide an example of a hypothetical graduate program that involves the proposed training. Finally, an evaluation plan is suggested for determining whether a training program is in fact producing students who are generalized problem-solvers. At each step, we justify our point of view from a perspective that combines principles from behavior analysis and educational systems design. PMID:22478633
NASA Technical Reports Server (NTRS)
Vanderplaats, Garrett; Townsend, James C. (Technical Monitor)
2002-01-01
The purpose of this research under the NASA Small Business Innovative Research program was to develop algorithms and associated software to solve very large nonlinear, constrained optimization tasks. Key issues included efficiency, reliability, memory, and gradient calculation requirements. This report describes the general optimization problem, ten candidate methods, and detailed evaluations of four candidates. The algorithm chosen for final development is a modern recreation of a 1960s external penalty function method that uses very limited computer memory and computational time. Although of lower efficiency, the new method can solve problems orders of magnitude larger than current methods. The resulting BIGDOT software has been demonstrated on problems with 50,000 variables and about 50,000 active constraints. For unconstrained optimization, it has solved a problem in excess of 135,000 variables. The method includes a technique for solving discrete variable problems that finds a "good" design, although a theoretical optimum cannot be guaranteed. It is very scalable in that the number of function and gradient evaluations does not change significantly with increased problem size. Test cases are provided to demonstrate the efficiency and reliability of the methods and software.
Data Processing: Fifteen Suggestions for Computer Training in Your Business Education Classes.
ERIC Educational Resources Information Center
Barr, Lowell L.
1980-01-01
Presents 15 suggestions for training business education students in the use of computers. Suggestions involve computer language, method of presentation, laboratory time, programing assignments, instructions and handouts, problem solving, deadlines, reviews, programming concepts, programming logic, documentation, and defensive programming. (CT)
Liu, Jianfeng; Laird, Carl Damon
2017-09-22
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianfeng; Laird, Carl Damon
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving
Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni
2015-01-01
It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. PMID:25652466
Problem-based learning on quantitative analytical chemistry course
NASA Astrophysics Data System (ADS)
Fitri, Noor
2017-12-01
This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.
Gong, Pinghua; Zhang, Changshui; Lu, Zhaosong; Huang, Jianhua Z; Ye, Jieping
2013-01-01
Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A commonly used approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the original non-convex problem to a sequence of convex problems. This approach is usually not very practical for large-scale problems because its computational cost is a multiple of solving a single convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-form solution for many commonly used penalties. At each outer iteration of the algorithm, we use a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data sets.
Computer Science 205. Interim Guide, 1983.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg.
This guide to a 4-unit, required high school computer science course emphasizes problem solving and computer programming and is designed for use with a variety of hardware configurations and programming languages. An overview covers the program rationale, goals and objectives, program design and description, program implementation, time allotment,…
NASA Technical Reports Server (NTRS)
Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.
1992-01-01
A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.
NASA Astrophysics Data System (ADS)
Hardiani, N.; Budayasa, I. K.; Juniati, D.
2018-01-01
The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.
Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk
2014-01-01
Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, p<.001); problem-solving was positively associated with self-directed learning (r=.75, p<.001). Learning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Starr, Stanley O.; Stevenson, G.; Rivera, Jorge E.; Sullivan, Steven J.
2011-01-01
For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
ERIC Educational Resources Information Center
Lopez, Antonio M., Jr.
1989-01-01
Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)
Computers and the Multiplicity of Polynomial Roots.
ERIC Educational Resources Information Center
Wavrik, John J.
1982-01-01
Described are stages in the development of a computer program to solve a particular algebra problem and the nature of algebraic computation is presented. A program in BASIC is provided to give ideas to others for developing their own programs. (MP)
Educating Youth about AIDS: A Model Program.
ERIC Educational Resources Information Center
Amer-Hirsch, Wendy
1989-01-01
Describes a New York Girls Club program designed to educate children and young adults about AIDS. Program involves use of prevention posters, puzzles, compositions, simulated game shows, debates, problem-solving and role-playing exercises, risk assessment exercises, and rap groups. (RJC)
Extension of the firefly algorithm and preference rules for solving MINLP problems
NASA Astrophysics Data System (ADS)
Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2017-07-01
An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.
ERIC Educational Resources Information Center
Smith, Karan B.
1996-01-01
Presents activities which highlight major concepts of linear programming. Demonstrates how technology allows students to solve linear programming problems using exploration prior to learning algorithmic methods. (DDR)
Mathematical computer programs: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
Computer programs, routines, and subroutines for aiding engineers, scientists, and mathematicians in direct problem solving are presented. Also included is a group of items that affords the same users greater flexibility in the use of software.
Three essays on multi-level optimization models and applications
NASA Astrophysics Data System (ADS)
Rahdar, Mohammad
The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation problem in each node and decreasing the number of iterations. Computational experiments show that the proposed algorithm is faster than the existing ones.
34 CFR 607.22 - What are the selection criteria for development grants?
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurable results; and (2) Directly related to the problems to be solved and to the goals of the..., weaknesses, and significant problems of the institution's academic programs, institutional management, and...
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
Facilitating problem solving in high school chemistry
NASA Astrophysics Data System (ADS)
Gabel, Dorothy L.; Sherwood, Robert D.
The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.
Problem solving as a core strategy in the prevention of schizophrenia and other mental disorders.
Falloon, I R
2000-11-01
To outline the rationale for implementing training in structured problem solving as a primary prevention strategy for major mental disorders. The evidence that training people in a structured method of solving their personal problems is an effective strategy in the treatment of established cases of schizophrenic and major mood disorders, is selectively reviewed. Most of the relevant research focused on the prevention of major recurrent episodes of psychosis. There is some evidence to support the hypothesis that this strategy may assist many people to achieve a full and sustained recovery from the clinical and social impairments of these disorders, especially when patients are taught to use structured problem solving with members of their personal resource groups, and they continue to take optimal doses of psychoactive medication. There is support for the hypothesis that the key therapeutic factor associated with these benefits is the improved efficiency of the management of life stress. The simplicity of problem solving, the educational methods used, and the widespread application to a person's lifestyle would appear to make this a possible candidate for a primary prevention program for major mental disorders. Guidebooks and teaching aids have been developed and show excellent consumer acceptance.
Schulte, Fiona; Vannatta, Kathryn; Barrera, Maru
2014-02-01
The aim of this study was to explore the ability of a group social skills intervention program for childhood brain tumor survivors to effect two steps of the social information processing model: social problem solving and social performance. Participants were 15 survivors (eight men and seven women) aged 7-15 years. The intervention consisted of eight 2-h weekly sessions focused on social skills including friendship making. Social problem solving, using hypothetical scenarios, was assessed during sessions 1 and 8. Social performance was observed during intervention sessions 1, 4, and 8. Compared with session 1, significant increases were found in social performance: frequency of maintaining eye contact and social conversations with peers over the course of the intervention. No significant changes in social problem solving were noted. This pilot study is the first to report improvements related to group social skills intervention at the level of observed social performance over the course of intervention. The lack of change in social problem solving suggests that survivors may possess the social knowledge required for social situations but have difficulty enacting social behaviors. Copyright © 2013 John Wiley & Sons, Ltd.
Algorithms for Maneuvering Spacecraft Around Small Bodies
NASA Technical Reports Server (NTRS)
Acikmese, A. Bechet; Bayard, David
2006-01-01
A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.
NASA Astrophysics Data System (ADS)
Ryan, R.; Gross, L. A.
1995-05-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
NASA Technical Reports Server (NTRS)
Ryan, R.; Gross, L. A.
1995-01-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
New Mathematical Strategy Using Branch and Bound Method
NASA Astrophysics Data System (ADS)
Tarray, Tanveer Ahmad; Bhat, Muzafar Rasool
In this paper, the problem of optimal allocation in stratified random sampling is used in the presence of nonresponse. The problem is formulated as a nonlinear programming problem (NLPP) and is solved using Branch and Bound method. Also the results are formulated through LINGO.
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Rao, C. S. R.
1976-01-01
A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.
NASA Technical Reports Server (NTRS)
Bless, Robert R.
1991-01-01
A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.
NASA Astrophysics Data System (ADS)
Kusumawati, Rosita; Subekti, Retno
2017-04-01
Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.
Guidance for modeling causes and effects in environmental problem solving
Armour, Carl L.; Williamson, Samuel C.
1988-01-01
Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows
Wang, Di; Kleinberg, Robert D.
2009-01-01
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596
Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.
Wang, Di; Kleinberg, Robert D
2009-11-28
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.
Recursive heuristic classification
NASA Technical Reports Server (NTRS)
Wilkins, David C.
1994-01-01
The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.
NASA Astrophysics Data System (ADS)
Saleh, H.; Suryadi, D.; Dahlan, J. A.
2018-01-01
The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).
ERIC Educational Resources Information Center
Farmer, James A., Jr.
1974-01-01
Techniques are illustrated in this article for strengthening evaluative designs and methodologies relevant to educational programs that incorporate within their broad aims assisting in social problem-solving. (AJ)
ERIC Educational Resources Information Center
Science Software Quarterly, 1984
1984-01-01
Provides extensive reviews of computer software, examining documentation, ease of use, performance, error handling, special features, and system requirements. Includes statistics, problem-solving (TK Solver), label printing, database management, experimental psychology, Encyclopedia Britannica biology, and DNA-sequencing programs. A program for…
Exploratory Advanced Research Program
DOT National Transportation Integrated Search
2013-08-20
The Exploratory Advanced Research Program strives to develop partnerships with the public and private sectors because the very nature of EAR is to apply ideas across traditional fields of research and stimulate new approaches to problem solving. Thro...
Federal Aviation Administration's Runway Incursion Program
DOT National Transportation Integrated Search
1997-12-08
To reverse the upward trend in runway incursions, FAA must have a strong : Runway Incursion Program to solve systemwide problems and expedite : solutions. The Office of Inspector General report recommends that FAA (1) assign specific responsibility f...
Bringing NASA Technology Down to Earth
NASA Technical Reports Server (NTRS)
Lockney, Daniel P.; Taylor, Terry L.
2018-01-01
Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.
A Primer for Problem Solving Using Artificial Intelligence.
ERIC Educational Resources Information Center
Schell, George P.
1988-01-01
Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems
Choi, Sou-Cheng T.; Saunders, Michael A.
2014-01-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
Unified Early Childhood Personnel Preparation Programs: Perceptions from the Field.
ERIC Educational Resources Information Center
LaMontagne, M. J.; Johnson, Lawrence J.; Kilgo, Jennifer L.; Stayton, Vicki; Carr, Victoria; Bauer, Anne M.; Carpenter, Jenny
2002-01-01
This study examined perceptions of unified early childhood personnel preparation programs by 28 faculty members in such programs and by graduates (n=42) of unified, dual, or separate exceptional child education or exceptional child special education programs. Faculty stressed the importance of commitment and collaborative problem solving. The…
NASA Astrophysics Data System (ADS)
Suthikarnnarunai, N.; Olinick, E.
2009-01-01
We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.
ERIC Educational Resources Information Center
Moraes, Ricardo
As a valuable addition to substance abuse treatment, adventure programming can have positive impacts on clients' self-efficacy, social behavior, and problem solving. A study explored the extent to which traditional substance abuse treatment programs use adventure programming, the level of adventure training and experience among substance abuse…
Caldas, Stephanie V; Broaddus, Elena T; Winch, Peter J
2016-08-01
Substantial evidence supports the value of outdoor education programs for promoting healthy adolescent development, yet measurement of program outcomes often lacks rigor. Accurately assessing the impacts of programs that seek to promote positive youth development is critical for determining whether youth are benefitting as intended, identifying best practices and areas for improvement, and informing decisions about which programs to invest in. We generated brief, customized instruments for measuring three outcomes among youth participants in Baltimore City Outward Bound programs: conflict management, emotional self-efficacy, and problem solving confidence. Measures were validated through exploratory and confirmatory factor analyses of pilot-testing data from two groups of program participants. We describe our process of identifying outcomes for measurement, developing and adapting measurement instruments, and validating these instruments. The finalized measures support evaluations of outdoor education programs serving urban adolescent youth. Such evaluations enhance accountability by determining if youth are benefiting from programs as intended, and strengthen the case for investment in programs with demonstrated success. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sparse Substring Pattern Set Discovery Using Linear Programming Boosting
NASA Astrophysics Data System (ADS)
Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki
In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.
Users manual for the Variable dimension Automatic Synthesis Program (VASP)
NASA Technical Reports Server (NTRS)
White, J. S.; Lee, H. Q.
1971-01-01
A dictionary and some problems for the Variable Automatic Synthesis Program VASP are submitted. The dictionary contains a description of each subroutine and instructions on its use. The example problems give the user a better perspective on the use of VASP for solving problems in modern control theory. These example problems include dynamic response, optimal control gain, solution of the sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix. Listings of all subroutines are also included. The VASP program has been adapted to run in the conversational mode on the Ames 360/67 computer.
1988-06-01
Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used
Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets
2011-01-01
additional a transportation system operator (TSO) who manages the congestion and 172 flows. The TSO’s linear program is as follows (where other...were tested are shown in Table 5.11 below. Node 1 Node 2 Producer A Producer B Producer C Producer D Transmission System Operator 174... Systems to Solve Problems that are Not Linear. Operational Research Quarterly , 26, 609–618. 9. Beale, E., & Tomlin, J. (1970). Special Facilities
The application of MINIQUASI to thermal program boundary and initial value problems
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.
Implementing and Assessing Computational Modeling in Introductory Mechanics
ERIC Educational Resources Information Center
Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.
2012-01-01
Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…
Initiating a Programmatic Assessment Report
ERIC Educational Resources Information Center
Berkaliev, Zaur; Devi, Shavila; Fasshauer, Gregory E.; Hickernell, Fred J.; Kartal, Ozgul; Li, Xiaofan; McCray, Patrick; Whitney, Stephanie; Zawojewski, Judith S.
2014-01-01
In the context of a department of applied mathematics, a program assessment was conducted to assess the departmental goal of enabling undergraduate students to recognize, appreciate, and apply the power of computational tools in solving mathematical problems that cannot be solved by hand, or would require extensive and tedious hand computation. A…
Solving Rational Expectations Models Using Excel
ERIC Educational Resources Information Center
Strulik, Holger
2004-01-01
Simple problems of discrete-time optimal control can be solved using a standard spreadsheet software. The employed-solution method of backward iteration is intuitively understandable, does not require any programming skills, and is easy to implement so that it is suitable for classroom exercises with rational-expectations models. The author…
Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.
Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni
2015-03-06
It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
A Block-LU Update for Large-Scale Linear Programming
1990-01-01
linear programming problems. Results are given from runs on the Cray Y -MP. 1. Introduction We wish to use the simplex method [Dan63] to solve the...standard linear program, minimize cTx subject to Ax = b 1< x <U, where A is an m by n matrix and c, x, 1, u, and b are of appropriate dimension. The simplex...the identity matrix. The basis is used to solve for the search direction y and the dual variables 7r in the following linear systems: Bky = aq (1.2) and
Computer program analyzes Buckling Of Shells Of Revolution with various wall construction, BOSOR
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Bushnell, D.; Sobel, L. H.
1968-01-01
Computer program performs stability analyses for a wide class of shells without unduly restrictive approximations. The program uses numerical integration, finite difference of finite element techniques to solve with reasonable accuracy almost any buckling problem for shells exhibiting orthotropic behavior.
Design and Implementation of a Tool for Teaching Programming.
ERIC Educational Resources Information Center
Goktepe, Mesut; And Others
1989-01-01
Discussion of the use of computers in education focuses on a graphics-based system for teaching the Pascal programing language for problem solving. Topics discussed include user interface; notification based systems; communication processes; object oriented programing; workstations; graphics architecture; and flowcharts. (18 references) (LRW)
A Local Government Services Program
ERIC Educational Resources Information Center
Jacobs, Bruce
1975-01-01
The Local Government Services Program, a cooperative venture of Ferris State College and six community colleges in northern Michigan, is providing local government leaders with a wide range of educational and practical problem solving services. Students and faculty conduct seminars, workshops, and training programs; they also provide consultation…
"The Great Solar System Rescue": A Highly Usable Videodisc Program.
ERIC Educational Resources Information Center
Haas, Mary E.
1993-01-01
Describes an interactive problem-solving videodisc program designed for the middle schools. Explains the interdisciplinary nature of the program that includes information from astronomy, geology, history, and meteorology. Contends that the product is an excellent example of well-designed educational software. (CFR)
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
UFO (UnFold Operator) computer program abstract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissel, L.; Biggs, F.
UFO (UnFold Operator) is an interactive user-oriented computer program designed to solve a wide range of problems commonly encountered in physical measurements. This document provides a summary of the capabilities of version 3A of UFO.
Computers and Hot Potatoes: Starch for Teacher Preparation Diets.
ERIC Educational Resources Information Center
Johnson, Jerry
1984-01-01
Computers present a problem for mathematics teachers that may be solved through teacher education programs. Classroom teachers should be competent in programing languages, exploring software, and understanding the emphasis of computers in the mathematics curriculum. (DF)
Educating Organizational Consumers about Employee Assistance Programs.
ERIC Educational Resources Information Center
Roman, Paul M.; And Others
1987-01-01
Provides an overview of the value of employee assistance programs (EAP) as mechanisms to solve organizational problems. The article is based on a field study of 480 EAPs in private sector organizations with 500 or more employees. (JOW)
Social work role in developing and managing employee assistance programs in health care settings.
Foster, Z; Hirsch, S; Zaske, K
1991-01-01
The hospital setting presents special needs for an Employee Assistance Program and special complications for sponsorship, development, and maintenance. What has been learned, how certain problems can be solved or avoided, how responsibility and accountability can be negotiated are presented by a team that has successfully established such a program at a large metropolitan medical center. In addition to successes, some unsolved problems are identified for further study.
NASA Technical Reports Server (NTRS)
Bradley, P. F.; Throckmorton, D. A.
1981-01-01
A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.
NASA Technical Reports Server (NTRS)
Bowman, L. M.
1984-01-01
An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.
ERIC Educational Resources Information Center
Nara, Jun
2010-01-01
This research explores how chief cabin crew members of major airlines made their decisions on-the-spot when they had unexpected problems. This research also presents some insights that may improve personnel training programs for future stewardesses and stewards based on the investigation of their decision-making styles. The theoretical framework…
ERIC Educational Resources Information Center
Kiesmuller, Ulrich
2009-01-01
At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…
JPRS Report, Science & Technology, USSR: Computers
1987-07-15
Algebras and Multilevel Program Planning (G. Ye.. Tseytlin; PROGRAMMIROVANIYE, No 3, May-Jun 86) 36 Linguistic Facilities for Programming...scientific production associations which, jointly with the USSR Academy of Sciences, will solve basic and applied problems in the informatics industry...especially the establishment of complex , interdisciplinary problems and directions), the change in the style of the scientific thought of the epoch, and
EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM
Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...
Toward a Comprehensive Rural Development Policy.
ERIC Educational Resources Information Center
Knutson, Ronald D.; And Others
Rural development is broader than just agriculture. Farm policy cannot solve rural community problems. Rural problems are sufficiently unique to require special emphasis and special programs. Since rural development has a broader focus than the local community, its problems need to be addressed by all levels of government as well as the private…
A Problem on Optimal Transportation
ERIC Educational Resources Information Center
Cechlarova, Katarina
2005-01-01
Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…
Child and Family Predictors of Therapy Outcome for Children with Behavioral and Emotional Problems
ERIC Educational Resources Information Center
Hemphill, Sheryl A.; Littlefield, Lyn
2006-01-01
This study investigated the characteristics of 106 children primarily referred for externalizing behavior problems and their families, and assessed the prediction of treatment outcome following a standardized short-term, cognitive behavioral group program. "Exploring Together" comprised a children's group (anger management, problem-solving and…
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Bhunia, A. K.; Roy, D.
2009-10-01
In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.
ISE: An Integrated Search Environment. The manual
NASA Technical Reports Server (NTRS)
Chu, Lon-Chan
1992-01-01
Integrated Search Environment (ISE), a software package that implements hierarchical searches with meta-control, is described in this manual. ISE is a collection of problem-independent routines to support solving searches. Mainly, these routines are core routines for solving a search problem and they handle the control of searches and maintain the statistics related to searches. By separating the problem-dependent and problem-independent components in ISE, new search methods based on a combination of existing methods can be developed by coding a single master control program. Further, new applications solved by searches can be developed by coding the problem-dependent parts and reusing the problem-independent parts already developed. Potential users of ISE are designers of new application solvers and new search algorithms, and users of experimental application solvers and search algorithms. The ISE is designed to be user-friendly and information rich. In this manual, the organization of ISE is described and several experiments carried out on ISE are also described.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
NASA Astrophysics Data System (ADS)
Chang, Ching-Ter; Chen, Huang-Mu; Zhuang, Zheng-Yun
2014-05-01
Supplier selection (SS) is a multi-criteria and multi-objective problem, in which multi-segment (e.g. imperfect-quality discount (IQD) and price-quantity discount (PQD)) and multi-aspiration level problems may be significantly important; however, little attention had been given to dealing with both of them simultaneously in the past. This study proposes a model for integrating multi-choice goal programming and multi-segment goal programming to solve the above-mentioned problems by providing the following main contributions: (1) it allows decision-makers to set multiple aspiration levels on the right-hand side of each goal to suit real-world situations, (2) the PQD and IQD conditions are considered in the proposed model simultaneously and (3) the proposed model can solve a SS problem with n suppliers where each supplier offers m IQD with r PQD intervals, where only ? extra binary variables are required. The usefulness of the proposed model is explained using a real case. The results indicate that the proposed model not only can deal with a SS problem with multi-segment and multi-aspiration levels, but also can help the decision-maker to find the appropriate order quantities for each supplier by considering cost, quality and delivery.
NASA Astrophysics Data System (ADS)
Udomsungworagul, A.; Charnsethikul, P.
2018-03-01
This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.
A sequential quadratic programming algorithm using an incomplete solution of the subproblem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, W.; Prieto, F.J.
1993-05-01
We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less
NAS Technical Summaries, March 1993 - February 1994
NASA Technical Reports Server (NTRS)
1995-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year.
Sirey, Jo Anne; Halkett, Ashley; Chambers, Stephanie; Salamone, Aurora; Bruce, Martha L; Raue, Patrick J; Berman, Jacquelin
2015-01-01
The goal of this pilot program was to test the usefulness of adapted Problem-Solving Therapy (PST) and anxiety management, called PROTECT, integrated into elder abuse services to reduce depression and improve self-efficacy. Depressed women victims were randomized to receive elder abuse resolution services combined with either PROTECT or a mental health referral. At follow-up, the PROTECT group showed greater reduction in depressive symptoms and endorsed greater improved self-efficacy in problem-solving when compared to those in the Referral condition. These preliminary findings support the potential usefulness of PROTECT to alleviate depressive symptoms and enhance personal resources among abused older women.
NASA Astrophysics Data System (ADS)
Jupri, Al
2017-04-01
In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.
Discrete-continuous variable structural synthesis using dual methods
NASA Technical Reports Server (NTRS)
Schmit, L. A.; Fleury, C.
1980-01-01
Approximation concepts and dual methods are extended to solve structural synthesis problems involving a mix of discrete and continuous sizing type of design variables. Pure discrete and pure continuous variable problems can be handled as special cases. The basic mathematical programming statement of the structural synthesis problem is converted into a sequence of explicit approximate primal problems of separable form. These problems are solved by constructing continuous explicit dual functions, which are maximized subject to simple nonnegativity constraints on the dual variables. A newly devised gradient projection type of algorithm called DUAL 1, which includes special features for handling dual function gradient discontinuities that arise from the discrete primal variables, is used to find the solution of each dual problem. Computational implementation is accomplished by incorporating the DUAL 1 algorithm into the ACCESS 3 program as a new optimizer option. The power of the method set forth is demonstrated by presenting numerical results for several example problems, including a pure discrete variable treatment of a metallic swept wing and a mixed discrete-continuous variable solution for a thin delta wing with fiber composite skins.
Exploring quantum computing application to satellite data assimilation
NASA Astrophysics Data System (ADS)
Cheung, S.; Zhang, S. Q.
2015-12-01
This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2017-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
NASA Astrophysics Data System (ADS)
Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai
2018-07-01
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.
Computational structural mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.
NASA Astrophysics Data System (ADS)
Jin, Shan
This dissertation concerns power system expansion planning under different market mechanisms. The thesis follows a three paper format, in which each paper emphasizes a different perspective. The first paper investigates the impact of market uncertainties on a long term centralized generation expansion planning problem. The problem is modeled as a two-stage stochastic program with uncertain fuel prices and demands, which are represented as probabilistic scenario paths in a multi-period tree. Two measurements, expected cost (EC) and Conditional Value-at-Risk (CVaR), are used to minimize, respectively, the total expected cost among scenarios and the risk of incurring high costs in unfavorable scenarios. We sample paths from the scenario tree to reduce the problem scale and determine the sufficient number of scenarios by computing confidence intervals on the objective values. The second paper studies an integrated electricity supply system including generation, transmission and fuel transportation with a restructured wholesale electricity market. This integrated system expansion problem is modeled as a bi-level program in which a centralized system expansion decision is made in the upper level and the operational decisions of multiple market participants are made in the lower level. The difficulty of solving a bi-level programming problem to global optimality is discussed and three problem relaxations obtained by reformulation are explored. The third paper solves a more realistic market-based generation and transmission expansion problem. It focuses on interactions among a centralized transmission expansion decision and decentralized generation expansion decisions. It allows each generator to make its own strategic investment and operational decisions both in response to a transmission expansion decision and in anticipation of a market price settled by an Independent System Operator (ISO) market clearing problem. The model poses a complicated tri-level structure including an equilibrium problem with equilibrium constraints (EPEC) sub-problem. A hybrid iterative algorithm is proposed to solve the problem efficiently and reliably.
NASA Astrophysics Data System (ADS)
Voloshinov, V. V.
2018-03-01
In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.
Problem Solving in a Middle School Robotics Design Classroom
NASA Astrophysics Data System (ADS)
Norton, Stephen J.; McRobbie, Campbell J.; Ginns, Ian S.
2007-07-01
Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.
Finding long chains in kidney exchange using the traveling salesman problem.
Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E
2015-01-20
As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice.
Finding long chains in kidney exchange using the traveling salesman problem
Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E.
2015-01-01
As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice. PMID:25561535
ERIC Educational Resources Information Center
Schuyler, Stanley TenEyck
2008-01-01
Problem solving can be thought of in two phases: the first phase is problem formulation and the second solution development. Problem formulation is the process of identifying a problem or opportunity in a situation. Problem Formulation Ability, or PFA, is the ability to perform this process. This research investigated a method to assess PFA and…
ERIC Educational Resources Information Center
Campbell, Joseph K.
1979-01-01
Describes New York State's extension experience in using the programable calculator, a portable pocket-size computer, to solve many of the problems that central computers now handle. Subscription services to programs written for the Texas Instruments TI-59 programable calculator are provided by both Cornell and Iowa State Universities. (MF)
1974-07-18
so on. We say OK, we will work with Honda . We made an agreement and got the engine. They don’t have the problem solved at allfor us, but they have me...with our prechamber Honda CVCC program. hhile there are more design problems to be solved with the PROCO engine, and more time may be necessary to...But Mr. Sugiura was quoted by the agency ofcials as explaining Honda still has problems with fuel economy and driving performances and that it Is Impos
Sahler, Olle Jane Z.; Sherman, Sandra A.; Fairclough, Diane L.; Butler, Robert W.; Katz, Ernest R.; Dolgin, Michael J.; Varni, James W.; Noll, Robert B.; Phipps, Sean
2009-01-01
Objectives To evaluate the feasibility and efficacy of a handheld personal digital assistant (PDA)-based supplement for maternal Problem-Solving Skills Training (PSST) and to explore Spanish-speaking mothers’ experiences with it. Methods Mothers (n = 197) of children with newly diagnosed cancer were randomized to traditional PSST or PSST + PDA 8-week programs. Participants completed the Social Problem-Solving Inventory-Revised, Beck Depression Inventory-II, Profile of Mood States, and Impact of Event Scale-Revised pre-, post-treatment, and 3 months after completion of the intervention. Mothers also rated optimism, logic, and confidence in the intervention and technology. Results Both groups demonstrated significant positive change over time on all psychosocial measures. No between-group differences emerged. Despite technological “glitches,” mothers expressed moderately high optimism, appreciation for logic, and confidence in both interventions and rated the PDA-based program favorably. Technology appealed to all Spanish-speaking mothers, with younger mothers showing greater proficiency. Conclusions Well-designed, supported technology holds promise for enhancing psychological interventions. PMID:19091804