Sample records for problem solving students

  1. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  2. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  3. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  4. Problem representation and mathematical problem solving of students of varying math ability.

    PubMed

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  5. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  6. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  7. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  8. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  9. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  10. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  12. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  13. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  14. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  15. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  16. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  17. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  18. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  19. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  20. When procedures discourage insight: epistemological consequences of prompting novice physics students to construct force diagrams

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-05-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.

  1. Investigating Students' Success in Solving and Attitudes towards Context-Rich Open-Ended Problems in Chemistry

    ERIC Educational Resources Information Center

    Overton, Tina L.; Potter, Nicholas M.

    2011-01-01

    Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…

  2. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  3. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  4. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  5. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  6. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  7. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  8. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  9. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  10. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  11. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  12. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  13. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  14. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  15. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  16. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  17. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  18. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  19. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  20. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  1. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  2. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  3. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  4. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  5. Chinese and Singaporean Sixth-Grade Students' Strategies for Solving Problems about Speed

    ERIC Educational Resources Information Center

    Jiang, Chunlian; Hwang, Stephen; Cai, Jinfa

    2014-01-01

    This study examined 361 Chinese and 345 Singaporean sixth-grade students' performance and problem-solving strategies for solving 14 problems about speed. By focusing on students from two distinct high-performing countries in East Asia, we provide a useful perspective on the differences that exist in the preparation and problem-solving strategies…

  6. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    ERIC Educational Resources Information Center

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  7. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    PubMed

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  8. The Effects of Cognitive Strategy Instruction on Knowledge of Math Problem-Solving Processes of Middle School Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia

    2013-01-01

    This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…

  9. Analyzing Interpersonal Problem Solving in Terms of Solution Focused Approach and Humor Styles of University Student

    ERIC Educational Resources Information Center

    Koc, Hayri; Arslan, Coskun

    2017-01-01

    In this study university students interpersonal problem solving approaches were investigated in terms of solution focused approach and humor styles. The participants were 773 (542 female and 231 male, between 17-33 years old) university students. To determine the university students' problem solving approaches "Interpersonal Problem Solving…

  10. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  11. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  12. Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development

    ERIC Educational Resources Information Center

    Bae, Young Seh

    2013-01-01

    Mathematical Word Problem Solving of Students with Autistic Spectrum Disorders and Students with Typical Development Young Seh Bae This study investigated mathematical word problem solving and the factors associated with the solution paths adopted by two groups of participants (N=40), students with autism spectrum disorders (ASDs) and typically…

  13. Multiple representations and free-body diagrams: Do students benefit from using them?

    NASA Astrophysics Data System (ADS)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.

  14. The Use of a Bar Model Drawing to Teach Word Problem Solving to Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Morin, Lisa L.; Watson, Silvana M. R.; Hester, Peggy; Raver, Sharon

    2017-01-01

    For students with mathematics difficulties (MD), math word problem solving is especially challenging. The purpose of this study was to examine the effects of a problem-solving strategy, bar model drawing, on the mathematical problem-solving skills of students with MD. The study extended previous research that suggested that schematic-based…

  15. An Assessment of the Effect of Collaborative Groups on Students' Problem-Solving Strategies and Abilities

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald

    2008-01-01

    Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…

  16. The Effect of Reading Comprehension and Problem Solving Strategies on Classifying Elementary 4th Grade Students with High and Low Problem Solving Success

    ERIC Educational Resources Information Center

    Ulu, Mustafa

    2017-01-01

    In this study, the effect of fluent reading (speed, reading accuracy percentage, prosodic reading), comprehension (literal comprehension, inferential comprehension) and problem solving strategies on classifying students with high and low problem solving success was researched. The sampling of the research is composed of 279 students at elementary…

  17. Improving mathematical problem solving ability through problem-based learning and authentic assessment for the students of Bali State Polytechnic

    NASA Astrophysics Data System (ADS)

    Darma, I. K.

    2018-01-01

    This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.

  18. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    ERIC Educational Resources Information Center

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  19. Analysis of problem solving in terms of cognitive style

    NASA Astrophysics Data System (ADS)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  20. Cognitive Strategy Instruction for Teaching Word Problems to Primary-Level Struggling Students

    ERIC Educational Resources Information Center

    Pfannenstiel, Kathleen Hughes; Bryant, Diane Pedrotty; Bryant, Brian R.; Porterfield, Jennifer A.

    2015-01-01

    Students with mathematics difficulties and learning disabilities (LD) typically struggle with solving word problems. These students often lack knowledge about efficient, cognitive strategies to utilize when solving word problems. Cognitive strategy instruction has been shown to be effective in teaching struggling students how to solve word…

  1. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  2. Examining problem solving in physics-intensive Ph.D. research

    NASA Astrophysics Data System (ADS)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.

  3. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  4. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  5. The effects of using diagramming as a representational technique on high school students' achievement in solving math word problems

    NASA Astrophysics Data System (ADS)

    Banerjee, Banmali

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to students' accomplishments when solving word problems. Some studies have examined the effects of diagramming on students' abilities to solve word problems that only involved basic arithmetic operations. Other studies have investigated how instructional models that used technology influenced students' problem solving achievements. Still other studies have used schema-based instruction involving students with learning disabilities. No study has evaluated regular high school students' achievements in solving standard math word problems using a diagramming technique without technological aid. This study evaluated students' achievement in solving math word problems using a diagramming technique. Using a quasi-experimental experimental pretest-posttest research design, quantitative data were collected from 172 grade 11 Hispanic English language learners (ELLS) and African American learners whose first language is English (EFLLs) in 18 classes at an inner city high school in Northern New Jersey. There were 88 control and 84 experimental students. The pretest and posttest of each participating student and samples of the experimental students' class assignments provided the qualitative data for the study. The data from this study exhibited that the diagramming method of solving math word problems significantly improved student achievement in the experimental group (p<.01) compared to the control group. The study demonstrated that urban, high school, ELLs benefited from instruction that placed emphasis on the mathematical vocabulary and symbols used in word problems and that both ELLs and EFLLs improved their problem solving success through careful attention to the creation and labeling of diagrams to represent the mathematics involved in standard word problems. Although Learnertype (ELL, EFLL), Classtype (Bilingual and Mixed), and Gender (Female, Male) were not significant indicators of student achievement, there was significant interaction between Treatment and Classtype at the level of the Bilingual students ( p<.01) and between Treatment and Learnertype at the level of the ELLs (p<.01).

  6. Problem-Solving Skills Appraisal Mediates Hardiness and Suicidal Ideation among Malaysian Undergraduate Students

    PubMed Central

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229

  7. The role of ego-resiliency in the relationship between social anxiety and problem solving ability among South Korean nursing students.

    PubMed

    Jun, Won-Hee; Lee, Gyungjoo

    2017-02-01

    Problem-solving is a core ability that nursing students should develop during their education. There is a need to better understand the importance of problem-solving and the factors related to it among nursing students. This study aimed to identify the role of ego-resiliency in the relationship between social anxiety and problem-solving ability in Korean nursing students. Data were collected from a total of 329 nursing students who were enrolled in three nursing programs in South Korea, using a self-administrated questionnaire. Data were mainly analyzed by Baron and Kenny's three-step regression analysis and the Sobel test. Ego-resiliency played a partial mediating role in the relationship between social anxiety and problem-solving ability. Further, the Sobel test suggested a mediating effect of ego-resiliency on the relationship between social anxiety and problem-solving (Z=-9.079, p<0.001). To enhance problem-solving ability in nursing students, nursing educators should establish educational strategies that decrease social anxiety and improve ego-resiliency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving Program for Secondary Physics Education

    ERIC Educational Resources Information Center

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    2008-01-01

    Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with…

  9. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2016-01-01

    This paper reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their…

  10. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2017-01-01

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and…

  11. Complex Problem Solving in L1 Education: Senior High School Students' Knowledge of the Language Problem-Solving Process

    ERIC Educational Resources Information Center

    van Velzen, Joke H.

    2017-01-01

    The solving of reasoning problems in first language (L1) education can produce an understanding of language, and student autonomy in language problem solving, both of which are contemporary goals in senior high school education. The purpose of this study was to obtain a better understanding of senior high school students' knowledge of the language…

  12. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  13. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  14. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  15. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  16. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  17. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  18. Metacognitive skills and students' motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin

    NASA Astrophysics Data System (ADS)

    Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani

    2017-12-01

    The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning device, such as student worksheet, to help students use their metacognitive skills in solving problems, particularly on chemistry subject.

  19. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  20. Problem-Solving Skills and Suicidal Ideation Among Malaysian College Students: the Mediating Role of Hopelessness.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2016-04-01

    Recent evidence suggests that suicidal ideation has increased among Malaysian college students over the past two decades; therefore, it is essential to increase our knowledge concerning the etiology of suicidal ideation among Malaysian college students. This study was conducted to examine the relationships between problem-solving skills, hopelessness, and suicidal ideation among Malaysian college students. The participants included 500 undergraduate students from two Malaysian public universities who completed the self-report questionnaires. Structural equation modeling estimated that college students with poor problem-solving confidence, external personal control of emotion, and avoiding style were more likely to report suicidal ideation. Hopelessness partially mediated the relationship between problem-solving skills and suicidal ideation. These findings reinforce the importance of poor problem-solving skills and hopelessness as risk factors for suicidal ideation among college students.

  1. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  2. Associations of Students' Beliefs with Self-Regulated Problem Solving in College Algebra

    ERIC Educational Resources Information Center

    Cifarelli, Victor; Goodson-Espy, Tracy; Chae, Jeong-Lim

    2010-01-01

    This paper reports results from a study of self-regulated problem solving actions of students enrolled in College Algebra (N = 139). The study examined the associations between the expressed mathematical beliefs of students and the students' self-regulated actions in solving mathematics problems. The research questions are: (a) What are some…

  3. Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages

    ERIC Educational Resources Information Center

    Beal, Carole R.; Stevens, Ronald H.

    2011-01-01

    Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…

  4. WWC Review of the Report "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    A recent study, "The Effects of Cognitive Strategy Instruction on Math Problem Solving of Middle School Students of Varying Ability," examined the effectiveness of "Solve It!," a program intended to improve the problem-solving skills of seventh-grade math students. During the program, students are taught cognitive strategies of…

  5. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2010-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

  6. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  7. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    PubMed

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Translation among Symbolic Representations in Problem-Solving. Report on Studies Project: Alternative Strategies for Measuring Higher Order Skills: The Role of Symbol Systems.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    Some aspects of the relationships among the symbolic representations (Rs) of problems given to students to solve, the Rs that students use to solve problems, and the accuracy of the solutions were studied. Focus was on determining: the mental Rs that students used while solving problems, the kinds of translation that takes place, the accuracy of…

  9. TTWand NHT in problem solving

    NASA Astrophysics Data System (ADS)

    Anthycamurty, R. C. C.; Mardiyana; Saputro, D. R. S.

    2018-05-01

    This research aims to analyze and determine effect of the model on problem solving. Subjects in this research are students of class X SMK in Purworejo. The learning model used in this research was TTW in class experimental 1 and NHT class experiment 2. This research used quasi experiment. Data analysis technique in this research used ANOVA two way. Data collection techniques in this research used tests to measure student problem solving and GEFT to measure students' cognitive style. The results of this research indicate that there are differences in problem solving between experimental classes used TTW and NHT. The impact of this research is that students are able to remind problem solving used learning model and to know cognitive style of the students.

  10. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    NASA Astrophysics Data System (ADS)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  11. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  12. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  13. Determining the Effects of Cognitive Style, Problem Complexity, and Hypothesis Generation on the Problem Solving Ability of School-Based Agricultural Education Students

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane

    2016-01-01

    The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…

  14. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…

  15. A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic

    NASA Astrophysics Data System (ADS)

    Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.

    2018-05-01

    Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.

  16. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  17. Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.

  18. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  19. A Comparison of Students in Physical Education and Sports College and the Students in Other Departments in Terms of Problem Solving Skills

    ERIC Educational Resources Information Center

    Görücü, Alpaslan; Cantav, Erkan

    2017-01-01

    In this research, it is aimed to analyze the problem solving skills of university students in terms of different variables and to analyze the differences among the levels of perceived problem solving skill of the students of Physical Education and Sports College and other branch students. The sample consists of the university students from the…

  20. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    NASA Astrophysics Data System (ADS)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  1. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    ERIC Educational Resources Information Center

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  2. Mathematical Enculturation from the Students' Perspective: Shifts in Problem-Solving Beliefs and Behaviour during the Bachelor Programme

    ERIC Educational Resources Information Center

    Perrenet, Jacob; Taconis, Ruurd

    2009-01-01

    This study investigates the changes in mathematical problem-solving beliefs and behaviour of mathematics students during the years after entering university. Novice bachelor students fill in a questionnaire about their problem-solving beliefs and behaviour. At the end of their bachelor programme, as experienced bachelor students, they again fill…

  3. A scheme of pedagogical problems solving in kinematic to observe toulmin argumentation feasibility

    NASA Astrophysics Data System (ADS)

    Manurung, Sondang R.; Rustaman, Nuryani Y.; Siregar, Nelson

    2013-09-01

    The purpose of this study is to determine the students' ability to map out the problem solving. This paper would show a schematic template map used to analyze the students' tasks in performing problem solving pedagogically. Scheme of problem solving map of student was undertaken based on Toulmin Argumentation Pattern (TAP) argumentative discourse. The samples of this study were three work-sheets of physics education students who represented the upper, middle and lower levels of class in one LPTK in Medan. The instrument of this study was an essay test in kinematics topic. The data analyses were performed with schematic template map in order to know the students' ability in mapping the problem solving. The results showed that the student in the Upper level of class followed the appropriate direction pattern, while two others students could not followed the pattern exactly.

  4. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  5. On the Analysis of Two-Person Problem Solving Protocols.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…

  6. The Development and Nature of Problem-Solving among First-Semester Calculus Students

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Epperson, James A. Mendoza

    2014-01-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…

  7. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  8. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  9. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  10. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  11. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    NASA Astrophysics Data System (ADS)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-09-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department).

  12. Metacognitive experience of mathematics education students in open start problem solving based on intrapersonal intelligence

    NASA Astrophysics Data System (ADS)

    Sari, D. P.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe metacognitive experience of mathematics education students with strong, average, and weak intrapersonal intelligence in open start problem solving. Type of this research was qualitative research. The research subject was mathematics education students in Muhammadiyah University of Surakarta in academic year 2017/2018. The selected students consisted of 6 students with details of two students in each intrapersonal intelligence category. The research instruments were questionnaire, open start problem solving task, and interview guidelines. Data validity used time triangulation. Data analyses were done through data collection, data reduction, data presentation, and drawing conclusion. Based on findings, subjects with strong intrapersonal intelligence had high self confidence that they were able to solve problem correctly, able to do planning steps and able to solve the problem appropriately. Subjects with average intrapersonal intelligence had high self-assessment that they were able to solve the problem, able to do planning steps appropriately but they had not maximized in carrying out the plan so that it resulted incorrectness answer. Subjects with weak intrapersonal intelligence had high self confidence in capability of solving math problem, lack of precision in taking plans so their task results incorrectness answer.

  13. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students

    ERIC Educational Resources Information Center

    Budak, Ibrahim

    2012-01-01

    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  14. Mathematical Giftedness, Problem Solving, and the Ability To Formulate Generalizations: The Problem-Solving Experiences of Four Gifted Students.

    ERIC Educational Resources Information Center

    Sriraman, Bharath

    2003-01-01

    Nine freshmen in a ninth-grade accelerated algebra class were asked to solve five nonroutine combinatorial problems. The four mathematically gifted students were successful in discovering and verbalizing the generality that characterized the solutions to the five problems, whereas the five nongifted students were unable to discover the hidden…

  15. Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students

    ERIC Educational Resources Information Center

    Trance, Naci John C.

    2013-01-01

    This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…

  16. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    NASA Astrophysics Data System (ADS)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  17. Using Clickers to Facilitate Development of Problem-Solving Skills

    PubMed Central

    Levesque, Aime A.

    2011-01-01

    Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and were polled for the correct answer. A histogram of class responses was displayed, and students were encouraged to discuss the problem, which enabled them to better understand the correct answer. Students were then presented with a similar problem and were again polled. My results indicate that those students who were initially unable to solve the problem were then able to figure out how to solve similar types of problems through a combination of trial and error and class discussion. This was reflected in student performance on exams, where there was a statistically significant positive correlation between grades and the percentage of clicker questions answered. Interestingly, there was no clear correlation between exam grades and the percentage of clicker questions answered correctly. These results suggest that students who attempt to solve problems in class are better equipped to solve problems on exams. PMID:22135374

  18. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    NASA Astrophysics Data System (ADS)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  19. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  20. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    ERIC Educational Resources Information Center

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  1. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  2. Student Modeling Based on Problem Solving Times

    ERIC Educational Resources Information Center

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  3. Students' Epistemological Framing in Quantum Mechanics Problem Solving

    ERIC Educational Resources Information Center

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.

    2017-01-01

    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  4. Strategic Development for Middle School Students Struggling with Fractions: Assessment and Intervention

    ERIC Educational Resources Information Center

    Zhang, Dake; Stecker, Pamela; Huckabee, Sloan; Miller, Rhonda

    2016-01-01

    Research has suggested that different strategies used when solving fraction problems are highly correlated with students' problem-solving accuracy. This study (a) utilized latent profile modeling to classify students into three different strategic developmental levels in solving fraction comparison problems and (b) accordingly provided…

  5. Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.

    PubMed

    Oldenburg, Nancy L; Hung, Wei-Chen

    2010-04-01

    It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.

  6. [Problem solving abilities of nursing students: the experience of the bachelor degree course in nursing at the University of Udine].

    PubMed

    Bulfone, Giampiera; Galletti, Caterina; Vellone, Ercole; Zanini, Antonietta; Quattrin, Rosanna

    2008-01-01

    The process nurses adopt to solve the patients' problems is known as "Problem Solving" in the literature. Problem Solving Abilities include Diagnostic Reasoning, Prognostic Judgment and Decision Making. Nursing students apply the Problem Solving to the Nursing Process that is the mental and operative approach that nurses use to plan the nursing care. The purpose of the present study is to examine if there is a positive relationship between the number of Educational Tutorial Strategies (Briefing, Debriefing and Discussion according to the Objective Structured Clinical Examination Methodology) used for nursing students and their learning of Problem Solving Abilities (Diagnostic Reasoning, Prognostic Judgment and Decision Making). The study design was retrospective, descriptive and comparative. The Problem Solving Instrument, specifically developed for this study and proved for its reliability and validity, was used to collect the data from a sample of 106 nursing care plans elaborated by the second-year students of the Bachelor Degree in Nursing of the University of Udine. Nursing care plans were elaborated during three times consecutively, after students had participated in different Educational Tutorial Strategies. Results showed that the more the students took part in a higher number of Educational Tutorial Strategies the more they significantly increased their Problem Solving Abilities. The results demonstrate that it is important to use Educational Tutorial Strategies in the nursing education to teach skills.

  7. The development and nature of problem-solving among first-semester calculus students

    NASA Astrophysics Data System (ADS)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving performance, we observe that current instruction requires ongoing refinement to help students develop multi-register fluency and the ability to model quantitatively, as is called for in current US standards for mathematical instruction.

  8. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  9. Web-Based Undergraduate Chemistry Problem-Solving: The Interplay of Task Performance, Domain Knowledge and Web-Searching Strategies

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Cheng, Meng-Tzu; Li, Ta-Wei; Wang, Chia-Yu; Chiu, Hsin-Tien; Lee, Pei-Zon; Chou, Wen-Chi; Chuang, Ming-Hua

    2012-01-01

    This study investigates the effect of Web-based Chemistry Problem-Solving, with the attributes of Web-searching and problem-solving scaffolds, on undergraduate students' problem-solving task performance. In addition, the nature and extent of Web-searching strategies students used and its correlation with task performance and domain knowledge also…

  10. The Internet: Problem Solving Friend or Foe?

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2007-01-01

    Teaching problem solving to today's students requires teachers to be aware of the ways their students may use the internet as both a resource and as a tool for solving problems. In this article, I describe some of my own experiences in teaching problem solving to preservice teachers and how the existence of the internet has affected the ways in…

  11. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  12. Problem-Solving Rubrics Revisited: Attending to the Blending of Informal Conceptual and Formal Mathematical Reasoning

    ERIC Educational Resources Information Center

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-01-01

    Much research in engineering and physics education has focused on improving students' problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student's expertise in solving problems using these strategies. These rubrics value "communication" between the…

  13. Impacts of Learning Inventive Problem-Solving Principles: Students' Transition from Systematic Searching to Heuristic Problem Solving

    ERIC Educational Resources Information Center

    Barak, Moshe

    2013-01-01

    This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…

  14. Effects of Teaching Approach on Problem Solving Ability of Agricultural Education Students with Varying Learning Styles.

    ERIC Educational Resources Information Center

    Dyer, James E.; Osborne, Edward W.

    1996-01-01

    One group of Illinois secondary agriculture students was taught using a problem-solving approach (PSA), the other with a subject-matter approach (SMA). A problem-solving posttest and Group Embedded Figures Test showed significantly higher problem-solving ability in the PSA group. Field independent learners in the PSA group significantly increased…

  15. Do Scaffolded Supports between Aspects of Problem Solving Enhance Assessment Usability?

    ERIC Educational Resources Information Center

    McCoy, Jan D.; Braun-Monegan, Jenelle; Bettesworth, Leanne; Tindal, Gerald

    2015-01-01

    While problem solving as an instructional technique is widely advocated, educators are often challenged in effectively assessing student skill in this area. Students failing to solve a problem might fail in any of several aspects of the effort. The purpose of this research was to validate a scaffolded technique for assessing problem solving in…

  16. Using Coaching to Improve the Teaching of Problem Solving to Year 8 Students in Mathematics

    ERIC Educational Resources Information Center

    Kargas, Christine Anestis; Stephens, Max

    2014-01-01

    This study investigated how to improve the teaching of problem solving in a large Melbourne secondary school. Coaching was used to support and equip five teachers, some with limited experiences in teaching problem solving, with knowledge and strategies to build up students' problem solving and reasoning skills. The results showed increased…

  17. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    ERIC Educational Resources Information Center

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  18. Problem Solving with Workstations. Program Description, Teacher Materials, and Student Information. Teacher Developed Technology Education for the Nineties (TD-TEN).

    ERIC Educational Resources Information Center

    Garey, Robert W.

    The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…

  19. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences.

    PubMed

    Safari, Yahya; Meskini, Habibeh

    2015-05-17

    Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.

  20. Scaffolding for solving problem in static fluid: A case study

    NASA Astrophysics Data System (ADS)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of scaffolding to support their students in finding the solutions.

  1. Solving Word Problems using Schemas: A Review of the Literature

    PubMed Central

    Powell, Sarah R.

    2011-01-01

    Solving word problems is a difficult task for students at-risk for or with learning disabilities (LD). One instructional approach that has emerged as a valid method for helping students at-risk for or with LD to become more proficient at word-problem solving is using schemas. A schema is a framework for solving a problem. With a schema, students are taught to recognize problems as falling within word-problem types and to apply a problem solution method that matches that problem type. This review highlights two schema approaches for 2nd- and 3rd-grade students at-risk for or with LD: schema-based instruction and schema-broadening instruction. A total of 12 schema studies were reviewed and synthesized. Both types of schema approaches enhanced the word-problem skill of students at-risk for or with LD. Based on the review, suggestions are provided for incorporating word-problem instruction using schemas. PMID:21643477

  2. The problem solving skills and student generated representations (SGRs) profile of senior high school students in Bandung on the topic of work and energy

    NASA Astrophysics Data System (ADS)

    Alami, Y.; Sinaga, P.; Setiawan, A.

    2018-05-01

    Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.

  3. Effectiveness of discovery learning model on mathematical problem solving

    NASA Astrophysics Data System (ADS)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  4. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer

    NASA Astrophysics Data System (ADS)

    Yulindar, A.; Setiawan, A.; Liliawati, W.

    2018-05-01

    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  5. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  6. Assessing Student Expertise in Introductory Physics with Isomorphic Problems. II. Effect of Some Potential Factors on Problem Solving and Transfer

    ERIC Educational Resources Information Center

    Chandralekha; Singh

    2008-01-01

    In this paper, we explore the use of isomorphic problem pairs (IPPs) to assess introductory physics students' ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems "isomorphic" because they require the same physics principle to solve them. We analyze written…

  7. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  8. An Eye Tracking Study of High- and Low-Performing Students in Solving Interactive and Analytical Problems

    ERIC Educational Resources Information Center

    Hu, Yiling; Wu, Bian; Gu, Xiaoqing

    2017-01-01

    Test results from the Program for International Student Assessment (PISA) reveal that Shanghai students performed less well in solving interactive problems (those that require uncovering necessary information) than in solving analytical problems (those having all information disclosed at the outset). Accordingly, this study investigates…

  9. An Information-Summarising Instruction Strategy for Improving the Web-Based Problem Solving Abilities of Students

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2011-01-01

    As knowledge rapidly expands and accumulates, training and assessing students' information searching ability for solving problems on the Internet has become an important and challenging issue. This research aims to improve the web-based problem solving abilities of primary school students by employing an information summarising approach for…

  10. Against All Odds: Problem-Solving Strategies and Behavioural Characteristics of Novice Students

    ERIC Educational Resources Information Center

    Chang, Pei-Fen; Lin, Miao-Chen

    2015-01-01

    This study investigates problem-solving difficulties of novices in a classroom setting, using a German instructional tool, the Fischertechnik kit of approximately 400 parts. In order to analyse the students' thinking processes as they solved the problems, verbal protocol analysis (VPA) was used to record the students'' thinking processes and…

  11. Effect of Scaffolding on Helping Introductory Physics Students Solve Quantitative Problems Involving Strong Alternative Conceptions

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2015-01-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…

  12. High School Students' Use of Meiosis When Solving Genetics Problems.

    ERIC Educational Resources Information Center

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  13. Problem-Solving Skills among Precollege Students in Clinical Immunology and Microbiology: Classifying Strategies with a Rubric and Artificial Neural Network Technology.

    ERIC Educational Resources Information Center

    Kanowith-Klein, Susan; Stave, Mel; Stevens, Ron; Casillas, Adrian M.

    2001-01-01

    Investigates methods for classifying problem solving strategies of high school students who studied infectious and non-infectious diseases by using a software system that can generate a picture of students' strategies in solving problems. (Contains 24 references.) (Author/YDS)

  14. Using Creative Problem Solving to Promote Students' Performance of Concept Mapping

    ERIC Educational Resources Information Center

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Hsu, Pi-Shan

    2013-01-01

    The purpose of the study was to explore that using creative problem solving can promote students' performance of concept mapping (CMPING). Students were encouraged to use creative problem solving (CPS) in constructing nanometer knowledge structure, and then to promote the performance of CMPING. The knowledge structure was visualized through…

  15. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  16. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies for future investigation.

  17. An investigation of successful and unsuccessful students' problem solving in stoichiometry

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan

    In this study, I investigated how successful and unsuccessful students solve stoichiometry problems. I focus on three research questions: (1) To what extent do the difficulties in solving stoichiometry problems stem from poor understanding of pieces (domain-specific knowledge) versus students' inability to link those pieces together (conceptual knowledge)? (2) What are the differences between successful and unsuccessful students in knowledge, ability, and practice? (3) Is there a connection between students' (a) cognitive development levels, (b) formal (proportional) reasoning abilities, (c) working memory capacities, (d) conceptual understanding of particle nature of matter, (e) understanding of the mole concept, and their problem-solving achievement in stoichiometry? In this study, nine successful students and eight unsuccessful students participated. Both successful and unsuccessful students were selected among the students taking a general chemistry course at a mid-western university. The students taking this class were all science, non-chemistry majors. Characteristics of successful and unsuccessful students were determined through tests, audio and videotapes analyses, and subjects' written works. The Berlin Particle Concept Inventory, the Mole Concept Achievement Test, the Test of Logical Thinking, the Digits Backward Test, and the Longeot Test were used to measure students' conceptual understanding of particle nature of matter and mole concept, formal (proportional) reasoning ability, working memory capacity, and cognitive development, respectively. Think-aloud problem-solving protocols were also used to better explore the differences between successful and unsuccessful students' knowledge structures and behaviors during problem solving. Although successful students did not show significantly better performance on doing pieces (domain-specific knowledge) and solving exercises than unsuccessful counterparts did, they appeared to be more successful in linking the pieces (conceptual knowledge) and solving complex problems than the unsuccessful student did. Successful students also appeared to be different in how they approach problems, what strategies they use, and in making fewer algorithmic mistakes when compared to unsuccessful students. Successful students, however, did not seem to be statistically significantly different from the unsuccessful students in terms of quantitatively tested cognitive abilities except formal (proportional) reasoning ability and in the understanding of mole concept.

  18. Junior high school students' cognitive process in solving the developed algebraic problems based on information processing taxonomy model

    NASA Astrophysics Data System (ADS)

    Purwoko, Saad, Noor Shah; Tajudin, Nor'ain Mohd

    2017-05-01

    This study aims to: i) develop problem solving questions of Linear Equations System of Two Variables (LESTV) based on levels of IPT Model, ii) explain the level of students' skill of information processing in solving LESTV problems; iii) explain students' skill in information processing in solving LESTV problems; and iv) explain students' cognitive process in solving LESTV problems. This study involves three phases: i) development of LESTV problem questions based on Tessmer Model; ii) quantitative survey method on analyzing students' skill level of information processing; and iii) qualitative case study method on analyzing students' cognitive process. The population of the study was 545 eighth grade students represented by a sample of 170 students of five Junior High Schools in Hilir Barat Zone, Palembang (Indonesia) that were chosen using cluster sampling. Fifteen students among them were drawn as a sample for the interview session with saturated information obtained. The data were collected using the LESTV problem solving test and the interview protocol. The quantitative data were analyzed using descriptive statistics, while the qualitative data were analyzed using the content analysis. The finding of this study indicated that students' cognitive process was just at the step of indentifying external source and doing algorithm in short-term memory fluently. Only 15.29% students could retrieve type A information and 5.88% students could retrieve type B information from long-term memory. The implication was the development problems of LESTV had validated IPT Model in modelling students' assessment by different level of hierarchy.

  19. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    NASA Astrophysics Data System (ADS)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  20. What are some of the cognitive, psychological, and social factors that facilitate or hinder licensed vocational nursing students' acquisition of problem-solving skills involved with medication-dosage calculations?

    NASA Astrophysics Data System (ADS)

    Allen, Arthur William

    The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.

  1. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  2. Effectiveness of Small-Group Tutoring Interventions for Improving the Mathematical Problem-Solving Performance of Third-Grade Students with Mathematics Difficulties: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2012-01-01

    The present research assessed the efficacy of two tutoring protocols for improving the mathematics outcomes of at-risk third-grade students. Results indicated that students in the schema-based instruction (SBI) group outperformed students in the control group on word problem solving performance after 30 hours of problem-solving experience, but the…

  3. Metacognitive Strategy Use of Eighth-Grade Students with and without Learning Disabilities during Mathematical Problem Solving: A Think-Aloud Analysis

    ERIC Educational Resources Information Center

    Rosenzweig, Carly; Krawec, Jennifer; Montague, Marjorie

    2011-01-01

    The purpose of the study was to investigate the metacognitive abilities of students with LD as they engage in math problem solving and to determine processing differences between these students and their low- and average-achieving peers (n = 73). Students thought out loud as they solved three math problems of increasing difficulty. Protocols were…

  4. Performance of a Group of Deaf and Hard-of-Hearing Students and a Comparison Group of Hearing Students on a Series of Problem-Solving Tasks.

    ERIC Educational Resources Information Center

    Luckner, John L.; McNeill, Joyce H.

    1994-01-01

    This study found that 43 school-age deaf and hard-of-hearing students did not perform as well as a matched group of hearing students on problem-solving tasks. As they got older, both groups made incremental gains in problem-solving ability, and the gap between groups narrowed. (Author/JDD)

  5. Gender differences in algebraic thinking ability to solve mathematics problems

    NASA Astrophysics Data System (ADS)

    Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

    2018-05-01

    This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

  6. Characterising the Cognitive Processes in Mathematical Investigation

    ERIC Educational Resources Information Center

    Yeo, Joseph B. W.; Yeap, Ban Har

    2010-01-01

    Many educators believe that mathematical investigation involves both problem posing and problem solving, but some teachers have taught their students to investigate during problem solving. The confusion about the relationship between investigation and problem solving may affect how teachers teach their students and how researchers conduct their…

  7. Junior High School Students’ Understanding and Problem Solving Skills on the Topics of Line and Angles

    NASA Astrophysics Data System (ADS)

    Irsal, I. L.; Jupri, A.; Prabawanto, S.

    2017-09-01

    Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.

  8. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  9. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    ERIC Educational Resources Information Center

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  10. Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game

    ERIC Educational Resources Information Center

    van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander

    2013-01-01

    In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…

  11. It's Not a Math Lesson--We're Learning to Draw! Teachers' Use of Visual Representations in Instructing Word Problem Solving in Sixth Grade of Elementary School

    ERIC Educational Resources Information Center

    Boonen, Anton J. H.; Reed, Helen C.; Schoonenboom, Judith; Jolles, Jelle

    2016-01-01

    Non-routine word problem solving is an essential feature of the mathematical development of elementary school students worldwide. Many students experience difficulties in solving these problems due to erroneous problem comprehension. These difficulties could be alleviated by instructing students how to use visual representations that clarify the…

  12. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  13. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  14. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…

  15. Effects of a Research-Based Intervention to Improve Seventh-Grade Students' Proportional Problem Solving: A Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.

    2015-01-01

    This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…

  16. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  17. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  18. The Students Decision Making in Solving Discount Problem

    ERIC Educational Resources Information Center

    Abdillah; Nusantara, Toto; Subanji; Susanto, Hery; Abadyo

    2016-01-01

    This research is reviewing students' process of decision making intuitively, analytically, and interactively. The research done by using discount problem which specially created to explore student's intuition, analytically, and interactively. In solving discount problems, researcher exploring student's decision in determining their attitude which…

  19. Examining How Students with Diverse Abilities Use Diagrams to Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy; Jackson, Christa

    2013-01-01

    This study examined students' understanding of diagrams and their use of diagrams as tools to solve mathematical word problems. Students with learning disabilities (LD), typically achieving students, and gifted students in Grades 4 through 7 ("N" = 95) participated. Students were presented with novel mathematical word problem-solving…

  20. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    NASA Astrophysics Data System (ADS)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.

  1. Mathematical Problem Solving among Latina/o Kindergartners: An Analysis of Opportunities to Learn

    ERIC Educational Resources Information Center

    Turner, Erin E.; Celedon-Pattichis, Sylvia

    2011-01-01

    This study explores opportunities to learn mathematics problem solving for Latina/o students in 3 kindergarten classrooms in the southwest. Mixed methods were used to examine teaching practices that engaged Latina/o students in problem solving and supported their learning. Findings indicate that although students in all 3 classrooms showed growth…

  2. The Effects of Polya's Heuristic and Diary Writing on Children's Problem Solving

    ERIC Educational Resources Information Center

    Hensberry, Karina K. R.; Jacobbe, Tim

    2012-01-01

    This paper presents the results of a study that aimed at increasing students' problem-solving skills. Polya's (1985) heuristic for problem solving was used and students were required to articulate their thought processes through the use of a structured diary. The diary prompted students to answer questions designed to engage them in the phases of…

  3. Role of Mental Representations in Problem Solving: Students' Approaches to Nondirected Tasks

    ERIC Educational Resources Information Center

    Ibrahim, Bashirah; Rebello, N. Sanjay

    2013-01-01

    In this paper, we report on a project concerned with the role of cognition during problem solving. We specifically explore the categories of mental representations that students work with during problem solving of different representational task formats. The sample, consisting of 19 engineering students taking a calculus-based physics course,…

  4. Perception and Selection of Information Sources by Undergraduate Students: Effects of Avoidant Style, Confidence, and Personal Control in Problem-Solving

    ERIC Educational Resources Information Center

    Kim, Kyung-Sun; Sin, Sei-Ching Joanna

    2007-01-01

    A survey of undergraduate students examined how students' beliefs about their problem-solving styles and abilities (including avoidant style, confidence, and personal control in problem-solving) influenced their perception and selection of sources, as reflected in (1) perceived characteristics of sources, (2) source characteristics considered…

  5. The Investigation of Social Problem Solving Abilities of University Students in Terms of Perceived Social Support

    ERIC Educational Resources Information Center

    Tras, Zeliha

    2013-01-01

    The purpose of this study is to analyze of university students' perceived social support and social problem solving. The participants were 827 (474 female and 353 male) university students. Data were collected Perceived Social Support Scale-Revised (Yildirim, 2004) and Social Problem Solving (Maydeu-Olivares and D'Zurilla, 1996) translated and…

  6. Self-Monitoring Checklists for Inquiry Problem-Solving: Functional Problem-Solving Methods for Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Miller, Bridget; Taber-Doughty, Teresa

    2014-01-01

    Three students with mild to moderate intellectual and multiple disability, enrolled in a self-contained functional curriculum class were taught to use a self-monitoring checklist and science notebook to increase independence in inquiry problem-solving skills. Using a single-subject multiple-probe design, all students acquired inquiry…

  7. Examination of Turkish Junior High-School Students' Perceptions of the General Problem-Solving Process

    ERIC Educational Resources Information Center

    Ekici, Didem Inel

    2016-01-01

    This study aimed to determine Turkish junior high-school students' perceptions of the general problem-solving process. The Turkish junior high-school students' perceptions of the general problem-solving process were examined in relation to their gender, grade level, age and their grade point with regards to the science course identified in the…

  8. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training

    PubMed Central

    Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012

  9. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training.

    PubMed

    Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.

  10. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  11. Strategy Keys as Tools for Problem Solving

    ERIC Educational Resources Information Center

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  12. Threshold Concepts in the Development of Problem-Solving Skills

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  13. Examining Problem Solving in Physics-Intensive Ph.D. Research

    ERIC Educational Resources Information Center

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-01-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically…

  14. Effect of Tutorial Giving on The Topic of Special Theory of Relativity in Modern Physics Course Towards Students’ Problem-Solving Ability

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Haryoto, Dwi

    2017-05-01

    A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.

  15. The effects of computer-simulated experiments on high school biology students' problem-solving skills and achievement

    NASA Astrophysics Data System (ADS)

    Carmack, Gay Lynn Dickinson

    2000-10-01

    This two-part quasi-experimental repeated measures study examined whether computer simulated experiments have an effect on the problem solving skills of high school biology students in a school-within-a-school magnet program. Specifically, the study identified episodes in a simulation sequence where problem solving skills improved. In the Fall academic semester, experimental group students (n = 30) were exposed to two simulations: CaseIt! and EVOLVE!. Control group students participated in an internet research project and a paper Hardy-Weinberg activity. In the Spring academic semester, experimental group students were exposed to three simulations: Genetics Construction Kit, CaseIt! and EVOLVE! . Spring control group students participated in a Drosophila lab, an internet research project, and Advanced Placement lab 8. Results indicate that the Fall and Spring experimental groups experienced significant gains in scientific problem solving after the second simulation in the sequence. These gains were independent of the simulation sequence or the amount of time spent on the simulations. These gains were significantly greater than control group scores in the Fall. The Spring control group significantly outscored all other study groups on both pretest measures. Even so, the Spring experimental group problem solving performance caught up to the Spring control group performance after the third simulation. There were no significant differences between control and experimental groups on content achievement. Results indicate that CSE is as effective as traditional laboratories in promoting scientific problem solving and that CSE is a useful tool for improving students' scientific problem solving skills. Moreover, retention of problem solving skills is enhanced by utilizing more than one simulation.

  16. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    PubMed

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, p<.0001), clinical interaction (ß=.129, p=.047), and interpersonal dysfunction (ß=-.402, p<.0001) were associated with social problem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  18. Class and Home Problems: Optimization Problems

    ERIC Educational Resources Information Center

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  19. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.

  20. Seventh Grade Students' Problem Solving Success Rates on Proportional Reasoning Problems

    ERIC Educational Resources Information Center

    Pelen, Mustafa Serkan; Artut, Perihan Dinç

    2016-01-01

    This research was conducted to investigate 7th grade students' problem solving success rates on proportional reasoning problems and whether these success rates change with different problem types. 331 randomly selected students of grade seven participated in this study. A problem test which contains three different types of missing value (direct…

  1. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder.

    PubMed

    Yakubova, Gulnoza; Hughes, Elizabeth M; Hornberger, Erin

    2015-09-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with ASD completed the study. All three students demonstrated greater accuracy in solving fraction word problems and maintained accuracy levels at a 1-week follow-up.

  2. The Effects of Duration of Exposure to the REAPS Model in Developing Students' General Creativity and Creative Problem Solving in Science

    ERIC Educational Resources Information Center

    Alhusaini, Abdulnasser Alashaal F.

    2016-01-01

    The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general…

  3. Problem-Solving Models for Computer Literacy: Getting Smarter at Solving Problems. Student Lessons.

    ERIC Educational Resources Information Center

    Moursund, David

    This book is intended for use as a student guide. It is about human problem solving and provides information on how the mind works, placing a major emphasis on the role of computers as an aid in problem solving. The book is written with the underlying philosophy of discovery-based learning based on two premises: first, through the appropriate…

  4. The Physics Workbook: A Needed Instructional Device.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    2003-01-01

    Points out the importance of problem solving as a fundamental skill and how students struggle with problem solving in physics courses. Describes a workbook developed as a solution to students' struggles that features simple exercises and advanced problem solving. (Contains 12 references.) (Author/YDS)

  5. Exploring Early Childhood Preservice Teachers' Problem-Solving Skills through Socioscientific Inquiry Approach

    ERIC Educational Resources Information Center

    Fadzil, Hidayah Mohd

    2017-01-01

    Developing problem solving skills is often accepted as a desirable goal in many educational settings. However, there is little evidence to support that students are better problem solvers after graduating. The students can solve routine problems but they confronted difficulties when adapting their prior knowledge for the solution of new problems.…

  6. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    NASA Astrophysics Data System (ADS)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  7. Helping students learn effective problem solving strategies by reflecting with peers

    NASA Astrophysics Data System (ADS)

    Mason, Andrew; Singh, Chandralekha

    2010-07-01

    We study how introductory physics students engage in reflection with peers about problem solving. The recitations for an introductory physics course with 200 students were broken into a "peer reflection" (PR) group and a traditional group. Each week in recitation, small teams of students in the PR group reflected on selected problems from the homework and discussed why the solutions of some students employed better problem solving strategies than others. The graduate and undergraduate teaching assistants in the PR recitations provided guidance and coaching to help students learn effective problem solving heuristics. In the traditional group recitations students could ask the graduate TA questions about the homework before they took a weekly quiz. The traditional group recitation quiz questions were similar to the homework questions selected for peer reflection in the PR group recitations. As one measure of the impact of this intervention, we investigated how likely students were to draw diagrams to help with problem solving on the final exam with only multiple-choice questions. We found that the PR group drew diagrams on more problems than the traditional group even when there was no explicit reward for doing so. Also, students who drew more diagrams for the multiple-choice questions outperformed those who did not, regardless of which group they were a member.

  8. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  9. Gauging the gaps in student problem-solving skills: assessment of individual and group use of problem-solving strategies using online discussions.

    PubMed

    Anderson, William L; Mitchell, Steven M; Osgood, Marcy P

    2008-01-01

    For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted help to groups and to individual students. This method of assessing performance has a high interrater reliability, and senior students, with training, can serve as reliable graders. We have been able to measure improvements in many students' problem-solving strategies, but, not unexpectedly, there is a population of students who consistently apply the same failing strategy when there is no faculty intervention. This new methodology provides an effective tool to direct faculty to constructively intercede in this area of student development.

  10. Which Extreme Variant of the Problem-Solving Method of Teaching Should Be More Characteristic of the Many Teacher Variations of Problem-Solving Teaching?

    ERIC Educational Resources Information Center

    Mahan, Luther A.

    1970-01-01

    Compares the effects of two problem-solving teaching approaches. Lower ability students in an activity group demonstrated superior growth in basic science understanding, &roblem-solving skills, science interests, personal adjustment, and school attitudes. Neither method favored cognitive learning by higher ability students. (PR)

  11. The Transitory Phase to the Attainment of Self-Regulatory Skill in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lazakidou, G.; Paraskeva, F.; Retalis, S.

    2007-01-01

    Three phases of development of self-regulatory skill in the domain of mathematical problem solving were designed to examine students' behaviour and the effects on their problem solving ability. Forty-eight Grade 4 students (10 year olds) participated in this pilot study. The students were randomly assigned to one of three groups, each representing…

  12. Mathematical Problem-Solving Styles in the Education of Deaf and Hard-of-Hearing Individuals

    ERIC Educational Resources Information Center

    Erickson, Elizabeth E. A.

    2012-01-01

    This study explored the mathematical problem-solving styles of middle school and high school deaf and hard-of-hearing students and the mathematical problem-solving styles of the mathematics teachers of middle school and high school deaf and hard-of-hearing students. The research involved 45 deaf and hard-of-hearing students and 19 teachers from a…

  13. An Academic Survey Concerning High School and University Students' Attitudes and Approaches to Problem Solving in Chemistry

    ERIC Educational Resources Information Center

    Duran, Muharrem

    2016-01-01

    The aim of this study is to reveal differences between attitudes and approaches of students from different types of high school and the first grade of university towards problem solving in chemistry. For this purpose, the scale originally developed by Mason and Singh (2010) to measure students' attitude and approaches towards problem solving in…

  14. Elementary School Students Perception Levels of Problem Solving Skills

    ERIC Educational Resources Information Center

    Yavuz, Günes; Yasemin, Deringöl; Arslan, Çigdem

    2017-01-01

    The purpose of this study is to reveal the perception levels of problem solving skills of elementary school students. The sample of the study is formed by totally 264 elementary students attending to 5th, 6th, 7th and 8th grade in a big city in Turkey. Data were collected by means of "Perception Scale for Problem Solving Skills" which…

  15. Computer Graphics and Creativity/Problem Solving Skills with Deaf and Severely Language Disordered Students: Parts I, II, and III.

    ERIC Educational Resources Information Center

    Rose, Susan; And Others

    Three papers focus on applications of computer graphics with deaf and severely language impaired children. The first describes a drawing tablet software that allowed students to use visual and manipulative characteristics to enhance problem solving and creativity skills. Students were thus able to solve problems without the obstacles of language.…

  16. Assessing students' ability to solve introductory physics problems using integrals in symbolic and graphical representations

    NASA Astrophysics Data System (ADS)

    Khan, Neelam; Hu, Dehui; Nguyen, Dong-Hai; Rebello, N. Sanjay

    2012-02-01

    Integration is widely used in physics in electricity and magnetism (E&M), as well as in mechanics, to calculate physical quantities from other non-constant quantities. We designed a survey to assess students' ability to apply integration to physics problems in introductory physics. Each student was given a set of eight problems, and each set of problems had two different versions; one consisted of symbolic problems and the other graphical problems. The purpose of this study was to investigate students' strategies for solving physics problems that use integrals in first and second-semester calculus-based physics. Our results indicate that most students had difficulty even recognizing that an integral is needed to solve the problem.

  17. Glogs as Non-Routine Problem Solving Tools in Mathematics

    ERIC Educational Resources Information Center

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  18. Surveying Turkish high school and university students' attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-06-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  19. Concept Learning versus Problem Solving: Is There a Difference?

    ERIC Educational Resources Information Center

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  20. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    PubMed

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, p<.001); problem-solving was positively associated with self-directed learning (r=.75, p<.001). Learning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Senior Experience: Applied, Team Problem Solving in Business Education.

    ERIC Educational Resources Information Center

    Jessup, Leonard M.

    1995-01-01

    A yearlong senior experience course requires teams of business students to solve real problems for organizations in the community. Students enhanced responsibility, confidence, and organizational skills. Problems centered on differentiating the course from internships and improving staffing. Students had problems with group dynamics, team…

  2. Problem Solving and Learning

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  3. Tour of a simple trigonometry problem

    NASA Astrophysics Data System (ADS)

    Poon, Kin-Keung

    2012-06-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was implemented in a high school and the results indicated that students are relatively weak in problem-solving abilities but they understand and appreciate the thinking process in different stages and steps of the activities.

  4. Developing creativity and problem-solving skills of engineering students: a comparison of web- and pen-and-paper-based approaches

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-11-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.

  5. Problem-Based Learning: Student Engagement, Learning and Contextualized Problem-Solving. Occasional Paper

    ERIC Educational Resources Information Center

    Mossuto, Mark

    2009-01-01

    The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…

  6. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties.

    PubMed

    Fuchs, Lynn S; Seethaler, Pamela M; Powell, Sarah R; Fuchs, Douglas; Hamlett, Carol L; Fletcher, Jack M

    2008-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits.

  7. Effects of Preventative Tutoring on the Mathematical Problem Solving of Third-Grade Students With Math and Reading Difficulties

    PubMed Central

    Fuchs, Lynn S.; Seethaler, Pamela M.; Powell, Sarah R.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.

    2009-01-01

    This study assessed the effects of preventative tutoring on the math problem solving of third-grade students with math and reading difficulties. Students (n = 35) were assigned randomly to continue in their general education math program or to receive secondary preventative tutoring 3 times per week, 30 min per session, for 12 weeks. Schema-broadening tutoring taught students to (a) focus on the mathematical structure of 3 problem types; (b) recognize problems as belonging to those 3 problem-type schemas; (c) solve the 3 word-problem types; and (d) transfer solution methods to problems that include irrelevant information, 2-digit operands, missing information in the first or second positions in the algebraic equation, or relevant information in charts, graphs, and pictures. Also, students were taught to perform the calculation and algebraic skills foundational for problem solving. Analyses of variance revealed statistically significant effects on a wide range of word problems, with large effect sizes. Findings support the efficacy of the tutoring protocol for preventing word-problem deficits among third-grade students with math and reading deficits. PMID:20209074

  8. Metacognitive ability of male students: difference impulsive-reflective cognitive style

    NASA Astrophysics Data System (ADS)

    Muhtarom; Sugiyanti; Utami, R. E.; Indriana, K.

    2018-03-01

    This study revealed the metacognitive activity of male students in impulsive cognitive and reflective cognitive style in solving mathematical problems, especially in the material of plane. One student of impulsive cognitive style and one student of reflective cognitive-style were selected to be the subjects of the study. Data were collected by giving written test of problem solving and interview. Data analysis was done through data reduction, data presentation, data interpretation and conclusion. The results showed that male student of reflective cognitive style was meticulous and careful in solving the problem so as to obtain correct answers, while the impulsive cognitive style student had the characteristics of using a short time in solving the problem, but less careful so that the answers tended to be wrong

  9. The Relationship of Social Problem-Solving Skills and Dysfunctional Attitudes with Risk of Drug Abuse among Dormitory Students at Isfahan University of Medical Sciences

    PubMed Central

    Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh

    2017-01-01

    Background: Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. Materials and Methods: This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. Results: The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse (P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse (P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students (P = 0.0004). Conclusions: Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students. PMID:28904539

  10. The Relationship of Social Problem-Solving Skills and Dysfunctional Attitudes with Risk of Drug Abuse among Dormitory Students at Isfahan University of Medical Sciences.

    PubMed

    Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh

    2017-01-01

    Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse ( P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse ( P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students ( P = 0.0004). Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students.

  11. Development and validation of a physics problem-solving assessment rubric

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  12. With a Little Help from My Friends: Scaffolding Techniques in Problem Solving

    ERIC Educational Resources Information Center

    Frederick, Michelle L.; Courtney, Scott; Caniglia, Joanne

    2014-01-01

    The purpose of this study was to explore middle grade mathematics students' uses of scaffolding and its effectiveness in helping students solve non-routine problems. Students were given two different types of scaffolds to support their learning of sixth grade geometry concepts. First, students solved a math task by using a four square graphic…

  13. Talk aloud problem solving: Exploration of acquisition and frequency building in science text

    NASA Astrophysics Data System (ADS)

    Dembek, Ginny

    Discovering new ways to help students attain higher levels of scientific knowledge and to think critically is a national goal (Educate to Innovate campaign). Despite the best intentions, many students struggle to achieve a basic level of science knowledge (NAEP, 2011). The present study examined Talk Aloud Pair Problem Solving and frequency building with five students who were diagnosed with a disability and receive specialized reading instruction in a special education setting. Acquisition was obtained through scripted lessons and frequency building or practice strengthened the student's verbal repertoire making the problem solving process a durable behavior. Overall, students all demonstrated improvements in problem solving performance when compared to baseline. Students became more significantly accurate in performance and maintenance in learning was demonstrated. Generalization probes indicated improvement in student performance. Implications for practice and future research are discussed.

  14. Social Problem Solving and Health Behaviors of Undergraduate Students.

    ERIC Educational Resources Information Center

    Elliott, Timothy R.; And Others

    1997-01-01

    Examines the relationship of social problem solving to health behaviors as reported by 126 undergraduate students. Findings revealed significant relationships between elements of social problem solving and wellness and accident prevention behaviors, and traffic and substance risk taking. However, correlations revealed differences between men and…

  15. Problem Solving on a Monorail.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  16. Role of Multiple Representations in Physics Problem Solving

    ERIC Educational Resources Information Center

    Maries, Alexandru

    2013-01-01

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…

  17. Metacognition: Student Reflections on Problem Solving

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  18. Students' Images of Problem Contexts when Solving Applied Problems

    ERIC Educational Resources Information Center

    Moore, Kevin C.; Carlson, Marilyn P.

    2012-01-01

    This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…

  19. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    NASA Astrophysics Data System (ADS)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  20. A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.

    2004-01-01

    U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.

  1. An investigation of the effects of interventions on problem-solving strategies and abilities

    NASA Astrophysics Data System (ADS)

    Cox, Charles Terrence, Jr.

    Problem-solving has been described as being the "heart" of the chemistry classroom, and students' development of problem-solving skills is essential for their success in chemistry. Despite the importance of problem-solving, there has been little research within the chemistry domain, largely because of the lack of tools to collect data for large populations. Problem-solving was assessed using a software package known as IMMEX (for Interactive Multimedia Exercises) which has an HTML tracking feature that allows for collection of problem-solving data in the background as students work the problems. The primary goal of this research was to develop methods (known as interventions) that could promote improvements in students' problem-solving and most notably aid in their transition from the novice to competent level. Three intervention techniques that were incorporated within the chemistry curricula: collaborative grouping (face-to-face and distance), concept mapping, and peer-led team learning. The face-to-face collaborative grouping intervention was designed to probe the factors affecting the quality of the group interaction. Students' logical reasoning abilities were measured using the Group Assessment of Logical Thinking (GALT) test which classifies students as formal, transitional, or concrete. These classifications essentially provide a basis for identifying scientific aptitude. These designations were used as the basis for forming collaborative groups of two students. The six possibilities (formal-formal, formal-transitional, etc.) were formed to determine how the group composition influences the gains in student abilities observed from collaborative grouping interventions. Students were given three assignments (an individual pre-collaborative, an individual post collaborative, and a collaborative assignment) each requiring them to work an IMMEX problem set. Similar gains in performance of 10% gains were observed for each group with two exceptions. The transitional students who were paired with concrete students had a 15% gain, and the concrete students paired with other concrete students had only a marginal gain. In fact, there was no statistical difference in the pre-collaborative and post-collaborative student abilities for concrete-concrete groups. The distance collaborative intervention was completed using a new interface for the IMMEX software designed to mimic face-to-face collaboration. A stereochemistry problem set which had a solved rate of 28% prior to collaboration was chosen for incorporation into this distance collaboration study. (Abstract shortened by UMI.)

  2. An Investigation of Problem Solving Approaches, Strategies, and Models Used by the 7th and 8th Grade Students When Solving Real-World Problems

    ERIC Educational Resources Information Center

    Bayazit, Ibrahim

    2013-01-01

    This study scrutinises approaches and thinking processes displayed by the elementary school students when solving real-world problems. It employed a qualitative inquiry to produce rich and realistic data about the case at hand. The research sample included 116 students. The data were obtained from written exam and semistructured interviews, and…

  3. Children's Use of Metacognition in Solving Everyday Problems: An Initial Study from an Asian Context

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Teo, Timothy; Bergin, David

    2009-01-01

    The aim of this study is to understand the relationship between metacognition and students' everyday problem solving. Specifically, we were interested to find out whether regulation of cognition and knowledge of cognition are related to everyday problem solving and whether students who perform better in the decision-making problem will better…

  4. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    ERIC Educational Resources Information Center

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  5. Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems

    ERIC Educational Resources Information Center

    Saunders, Alicia F.; Spooner, Fred; Ley Davis, Luann

    2018-01-01

    Mathematical problem solving is necessary in many facets of everyday life, yet little research exists on how to teach students with more severe disabilities higher order mathematics like problem solving. Using a multiple probe across participants design, three middle school students with moderate intellectual disability (ID) were taught to solve…

  6. Using the concrete-representational-abstract approach to support students with intellectual disability to solve change-making problems.

    PubMed

    Bouck, Emily; Park, Jiyoon; Nickell, Barb

    2017-01-01

    The Concrete-Representational-Abstract (CRA) instructional approach supports students with disabilities in mathematics. Yet, no research explores the use of the CRA approach to teach functional-based mathematics for this population and limited research explores the CRA approach for students who have a disability different from a learning disability, such as an intellectual disability. This study investigated the effects of using the CRA approach to teach middle school students in a self-contained mathematics class focused on functional-based mathematics to solve making change problems. Researchers used a multiple probe across participants design to determine if a functional relation existed between the CRA strategy and students' ability to solve making change problems. The study of consisted of five-to-eight baseline sessions, 9-11 intervention sessions, and two maintenance sessions for each student. Data were collected on percentage of making change problems students solved correctly. The CRA instructional strategy was effective in teaching all four participants to correctly solve the problems; a functional relation between the CRA approach and solving making change with coins problems across all participants was found. The CRA instructional approach can be used to support students with mild intellectual disability or severe learning disabilities in learning functional-based mathematics, such as purchasing skills (i.e., making change). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improving Critical Skills Using Wikis and CGPS in a Physics Classroom

    NASA Astrophysics Data System (ADS)

    Mohottala, H. E.

    2016-10-01

    We report the combined use of Wikispaces (wikis) and collaborative group problem solving (CGPS) sessions conducted in introductory-level calculus-based physics classes. As a part of this new teaching tool, some essay-type problems were posted on the wiki page on a weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but only the steps. Each week students were further evaluated on problem solving skills, opening up more opportunity for peer interaction through CGPS. Students developed a set of skills in decision making, problem solving, communication, negotiation, critical and independent thinking, and teamwork through the combination of wikis and CGPS.

  8. Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question

    ERIC Educational Resources Information Center

    Novita, Rita; Zulkardi; Hartono, Yusuf

    2012-01-01

    Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term "problem solving" refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students' mathematical understanding and development. In addition, the contextual problem…

  9. Persona-Based Journaling: Striving for Authenticity in Representing the Problem-Solving Process

    ERIC Educational Resources Information Center

    Liljedahl, Peter

    2007-01-01

    Students' mathematical problem-solving experiences are fraught with failed attempts, wrong turns, and partial successes that move in fits and jerks, oscillating between periods of inactivity, stalled progress, rapid advancement, and epiphanies. Students' problem-solving journals, however, do not always reflect this rather organic process. Without…

  10. Assessment of Expert-Novice Chemistry Problem Solving Using HyperCard: Early Findings.

    ERIC Educational Resources Information Center

    Kumar, David D.

    1993-01-01

    Results of a HyperCard method for assessing the performance of expert and novice high school chemistry students solving stoichiometric chemistry problems (balancing chemical equations) is reported. MANOVA results indicate significant difference between expert and novice students solving the five stoichiometric chemistry problems using…

  11. Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.

    ERIC Educational Resources Information Center

    Kim, Eunsook; Pak, Sung-Jae

    2002-01-01

    Investigates the relationship between traditional physics textbook problem solving and conceptual understanding. Reports that students had many of the well-known conceptual difficulties with basic mechanics and that there was little correlation between the number of problems solved and conceptual understanding. (Contains 21 references.)…

  12. Solving Optimization Problems with Spreadsheets

    ERIC Educational Resources Information Center

    Beigie, Darin

    2017-01-01

    Spreadsheets provide a rich setting for first-year algebra students to solve problems. Individual spreadsheet cells play the role of variables, and creating algebraic expressions for a spreadsheet to perform a task allows students to achieve a glimpse of how mathematics is used to program a computer and solve problems. Classic optimization…

  13. Curricular Reforms That Improve Students' Attitudes and Problem-Solving Performance

    ERIC Educational Resources Information Center

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2014-01-01

    We present the most recent steps undertaken to reform the introductory algebra-based course at The George Washington University. The reform sought to help students improve their problem-solving performance. Our pedagogy relies on didactic constructs such as the" GW-ACCESS problem-solving protocol," "instructional sequences" and…

  14. A Markov Model Analysis of Problem-Solving Progress.

    ERIC Educational Resources Information Center

    Vendlinski, Terry

    This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…

  15. The Influence of English-Korean Bilingualism in Solving Mathematics Word Problems.

    ERIC Educational Resources Information Center

    Whang, Woo-Hyung

    1996-01-01

    Purposeful sampling was used to select six English-Korean bilingual students to investigate language difficulties and cognitive processes in solving mathematics word problems. These six case studies revealed distinct patterns of difficulties in solving problems written in English and Korean, especially for students in transition stage. (Author/KMC)

  16. Exploring Business Students' Creative Problem-Solving Preferences

    ERIC Educational Resources Information Center

    Titus, Philip A.; Koppitsch, Steven

    2018-01-01

    Past research has established the importance of problem solving to business success. The authors explored the creative problem-solving (CPS) preferences of business students, addressing two primary issues: (a) Do CPS preferences vary across CPS stages and tasks? And (b) Do CPS preferences regarding collaboration and delegation vary by stage?…

  17. 6 Essential Questions for Problem Solving

    ERIC Educational Resources Information Center

    Kress, Nancy Emerson

    2017-01-01

    One of the primary expectations that the author has for her students is for them to develop greater independence when solving complex and unique mathematical problems. The story of how the author supports her students as they gain confidence and independence with complex and unique problem-solving tasks, while honoring their expectations with…

  18. Students' and Teachers' Conceptual Metaphors for Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Yee, Sean P.

    2017-01-01

    Metaphors are regularly used by mathematics teachers to relate difficult or complex concepts in classrooms. A complex topic of concern in mathematics education, and most STEM-based education classes, is problem solving. This study identified how students and teachers contextualize mathematical problem solving through their choice of metaphors.…

  19. Student Errors in Dynamic Mathematical Environments

    ERIC Educational Resources Information Center

    Brown, Molly; Bossé, Michael J.; Chandler, Kayla

    2016-01-01

    This study investigates the nature of student errors in the context of problem solving and Dynamic Math Environments. This led to the development of the Problem Solving Action Identification Framework; this framework captures and defines all activities and errors associated with problem solving in a dynamic math environment. Found are three…

  20. Enhanced and Conventional Project-Based Learning in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.; Yang, W. M.; Leo, H. L.

    2014-01-01

    Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…

  1. Conjecturing via analogical reasoning constructs ordinary students into like gifted student

    NASA Astrophysics Data System (ADS)

    Supratman; Ratnaningsih, N.; Ryane, S.

    2017-12-01

    The purpose of this study is to reveal the development of knowledge of ordinary students to be like gifted students in the classroom based on Piaget's theory. In exposing it, students are given an open problem of classical analogy. Researchers explore students who conjecture via analogical reasoning in problem solving. Of the 32 students, through the method of think out loud and the interview was completed: 25 students conjecture via analogical reasoning. Of the 25 students, all of them have almost the same character in problem solving/knowledge construction. For that, a student is taken to analyze the thinking process while solving the problem/construction of knowledge based on Piaget's theory. Based on Piaget's theory in the development of the same knowledge, gifted students and ordinary students have similar structures in final equilibrium. They begin processing: assimilation and accommodation of problem, strategies, and relationships.

  2. Mighty Mathematicians: Using Problem Posing and Problem Solving to Develop Mathematical Power

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Sheffield, Linda J.

    2006-01-01

    This article describes a year-long professional development institute combined with a summer camp for students. Both were designed to help teachers and students develop their problem-solving and problem-posing abilities.

  3. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    ERIC Educational Resources Information Center

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  4. Analysis of problem solving skill in learning biology at senior high school of Surakarta

    NASA Astrophysics Data System (ADS)

    Rahmawati, D.; Sajidan; Ashadi

    2018-04-01

    Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.

  5. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  6. Problem Solving with Combinations.

    ERIC Educational Resources Information Center

    English, Lyn

    1992-01-01

    Highlights combinatorial problems appropriate for students aged 4 to 12 years that utilize manipulatives in a hands-on approach. Examines and identifies students' strategies and self-monitoring techniques that produce effective problem solving. (MDH)

  7. Does Problem-Based Learning Improve Problem Solving Skills?--A Study among Business Undergraduates at Malaysian Premier Technical University

    ERIC Educational Resources Information Center

    Kadir, Z. Abdul; Abdullah, N. H.; Anthony, E.; Salleh, B. Mohd; Kamarulzaman, R.

    2016-01-01

    Problem-based Learning (PBL) approach has been widely used in various disciplines since it is claimed to improve students' soft skills. However, empirical supports on the effect of PBL on problem solving skills have been lacking and anecdotal in nature. This study aimed to determine the effect of PBL approach on students' problem solving skills…

  8. Language, Arithmetic Word Problems, and Deaf Students: Linguistic Strategies Used To Solve Tasks.

    ERIC Educational Resources Information Center

    Zevenbergen, Robyn; Hyde, Merv; Power, Des

    2001-01-01

    Examines the performance of deaf and hearing-impaired students in Queensland, Australia when solving arithmetic word problems. Subjects' solutions of word problems confirmed trends for learning students but their performance was delayed in comparison. Confirms other studies in which deaf and hearing-impaired students are delayed in their language…

  9. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  10. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  11. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  12. Categorization and analysis of explanatory writing in mathematics

    NASA Astrophysics Data System (ADS)

    Craig, Tracy S.

    2011-10-01

    The aim of this article is to present a scheme for coding and categorizing students' written explanations of mathematical problem-solving activities. The scheme was used successfully within a study project carried out to determine whether student problem-solving behaviour could be positively affected by writing explanatory strategies to mathematical problem-solving processes. The rationale for the study was the recognized importance of mathematical problem-solving, the widely acknowledged challenge of teaching problem-solving skills directly and the evidence in the literature that writing in mathematics provides a tool for learning. The study was carried out in a first-year mathematics course at the University of Cape Town, South Africa. Students' written submissions were categorized and analysed through use of an adaptation of a journal entry classification scheme. The scheme successfully observed positive changes over the experimental period in students' level of engagement with the mathematical material and with their stance towards knowledge.

  13. The profile of problem-solving ability of students of distance education in science learning

    NASA Astrophysics Data System (ADS)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  14. A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students

    ERIC Educational Resources Information Center

    Grigg, Sarah J.; Benson, Lisa C.

    2014-01-01

    This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…

  15. Diagrams Benefit Symbolic Problem-Solving

    ERIC Educational Resources Information Center

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R.

    2017-01-01

    Background: The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic…

  16. Critical thinking level in geometry based on self-regulated learning

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-03-01

    Critical thinking ability of mathematics students affected by the student’s ability in solving a specific problem. This research aims to determine the level of critical thinking (LCT) students in solving problems of geometry regarding self-regulated learning (SRL) students. This is a qualitative descriptive study with the purpose to analyze the level of Junior High School student’s critical thinking in the Regency of Banyumas. The subject is taken one student from each category SRL (high, medium and low). Data collection is given problem-solving tests to find out the level of critical thinking student, questionnaire, interview and documentation. The result of the research shows that student with SRL high is at the level of critical thinking 2, then a student with SRL medium is at the level of critical thinking 1 and student with SRL low is at the level of critical thinking 0. So students with SRL high, medium or low can solve math problems based on the critical thinking level of each student.

  17. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  18. Analyzing the Effects of a Mathematics Problem-Solving Program, Exemplars, on Mathematics Problem-Solving Scores with Deaf and Hard-of-Hearing Students

    ERIC Educational Resources Information Center

    Chilvers, Amanda Leigh

    2013-01-01

    Researchers have noted that mathematics achievement for deaf and hard-of-hearing (d/hh) students has been a concern for many years, including the ability to problem solve. This quasi-experimental study investigates the use of the Exemplars mathematics program with students in grades 2-8 in a school for the deaf that utilizes American Sign Language…

  19. Characteristics of Students at Risk for Mathematics Difficulties Predicting Arithmetic Word Problem Solving Performance: The Role of Attention, Behavior, and Reading

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Corroy, Kelly Cozine; Dupuis, Danielle N.

    2013-01-01

    The purposes of this study were (a) to evaluate differences in arithmetic word problem solving between high and low at-risk students for mathematics difficulties (MD) and (b) to assess the influence of attention, behavior, reading, and socio-economic status (SES) in predicting the word problem solving performance of third-grade students with MD.…

  20. Testing the effectiveness of problem-based learning with learning-disabled students in biology

    NASA Astrophysics Data System (ADS)

    Guerrera, Claudia Patrizia

    The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.

  1. Can goal-free problems facilitating students' flexible thinking?

    NASA Astrophysics Data System (ADS)

    Maulidya, Sity Rahmy; Hasanah, Rusi Ulfa; Retnowati, Endah

    2017-08-01

    Problem solving is the key of doing and also learning mathematics. It takes also the fundamental role of developing mathematical knowledge. Responding to the current reform movement in mathematics, students are expected to learn to be a flexible thinker. The ability to think flexible is challenged by the globalisation, hence influence mathematics education. A flexible thinking includes ability to apply knowledge in different contexts rather than simply use it in similar context when it is studied. Arguably problem solving activities can contribute to the development of the ability to apply skills to unfamiliar situations. Accordingly, an appropriate classroom instructional strategy must be developed. A cognitive load theory suggests that by reducing extraneous cognitive load during learning could enhance transfer learning. A goal-free problem strategy that is developed based in cognitive load theory have been showed to be effective for transfer learning. This strategy enables students to learn a large numbers of problem solving moves from a mathematics problem. The instruction in a goal-free problem directs students to `calculate as many solution as you can' rather than to calculate a single given goal. Many experiment research evident goal-free problem enhance learning. This literature review will discuss evidence goal-free problem facilitate students to solve problems flexibly and thus enhance their problem solving skills, including how its implication in the classroom.

  2. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses

    PubMed Central

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606

  3. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses.

    PubMed

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.

  4. What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra

    ERIC Educational Resources Information Center

    Herman, Marlena

    2007-01-01

    This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…

  5. Flowing toward Correct Contributions during Group Problem Solving: A Statistical Discourse Analysis

    ERIC Educational Resources Information Center

    Chiu, Ming Ming

    2008-01-01

    Groups that created more correct ideas (correct contributions or CCs) might be more likely to solve a problem, and students' recent actions (micro-time context) might aid CC creation. 80 high school students worked in groups of 4 on an algebra problem. Groups with higher mathematics grades or more CCs were more likely to solve the problem. Dynamic…

  6. Teaching Problem Solving to Students Receiving Tiered Interventions Using the Concrete-Representational-Abstract Sequence and Schema-Based Instruction

    ERIC Educational Resources Information Center

    Flores, Margaret M.; Hinton, Vanessa M.; Burton, Megan E.

    2016-01-01

    Mathematical word problems are the most common form of mathematics problem solving implemented in K-12 schools. Identifying key words is a frequent strategy taught in classrooms in which students struggle with problem solving and show low success rates in mathematics. Researchers show that using the concrete-representational-abstract (CRA)…

  7. Symbolic and Verbal Representation Process of Student in Solving Mathematics Problem Based Polya's Stages

    ERIC Educational Resources Information Center

    Anwar, Rahmad Bustanul; Rahmawati, Dwi

    2017-01-01

    The purpose of this research was to reveal how the construction process of symbolic representation and verbal representation made by students in problem solving. The construction process in this study referred to the problem-solving stage by Polya covering; 1) understanding the problem, 2) devising a plan, 3) carrying out the plan, and 4) looking…

  8. An interactive problem-solving approach to teach traumatology for medical students.

    PubMed

    Abu-Zidan, Fikri M; Elzubeir, Margaret A

    2010-08-13

    We aimed to evaluate an interactive problem-solving approach for teaching traumatology from perspectives of students and consider its implications on Faculty development. A two hour problem-solving, interactive tutorial on traumatology was structured to cover main topics in trauma management. The tutorial was based on real cases covering specific topics and objectives. Seven tutorials (5-9 students in each) were given by the same tutor with the same format for fourth and fifth year medical students in Auckland and UAE Universities (n = 50). A 16 item questionnaire, on a 7 point Likert-type scale, focusing on educational tools, tutor-based skills, and student-centered skills were answered by the students followed by open ended comments. The tutorials were highly ranked by the students. The mean values of educational tools was the highest followed by tutor-centered skills and finally student-centered skills. There was a significant increase of the rating of studied attributes over time (F = 3.9, p = 0.004, ANOVA). Students' open ended comments were highly supportive of the interactive problem-solving approach for teaching traumatology. The interactive problem-solving approach for tutorials can be an effective enjoyable alternative or supplement to traditional instruction for teaching traumatology to medical students. Training for this approach should be encouraged for Faculty development.

  9. The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems

    NASA Astrophysics Data System (ADS)

    Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.

    2018-01-01

    This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.

  10. The enhancement of students' mathematical problem solving ability through teaching with metacognitive scaffolding approach

    NASA Astrophysics Data System (ADS)

    Prabawanto, Sufyani

    2017-05-01

    This research aims to investigate the enhancement of students' mathematical problem solving through teaching with metacognitive scaffolding approach. This research used a quasi-experimental design with pretest-posttest control. The subjects were pre-service elementary school teachers in a state university in Bandung. In this study, there were two groups: experimental and control groups. The experimental group consists of 60 studentswho acquire teaching mathematicsunder metacognitive scaffolding approach, while the control group consists of 58 studentswho acquire teaching mathematicsunder direct approach. Students were classified into three categories based on the mathematical prior ability, namely high, middle, and low. Data collection instruments consist of mathematical problem solving test instruments. By usingmean difference test, two conclusions of the research:(1) there is a significant difference in the enhancement of mathematical problem solving between the students who attended the course under metacognitive scaffolding approach and students who attended the course under direct approach, and(2) thereis no significant interaction effect of teaching approaches and ability level based on the mathematical prior ability toward enhancement of students' mathematical problem solving.

  11. Problem Solving and Collaboration Using Mobile Serious Games

    ERIC Educational Resources Information Center

    Sanchez, Jaime; Olivares, Ruby

    2011-01-01

    This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

  12. INQUIRY TRAINING AND PROBLEM SOLVING IN ELEMENTARY SCHOOL CHILDREN.

    ERIC Educational Resources Information Center

    BUTTS, DAVID P.; JONES, HOWARD L.

    THE EFFECT OF PLANNED GUIDANCE ON THE PROBLEM-SOLVING BEHAVIOR OF ELEMENTARY STUDENTS WAS INVESTIGATED. FACTORS RELATED TO CHANGES IN PROBLEM-SOLVING BEHAVIORS WERE IDENTIFIED. APPROXIMATELY 50 PERCENT OF THE SIXTH-GRADE STUDENTS INCLUDED IN THE STUDY WERE GIVEN INQUIRY TRAINING 30 TO 60 MINUTES DAILY FOR 3 WEEKS. AN INVENTORY OF SCIENCE PROCESSES…

  13. A Structural Equation Model to Analyse the Antecedents to Students' Web-Based Problem-Solving Performance

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2015-01-01

    Web-based problem-solving, a compound ability of critical thinking, creative thinking, reasoning thinking and information-searching abilities, has been recognised as an important competence for elementary school students. Some researchers have reported the possible correlations between problem-solving competence and information searching ability;…

  14. Effects of Instructional Preparation Strategies on Problem Solving in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2010-01-01

    This study reports the effects of different types of instructional preparation strategies on the problem solving performance of college students taking an introductory physics class. Students were divided into four equally skilled groups and solved the same physics problems after receiving different instructional preparations (engaging in…

  15. Writing to Learn Statistics in an Advanced Placement Statistics Course

    ERIC Educational Resources Information Center

    Northrup, Christian Glenn

    2012-01-01

    This study investigated the use of writing in a statistics classroom to learn if writing provided a rich description of problem-solving processes of students as they solved problems. Through analysis of 329 written samples provided by students, it was determined that writing provided a rich description of problem-solving processes and enabled…

  16. Leveling of Critical Thinking Abilities of Students of Mathematics Education in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Rasiman

    2015-01-01

    This research aims to determine the leveling of critical thinking abilities of students of mathematics education in mathematical problem solving. It includes qualitative-explorative study that was conducted at University of PGRI Semarang. The generated data in the form of information obtained problem solving question and interview guides. The…

  17. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  18. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    ERIC Educational Resources Information Center

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  19. Just-in-Time Algebra: A Problem Solving Approach Including Multimedia and Animation.

    ERIC Educational Resources Information Center

    Hofmann, Roseanne S.; Hunter, Walter R.

    2003-01-01

    Describes a beginning algebra course that places stronger emphasis on learning to solve problems and introduces topics using real world applications. Students learn estimating, graphing, and algebraic algorithms for the purpose of solving problems. Indicates that applications motivate students by appearing to be a more relevant topic as well as…

  20. An Intervention Framework Designed to Develop the Collaborative Problem-Solving Skills of Primary School Students

    ERIC Educational Resources Information Center

    Gu, Xiaoqing; Chen, Shan; Zhu, Wenbo; Lin, Lin

    2015-01-01

    Considerable effort has been invested in innovative learning practices such as collaborative inquiry. Collaborative problem solving is becoming popular in school settings, but there is limited knowledge on how to develop skills crucial in collaborative problem solving in students. Based on the intervention design in social interaction of…

  1. VStops: A Thinking Strategy and Visual Representation Approach in Mathematical Word Problem Solving toward Enhancing STEM Literacy

    ERIC Educational Resources Information Center

    Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi

    2014-01-01

    This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…

  2. Measuring Problem Solving Skills in Plants vs. Zombies 2

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  3. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    ERIC Educational Resources Information Center

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  4. The Evolution of a Flipped Classroom: Evidence-Based Recommendations

    ERIC Educational Resources Information Center

    Velegol, Stephanie Butler; Zappe, Sarah E.; Mahoney, Emily

    2015-01-01

    Engineering students benefit from an active and interactive classroom environment where they can be guided through the problem solving process. Typically faculty members spend class time presenting the technical content required to solve problems, leaving students to apply this knowledge and problem solve on their own at home. There has recently…

  5. Using Invention to Change How Students Tackle Problems

    PubMed Central

    Smith, Karen M.; van Stolk, Adrian P.; Spiegelman, George B.

    2010-01-01

    Invention activities challenge students to tackle problems that superficially appear unrelated to the course material but illustrate underlying fundamental concepts that are fundamental to material that will be presented. During our invention activities in a first-year biology class, students were presented with problems that are parallel to those that living cells must solve, in weekly sessions over a 13-wk term. We compared students who participated in the invention activities sessions with students who participated in sessions of structured problem solving and with students who did not participate in either activity. When faced with developing a solution to a challenging and unfamiliar biology problem, invention activity students were much quicker to engage with the problem and routinely provided multiple reasonable hypotheses. In contrast the other students were significantly slower in beginning to work on the problem and routinely produced relatively few ideas. We suggest that the invention activities develop a highly valuable skill that operates at the initial stages of problem solving. PMID:21123697

  6. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Aryani, F.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

  7. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    NASA Astrophysics Data System (ADS)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  8. Effects of team-based learning on problem-solving, knowledge and clinical performance of Korean nursing students.

    PubMed

    Kim, Hae-Ran; Song, Yeoungsuk; Lindquist, Ruth; Kang, Hee-Young

    2016-03-01

    Team-based learning (TBL) has been used as a learner-centered teaching strategy in efforts to improve students' problem-solving, knowledge and practice performance. Although TBL has been used in nursing education in Korea for a decade, few studies have studied its effects on Korean nursing students' learning outcomes. To examine the effects of TBL on problem-solving ability and learning outcomes (knowledge and clinical performance) of Korean nursing students. Randomized controlled trial. 63 third-year undergraduate nursing students attending a single university were randomly assigned to the TBL group (n=32), or a control group (n=31). The TBL and control groups attended 2h of class weekly for 3weeks. Three scenarios with pulmonary disease content were employed in both groups. However, the control group received lectures and traditional case study teaching/learning strategies instead of TBL. A questionnaire of problem-solving ability was administered at baseline, prior to students' exposure to the teaching strategies. Students' problem-solving ability, knowledge of pulmonary nursing care, and clinical performance were assessed following completion of the three-week pulmonary unit. After the three-week educational interventions, the scores on problem-solving ability in the TBL group were significantly improved relative to that of the control group (t=10.89, p<.001). In addition, there were significant differences in knowledge, and in clinical performance with standardized patients between the two groups (t=2.48, p=.016, t=12.22, p<.001). This study demonstrated that TBL is an effective teaching strategy to enhance problem-solving ability, knowledge and clinical performance. More research on other specific learning outcomes of TBL for nursing students is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Strategic Development for Middle School Students Struggling With Fractions: Assessment and Intervention.

    PubMed

    Zhang, Dake; Stecker, Pamela; Huckabee, Sloan; Miller, Rhonda

    2016-09-01

    Research has suggested that different strategies used when solving fraction problems are highly correlated with students' problem-solving accuracy. This study (a) utilized latent profile modeling to classify students into three different strategic developmental levels in solving fraction comparison problems and (b) accordingly provided differentiated strategic training for students starting from two different strategic developmental levels. In Study 1 we assessed 49 middle school students' performance on fraction comparison problems and categorized students into three clusters of strategic developmental clusters: a cross-multiplication cluster with the highest accuracy, a representation strategy cluster with medium accuracy, and a whole-number strategy cluster with the lowest accuracy. Based on the strategic developmental levels identified in Study 1, in Study 2 we selected three students from the whole-number strategy cluster and another three students from the representation strategy cluster and implemented a differentiated strategic training intervention within a multiple-baseline design. Results showed that both groups of students transitioned from less advanced to more advanced strategies and improved their problem-solving accuracy during the posttest, the maintenance test, and the generalization test. © Hammill Institute on Disabilities 2014.

  10. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  11. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  12. When Procedures Discourage Insight: Epistemological Consequences of Prompting Novice Physics Students to Construct Force Diagrams

    ERIC Educational Resources Information Center

    Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.

    2017-01-01

    One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to…

  13. Student Learning of Complex Earth Systems: A Model to Guide Development of Student Expertise in Problem-Solving

    ERIC Educational Resources Information Center

    Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.

    2017-01-01

    Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…

  14. Developing Student Programming and Problem-Solving Skills with Visual Basic

    ERIC Educational Resources Information Center

    Siegle, Del

    2009-01-01

    Although most computer users will never need to write a computer program, many students enjoy the challenge of creating one. Computer programming enhances students' problem solving by forcing students to break a problem into its component pieces and reassemble it in a generic format that can be understood by a nonsentient entity. It promotes…

  15. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    ERIC Educational Resources Information Center

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  16. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  17. The Effectiveness of Using the Model Method to Solve Word Problems

    ERIC Educational Resources Information Center

    Bao, Lei

    2016-01-01

    The aim of this study is to investigate whether the model method is effective to assist primary students to solve word problems. The model method not only provides students with an opportunity to interpret the problem by drawing the rectangular bar but also helps students to visually represent problem situations and relevant relationships on the…

  18. Investigating and Developing Engineering Students' Mathematical Modelling and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-01-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced…

  19. Problem-Solving Attitudes and Gender as Predictors of Academic Achievement in Mathematics and Science for Canadian and Finnish Students in the PISA 2012 Assessment

    ERIC Educational Resources Information Center

    Cutumisu, Maria; Bulut, Okan

    2017-01-01

    This study aims to understand the predictive role of attitudes towards problem solving, such as perseverance and openness for problem solving, as well as of gender and country for Canadian and Finnish students' academic achievement in mathematics and science. We examined the data of students from Canada (n = 21,544) and Finland (n = 8,829) who…

  20. Modifying a Research-Based Problem-Solving Intervention to Improve the Problem-Solving Performance of Fifth and Sixth Graders With and Without Learning Disabilities.

    PubMed

    Krawec, Jennifer; Huang, Jia

    The purpose of the present study was to test the efficacy of a modified cognitive strategy instructional intervention originally developed to improve the mathematical problem solving of middle and high school students with learning disabilities (LD). Fifth and sixth grade general education mathematics teachers and their students of varying ability (i.e., average-achieving [AA] students, low-achieving [LA] students, and students with LD) participated in the research study. Several features of the intervention were modified, including (a) explicitness of instruction, (b) emphasis on meta-cognition, (c) focus on problem-solving prerequisites, (d) extended duration of initial intervention, and (e) addition of visual supports. General education math teachers taught all instructional sessions to their inclusive classrooms. Curriculum-based measures (CBMs) of math problem solving were administered five times over the course of the year. A multilevel model (repeated measures nested within students and students nested within schools) was used to analyze student progress on CBMs. Though CBM scores in the intervention group were initially lower than that of the comparison group, intervention students improved significantly more in the first phase, with no differences in the second phase. Implications for instruction are discussed as well as directions for future research.

  1. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed

    Fuchs, Lynn S; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N; Hamlett, Carol L; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3(rd)-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed.

  2. Effects of Small-Group Tutoring with and without Validated Classroom Instruction on At-Risk Students' Math Problem Solving: Are Two Tiers of Prevention Better Than One?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Craddock, Caitlin; Hollenbeck, Kurstin N.; Hamlett, Carol L.; Schatschneider, Christopher

    2008-01-01

    The purpose of this study was to assess the effects of small-group tutoring with and without validated classroom instruction on at-risk (AR) students' math problem solving. Stratifying within schools, 119 3rd-grade classes were randomly assigned to conventional or validated problem-solving instruction (Hot Math [schema-broadening instruction]). Students identified as AR (n = 243) were randomly assigned, within classroom conditions, to receive Hot Math tutoring or not. Students were tested on problem-solving and math applications measures before and after 16 weeks of intervention. Analyses of variance, which accounted for the nested structure of the data, revealed the tutored students who received validated classroom instruction achieved better than tutored students who received conventional classroom instruction (ES = 1.34). However, the advantage for tutoring over no tutoring was similar whether or not students received validated or conventional classroom instruction (ESs = 1.18 and 1.13). Tutoring, not validated classroom instruction reduced the prevalence of math difficulty. Implications for responsiveness-to-intervention prevention models and for enhancing math problem-solving instruction are discussed. PMID:19122881

  3. It's in the Genes: Exploring Relationships between Critical Thinking and Problem Solving in Undergraduate Agriscience Students' Solutions to Problems in Mendelian Genetics

    ERIC Educational Resources Information Center

    Friede, Curtis R.; Irani, Tracy A.; Rhoades, Emily B.; Fuhrman, Nicholas E.; Gallo, Maria

    2008-01-01

    This study was conducted to examine the statistical relationship between problem solving and critical thinking to guide future teaching and research for agricultural educators using the problem-solving approach. Students enrolled in an undergraduate genetics course in the College of Agricultural and Life Sciences at the University of Florida were…

  4. Gauging the Gaps in Student Problem-Solving Skills: Assessment of Individual and Group Use of Problem-Solving Strategies Using Online Discussions

    ERIC Educational Resources Information Center

    Anderson, William L.; Mitchell, Steven M.; Osgood, Marcy P.

    2008-01-01

    For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted…

  5. Problem Solving and Game-Based Learning: Effects of Middle Grade Students' Hypothesis Testing Strategies on Learning Outcomes

    ERIC Educational Resources Information Center

    Spires, Hiller A.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C.

    2011-01-01

    Targeted as a highly desired skill for contemporary work and life, problem solving is central to game-based learning research. In this study, middle grade students achieved significant learning gains from gameplay interactions that required solving a science mystery based on microbiology content. Student trace data results indicated that effective…

  6. Factors Affecting Differential Equation Problem Solving Ability of Students at Pre-University Level: A Conceptual Model

    ERIC Educational Resources Information Center

    Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen

    2017-01-01

    In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…

  7. Probabilities and predictions: modeling the development of scientific problem-solving skills.

    PubMed

    Stevens, Ron; Johnson, David F; Soller, Amy

    2005-01-01

    The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning.

  8. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  9. Designs of goal-free problems for trigonometry learning

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Maulidya, S. R.

    2018-03-01

    This paper describes the designs of goal-free problems particularly for trigonometry, which may be considered a difficult topic for high school students.Goal-free problem is an instructional design developed based on a Cognitive load theory (CLT). Within the design, instead of asking students to solve a specific goal of a mathematics problem, the instruction is to solve as many Pythagoras as possible. It was assumed that for novice students, goal-free problems encourage students to pay attention more to the given information and the mathematical principles that can be applied to reveal the unknown variables. Hence, students develop more structured knowledge while solving the goal-free problems. The resulted design may be used in regular mathematics classroom with some adjustment on the difficulty level and the allocated lesson time.

  10. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  11. Problem Solving Method Based on E-Learning System for Engineering Education

    ERIC Educational Resources Information Center

    Khazaal, Hasan F.

    2015-01-01

    Encouraging engineering students to handle advanced technology with multimedia, as well as motivate them to have the skills of solving the problem, are the missions of the teacher in preparing students for a modern professional career. This research proposes a scenario of problem solving in basic electrical circuits based on an e-learning system…

  12. Developing Instruction Materials Based on Joyful PBL to Improve Students Mathematical Representation Ability

    ERIC Educational Resources Information Center

    Minarni, Ani; Napitupulu, E. Elvis

    2017-01-01

    Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…

  13. Problem Solving at the Middle School Level: A Comparison of Different Strategies

    ERIC Educational Resources Information Center

    Baraké, Farah; El-Rouadi, Naim; Musharrafieh, Juhaina

    2015-01-01

    This article sheds light and reflects on how students in grades seven and eight read and understand implicit data when solving a story problem. Problem solving experiences help in adding up to the child's mathematical knowledge and promote a higher level of critical thinking abilities. Seventh and eighth grade students were selected from two…

  14. Toward Teaching Methods that Develop Learning and Enhance Problem Solving Skills in Engineering Students

    ERIC Educational Resources Information Center

    Loji, K.

    2012-01-01

    Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…

  15. Some Thoughts about Molecular-Level Representations in Conceptual Problem Solving.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.

    One of the more interesting areas of problem solving in chemistry attempts to answer the question, "What do students understand about the molecular level of chemistry?" This question is also implicit in the more traditional area of mathematical problem solving but in this paper, more focus is placed on devising ways to help students develop a…

  16. The Effects of Schema-Based Instruction on the Mathematical Problem Solving of Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Peltier, Corey; Vannest, Kimberly J.

    2018-01-01

    The current study examines the effects of schema instruction on the problem-solving performance of four second-grade students with emotional and behavioral disorders. The existence of a functional relationship between the schema instruction intervention and problem-solving accuracy in mathematics is examined through a single case experiment using…

  17. The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package

    ERIC Educational Resources Information Center

    Gonen, Selahattin; Basaran, Bulent

    2008-01-01

    In this article, two basic purposes are presented. First, taking effective feedbacks in the electronic learning environment about the learning level of students at the problem solving which are told in physics lessons and laboratories. Second, providing a possibility for students to repeat the subjects and solved problems by watching and…

  18. Using the Big Six Information Skills as a Metacognitive Scaffold To Solve Information Based Problems.

    ERIC Educational Resources Information Center

    Wolf, Sara Elizabeth; Brush, Thomas

    The purpose of this research study was to determine whether a specific information problem-solving skills model was an effective metacognitive scaffold for students solving information-based problems. Specifically, 35 eighth grade students in two intact classes were asked to write newspaper articles that summarized the events surrounding the Selma…

  19. Schema-Based Instruction with Concrete and Virtual Manipulatives to Teach Problem Solving to Students with Autism

    ERIC Educational Resources Information Center

    Root, Jenny R.; Browder, Diane M.; Saunders, Alicia F.; Lo, Ya-yu

    2017-01-01

    The current study evaluated the effects of modified schema-based instruction on the mathematical word problem solving skills of three elementary students with autism spectrum disorders and moderate intellectual disability. Participants learned to solve compare problem type with themes that related to their interests and daily experiences. In…

  20. Effects of Pascal and FORTRAN Programming on the Problem-Solving Abilities of College Students.

    ERIC Educational Resources Information Center

    Choi, Won Sik; Repman, Judi

    1993-01-01

    Describes a study that was conducted to determine whether learning to program a computer in Pascal or FORTRAN improved problem-solving skills of college students when compared to a control group and to determine which programing language was more effective in the development of problem-solving abilities. (26 references) (LRW)

  1. Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Sharp, Emily; Shih Dennis, Minyi

    2017-01-01

    This study used a multiple probe across participants design to examine the effects of a model drawing strategy (MDS) intervention package on fraction comparing and ordering word problem-solving performance of three Grade 4 students. MDS is a form of cognitive strategy instruction for teaching word problem solving that includes explicit instruction…

  2. Instructional Design-Based Research on Problem Solving Strategies

    ERIC Educational Resources Information Center

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  3. Collaborative Problem Solving Skills of 15-Year-Olds: Results from PISA 2015. Data Point. NCES 2017-249

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2017

    2017-01-01

    The Program for International Student Assessment (PISA) is a global education study of 15-year-old students' reading, mathematics, and science literacy and, in 2015, two optional components: financial literacy and collaborative problem solving. Fifty-one education systems administered the collaborative problem solving assessment, including 32 of…

  4. Promoting Access to Common Core Mathematics for Students with Severe Disabilities through Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Spooner, Fred; Saunders, Alicia; Root, Jenny; Brosh, Chelsi

    2017-01-01

    There is a need to teach the pivotal skill of mathematical problem solving to students with severe disabilities, moving beyond basic skills like computation to higher level thinking skills. Problem solving is emphasized as a Standard for Mathematical Practice in the Common Core State Standards across grade levels. This article describes a…

  5. A Problem-Solving Framework to Assist Students and Teachers in STEM Courses

    ERIC Educational Resources Information Center

    Phillips, Jeffrey A.; Clemmer, Katharine W.; McCallum, Jeremy E. B.; Zachariah, Thomas M.

    2017-01-01

    Well-developed, problem-solving skills are essential for any student enrolled in a science, technology, engineering, and mathematics (STEM) course as well as for graduates in the workforce. One of the most essential skills is the ability to monitor one's own progress and understanding while solving a problem. Successful monitoring during the…

  6. Exploring the Validity of the Problem-Solving Inventory with Mexican American High School Students

    ERIC Educational Resources Information Center

    Huang, Yu-Ping; Flores, Lisa Y.

    2011-01-01

    The Problem-Solving Inventory (PSI; Heppner & Petersen, 1982) was developed to assess perceived problem-solving abilities. Using confirmatory factor analysis, results supported a bilevel model of PSI scores with a sample of 164 Mexican American students. Findings support the cultural validity of PSI scores with Mexican Americans and enhance the…

  7. Problem solving of student with visual impairment related to mathematical literacy problem

    NASA Astrophysics Data System (ADS)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  8. Mess Management for Gifted Students.

    ERIC Educational Resources Information Center

    Awkerman, Gary; Teller, Paul

    1979-01-01

    Mess Management is considered here as collective problem solving. Describes an example of a program for gifted elementary students emphasizing problem solving skills. A sample strategy is included. (MA)

  9. Formative feedback and scaffolding for developing complex problem solving and modelling outcomes

    NASA Astrophysics Data System (ADS)

    Frank, Brian; Simper, Natalie; Kaupp, James

    2018-07-01

    This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.

  10. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  11. From Students' Problem-Solving Strategies to Connections in Fractions

    ERIC Educational Resources Information Center

    Flores, Alfinio; Klein, Erika

    2005-01-01

    Strategies that children used to solve a fraction problem are presented, and an insight into how students think about divisions and fractions is described. Teachers can use these strategies to help students establish connections related to fractions.

  12. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  13. Junior high school students’ reflective thinking on fraction problem solving: In case of gender differences

    NASA Astrophysics Data System (ADS)

    Rasyid, M. A.; Budiarto, M. T.; Lukito, A.

    2018-01-01

    This study aims to describe reflective thinking of junior high school students on solving the fractions problem in terms of gender differences. This research is a qualitative approach involving one male student and one female student in seventh grade. The data were collected through the assignment of fractional problem solving and interview, then the data were triangulated and analyzed by three stages, namely data condensation, data display and conclusion. The results showed that the subjects of male and female were reacting, elaborating and contemplating at each stage of solving the fractions problem. But at the stage of devising the plan, the female subject was contemplating, relying more on their beliefs, did not consider their experience, in addition, the female subject didn’t use experience of the steps she planned to solve the problem of fractions.

  14. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  15. Risk of suicide ideation associated with problem-solving ability and attitudes toward suicidal behavior in university students.

    PubMed

    McAuliffe, Carmel; Corcoran, Paul; Keeley, Helen S; Perry, Ivan J

    2003-01-01

    The present paper investigates the risk of lifetime suicide ideation associated with problem-solving ability and attitudes toward suicidal behavior in a sample of 328 university students (41% male, 59% female). The response rate was 77% based on the total number of students registered for the relevant courses. A series of questions assessed lifetime suicide ideation, while problem solving and attitudes toward suicide were measured using the Self-Rating Problem Solving scale and four subscales of the Suicide Opinion Questionnaire, respectively (McLeavey, 1986; Domino et al., 1989). Almost one-third of the students surveyed had lifetime suicide ideation. Both genders were similar in terms of their suicide ideation history, problem solving, and attitudes toward suicidal behavior with the exception that male students were more in agreement with the attitude that suicidal behavior lacks real intent. Compared with 2% of nonideators and ideators, one in four planners reported that they would more than likely attempt suicide at some point in their life. Greater agreement with the attitude that suicidal behavior is normal was associated with significantly increased risk of being an ideator, as was poor problem solving and less agreement with the attitude that suicidal behavior is associated with mental illness.

  16. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  17. Tin Cans Revisited.

    ERIC Educational Resources Information Center

    Verderber, Nadine L.

    1992-01-01

    Presents the use of spreadsheets as an alternative method for precalculus students to solve maximum or minimum problems involving surface area and volume. Concludes that students with less technical backgrounds can solve problems normally requiring calculus and suggests sources for additional problems. (MDH)

  18. Errors Analysis of Students in Mathematics Department to Learn Plane Geometry

    NASA Astrophysics Data System (ADS)

    Mirna, M.

    2018-04-01

    This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.

  19. Students' Problem Solving and Justification

    ERIC Educational Resources Information Center

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  20. Helping Students with Emotional and Behavioral Disorders Solve Mathematics Word Problems

    ERIC Educational Resources Information Center

    Alter, Peter

    2012-01-01

    The author presents a strategy for helping students with emotional and behavioral disorders become more proficient at solving math word problems. Math word problems require students to go beyond simple computation in mathematics (e.g., adding, subtracting, multiplying, and dividing) and use higher level reasoning that includes recognizing relevant…

  1. Factors Influencing Mathematic Problem-Solving Ability of Sixth Grade Students

    ERIC Educational Resources Information Center

    Pimta, Sakorn; Tayraukham, Sombat; Nuangchalerm, Prasart

    2009-01-01

    Problem statement: This study aims to investigate factors influencing mathematic problem-solving ability of sixth grade students. One thousand and twenty eight of sixth grade students, studying in the second semester of academic year 2007 were sampled by stratified random sampling technique. Approach: The research instruments used in the study…

  2. Introducing Challenging Tasks: Inviting and Clarifying without Explaining and Demonstrating

    ERIC Educational Resources Information Center

    Cheeseman, Jill; Clarke, Doug; Roche, Anne; Walker, Nadia

    2016-01-01

    Introducing challenging tasks in such a way that makes them accessible, rather than daunting, to students is a challenge for teachers. Solving challenging tasks involves students having to grapple with the problem. The role of the teacher is to motivate and clarify the problem rather than showing students how to solve the problem.

  3. Scaffold Seeking: A Reverse Design of Scaffolding in Computer-Supported Word Problem Solving

    ERIC Educational Resources Information Center

    Cheng, Hercy N. H.; Yang, Euphony F. Y.; Liao, Calvin C. Y.; Chang, Ben; Huang, Yana C. Y.; Chan, Tak-Wai

    2015-01-01

    Although well-designed scaffolding may assist students to accomplish learning tasks, its insufficient capability to dynamically assess students' abilities and to adaptively support them may result in the problem of overscaffolding. Our previous project has also shown that students using scaffolds to solve mathematical word problems for a long time…

  4. To draw or not to draw? Examining the necessity of problem diagrams using massive open online course experiments

    NASA Astrophysics Data System (ADS)

    Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.

    2017-06-01

    Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open online course. By analyzing over 8000 student responses in total, we found that including a problem diagram that contains no significant additional information only slightly improves the first attempt correct rate for the few most spatially complex problems, and has little impact on either the final correct percentage or the time spent on solving the problem. On the other hand, in half of the cases, removing the diagram significantly increased the fraction of students' drawing their own diagrams during problem solving. The increase in drawing behavior is largely independent of students' physics abilities. In summary, our results suggest that for many physics problems, the benefit of a diagram is exceedingly small and may not justify the effort of creating one.

  5. The Integration of Mathematics in Physics Problem Solving: A Case Study of Greek Upper Secondary School Students

    ERIC Educational Resources Information Center

    Meli, Kalliopi; Zacharos, Konstantinos; Koliopoulos, Dimitrios

    2016-01-01

    This article presents a case study that examines the level of integration of mathematical knowledge in physics problem solving among first grade students of upper secondary school. We explore the ways in which two specific students utilize their knowledge and we attempt to identify the epistemological framings they refer to while solving a physics…

  6. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  7. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    NASA Astrophysics Data System (ADS)

    Milbourne, Jeff; Bennett, Jonathan

    2017-10-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or ill-structured, problems, similar to the types of problems students might face in their professional lives. Given the national discourse on educational system reform aligned with 21st century skills, including problem solving, it is critical to provide educational experiences that help students learn to solve all types of problems, including ill-structured problems.

  8. The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition

    NASA Astrophysics Data System (ADS)

    Çiğdem Özcan, Zeynep

    2016-04-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students' homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students' mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).

  9. [The effects of instruction about strategies for efficient calculation].

    PubMed

    Suzuki, Masayuki; Ichikawa, Shin'ichi

    2016-06-01

    Calculation problems such as "12x7÷3" can be solved rapidly and easily by using certain techniques; we call these problems "efficient calculation problems." However, it has been pointed out that many students do not always solve them efficiently. In the present study, we examined the effects of an intervention on 35 seventh grade students (23 males, 12 females). The students were instructed to use an overview strategy that stated, "Think carefully about the whole expression", and were then taught three sub-strategies. The results showed that students solved similar problems efficiently after the intervention and the effects were preserved for five months.

  10. Research on a Unique Instructional Framework for Elevating Students’ Quantitative Problem Solving Abilities

    NASA Astrophysics Data System (ADS)

    Prather, Edward E.; Wallace, Colin Scott

    2018-06-01

    We present an instructional framework that allowed a first time physics instructor to improve students quantitative problem solving abilities by more than a letter grade over what was achieved by students in an experienced instructor’s course. This instructional framework uses a Think-Pair-Share approach to foster collaborative quantitative problem solving during the lecture portion of a large enrollment introductory calculus-based mechanics course. Through the development of carefully crafted and sequenced TPS questions, we engage students in rich discussions on key problem solving issues that we typically only hear about when a student comes for help during office hours. Current work in the sophomore E&M course illustrates that this framework is generalizable to classes beyond the introductory level and for topics beyond mechanics.

  11. Heuristics and Problem Solving.

    ERIC Educational Resources Information Center

    Abel, Charles F.

    2003-01-01

    Defines heuristics as cognitive "rules of thumb" that can help problem solvers work more efficiently and effectively. Professors can use a heuristic model of problem solving to guide students in all disciplines through the steps of problem-solving. (SWM)

  12. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  13. Examining the Effects of Principals' Transformational Leadership on Teachers' Creative Practices and Students' Performance in Problem-Solving

    ERIC Educational Resources Information Center

    Owoh, Jeremy Strickland

    2015-01-01

    In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…

  14. Mathematical Problem Solving with Technology: The Techno-Mathematical Fluency of a Student-with-GeoGebra

    ERIC Educational Resources Information Center

    Jacinto, Hélia; Carreira, Susana

    2017-01-01

    This study offers a view on students' technology-based problem solving activity through the lens of a theoretical model which accounts for the relationship between mathematical and technological knowledge in successful problem solving. This study takes a qualitative approach building on the work of a 13-year-old girl as an exemplary case of the…

  15. Using Educational Data Mining Methods to Assess Field-Dependent and Field-Independent Learners' Complex Problem Solving

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…

  16. The Power of Problem Solving: Practical Ideas and Teaching Strategies for Any K-8 Subject Area.

    ERIC Educational Resources Information Center

    Sorenson, Juanita S.; Buckmaster, Lynn R.; Francis, Mary Kay; Knauf, Karen M.

    Based on the belief that giving students opportunities to think and solve problems independently is the best way to help them enjoy learning, this book provides guidelines and learning activities to help students in grades kindergarten through 8 to solve problems in all subject matter areas of the curriculum. Chapter 1 provides a rationale for…

  17. How Young Students Communicate Their Mathematical Problem Solving in Writing

    ERIC Educational Resources Information Center

    Teledahl, Anna

    2017-01-01

    This study investigates young students' writing in connection to mathematical problem solving. Students' written communication has traditionally been used by mathematics teachers in the assessment of students' mathematical knowledge. This study rests on the notion that this writing represents a particular activity which requires a complex set of…

  18. A Problem Solving Model for Use in Science Student Teacher Supervision.

    ERIC Educational Resources Information Center

    Cavallo, Ann M. L.; Tice, Craig J.

    1993-01-01

    Describes and suggests the use of a problem-solving model that improves communication between student teachers and supervisors through the student teaching practicum. The aim of the model is to promote experimentation with various teaching techniques and to stimulate thinking among student teachers about their teaching experiences. (PR)

  19. Assessment of students' critical-thinking and problem-solving abilities across a 6-year doctor of pharmacy program.

    PubMed

    Gleason, Brenda L; Gaebelein, Claude J; Grice, Gloria R; Crannage, Andrew J; Weck, Margaret A; Hurd, Peter; Walter, Brenda; Duncan, Wendy

    2013-10-14

    To determine the feasibility of using a validated set of assessment rubrics to assess students' critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program.

  20. Exploring students’ perceived and actual ability in solving statistical problems based on Rasch measurement tools

    NASA Astrophysics Data System (ADS)

    Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati

    2017-09-01

    One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.

  1. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Influence of Different Representations on Solving Concentration Problems at Elementary School

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ju; Shen, Ming-Hsun

    2011-10-01

    This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was used in conducting the experiment. The materials were adapted from Noelting's (1980a) "orange juice test" experiment. All problems on concentration included three stages (the intuitive, the concrete operational, and the formal operational), and each problem was displayed in iconic and symbolic representations. The data were collected through eye-tracking technology and post-test interviews. The results showed that the representational types influenced students' solving of concentration problems. Furthermore, the data on eye movement indicated that students used different strategies or rules to solve concentration problems at the different stages of the problems with different representational types. This study is intended to contribute to the understanding of elementary school students' problem-solving strategies and the usability of eye-tracking technology in related studies.

  3. Large-scale studies on the transferability of general problem-solving skills and the pedagogic potential of physics

    NASA Astrophysics Data System (ADS)

    Mashood, K. K.; Singh, Vijay A.

    2013-09-01

    Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in highly competitive problem-solving examinations was studied using a massive database. The sample sizes ranged from hundreds to a few hundred thousand. Encouraged by the presence of significant correlations, we interviewed 20 students to explore the pedagogic potential of physics in imparting transferable problem-solving skills. We report strategies and practices relevant to physics employed by these students which foster transfer.

  4. Problem Order Implications for Learning

    ERIC Educational Resources Information Center

    Li, Nan; Cohen, William W.; Koedinger, Kenneth R.

    2013-01-01

    The order of problems presented to students is an important variable that affects learning effectiveness. Previous studies have shown that solving problems in a blocked order, in which all problems of one type are completed before the student is switched to the next problem type, results in less effective performance than does solving the problems…

  5. Strategies That Help Learning-Disabled Students Solve Verbal Mathematical Problems.

    ERIC Educational Resources Information Center

    Giordano, Gerard

    1990-01-01

    Strategies are presented for dealing with factors that can be responsible for failure in mathematical problem solving. The suggestions include personalization of verbal problems, thematic strands based on student interests, visual representation, a laboratory approach, and paraphrasing. (JDD)

  6. Investigation of Problem-Solving and Problem-Posing Abilities of Seventh-Grade Students

    ERIC Educational Resources Information Center

    Arikan, Elif Esra; Ünal, Hasan

    2015-01-01

    This study aims to examine the effect of multiple problem-solving skills on the problem-posing abilities of gifted and non-gifted students and to assess whether the possession of such skills can predict giftedness or affect problem-posing abilities. Participants' metaphorical images of problem posing were also explored. Participants were 20 gifted…

  7. The More Things Change the More They Stay the Same

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-01-01

    In what year would you guess that these statements appeared in this Journal? Students can be classified as problem oriented or answer oriented. The answer-oriented student ... does little or no reflective thinking. ...To simply work a problem for a student may not be educational at all. The student should be taught the process used in the solution. ...My experience indicates that an answer-oriented attitude can be changed. ...But one can't do much teaching of problem-solving techniques and at the same time get on with the day's lecture. ...Problem-solving technique is a tool of learning. ...To teach it well should be about the most rewarding academic activity. ...A year of stressing methods of problem solving would alter the orientation and motivation of many students we now call poor.

  8. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    NASA Astrophysics Data System (ADS)

    Thurmond, Brandi

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.

  9. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  10. Do prescribed prompts prime sensemaking during group problem solving?

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew "Sandy"; Ives, Joss

    2012-02-01

    Many researchers and textbooks have promoted the use of rigid prescribed strategies for encouraging development of expert-like problem-solving behavior in novice students. The University of British Columbia's introductory algebra-based course for non-physics majors uses Context-Rich problems with a prescribed six-step strategy. We have coded audio recordings of group problem-solving sessions to analyze students' epistemological framing based on the implicit goal of their discussions. By treating the goal of "understanding the physics of the situation" as sensemaking, we argue that prescribed problem-solving prompts are not sufficient to induce subsequent sensemaking discussion.

  11. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  12. The Role of Content Knowledge in Ill-Structured Problem Solving for High School Physics Students

    NASA Astrophysics Data System (ADS)

    Milbourne, Jeff; Wiebe, Eric

    2018-02-01

    While Physics Education Research has a rich tradition of problem-solving scholarship, most of the work has focused on more traditional, well-defined problems. Less work has been done with ill-structured problems, problems that are better aligned with the engineering and design-based scenarios promoted by the Next Generation Science Standards. This study explored the relationship between physics content knowledge and ill-structured problem solving for two groups of high school students with different levels of content knowledge. Both groups of students completed an ill-structured problem set, using a talk-aloud procedure to narrate their thought process as they worked. Analysis of the data focused on identifying students' solution pathways, as well as the obstacles that prevented them from reaching "reasonable" solutions. Students with more content knowledge were more successful reaching reasonable solutions for each of the problems, experiencing fewer obstacles. These students also employed a greater variety of solution pathways than those with less content knowledge. Results suggest that a student's solution pathway choice may depend on how she perceives the problem.

  13. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    NASA Astrophysics Data System (ADS)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  14. Problem Solving by Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Tyrie, Nancy

    2009-01-01

    In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…

  15. Bringing us back to our creative senses: Fostering creativity in graduate-level nursing education: A literary review.

    PubMed

    Duhamel, Karen V

    2016-10-01

    The purpose of this paper is to explore empirical findings of five studies related to graduate-level nurse educators' and nursing students' perceptions about the roles of creativity and creative problem-solving in traditional and innovative pedagogies, and examines conceptual differences in the value of creativity from teacher and student viewpoints. Five peer-reviewed scholarly articles; professional nursing organizations; conceptual frameworks of noted scholars specializing in creativity and creative problem-solving; business-related sources; primary and secondary sources of esteemed nurse scholars. Quantitative and qualitative studies were examined that used a variety of methodologies, including surveys, focus groups, 1:1 interviews, and convenience sampling of both nursing and non-nursing college students and faculty. Innovative teaching strategies supported student creativity and creative problem-solving development. Teacher personality traits and teaching styles receptive to students' needs led to greater student success in creative development. Adequate time allocation and perceived usefulness of creativity and creative problem-solving by graduate-level nurse educators must be reflected in classroom activities and course design. Findings indicated conservative teaching norms, evident in graduate nursing education today, should be revised to promote creativity and creative problem-solving development in graduate-level nursing students for best practice outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  17. Growing geometric reasoning in solving problems of analytical geometry through the mathematical communication problems to state Islamic university students

    NASA Astrophysics Data System (ADS)

    Mujiasih; Waluya, S. B.; Kartono; Mariani

    2018-03-01

    Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.

  18. Vers une Meilleure Connaissance des Facons dont les Apprenants de L2 Resolvent Leurs Problemes dans l'Environnement Multimedia (Toward a Better Understanding of the Ways in Which L2 Learners Solve Problems in a Multimedia Environment).

    ERIC Educational Resources Information Center

    Duquette, Lise

    1999-01-01

    Examines the role of metacognition, particularly problem solving strategies, in how second language students learn in a multimedia environment, studying problem solving strategies used by students completing exercises in Mydlarski and Paramskas' program, Vi-Conte. Presents recommendations for training teachers, noting that the flexibility of…

  19. Using isomorphic problems to learn introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  20. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  1. The Effects of Schema-Based Instruction on the Proportional Thinking of Students With Mathematics Difficulties With and Without Reading Difficulties.

    PubMed

    Jitendra, Asha K; Dupuis, Danielle N; Star, Jon R; Rodriguez, Michael C

    2016-07-01

    This study examined the effect of schema-based instruction (SBI) on the proportional problem-solving performance of students with mathematics difficulties only (MD) and students with mathematics and reading difficulties (MDRD). Specifically, we examined the responsiveness of 260 seventh grade students identified as MD or MDRD to a 6-week treatment (SBI) on measures of proportional problem solving. Results indicated that students in the SBI condition significantly outperformed students in the control condition on a measure of proportional problem solving administered at posttest (g = 0.40) and again 6 weeks later (g = 0.42). The interaction between treatment group and students' difficulty status was not significant, which indicates that SBI was equally effective for both students with MD and those with MDRD. Further analyses revealed that SBI was particularly effective at improving students' performance on items related to percents. Finally, students with MD significantly outperformed students with MDRD on all measures of proportional problem solving. These findings suggest that interventions designed to include effective instructional features (e.g., SBI) promote student understanding of mathematical ideas. © Hammill Institute on Disabilities 2014.

  2. Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.

    2013-11-01

    This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.

  3. An Exploratory Study Contrasting High- and Low-Achieving Students' Percent Word Problem Solving

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.

    2012-01-01

    This study evaluated whether schema-based instruction (SBI), a promising method for teaching students to represent and solve mathematical word problems, impacted the learning of percent word problems. Of particular interest was the extent that SBI improved high- and low-achieving students' learning and to a lesser degree on the indirect effect of…

  4. Emerging High School Students' Problem Solving Trajectories Based on the Use of Dynamic Software

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Cristobal-Escalante, Cesar

    2008-01-01

    This study documents problem solving approaches that high school students develop as a result of using systematically Cabri-Geometry software. Results show that the use of the software becomes an important tool for students to construct dynamic representations of the problems that were used to identify and examine different mathematical relations.…

  5. Teaching Handwriting to Elementary Students with Learning Disabilities: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Datchuk, Shawn

    2015-01-01

    Problems with handwriting can negatively impact the writing of students with learning disabilities. In this article, an example is provided of a fourth-grade special education teacher's efforts to assist a new student by using a problem-solving approach to help determine an efficient course of action for special education teachers who are trying…

  6. Effectiveness of Schema-Based Instruction for Improving Seventh-Grade Students' Proportional Reasoning: A Randomized Experiment

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Star, Jon R.; Dupuis, Danielle N.; Rodriguez, Michael C.

    2013-01-01

    This study examined the effect of schema-based instruction (SBI) on 7th-grade students' mathematical problem-solving performance. SBI is an instructional intervention that emphasizes the role of mathematical structure in word problems and also provides students with a heuristic to self-monitor and aid problem solving. Using a…

  7. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Hughes, Elizabeth M.; Hornberger, Erin

    2015-01-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with…

  8. Students' Concept-Building Approaches: A Novel Predictor of Success in Chemistry Courses

    ERIC Educational Resources Information Center

    Frey, Regina F.; Cahill, Michael J.; McDaniel, Mark A.

    2017-01-01

    One primary goal of many science courses is for students to learn creative problem-solving skills; that is, integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in…

  9. Investigation of the Effect of Assignment Projects on Mathematical Activity of Graduating Junior High School Students.

    ERIC Educational Resources Information Center

    Zehavi, Nurit

    This study explored student mathematical activity in open problem-solving situations, derived from the work of Polya on problem solving and Skemp on intelligent learning and teaching. Assignment projects with problems for ninth-grade students were developed, whether they elicit the desired cognitive and cogno-affective goals was investigated, and…

  10. Characterising Learning Interactions: A Study of University Students Solving Physics Problems in Groups

    ERIC Educational Resources Information Center

    Berge, Maria; Danielsson, Anna T.

    2013-01-01

    The purpose of this article is to explore how a group of four university physics students addressed mechanics problems, in terms of student direction of attention, problem solving strategies and their establishment of and ways of interacting. Adapted from positioning theory, the concepts "positioning" and "storyline" are used to describe and to…

  11. Reducing developmental risk for emotional/behavioral problems: a randomized controlled trial examining the Tools for Getting Along curriculum.

    PubMed

    Daunic, Ann P; Smith, Stephen W; Garvan, Cynthia W; Barber, Brian R; Becker, Mallory K; Peters, Christine D; Taylor, Gregory G; Van Loan, Christopher L; Li, Wei; Naranjo, Arlene H

    2012-04-01

    Researchers have demonstrated that cognitive-behavioral intervention strategies - such as social problem solving - provided in school settings can help ameliorate the developmental risk for emotional and behavioral difficulties. In this study, we report the results of a randomized controlled trial of Tools for Getting Along (TFGA), a social problem-solving universally delivered curriculum designed to reduce the developmental risk for serious emotional or behavioral problems among upper elementary grade students. We analyzed pre-intervention and post-intervention teacher-report and student self-report data from 14 schools, 87 classrooms, and a total of 1296 students using multilevel modeling. Results (effect sizes calculated using Hedges' g) indicated that students who were taught TFGA had a more positive approach to problem solving (g=.11) and a more rational problem-solving style (g=.16). Treated students with relatively poor baseline scores benefited from TFGA on (a) problem-solving knowledge (g=1.54); (b) teacher-rated executive functioning (g=.35 for Behavior Regulation and .32 for Metacognition), and proactive aggression (g=.20); and (c) self-reported trait anger (g=.17) and anger expression (g=.21). Thus, TFGA may reduce risk for emotional and behavioral difficulties by improving students' cognitive and emotional self-regulation and increasing their pro-social choices. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  12. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  13. Problem Solving. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…

  14. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  15. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  16. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  17. Student’s Critical Thinking in Solving Open-Ended Problems Based on Their Personality Type

    NASA Astrophysics Data System (ADS)

    Fitriana, L. D.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Critical thinking plays an important role for students in solving open-ended problems. This research aims at describing student’s critical thinking in solving open-ended problems based on Keirsey’s personality types, namely rational, idealist, guardian, and artisan. Four students, with the higher rank in the mathematics’ test and representing each type of Keirsey personality, were selected as the research subjects. The data were collected from the geometry problem and interviews. The student’s critical thinking is described based on the FRISCO criteria. The result underlines that rational and idealist students fulfilled all FRISCO criteria, and but not for guardian and artisan students. Related to the inference criteria, guardian and artisan students could not make reasonable conclusions and connect the concepts. Related to the reason of criteria, rational student performed critical thinking by providing logical reason that supported his strategy to solve the problem. In contrast, the idealist student provided subjective reason. This results suggest that teachers should frequently train the students’ logical thinkingin every lesson and activity to develop student’s critical thinking and take the student’s personality character into account, especially for guardian and artisan students.

  18. Project-Based Learning Using Discussion and Lesson-Learned Methods via Social Media Model for Enhancing Problem Solving Skills

    ERIC Educational Resources Information Center

    Jewpanich, Chaiwat; Piriyasurawong, Pallop

    2015-01-01

    This research aims to 1) develop the project-based learning using discussion and lesson-learned methods via social media model (PBL-DLL SoMe Model) used for enhancing problem solving skills of undergraduate in education student, and 2) evaluate the PBL-DLL SoMe Model used for enhancing problem solving skills of undergraduate in education student.…

  19. Effects of Modified Schema-Based Instruction on Real-World Algebra Problem Solving of Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Root, Jenny Rose

    2016-01-01

    The current study evaluated the effects of modified schema-based instruction (SBI) on the algebra problem solving skills of three middle school students with autism spectrum disorder and moderate intellectual disability (ASD/ID). Participants learned to solve two types of group word problems: missing-whole and missing-part. The themes of the word…

  20. The Problem-Solving Approach of Health and Education Professionals Who Have Experience in the Arts as an Artist and Personal Experience in Trauma

    ERIC Educational Resources Information Center

    Myers, Chanel Laura

    2017-01-01

    Clients face many different obstacles within healthcare and education settings. Professionals in health and education fields are in a position to be a problem-solving resource to clients, students, and patients. The subset of professionals being examined are problem-solving professionals, who work with clients/students/patients, within the health…

  1. The Effect of Using the TI-92 on Basic College Algebra Students' Ability To Solve Word Problems.

    ERIC Educational Resources Information Center

    Runde, Dennis C.

    As part of an effort to improve community college algebra students' ability to solve word problems, a study was undertaken at Florida's Manatee Community College to determine the effects of using heuristic instruction (i.e., providing general rules for solving different types of math problems) in combination with the TI-92 calculator. The TI-92…

  2. Cognitive constraints on high school students' representations of real environmental problems

    NASA Astrophysics Data System (ADS)

    Barnes, Ervin Kenneth

    One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and efforts to increase community awareness. The ways students think about, learn from, and solve real environmental problems were all constrained by the perspective tenets (including cultural tenets of role, status, and power) and envisioning processes. It was concluded that students need help from the community to go further in solving these real environmental problems.

  3. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  4. Students' Thinking Process in Solving Combination Problems Considered from Assimilation and Accommodation Framework

    ERIC Educational Resources Information Center

    Jalan, Sukoriyanto; Nusantara, Toto; Subanji, Subanji; Chandra, Tjang Daniel

    2016-01-01

    This study aims to explain the thinking process of students in solving combination problems considered from assimilation and accommodation frameworks. This research used a case study approach by classifying students into three categories of capabilities namely high, medium and low capabilities. From each of the ability categories, one student was…

  5. Exploration of Mathematics Problem Solving Process Based on the Thinking Level of Students in Junior High School

    ERIC Educational Resources Information Center

    Rahman, Abdul; Ahmar, Ansari Saleh

    2016-01-01

    Several studies suggest that most students are not in the same level of development (Slavin, 2008). From concrete operation level to formal operation level, students experience lateness in the transition phase. Consequently, students feel difficulty in solving mathematics problems. Method research is a qualitatively descriptive-explorative…

  6. Student Technological Creativity Using Online Problem-Solving Activities

    ERIC Educational Resources Information Center

    Chang, Yu-Shan

    2013-01-01

    The purpose of this study was to investigate the effects of online (web-based) creative problem-solving (CPS) activities on student technological creativity and to examine the characteristics of student creativity in the context of online CPS. A pretest-posttest quasi-experiment was conducted with 107 fourth-grade students in Taiwan. The…

  7. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  8. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  9. The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving

    NASA Astrophysics Data System (ADS)

    Huda, Nizlel; Sutawidjaja, Akbar; Subanji; Rahardjo, Swasono

    2018-04-01

    Metacognitive activity is very important in mathematical problems solving. Metacognitive activity consists of metacognitive awareness, metacognitive evaluation and metacognitive regulation. This study aimed to reveal the errors of metacognitive evaluation in students’ metacognitive failure in solving mathematical problems. 20 students taken as research subjects were grouped into three groups: the first group was students who experienced one metacognitive failure, the second group was students who experienced two metacognitive failures and the third group was students who experienced three metacognitive failures. One person was taken from each group as the reasearch subject. The research data was collected from worksheets done using think aload then followed by interviewing the research subjects based on the results’ of subject work. The findings in this study were students who experienced metacognitive failure in solving mathematical problems tends to miscalculate metacognitive evaluation in considering the effectiveness and limitations of their thinking and the effectiveness of their chosen strategy of completion.

  10. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  11. Anticipating students' reasoning and planning prompts in structured problem-solving lessons

    NASA Astrophysics Data System (ADS)

    Vale, Colleen; Widjaja, Wanty; Doig, Brian; Groves, Susie

    2018-02-01

    Structured problem-solving lessons are used to explore mathematical concepts such as pattern and relationships in early algebra, and regularly used in Japanese Lesson Study research lessons. However, enactment of structured problem-solving lessons which involves detailed planning, anticipation of student solutions and orchestration of whole-class discussion of solutions is an ongoing challenge for many teachers. Moreover, primary teachers have limited experience in teaching early algebra or mathematical reasoning actions such as generalising. In this study, the critical factors of enacting the structured problem-solving lessons used in Japanese Lesson Study to elicit and develop primary students' capacity to generalise are explored. Teachers from three primary schools participated in two Japanese Lesson Study teams for this study. The lesson plans and video recordings of teaching and post-lesson discussion of the two research lessons along with students' responses and learning are compared to identify critical factors. The anticipation of students' reasoning together with preparation of supporting and challenging prompts was critical for scaffolding students' capacity to grasp and communicate generality.

  12. Using Reflection with Peers to Help Students Learn Effective Problem Solving Strategies

    NASA Astrophysics Data System (ADS)

    Mason, Andrew; Singh, Chandralekha

    2010-10-01

    We describe a study in which introductory physics students engage in reflection with peers about problem solving. The recitations for an introductory physics course with 200 students were broken into the "Peer Reflection" (PR) group and the traditional group. Each week in recitation, students in the PR group reflected in small teams on selected problems from the homework. The graduate and undergraduate teaching assistants (TAs) in the PR group recitations provided guidance and coaching to help students learn effective problem solving heuristics. In the recitations for the traditional group, students had the opportunity to ask the graduate TA questions about the homework before they took a weekly quiz. On the final exam with only multiple-choice questions, the PR group drew diagrams on more problems than the traditional group, even when there was no external reward for doing so. Since there was no partial credit for drawing the diagrams on the scratch books, students did not draw diagrams simply to get credit for the effort shown and must value the use of diagrams for solving problems if they drew them. We also find that, regardless of whether the students belonged to the traditional or PR groups, those who drew more diagrams for the multiple-choice questions outperformed those who did not draw them.

  13. Concept mapping improves academic performance in problem solving questions in biochemistry subject.

    PubMed

    Baig, Mukhtiar; Tariq, Saba; Rehman, Rehana; Ali, Sobia; Gazzaz, Zohair J

    2016-01-01

    To assess the effectiveness of concept mapping (CM) on the academic performance of medical students' in problem-solving as well as in declarative knowledge questions and their perception regarding CM. The present analytical and questionnaire-based study was carried out at Bahria University Medical and Dental College (BUMDC), Karachi, Pakistan. In this analytical study, students were assessed with problem-solving questions (A-type MCQs), and declarative knowledge questions (short essay questions), and 50% of the questions were from the topics learned by CM. Students also filled a 10-item, 3-point Likert scale questionnaire about their perception regarding the effectiveness of the CM approach, and two open-ended questions were also asked. There was a significant difference in the marks obtained in those problem-solving questions, which were learned by CM as compared to those topics which were taught by the traditional lectures (p<0.001), while no significant difference was observed in marks in declarative knowledge questions (p=0.704). Analysis of students' perception regarding CM showed that majority of the students perceive that CM is a helpful technique and it is enjoyed by the students. In open-ended questions, the majority of the students commented positively about the effectiveness of CM. Our results indicate that CM improves academic performance in problem solving but not in declarative knowledge questions. Students' perception about the effectiveness of CM was overwhelmingly positive.

  14. Effects of computer-based graphic organizers to solve one-step word problems for middle school students with mild intellectual disability: A preliminary study.

    PubMed

    Sheriff, Kelli A; Boon, Richard T

    2014-08-01

    The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An Analysis of Looking Back Method in Problem-Based Learning: Case Study on Congruence and Similarity in Junior High School

    NASA Astrophysics Data System (ADS)

    Kosasih, U.; Wahyudin, W.; Prabawanto, S.

    2017-09-01

    This study aims to understand how learners do look back their idea of problem solving. This research is based on qualitative approach with case study design. Participants in this study were xx students of Junior High School, who were studying the material of congruence and similarity. The supporting instruments in this research are test and interview sheet. The data obtained were analyzed by coding and constant-comparison. The analysis find that there are three ways in which the students review the idea of problem solving, which is 1) carried out by comparing answers to the completion measures exemplified by learning resources; 2) carried out by examining the logical relationship between the solution and the problem; and 3) carried out by means of confirmation to the prior knowledge they have. This happens because most students learn in a mechanistic way. This study concludes that students validate the idea of problem solving obtained, influenced by teacher explanations, learning resources, and prior knowledge. Therefore, teacher explanations and learning resources contribute to the success or failure of students in solving problems.

  16. The effect of mathematical model development on the instruction of acceleration to introductory physics students

    NASA Astrophysics Data System (ADS)

    Sauer, Tim Allen

    The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.

  17. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  18. Inquiry and Problem Solving.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    1999-01-01

    This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…

  19. Error Analysis for Arithmetic Word Problems--A Case Study of Primary Three Students in One Singapore School

    ERIC Educational Resources Information Center

    Cheng, Lu Pien

    2015-01-01

    In this study, ways in which 9-year old students from one Singapore school solved 1-step and 2-step word problems based on the three semantic structures were examined. The students' work and diagrams provided insights into the range of errors in word problem solving for 1- step and 2-step word problems. In particular, the errors provided some…

  20. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  1. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

    ERIC Educational Resources Information Center

    Szetela, W.; Super, D.

    A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

  2. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  3. Procedural versus Content-Related Hints for Word Problem Solving: An Exploratory Study

    ERIC Educational Resources Information Center

    Kock, W. D.; Harskamp, E. G.

    2016-01-01

    For primary school students, mathematical word problems are often more difficult to solve than straightforward number problems. Word problems require reading and analysis skills, and in order to explain their situational contexts, the proper mathematical knowledge and number operations have to be selected. To improve students' ability in solving…

  4. Eye-Tracking Study of Complexity in Gas Law Problems

    ERIC Educational Resources Information Center

    Tang, Hui; Pienta, Norbert

    2012-01-01

    This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…

  5. Combinatorial Tasks and Outcome Listing: Examining Productive Listing among Undergraduate Students

    ERIC Educational Resources Information Center

    Lockwood, Elise; Gibson, Bryan R.

    2016-01-01

    Although counting problems are easy to state and provide rich, accessible problem-solving situations, there is much evidence that students struggle with solving counting problems correctly. With combinatorics (and the study of counting problems) becoming increasingly prevalent in K-12 and undergraduate curricula, there is a need for researchers to…

  6. From Answer-Getters to Problem Solvers

    ERIC Educational Resources Information Center

    Flynn, Mike

    2017-01-01

    In some math classrooms, students are taught to follow and memorize procedures to arrive at the correct solution to problems. In this article, author Mike Flynn suggests a way to move beyond answer-getting to true problem solving. He describes an instructional approach called three-act tasks in which students solve an engaging math problem in…

  7. How do video-based demonstration assessment tasks affect problem-solving process, test anxiety, chemistry anxiety and achievement in general chemistry students?

    NASA Astrophysics Data System (ADS)

    Terrell, Rosalind Stephanie

    2001-12-01

    Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.

  8. Serving Up Number Sense and Problem Solving: Dinner at the Panda Palace.

    ERIC Educational Resources Information Center

    Wickett, Maryann S.

    1997-01-01

    Describes strategies for using literature to teach number sense and problem solving. Reports that the rich class discussions reflected some of the students' thinking, gave students opportunities to share their approaches and understandings, and gave the teacher additional insights into students' thinking. (JRH)

  9. Virtual Bridge Design

    ERIC Educational Resources Information Center

    Bisogno, Janet; JeanPierre, Bobby

    2008-01-01

    The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…

  10. Strategies to Support Students' Mathematical Modeling

    ERIC Educational Resources Information Center

    Jung, Hyunyi

    2015-01-01

    An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…

  11. Improving Mathematical Problem-Solving Ability and Self-Confidence of High School Students through Contextual Learning Model

    ERIC Educational Resources Information Center

    Surya, Edy; Putri, Feria Andriana; Mukhtar

    2017-01-01

    The purposes of this study are: (1) to know if students' mathematical problem-solving ability taught by contextual learning model is higher than students taught by expository learning, (2) to know if students' self-confidence taught by contextual learning model is higher than students taught by expository learning, (3) to know if there is…

  12. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  13. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.

    2016-01-01

    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  14. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  15. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    ERIC Educational Resources Information Center

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  16. Teaching Social Problem Solving to Individuals with Mental Retardation

    ERIC Educational Resources Information Center

    Crites, Steven A.; Dunn, Caroline

    2004-01-01

    The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…

  17. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2017-01-01

    The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

  18. When students can choose easy, medium, or hard homework problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Seaton, Daniel T.; Cardamone, Caroline N.; Rayyan, Saif; Abbott, Jonathan E.; Barrantes, Analia; Pawl, Andrew; Pritchard, David E.

    2012-02-01

    We investigate student-chosen, multi-level homework in our Integrated Learning Environment for Mechanics [1] built using the LON-CAPA [2] open-source learning system. Multi-level refers to problems categorized as easy, medium, and hard. Problem levels were determined a priori based on the knowledge needed to solve them [3]. We analyze these problems using three measures: time-per-problem, LON-CAPA difficulty, and item difficulty measured by item response theory. Our analysis of student behavior in this environment suggests that time-per-problem is strongly dependent on problem category, unlike either score-based measures. We also found trends in student choice of problems, overall effort, and efficiency across the student population. Allowing students choice in problem solving seems to improve their motivation; 70% of students worked additional problems for which no credit was given.

  19. Suicidality, problem-solving skills, attachment style, and hopelessness in Turkish students.

    PubMed

    Zeyrek, Emek Yüce; Gençöz, Faruk; Bergman, Yoav; Lester, David

    2009-09-01

    Among 180 Turkish university students, the probability of suicide was strongly predicted by both hopelessness and deficiencies in problem solving. In addition, for women, unhealthy attachment styles (preoccupied and dismissing) also predicted suicidality. The clinical implications of these findings are that psychotherapists should focus on helping suicidal adolescents improve their problem solving skills and decreasing their hopelessness and, for women, assisting them to develop healthier relationship styles.

  20. Relations of social problem solving with interpersonal competence in Japanese students.

    PubMed

    Sumi, Katsunori

    2011-12-01

    To clarify the relations of the dimensions of social problem solving with those of interpersonal competence in a sample of 234 Japanese college students, Japanese versions of the Social Problem-solving Inventory-Revised and the Social Skill Scale were administered. Pearson correlations between the two sets of variables were low, but higher within each set of subscales. Cronbach's alpha was low for four subscales assessing interpersonal competence.

  1. Are diagrams always helpful tools? developmental and individual differences in the effect of presentation format on student problem solving.

    PubMed

    Booth, Julie L; Koedinger, Kenneth R

    2012-09-01

    High school and college students demonstrate a verbal, or textual, advantage whereby beginning algebra problems in story format are easier to solve than matched equations (Koedinger & Nathan, 2004). Adding diagrams to the stories may further facilitate solution (Hembree, 1992; Koedinger & Terao, 2002). However, diagrams may not be universally beneficial (Ainsworth, 2006; Larkin & Simon, 1987). To identify developmental and individual differences in the use of diagrams, story, and equation representations in problem solving. When do diagrams begin to aid problem-solving performance? Does the verbal advantage replicate for younger students? Three hundred and seventy-three students (121 sixth, 117 seventh, 135 eighth grade) from an ethnically diverse middle school in the American Midwest participated in Experiment 1. In Experiment 2, 84 sixth graders who had participated in Experiment 1 were followed up in seventh and eighth grades. In both experiments, students solved algebra problems in three matched presentation formats (equation, story, story + diagram). The textual advantage was replicated for all groups. While diagrams enhance performance of older and higher ability students, younger and lower-ability students do not benefit, and may even be hindered by a diagram's presence. The textual advantage is in place by sixth grade. Diagrams are not inherently helpful aids to student understanding and should be used cautiously in the middle school years, as students are developing competency for diagram comprehension during this time. ©2011 The British Psychological Society.

  2. A Problem-Solving Intervention Using iPads to Improve Transition-Related Task Performance of Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Zeleke, Waganesh A.

    2016-01-01

    In this study, the effectiveness of teaching problem-solving to improve transition-related task performance of three students with autism spectrum disorder (ASD) was examined using a multiple probe across students design. Target behaviors included various transition-related tasks individualized for each student based on their individual…

  3. Theoretical Overview on the Improvement of Interest in Learning Theoretical Course for Engineering Students

    ERIC Educational Resources Information Center

    Xiao, Manlin; Zhang, Jianglin

    2016-01-01

    The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…

  4. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  5. Teaching Mathematical Problem Solving to Middle School Students in Math, Technology Education, and Special Education Classrooms

    ERIC Educational Resources Information Center

    Bottge, Brian A.; Heinrichs, Mary; Mehta, Zara Dee; Rueda, Enrique; Hung, Ya-Hui; Danneker, Jeanne

    2004-01-01

    This study compared two approaches for teaching sixth-grade middle school students to solve math problems in math, technology education, and special education classrooms. A total of 17 students with disabilities and 76 students without disabilities were taught using either enhanced anchored instruction (EAI) or text-based instruction coupled with…

  6. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    ERIC Educational Resources Information Center

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  7. Differential Relations between Facets of Complex Problem Solving and Students' Immigration Background

    ERIC Educational Resources Information Center

    Sonnleitner, Philipp; Brunner, Martin; Keller, Ulrich; Martin, Romain

    2014-01-01

    Whereas the assessment of complex problem solving (CPS) has received increasing attention in the context of international large-scale assessments, its fairness in regard to students' cultural background has gone largely unexplored. On the basis of a student sample of 9th-graders (N = 299), including a representative number of immigrant students (N…

  8. Clock Buddies: An Accessible, Engaging Problem-Solving Activity with Rich Mathematical Content

    ERIC Educational Resources Information Center

    Borkovitz, Debra K.; Haferd, Thomas

    2017-01-01

    Clock Buddies is our favorite first-day-of-class activity. It starts as a nonthreatening icebreaker activity that helps students learn one another's names, but it soon asks students to find their own strategies for solving a real-world scheduling problem. Even highly math phobic students work with others and succeed. Students gain insight from…

  9. Case-Based Instruction in Post-Secondary Education: Developing Students' Problem-Solving Expertise.

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.

    This study was designed to explore changes in students' problem-solving skills as they analyzed instructional design case studies during a semester-long course. Nineteen students at two Midwestern universities analyzed six to ten case studies as part of their course assignments. Both quantitative and qualitative data were collected, with students'…

  10. Self-Instructional Methods of Teaching Diagnostic Problem Solving to Automotive Students. Vocational-Industrial Education Research Report.

    ERIC Educational Resources Information Center

    Finch, Curtis R.

    The objective of this study was to investigate the effects of three methods of teaching diagnostic problem-solving (troubleshooting) to automotive students. The sample consisted of 45 community college students enrolled in automotive courses. Initially, all students received a presentation on ignition principles, and the Otis Mental Ability Test…

  11. How did you guess? Or, what do multiple-choice questions measure?

    PubMed

    Cox, K R

    1976-06-05

    Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.

  12. Evaluating Preclinical Medical Students by Using Computer-Based Problem-Solving Examinations.

    ERIC Educational Resources Information Center

    Stevens, Ronald H.; And Others

    1989-01-01

    A study to determine the feasibility of creating and administering computer-based problem-solving examinations for evaluating second-year medical students in immunology and to determine how students would perform on these tests relative to their performances on concurrently administered objective and essay examinations is described. (Author/MLW)

  13. Nurturing Students' Problem-Solving Skills and Engagement in Computer-Mediated Communications (CMC)

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    The present study sought to investigate how to enhance students' well- and ill-structured problem-solving skills and increase productive engagement in computer-mediated communication with the assistance of external prompts, namely procedural and reflection. Thirty-three graduate students were randomly assigned to two conditions: procedural and…

  14. Identification and Analysis of Student Conceptions Used To Solve Chemical Equilibrium Problems.

    ERIC Educational Resources Information Center

    Voska, Kirk W.; Heikkinen, Henry W.

    2000-01-01

    Identifies and quantifies the chemistry conceptions used by students when solving chemical equilibrium problems requiring application of LeChatelier's Principle, and explores the feasibility of designing a paper and pencil test to accomplish these purposes. Eleven prevalent incorrect student conceptions about chemical equilibrium were identified…

  15. An Individualized Problem-Solving Approach for Teaching Choral Phrase Shaping: An Experimental Study

    ERIC Educational Resources Information Center

    Broomhead, Paul

    2009-01-01

    This experiment tested a treatment designed to improve choral students' expressiveness regarding keyword emphasis and phrase shaping. The treatment was founded upon the constructivist belief that students actively construct conceptual knowledge through problem solving. Participants were 46 university students randomly selected from a nonauditioned…

  16. Engaging Students with Pre-Recorded "Live" Reflections on Problem-Solving with "Livescribe" Pens

    ERIC Educational Resources Information Center

    Hickman, Mike

    2013-01-01

    This pilot study, involving PGCE primary student teachers, applies "Livescribe" pen technology to facilitate individual and group reflection on collaborative mathematical problem solving (Hickman 2011). The research question was: How does thinking aloud, supported by digital audio recording, support student teachers' understanding of…

  17. Enhancing Mathematical Problem Solving for Secondary Students with or at Risk of Learning Disabilities: A Literature Review

    ERIC Educational Resources Information Center

    Hwang, Jiwon; Riccomini, Paul J.

    2016-01-01

    Requirements for reasoning, explaining, and generalizing mathematical concepts increase as students advance through the educational system; hence, improving overall mathematical proficiency is critical. Mathematical proficiency requires students to interpret quantities and their corresponding relationships during problem-solving tasks as well as…

  18. Group Discussions in the Chemistry Classroom and the Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Fasching, James L.; Erickson, Bette LaSere

    1985-01-01

    Five years ago, an introductory chemistry course for chemists and chemical engineers was redesigned to stress the scientific method, problem-solving, and reasoning skills. Describes: (1) changes made in the course; (2) impacts on student achievement; and (3) student ratings of the course. (JN)

  19. Improving Problem-Solving Techniques for Students in Low-Performing Schools

    ERIC Educational Resources Information Center

    Hobbs, Robert Maurice

    2012-01-01

    Teachers can use culturally relevant pedagogical strategies and technologies as emerging tools to improve students' problem-solving skills. The purpose of this study was to investigate and assess the effectiveness of culturally specific computer-based instructional tasks on ninth-grade African American mathematics students. This study tried to…

  20. Using Algorithms in Solving Synapse Transmission Problems.

    ERIC Educational Resources Information Center

    Stencel, John E.

    1992-01-01

    Explains how a simple three-step algorithm can aid college students in solving synapse transmission problems. Reports that all of the students did not completely understand the algorithm. However, many learn a simple working model of synaptic transmission and understand why an impulse will pass across a synapse quantitatively. Students also see…

  1. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  2. Critical Thinking Skills Of Junior High School Female Students With High Mathematical Skills In Solving Contextual And Formal Mathematical Problems

    NASA Astrophysics Data System (ADS)

    Ismail; Suwarsono, St.; Lukito, A.

    2018-01-01

    Critical thinking is one of the most important skills of the 21st century in addition to other learning skills such as creative thinking, communication skills and collaborative skills. This is what makes researchers feel the need to conduct research on critical thinking skills in junior high school students. The purpose of this study is to describe the critical thinking skills of junior high school female students with high mathematical skills in solving contextual and formal mathematical problems. To achieve this is used qualitative research. The subject of the study was a female student of eight grade junior high school. The students’ critical thinking skills are derived from in-depth problem-based interviews using interview guidelines. Interviews conducted in this study are problem-based interviews, which are done by the subject given a written assignment and given time to complete. The results show that critical thinking skills of female high school students with high math skills are as follows: In solving the problem at the stage of understanding the problem used interpretation skills with sub-indicators: categorization, decode, and clarify meaning. At the planning stage of the problem-solving strategy is used analytical skills with sub-indicators: idea checking, argument identification and argument analysis and evaluation skills with sub indicators: assessing the argument. In the implementation phase of problem solving, inference skills are used with subindicators: drawing conclusions, and problem solving and explanatory skills with sub-indicators: problem presentation, justification procedures, and argument articulation. At the re-checking stage all steps have been employed self-regulatory skills with sub-indicators: self-correction and selfstudy.

  3. Improving the learning of clinical reasoning through computer-based cognitive representation.

    PubMed

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  4. Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting

    PubMed Central

    Klegeris, Andis; Bahniwal, Manpreet; Hurren, Heather

    2013-01-01

    Problem-based learning (PBL) was originally introduced in medical education programs as a form of small-group learning, but its use has now spread to large undergraduate classrooms in various other disciplines. Introduction of new teaching techniques, including PBL-based methods, needs to be justified by demonstrating the benefits of such techniques over classical teaching styles. Previously, we demonstrated that introduction of tutor-less PBL in a large third-year biochemistry undergraduate class increased student satisfaction and attendance. The current study assessed the generic problem-solving abilities of students from the same class at the beginning and end of the term, and compared student scores with similar data obtained in three classes not using PBL. Two generic problem-solving tests of equal difficulty were administered such that students took different tests at the beginning and the end of the term. Blinded marking showed a statistically significant 13% increase in the test scores of the biochemistry students exposed to PBL, while no trend toward significant change in scores was observed in any of the control groups not using PBL. Our study is among the first to demonstrate that use of tutor-less PBL in a large classroom leads to statistically significant improvement in generic problem-solving skills of students. PMID:23463230

  5. How to Solve Polyhedron Problem?

    NASA Astrophysics Data System (ADS)

    Wijayanti, A.; Kusumah, Y. S.; Suhendra

    2017-09-01

    The purpose of this research is to know the possible strategies to solve the problem in polyhedron topic with Knilsey’s Learning Model as scaffolding for the student. This research was conducted by using mixed method with sequential explanatory design. Researchers used purposive sampling technique to get two classes for Knisley class and conventional class and an extreme case sampling technique to get interview data. The instruments used are tests, observation sheets and interview guidelines. The result of the research shows that: (1) students’ strategies to solve polyhedron problem were grouped into two steps: by partitioning the problem to find out the solution and make a mathematical model of the mathematical sentence given and then connect it with the concept that the students already know; (2) students ‘mathematical problem solving ability in Knisley class is higher than those in conventional class.

  6. How Partner Gender Influences Female Students' Problem Solving in Physics Education

    NASA Astrophysics Data System (ADS)

    Ding, N.; Harskamp, E.

    2006-12-01

    Research has shown that female students cannot profit as much as male students can from cooperative learning in physics, especially in mixed-gender dyads. This study has explored the influence of partner gender on female students' learning achievement, interaction and the problem-solving process during cooperative learning. In Shanghai, a total of 50 students (26 females and 24 males), drawn from two classes of a high school, took part in the study. Students were randomly paired, and there were three research groups: mixed-gender dyads (MG), female-female dyads (FF) and male-male dyads (MM). Analysis of students' pre- and post-test performances revealed that female students in the single-gender condition solved physics problems more effectively than did those in the mixed-gender condition, while the same was not the case for male students. We further explored the differences between female and male communication styles, and content among the three research groups. It showed that the females' interaction content and problem-solving processes were more sensitive to partner gender than were those for males. This might explain why mixed-gender cooperation in physics disadvantages females in high schools.

  7. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  8. Developing Ill-defined problem-solving for the context of “South Sumatera”

    NASA Astrophysics Data System (ADS)

    Arifin, S.; Zulkardi; Putri, R. I. I.; Hartono, Y.; Susanti, E.

    2017-12-01

    This study aims to produce a valid and practical ill-defined problem-solving for context South Sumatera. The subject of the research is three students of the first semester of undergraduate students in the mathematics department of Raden Fatah State Islamic University. This study use development studies that consist of preliminary and prototyping. In preliminary stage have been analysis content curricula, indicator, and strategies of problem-solving. Meanwhile, in prototyping stage only consist of self-evaluation, expert review, and one-to-one. The data were collected through a walkthrough, interview, and test. The data were validated using expert review, but in practice, the data were obtained from test and interview to subject of the research. This studies produced two valid and practical problem-solving. The first problem is about “Benteng Kuto Besak”, and the second problem is about “Monpera”. From the expert review, the conclusion can be drawn that two problems which are developing are ill-defined problem-solving, and valid from content, construct, and its language. Besides that, the problems are practical because all students know and understand what the problems goal, but not the solutions.

  9. A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    PubMed Central

    Crowley, Rebecca S.; Medvedeva, Olga

    2003-01-01

    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159

  10. Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.

    PubMed

    Anderson, John R

    2012-03-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences

    PubMed Central

    Safari, Yahya; Meskini, Habibeh

    2016-01-01

    Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970

  12. The effectiveness of learning with concept mapping on the science problem-solving of sixth-grade children

    NASA Astrophysics Data System (ADS)

    Jolly, Anju B.

    The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.

  13. Student reactions to problem-based learning in photonics technician education

    NASA Astrophysics Data System (ADS)

    Massa, Nicholas M.; Donnelly, Judith; Hanes, Fenna

    2014-07-01

    Problem-based learning (PBL) is an instructional approach in which students learn problem-solving and teamwork skills by collaboratively solving complex real-world problems. Research shows that PBL improves student knowledge and retention, motivation, problem-solving skills, and the ability to skillfully apply knowledge in new and novel situations. One of the challenges faced by students accustomed to traditional didactic methods, however, is acclimating to the PBL process in which problem parameters are often ill-defined and ambiguous, often leading to frustration and disengagement with the learning process. To address this problem, the New England Board of Higher Education (NEBHE), funded by the National Science Foundation Advanced Technological Education (NSF-ATE) program, has created and field tested a comprehensive series of industry-based multimedia PBL "Challenges" designed to scaffold the development of students' problem solving and critical thinking skills. In this paper, we present the results of a pilot study conducted to examine student reactions to the PBL Challenges in photonics technician education. During the fall 2012 semester, students (n=12) in two associate degree level photonics courses engaged in PBL using the PBL Challenges. Qualitative and quantitative methods were used to assess student motivation, self-efficacy, critical thinking, metacognitive self-regulation, and peer learning using selected scales from the Motivated Strategies for Learning Questionnaire (MSLQ). Results showed positive gains in all variables. Follow-up focus group interviews yielded positive themes supporting the effectiveness of PBL in developing the knowledge, skills and attitudes of photonics technicians.

  14. Conceptualizing Perseverance in Problem Solving as Collective Enterprise

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Agarwal, Priyanka

    2017-01-01

    Students are expected to learn mathematics such that when they encounter challenging problems they will persist. Creating opportunities for students to persist in problem solving is therefore argued as essential to effective teaching and to children developing positive dispositions in mathematical learning. This analysis takes a novel approach to…

  15. Computer-Mediated Assessment of Higher-Order Thinking Development

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Raiyn, Jamal

    2015-01-01

    Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…

  16. Minimalism as a Guiding Principle: Linking Mathematical Learning to Everyday Knowledge

    ERIC Educational Resources Information Center

    Inoue, Noriyuki

    2008-01-01

    Studies report that students often fail to consider familiar aspects of reality in solving mathematical word problems. This study explored how different features of mathematical problems influence the way that undergraduate students employ realistic considerations in mathematical problem solving. Incorporating familiar contents in the word…

  17. Using Computer Simulations in Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  18. Students' Verification Strategies for Combinatorial Problems

    ERIC Educational Resources Information Center

    Mashiach Eizenberg, Michal; Zaslavsky, Orit

    2004-01-01

    We focus on a major difficulty in solving combinatorial problems, namely, on the verification of a solution. Our study aimed at identifying undergraduate students' tendencies to verify their solutions, and the verification strategies that they employ when solving these problems. In addition, an attempt was made to evaluate the level of efficiency…

  19. Computer Assisted Problem Solving in an Introductory Statistics Course. Technical Report No. 56.

    ERIC Educational Resources Information Center

    Anderson, Thomas H.; And Others

    The computer assisted problem solving system (CAPS) described in this booklet administered "homework" problem sets designed to develop students' computational, estimation, and procedural skills. These skills were related to important concepts in an introductory statistics course. CAPS generated unique data, judged student performance,…

  20. Development and Design of Problem Based Learning Game-Based Courseware

    ERIC Educational Resources Information Center

    Chang, Chiung-Sui; Chen, Jui-Fa; Chen, Fei-Ling

    2015-01-01

    In an educational environment, instructors would always think of ways to provide students with motivational learning materials and efficient learning strategies. Hence, many researchers have proposed that students' problem-solving ability enhances their learning. Problem-solving ability plays an important role for users in dealing with problems…

Top