Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen
2016-01-01
Objective To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. Setting A nursing course at a university in central Taiwan. Participants 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Design and methods Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a ‘preferred environment aligned with perceived learning environment’ group and a ‘preferred environment discordant with perceived learning environment’ group. Learning outcomes were analysed by group. Outcome measures Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. Conclusions As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. PMID:27207620
Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen
2016-05-20
To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. A nursing course at a university in central Taiwan. 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a 'preferred environment aligned with perceived learning environment' group and a 'preferred environment discordant with perceived learning environment' group. Learning outcomes were analysed by group. Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Problem-Based Educational Game Becomes Student-Centered Learning Environment
ERIC Educational Resources Information Center
Rodkroh, Pornpimon; Suwannatthachote, Praweenya; Kaemkate, Wannee
2013-01-01
Problem-based educational games are able to provide a fun and motivating environment for teaching and learning of certain subjects. However, most educational game models do not address the learning elements of problem-based educational games. This study aims to synthesize and to propose the important elements to facilitate the learning process and…
ERIC Educational Resources Information Center
Fells, Stephanie
2012-01-01
The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…
ERIC Educational Resources Information Center
Wijnia, Lisette; Loyens, Sofie M. M.; Derous, Eva
2011-01-01
This study examines the effects of two learning environments (i.e., problem-based learning [PBL] versus lecture-based [LB] environments) on undergraduates' study motivation. Survey results demonstrated that PBL students scored higher on competence but did not differ from LB students on autonomous motivation. Analyses of focus groups further…
An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen
2012-01-01
This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…
ERIC Educational Resources Information Center
Friedman, Robert S.; Deek, Fadi P.
2002-01-01
Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…
Using Scenarios to Design Complex Technology-Enhanced Learning Environments
ERIC Educational Resources Information Center
de Jong, Ton; Weinberger, Armin; Girault, Isabelle; Kluge, Anders; Lazonder, Ard W.; Pedaste, Margus; Ludvigsen, Sten; Ney, Muriel; Wasson, Barbara; Wichmann, Astrid; Geraedts, Caspar; Giemza, Adam; Hovardas, Tasos; Julien, Rachel; van Joolingen, Wouter R.; Lejeune, Anne; Manoli, Constantinos C.; Matteman, Yuri; Sarapuu, Tago; Verkade, Alex; Vold, Vibeke; Zacharia, Zacharias C.
2012-01-01
Science Created by You (SCY) learning environments are computer-based environments in which students learn about science topics in the context of addressing a socio-scientific problem. Along their way to a solution for this problem students produce many types of intermediate products or learning objects. SCY learning environments center the entire…
ERIC Educational Resources Information Center
Horton, Lucas; Liu, Min; Olmanson, Justin; Toprac, Paul
2011-01-01
In this paper we explore students' engagement in a new media enhanced problem-based learning (PBL) environment and investigate the characteristics of these environments that facilitate learning. We investigated both student experiences using a new media enhanced PBL environment and the specific elements students found most supportive of their…
Gendered Practices of Constructing an Engineering Identity in a Problem-Based Learning Environment
ERIC Educational Resources Information Center
Du, Xiang-Yun
2006-01-01
This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data from a qualitative study of an electrical and…
Teacher in a Problem-Based Learning Environment--Jack of All Trades?
ERIC Educational Resources Information Center
Dahms, Mona Lisa; Spliid, Claus Monrad; Nielsen, Jens Frederik Dalsgaard
2017-01-01
Problem-based learning (PBL) is one among several approaches to active learning. Being a teacher in a PBL environment can, however, be a challenge because of the need to support students' learning within a broad "landscape of learning". In this article we will analyse the landscape of learning by use of the study activity model (SAM)…
ERIC Educational Resources Information Center
Ünal, Erhan; Çakir, Hasan
2017-01-01
The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…
Concept Cartoons Supported Problem Based Learning Method in Middle School Science Classrooms
ERIC Educational Resources Information Center
Balim, Ali Günay; Inel-Ekici, Didem; Özcan, Erkan
2016-01-01
Problem based learning, in which events from daily life are presented as interesting scenarios, is one of the active learning approaches that encourages students to self-direct learning. Problem based learning, generally used in higher education, requires students to use high end thinking skills in learning environments. In order to use…
Integrating Learning, Problem Solving, and Engagement in Narrative-Centered Learning Environments
ERIC Educational Resources Information Center
Rowe, Jonathan P.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.
2011-01-01
A key promise of narrative-centered learning environments is the ability to make learning engaging. However, there is concern that learning and engagement may be at odds in these game-based learning environments. This view suggests that, on the one hand, students interacting with a game-based learning environment may be engaged but unlikely to…
ERIC Educational Resources Information Center
Choi, Ikseon; Lee, Sang Joon; Kang, Jeongwan
2009-01-01
This study explores how students' learning styles influence their learning while solving complex problems when a case-based e-learning environment is implemented in a conventional lecture-oriented classroom. Seventy students from an anaesthesiology class at a dental school participated in this study over a 3-week period. Five learning-outcome…
ERIC Educational Resources Information Center
Hung, Woei; Mehl, Katherine; Holen, Jodi Bergland
2013-01-01
Some researchers have argued that the design of problems used in a Problem-based Learning (PBL) course or curriculum could have an impact on student learning cognitively or psychologically, such as students' self-directed learning process or engagement. To investigate the relationship between PBL problem design and students' self-directed learning…
ERIC Educational Resources Information Center
Cheng, Kai Wen
2011-01-01
Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…
The Self-Formation of Collaborative Groups in a Problem Based Learning Environment
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2016-01-01
The aim of this paper is to present "the three steps method" of the self-formation of collaborative groups in a problem-based learning environment. The self-formation of collaborative groups is based on sharing of accountability among students for solving instructional problems. The steps of the method are planning collaborative problem…
A Meta-Analytic and Qualitative Review of Online versus Face-to-Face Problem-Based Learning
ERIC Educational Resources Information Center
Jurewitsch, Brian
2012-01-01
Problem-based learning (PBL) is an instructional strategy that is poised for widespread application in the current, growing, on-line digital learning environment. While enjoying a track record as a defensible strategy in face-to-face learning settings, the research evidence is not clear regarding PBL in on-line environments. A review of the…
Feedback and Feed-Forward for Promoting Problem-Based Learning in Online Learning Environments
ERIC Educational Resources Information Center
Webb, Ashley; Moallem, Mahnaz
2016-01-01
Purpose: The study aimed to (1) review the literature to construct conceptual models that could guide instructional designers in developing problem/project-based learning environments while applying effective feedback strategies, (2) use the models to design, develop, and implement an online graduate course, and (3) assess the efficiency of the…
ERIC Educational Resources Information Center
Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis
2016-01-01
In this study, we enhanced a problem-based learning (PBL) environment with affordable, everyday technologies that can be found in most university classrooms (e.g., projectors, tablets, students' own smartphones, traditional paper-pencil, and Facebook). The study was conducted over a 3-year period, with 60 postgraduate learners in a human-computer…
Green Map Exercises as an Avenue for Problem-Based Learning in a Data-Rich Environment
ERIC Educational Resources Information Center
Tulloch, David; Graff, Elizabeth
2007-01-01
This article describes a series of data-based Green Map learning exercises positioned within a problem-based framework and examines the appropriateness of projects like these as a form of geography education. Problem-based learning (PBL) is an educational technique that engages students in learning through activities that require creative problem…
NASA Astrophysics Data System (ADS)
Thurmond, Brandi
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.
ERIC Educational Resources Information Center
Lee, Young-Jin
2017-01-01
Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…
Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.
Oldenburg, Nancy L; Hung, Wei-Chen
2010-04-01
It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.
Development and Design of Problem Based Learning Game-Based Courseware
ERIC Educational Resources Information Center
Chang, Chiung-Sui; Chen, Jui-Fa; Chen, Fei-Ling
2015-01-01
In an educational environment, instructors would always think of ways to provide students with motivational learning materials and efficient learning strategies. Hence, many researchers have proposed that students' problem-solving ability enhances their learning. Problem-solving ability plays an important role for users in dealing with problems…
Design and Evaluation of a Problem-Based Learning Environment for Teacher Training
ERIC Educational Resources Information Center
Hemker, Laura; Prescher, Claudia; Narciss, Susanne
2017-01-01
Problem-based learning can have a great impact on the acquisition of practical knowledge, which is a central learning aim in the field of teacher education. Therefore, we implemented a problem-based learning approach in four seminars on educational assessment. In this paper, we outline our didactic design and discuss the results of the first…
ERIC Educational Resources Information Center
Liu, Min; Horton, Lucas; Lee, Jaejin; Kang, Jina; Rosenblum, Jason; O'Hair, Matthew; Lu, Chu-Wei
2014-01-01
This paper describes the design and development process used to create Alien Rescue, a multimedia-enhanced learning environment that supports problem-based learning (PBL) in middle school science. The goal of the project is to further our understandings of technology, pedagogy, and instructional theories as they relate to the application of PBL…
ERIC Educational Resources Information Center
Li, Rui; Liu, Min
2007-01-01
The purpose of this study is to examine the potential of using computer databases as cognitive tools to share learners' cognitive load and facilitate learning in a multimedia problem-based learning (PBL) environment designed for sixth graders. Two research questions were: (a) can the computer database tool share sixth-graders' cognitive load? and…
An Auto-Scoring Mechanism for Evaluating Problem-Solving Ability in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Chiou, Chuang-Kai; Hwang, Gwo-Jen; Tseng, Judy C. R.
2009-01-01
The rapid development of computer and network technologies has attracted researchers to investigate strategies for and the effects of applying information technologies in learning activities; simultaneously, learning environments have been developed to record the learning portfolios of students seeking web information for problem-solving. Although…
ERIC Educational Resources Information Center
Chen, Chih-Ming; Chang, Chia-Cheng
2014-01-01
Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…
NASA Astrophysics Data System (ADS)
Hasanah, N.; Hayashi, Y.; Hirashima, T.
2017-02-01
Arithmetic word problems remain one of the most difficult area of teaching mathematics. Learning by problem posing has been suggested as an effective way to improve students’ understanding. However, the practice in usual classroom is difficult due to extra time needed for assessment and giving feedback to students’ posed problems. To address this issue, we have developed a tablet PC software named Monsakun for learning by posing arithmetic word problems based on Triplet Structure Model. It uses the mechanism of sentence-integration, an efficient implementation of problem-posing that enables agent-assessment of posed problems. The learning environment has been used in actual Japanese elementary school classrooms and the effectiveness has been confirmed in previous researches. In this study, ten Indonesian elementary school students living in Japan participated in a learning session of problem posing using Monsakun in Indonesian language. We analyzed their learning activities and show that students were able to interact with the structure of simple word problem using this learning environment. The results of data analysis and questionnaire suggested that the use of Monsakun provides a way of creating an interactive and fun environment for learning by problem posing for Indonesian elementary school students.
ERIC Educational Resources Information Center
Wijnen, Marit; Loyens, Sofie M. M.; Smeets, Guus; Kroeze, Maarten; van der Molen, Henk
2017-01-01
In educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one's own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational…
Constructing of Research-Oriented Learning Mode Based on Network Environment
ERIC Educational Resources Information Center
Wang, Ying; Li, Bing; Xie, Bai-zhi
2007-01-01
Research-oriented learning mode that based on network is significant to cultivate comprehensive-developing innovative person with network teaching in education for all-around development. This paper establishes a research-oriented learning mode by aiming at the problems existing in research-oriented learning based on network environment, and…
ERIC Educational Resources Information Center
White, Tobin
2009-01-01
This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…
eLearning techniques supporting problem based learning in clinical simulation.
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2005-08-01
This paper details the results of the first phase of a project using eLearning to support students' learning within a simulated environment. The locus was a purpose built clinical simulation laboratory (CSL) where the School's philosophy of problem based learning (PBL) was challenged through lecturers using traditional teaching methods. a student-centred, problem based approach to the acquisition of clinical skills that used high quality learning objects embedded within web pages, substituting for lecturers providing instruction and demonstration. This encouraged student nurses to explore, analyse and make decisions within the safety of a clinical simulation. Learning was facilitated through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that eLearning techniques can help students acquire clinical skills in the safety of a simulated environment within the context of a problem based learning curriculum.
Mala-Maung; Abdullah, Azman; Abas, Zoraini W
2011-12-01
This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.
Personalisation in Web-Based Learning Environments
ERIC Educational Resources Information Center
Santally, Mohammad Issack; Alain, Senteni
2006-01-01
It is postulated that one of the main problems with e-learning environments is their lack of personalisation. This article presents a comprehensive review of the current work in the field and proposes a framework for research in promoting personalisation in Web-based learning environments. The concepts of adaptability, adaptivity and the…
Creating an Interactive and Responsive Teaching Environment to Inspire Learning
ERIC Educational Resources Information Center
Paladino, Angelina
2008-01-01
Teaching students to understand, disable, and solve problems is one of the largest challenges educators face in undergraduate marketing education. My teaching philosophy is centered on the creation of an interactive learning environment. This encompasses problem-based teaching and collaborative learning to foster discussions between students and…
Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa
2005-03-01
World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.
ERIC Educational Resources Information Center
Redondo, Miguel A.; Bravo, Crescencio; Ortega, Manuel; Verdejo, M. Felisa
2007-01-01
Experimental learning environments based on simulation usually require monitoring and adaptation to the actions the users carry out. Some systems provide this functionality, but they do so in a way which is static or cannot be applied to problem solving tasks. In response to this problem, we propose a method based on the use of intermediate…
NASA Astrophysics Data System (ADS)
Parker, Mary Jo
This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.
Gender and Participation in an Engineering Problem-Based Learning Environment
ERIC Educational Resources Information Center
Hirshfield, Laura; Koretsky, Milo D.
2018-01-01
The use of problem-based learning (PBL) is gaining attention in the engineering classroom as a way to help students synthesize foundational knowledge and to better prepare students for practice. In this work, we study the discourse interactions between 27 student teams and two instructors in an engineering PBL environment to analyze how…
Integrating Computers into the Problem-Solving Process.
ERIC Educational Resources Information Center
Lowther, Deborah L.; Morrison, Gary R.
2003-01-01
Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)
ERIC Educational Resources Information Center
Montero, E.; Gonzalez, M. J.
2009-01-01
Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…
ERIC Educational Resources Information Center
Omale, Nicholas; Hung, Wei-Chen; Luetkehans, Lara; Cooke-Plagwitz, Jessamine
2009-01-01
The purpose of this article is to present the results of a study conducted to investigate how the attributes of 3-D technology such as avatars, 3-D space, and comic style bubble dialogue boxes affect participants' social, cognitive, and teaching presences in a blended problem-based learning environment. The community of inquiry model was adopted…
Elements of Problem-Based Learning: Suggestions for Implementation in the Asynchronous Environment
ERIC Educational Resources Information Center
Nelson, Erik
2010-01-01
Problem-based learning, or PBL, is a student-centered instructional approach that is derived from constructivist epistemology. It is based upon ill-structured real-world problems with the goal of strengthening and developing critical thinking and problem-solving skills in learners. Initially utilized in medical schools to strengthen diagnostic…
Problem-Based Learning in Formal and Informal Learning Environments
ERIC Educational Resources Information Center
Shimic, Goran; Jevremovic, Aleksandar
2012-01-01
Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…
Using Analytics to Transform a Problem-Based Case Library: An Educational Design Research Approach
ERIC Educational Resources Information Center
Schmidt, Matthew; Tawfik, Andrew A.
2018-01-01
This article describes the iterative design, development, and evaluation of a case-based learning environment focusing on an ill-structured sales management problem. We discuss our processes and situate them within the broader framework of educational design research. The learning environment evolved over the course of three design phases. A…
ERIC Educational Resources Information Center
Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija
2015-01-01
This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…
ERIC Educational Resources Information Center
Kinnebrew, John S.; Segedy, James R.; Biswas, Gautam
2017-01-01
Research in computer-based learning environments has long recognized the vital role of adaptivity in promoting effective, individualized learning among students. Adaptive scaffolding capabilities are particularly important in open-ended learning environments, which provide students with opportunities for solving authentic and complex problems, and…
The Embodiment of Cases as Alternative Perspective in a Mathematics Hypermedia Learning Environment
ERIC Educational Resources Information Center
Valentine, Keri D.; Kopcha, Theodore J.
2016-01-01
This paper presents a design framework for cases as alternative perspectives (Jonassen in Learning to solve problems: a handbook for designing problem-solving learning environments, 2011a) in the context of K-12 mathematics. Using the design-based research strategy of conjecture mapping, the design of cases for a hypermedia site is described…
ERIC Educational Resources Information Center
Flynn, Kathleen
2014-01-01
As a pedagogical approach, problem-based learning (PBL) has shown success for average and gifted students (HmeloSiver, 2004) and there are numerous incentives for its implementation in online learning environments (Savid-Baden, 2007; Chernobilsky, Nagarajan, & Hmelo-Silver, 2005). However, little research has been conducted regarding the…
Medical Students' Evaluation of Physiology Learning Environments in Two Nigerian Medical Schools
ERIC Educational Resources Information Center
Anyaehie, U. S. B.; Nwobodo, E.; Oze, G.; Nwagha, U. I.; Orizu, I.; Okeke, T.; Anyanwu, G. E.
2011-01-01
The expansion of biomedical knowledge and the pursuit of more meaningful learning have led to world-wide evidence-based innovative changes in medical education and curricula. The recent emphasis on problem-based learning (PBL) and student-centred learning environments are, however, not being implemented in Nigerian medical schools. Traditional…
NASA Astrophysics Data System (ADS)
Suwono, Hadi; Wibowo, Agung
2018-01-01
Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.
ERIC Educational Resources Information Center
Efendioglu, Akin
2015-01-01
This experimental study aims to determine pre-service teachers' achievements and key factors that affect the learning process with regard to problem-based learning (PBL) and lecture-based computer course (LBCC) conditions. The research results showed that the pre-service teachers in the PBL group had significantly higher achievement scores than…
Problem-Based Learning in an Online Course of Health Education
ERIC Educational Resources Information Center
Chagas, Isabel; Faria, Claudia; Mourato, Dulce; Pereira, Goncalo; Santos, Afonso
2012-01-01
The objectives of this project were to: i) describe the experience of implementing Problem-Based Learning in an online course over three consecutive academic years, ii) analyse the learning environment generated, iii) discuss impacts on students' active participation, based on the analysis of their interactions. The participants were 30 students,…
ADOPTING THE PROBLEM BASED LEARNING APPROACH IN A GIS PROJECT MANAGEMENT CLASS
Problem Based Learning (PBL) is a process that emphasizes the need for developing problem solving skills through hands-on project formulation and management. A class adopting the PBL method provides students with an environment to acquire necessary knowledge to encounter, unders...
Problem-Based Learning in Accounting
ERIC Educational Resources Information Center
Dockter, DuWayne L.
2012-01-01
Seasoned educators use an assortment of student-centered methods and tools to enhance their student's learning environment. In respects to methodologies used in accounting, educators have utilized and created new forms of problem-based learning exercises, including case studies, simulations, and other projects, to help students become more active…
Teacher in a problem-based learning environment - Jack of all trades?
NASA Astrophysics Data System (ADS)
Dahms, Mona Lisa; Spliid, Claus Monrad; Nielsen, Jens Frederik Dalsgaard
2017-11-01
Problem-based learning (PBL) is one among several approaches to active learning. Being a teacher in a PBL environment can, however, be a challenge because of the need to support students' learning within a broad 'landscape of learning'. In this article we will analyse the landscape of learning by use of the study activity model (SAM) developed by the Danish University Colleges, with the aim of investigating to which extent this may lead to explication and clarification concerning the challenges faced by teachers in a PBL environment. In the case study, the SAM is applied to the first semester of an engineering programme at Aalborg University, a university setting where the PBL approach to teaching and learning is dominant. The results of the analysis are presented and discussed, and the conclusion is that the model, in spite of some shortcomings, is useful in clarifying the role of the teacher in a PBL environment.
Are Marketing Students in Control in Problem-Based Learning?
ERIC Educational Resources Information Center
Geitz, Gerry; Joosten-ten Brinke, Desirée; Kirschner, Paul A.
2016-01-01
This study investigated to what extent self-efficacy, learning behavior, and performance outcomes relate to each other and how they can be positively influenced by students asking for and seeking feedback within a problem-based learning (PBL) environment in order to meet today's requirements of marketing graduates. An experimental…
Transactional Distance in a Blended Learning Environment
ERIC Educational Resources Information Center
Dron, Jon; Seidel, Catharine; Litten, Gabrielle
2004-01-01
This paper presents a case study that describes and discusses the problems encountered during the design and implementation of a blended learning course, largely taught online through a web-based learning environment. Based on Moore's theory of transactional distance, the course was explicitly designed to have dialogue at its heart. However, the…
Motivational Influences of Using Peer Evaluation in Problem-Based Learning in Medical Education
ERIC Educational Resources Information Center
Abercrombie, Sara; Parkes, Jay; McCarty, Teresita
2015-01-01
This study investigates the ways in which medical students' achievement goal orientations (AGO) affect their perceptions of learning and actual learning from an online problem-based learning environment, Calibrated Peer Review™. First, the tenability of a four-factor model (Elliot & McGregor, 2001) of AGO was tested with data collected from…
ERIC Educational Resources Information Center
Hanyak, Michael E., Jr.
2015-01-01
In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…
ERIC Educational Resources Information Center
Watson, Rachel M.; Willford, John D.; Pfeifer, Mariel A.
2018-01-01
In this study, a problem-based capstone course was designed to assess the University of Wyoming Microbiology Program's skill-based and process-based student learning objectives. Students partnered with a local farm, a community garden, and a free downtown clinic in order to conceptualize, propose, perform, and present studies addressing problems…
Fundamental concepts of problem-based learning for the new facilitator.
Kanter, S L
1998-01-01
Problem-based learning (PBL) is a powerful small group learning tool that should be part of the armamentarium of every serious educator. Classic PBL uses ill-structured problems to simulate the conditions that occur in the real environment. Students play an active role and use an iterative process of seeking new information based on identified learning issues, restructuring the information in light of the new knowledge, gathering additional information, and so forth. Faculty play a facilitatory role, not a traditional instructional role, by posing metacognitive questions to students. These questions serve to assist in organizing, generalizing, and evaluating knowledge; to probe for supporting evidence; to explore faulty reasoning; to stimulate discussion of attitudes; and to develop self-directed learning and self-assessment skills. Professional librarians play significant roles in the PBL environment extending from traditional service provider to resource person to educator. Students and faculty usually find the learning experience productive and enjoyable. PMID:9681175
ERIC Educational Resources Information Center
Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei
2008-01-01
This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…
Learning Rationales and Virtual Reality Technology in Education.
ERIC Educational Resources Information Center
Chiou, Guey-Fa
1995-01-01
Defines and describes virtual reality technology and differentiates between virtual learning environment, learning material, and learning tools. Links learning rationales to virtual reality technology to pave conceptual foundations for application of virtual reality technology education. Constructivism, case-based learning, problem-based learning,…
ERIC Educational Resources Information Center
Kwan, Tammy; So, Max
2008-01-01
This study investigated the environmental learning of a group of senior geography students through a problem-based learning (PBL) field programme to see if the goals of education "for" the environment could be accomplished. In the PBL field programme, the students were given a problem statement concerning a real-life scenario of an old…
Learning from Dealing with Real World Problems
ERIC Educational Resources Information Center
Akcay, Hakan
2017-01-01
The purpose of this article is to provide an example of using real world issues as tools for science teaching and learning. Using real world issues provides students with experiences in learning in problem-based environments and encourages them to apply their content knowledge to solving current and local problems.
Scaffolding in Problem-Based Learning for Low-Achieving Learners
ERIC Educational Resources Information Center
Haruehansawasin, Sanit; Kiattikomol, Paiboon
2018-01-01
This research investigates scaffolding approaches for supporting low-achieving learners in a problem-based learning environment. The study was conducted in a vocational school with 3 different approaches to scaffolding using 3 groups in addition to a control group. The area of focus was a learning module using computer spreadsheets. The results…
Improving Problem-Based Learning in Creative Communities through Effective Group Evaluation
ERIC Educational Resources Information Center
West, Richard E.; Williams, Greg; Williams, David
2013-01-01
In this case study, we researched one cohort from the Center for Animation, a higher education teaching environment that has successfully fostered group creativity and learning outcomes through problem-based learning. Through live and videotaped observations of the interactions of this community over 18 months, in addition to focused interviews…
PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education
ERIC Educational Resources Information Center
dos Santos, Simone C.
2017-01-01
The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…
Deep Learning towards Expertise Development in a Visualization-Based Learning Environment
ERIC Educational Resources Information Center
Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun
2017-01-01
With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…
ERIC Educational Resources Information Center
Khumsikiew, Jeerisuda; Donsamak, Sisira; Saeteaw, Manit
2015-01-01
Problem-based Learning (PBL) is an alternate method of instruction that incorporates basic elements of cognitive learning theory. Colleges of pharmacy use PBL to aid anticipated learning outcomes and practice competencies for pharmacy student. The purpose of this study were to implement and evaluate a model of small group PBL for 5th year pharmacy…
Promoting Positive Academic Dispositions Using a Web-Based PBL Environment: The GlobalEd 2 Project
ERIC Educational Resources Information Center
Brown, Scott W.; Lawless, Kimberly A.; Boyer, Mark A.
2013-01-01
Problem-based learning (PBL) is an instructional design approach for promoting student learning, understanding and knowledge development in context rich settings. Previous PBL research has primarily focused on face-to-face learning environments, but current technologies afford PBL designers the opportunities to create online, virtual, PBL…
Telling Active Learning Pedagogies Apart: From Theory to Practice
ERIC Educational Resources Information Center
Cattaneo, Kelsey Hood
2017-01-01
Designing learning environments to incorporate active learning pedagogies is difficult as definitions are often contested and intertwined. This article seeks to determine whether classification of active learning pedagogies (i.e., project-based, problem-based, inquiry-based, case-based, and discovery-based), through theoretical and practical…
Can Interactive Web-Based CAD Tools Improve the Learning of Engineering Drawing? A Case Study
ERIC Educational Resources Information Center
Pando Cerra, Pablo; Suárez González, Jesús M.; Busto Parra, Bernardo; Rodríguez Ortiz, Diana; Álvarez Peñín, Pedro I.
2014-01-01
Many current Web-based learning environments facilitate the theoretical teaching of a subject but this may not be sufficient for those disciplines that require a significant use of graphic mechanisms to resolve problems. This research study looks at the use of an environment that can help students learn engineering drawing with Web-based CAD…
The advantages of problem-based curricula.
Dolmans, D.; Schmidt, H.
1996-01-01
Problem-based curricula provide a learning environment in which competence is fostered not primarily by teaching to impart knowledge, but through encouraging an inquisitive style of learning. Preliminary discussion in small groups, contextual learning, integration of knowledge and an emphasis on patient problems, have several cognitive effects on student learning. These effects are increased retention of knowledge, enhancement of integration of basic science concepts into clinical problems, the development of self-directed learning skills, and the enhancement of students' intrinsic interest in the subject matter. In this paper a number of studies will be reviewed that provide empirical evidence for these premises. PMID:8949589
Humor as a facilitative style in problem-based learning environments for nursing students.
Chauvet, Seanna; Hofmeyer, Anne
2007-05-01
Although the nursing and education literature confirm that humor has a role to play in the learning experience, there is little evidence available about the impact and the challenges of using humor to facilitate group process and learning in problem-based learning environments for nursing students. In this paper, we explore humor as a style of communication in PBL environments using examples from the classroom. We then propose a range of strategies to build capacity in PBL tutors and to infuse humor into the PBL classroom such as: acceptance that fun and humor are components of the ground rules in the group; appropriate humor and boundaries; mutual story sharing; and creative activities to moderate stress and build coping strategies to thrive in clinical practice. It is timely for nurse academics and researchers to examine the contribution of humor as a facilitative communication style in the PBL environment. Findings could inform evidence-based teaching of nursing students and foster life-long learning and communication skills.
ERIC Educational Resources Information Center
Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.
2016-01-01
We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…
A Study of Learning and Motivation in a New Media Enriched Environment for Middle School Science
ERIC Educational Resources Information Center
Liu, Min; Horton, Lucas; Olmanson, Justin; Toprac, Paul
2011-01-01
This study examines middle school students' learning and motivation as they engaged in a new media enriched problem-based learning (PBL) environment for middle school science. Using a mixed-method design with both quantitative and qualitative data, we investigated the effect of a new media environment on sixth graders' science learning, their…
ERIC Educational Resources Information Center
Kordaki, Maria
2010-01-01
This paper presents both the design and the pilot formative evaluation study of a computer-based problem-solving environment (named LECGO: Learning Environment for programming using C using Geometrical Objects) for the learning of computer programming using C by beginners. In its design, constructivist and social learning theories were taken into…
ERIC Educational Resources Information Center
Barber, Wendy; King, Sherry
2016-01-01
Universities and institutions of higher education are facing economic pressures to sustain large classes, while simultaneously maintaining the quality of the online learning environment (Deming et al., 2015). Digital learning environments require significant pedagogical shifts on the part of the teacher. This paper is a qualitative examination of…
What Good Teachers Do to Promote Effective Student Learning in a Problem-Based Learning Environment
ERIC Educational Resources Information Center
Goh, Karen
2014-01-01
This qualitative study examines the attributes of effective teachers in a problem-based learning (PBL) classroom, specifically in a polytechnic context in Singapore. The educational beliefs, approaches and strategies of a group of PBL facilitators who have received teaching awards are examined to understand how critical thinking, collaborative and…
ERIC Educational Resources Information Center
Nathoo, Arif N.; Goldhoff, Patricia; Quattrochi, James J.
2005-01-01
Purpose: This study sought to assess the introduction of a web-based innovation in medical education that complements traditional problem-based learning curricula. Utilizing the case method as its fundamental educational approach, the Interactive Case-based Online Network (ICON) allows students to interact with each other, faculty and a virtual…
ERIC Educational Resources Information Center
Thuen, Elin; Bru, Edvin
2009-01-01
Previous cross-sectional based research suggests that students' perceptions of the learning environment are associated with emotional and behavioural problems (EBP). However, it is not clear to what extent the associations identified are merely reflections of individual student characteristics. The present study explored this issue by utilizing a…
Innovative eLearning: Technology Shaping Contemporary Problem Based Learning: A Cross-Case Analysis
ERIC Educational Resources Information Center
Blackburn, Greg
2015-01-01
Preparing students to be critical thinkers and effective communicators is essential in today's multinational and technologically sophisticated environment. New electronic technologies provide opportunities for creating learning environments that extend the possibilities of "old" but still essential technologies: books, blackboards, and…
ERIC Educational Resources Information Center
Thurmond, Brandi
2011-01-01
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…
ERIC Educational Resources Information Center
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-01-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus…
ERIC Educational Resources Information Center
Tang, Stephen; Hanneghan, Martin
2011-01-01
Game-based learning harnesses the advantages of computer games technology to create a fun, motivating and interactive virtual learning environment that promotes problem-based experiential learning. Such an approach is advocated by many commentators to provide an enhanced learning experience than those based on traditional didactic methods.…
Investigating ICT Using Problem-Based Learning in Face-to-Face and Online Learning Environments
ERIC Educational Resources Information Center
Pearson, John
2006-01-01
This article reports on the design, implementation and evaluation of a module in the MEd (Business) in the Faculty of Education at the University of Hong Kong in which an explicit problem-based learning (PBL) approach was used to investigate the challenges associated with the adoption and use of information and communication technologies (ICT) in…
ERIC Educational Resources Information Center
Chang, Ju-Yu
2013-01-01
Cognitive load theorists claim that problem-centered instruction is not an effective instruction because it is not compatible with human cognitive structure. They argue that the nature of problem-centered instruction tends to over-load learner working memory capacity. That is why many problem-centered practices fail. To better support students and…
Renewed roles for librarians in problem-based learning in the medical curriculum.
Mi, Misa
2011-01-01
Problem-based learning (PBL) is a teaching-learning process or method of instruction that is widely used in medical education curricula. Librarians play important roles as facilitators for PBL as well as guides for information resources. Involvement in PBL activities presents unique opportunities to incorporate library resources and instruction into the medical curriculum. This article reviews the problem-based learning method within the conceptual framework of the learning theory of constructivism. It describes how a medical librarian at a U.S. medical school used emerging technologies to facilitate PBL small group case discussions, guide students to quality information resources, and enhance the learning environment for the PBL process.
Embellishing Problem-Solving Examples with Deep Structure Information Facilitates Transfer
ERIC Educational Resources Information Center
Lee, Hee Seung; Betts, Shawn; Anderson, John R.
2017-01-01
Appreciation of problem structure is critical to successful learning. Two experiments investigated effective ways of communicating problem structure in a computer-based learning environment and tested whether verbal instruction is necessary to specify solution steps, when deep structure is already embellished by instructional examples.…
ERIC Educational Resources Information Center
Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter
2016-01-01
In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…
Enriching Project-Based Learning Environments with Virtual Manipulatives: A Comparative Study
ERIC Educational Resources Information Center
Çakiroglu, Ünal
2014-01-01
Problem statement: Although there is agreement on the potential of project based learning (PBL) and virtual manipulatives (VMs), their positive impact depends on how they are used. This study was based on supporting the use of online PBL environments and improving the efficacy of the instructional practices in PBL by combining the potentials of…
ERIC Educational Resources Information Center
Kopp, Birgitta; Hasenbein, Melanie; Mandl, Heinz
2014-01-01
This article analyzes the collaborative problem solving activities and learning outcomes of five groups that worked on two different complex cases in a virtual professional training course. In this asynchronous virtual learning environment, all knowledge management content was delivered virtually and collaboration took place through forums. To…
Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng
2018-06-13
Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.
NASA Astrophysics Data System (ADS)
Pata, Kai; Sarapuu, Tago
2006-09-01
This study investigated the possible activation of different types of model-based reasoning processes in two learning settings, and the influence of various terms of reasoning on the learners’ problem representation development. Changes in 53 students’ problem representations about genetic issue were analysed while they worked with different modelling tools in a synchronous network-based environment. The discussion log-files were used for the “microgenetic” analysis of reasoning types. For studying the stages of students’ problem representation development, individual pre-essays and post-essays and their utterances during two reasoning phases were used. An approach for mapping problem representations was developed. Characterizing the elements of mental models and their reasoning level enabled the description of five hierarchical categories of problem representations. Learning in exploratory and experimental settings was registered as the shift towards more complex stages of problem representations in genetics. The effect of different types of reasoning could be observed as the divergent development of problem representations within hierarchical categories.
When students can choose easy, medium, or hard homework problems
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca E.; Seaton, Daniel T.; Cardamone, Caroline N.; Rayyan, Saif; Abbott, Jonathan E.; Barrantes, Analia; Pawl, Andrew; Pritchard, David E.
2012-02-01
We investigate student-chosen, multi-level homework in our Integrated Learning Environment for Mechanics [1] built using the LON-CAPA [2] open-source learning system. Multi-level refers to problems categorized as easy, medium, and hard. Problem levels were determined a priori based on the knowledge needed to solve them [3]. We analyze these problems using three measures: time-per-problem, LON-CAPA difficulty, and item difficulty measured by item response theory. Our analysis of student behavior in this environment suggests that time-per-problem is strongly dependent on problem category, unlike either score-based measures. We also found trends in student choice of problems, overall effort, and efficiency across the student population. Allowing students choice in problem solving seems to improve their motivation; 70% of students worked additional problems for which no credit was given.
Problem-Based Learning in Online Environments
ERIC Educational Resources Information Center
An, Yun-Jo; Reigeluth, Charles M.
2008-01-01
This study examined 3 graduate-level online courses that utilized problem-based learning (PBL), considering each course as a case. Beyond describing how PBL was implemented in each case, this study identified what worked (strengths) and did not work (weaknesses) in the PBL and explored how the PBL could be improved (improvements) by collecting…
Theory Presentation and Assessment in a Problem-Based Learning Group.
ERIC Educational Resources Information Center
Glenn, Phillip J.; Koschmann, Timothy; Conlee, Melinda
A study used conversational analysis to examine the reasoning students use in a Problem-Based Learning (PBL) environment as they formulate a theory (in medical contexts, a diagnosis) which accounts for evidence (medical history and symptoms). A videotaped group interaction was analyzed and transcribed. In the segment of interaction examined, the…
ERIC Educational Resources Information Center
Chen, Lih-Shyang; Cheng, Yuh-Ming; Weng, Sheng-Feng; Chen, Yong-Guo; Lin, Chyi-Her
2009-01-01
The prevalence of Internet applications nowadays has led many medical schools and centers to incorporate computerized Problem-Based Learning (PBL) methods into their training curricula. However, many of these PBL systems do not truly reflect the situations which practitioners may actually encounter in a real medical environment, and hence their…
The Ontologies of Complexity and Learning about Complex Systems
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; So, Hyo-Jeong; Lee, June
2011-01-01
This paper discusses a study of students learning core conceptual perspectives from recent scientific research on complexity using a hypermedia learning environment in which different types of scaffolding were provided. Three comparison groups used a hypermedia system with agent-based models and scaffolds for problem-based learning activities that…
Effects of Instruction-Supported Learning with Worked Examples in Quantitative Method Training
ERIC Educational Resources Information Center
Wagner, Kai; Klein, Martin; Klopp, Eric; Puhl, Thomas; Stark, Robin
2013-01-01
An experimental field study at a German university was conducted in order to test the effectiveness of an integrated learning environment to improve the acquisition of knowledge about empirical research methods. The integrated learning environment was based on the combination of instruction-oriented and problem-oriented design principles and…
Assessment in Immersive Virtual Environments: Cases for Learning, of Learning, and as Learning
ERIC Educational Resources Information Center
Code, Jillianne; Zap, Nick
2017-01-01
The key to education reform lies in exploring alternative forms of assessment. Alternative performance assessments provide a more valid measure than multiple-choice tests of students' conceptual understanding and higher-level skills such as problem solving and inquiry. Advances in game-based and virtual environment technologies are creating new…
Fostering Creativity through Inquiry and Adventure in Informal Learning Environment Design
ERIC Educational Resources Information Center
Doering, Aaron; Henrickson, Jeni
2015-01-01
Self-directed, inquiry-based learning opportunities focused on transdisciplinary real-world problem solving have been shown to foster creativity in learners. What tools might we provide classroom teachers to scaffold them and their students through this creative process? This study examines an online informal learning environment and the role the…
Testing the effectiveness of problem-based learning with learning-disabled students in biology
NASA Astrophysics Data System (ADS)
Guerrera, Claudia Patrizia
The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.
NASA Astrophysics Data System (ADS)
Rehmat, Abeera Parvaiz
As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.
Examination of Pre-Service Science Teachers' Activities Using Problem Based Learning Method
ERIC Educational Resources Information Center
Ekici, Didem Inel
2016-01-01
In this study, both the activities prepared by pre-service science teachers regarding the Problem Based Learning method and the pre-service science teachers' views regarding the method were examined before and after applying their activities in a real class environment. 69 pre-service science teachers studying in the 4th grade of the science…
ERIC Educational Resources Information Center
Omale, Nicholas M.
2010-01-01
This exploratory case study examines how three media attributes in 3-D MUVEs--avatars, 3-D spaces and bubble dialogue boxes--affect interaction in an online problem-based learning (PBL) activity. The study participants were eleven undergraduate students enrolled in a 200-level, three-credit-hour technology integration course at a Midwestern…
ERIC Educational Resources Information Center
Kricsfalusy, Vladimir; George, Colleen; Reed, Maureen G.
2018-01-01
Improving student competencies to address sustainability challenges has been a subject of significant debate in higher education. Problem- and project-based learning have been widely celebrated as course models that support the development of sustainability competencies. This paper describes a course developed for a professional Master's program…
The Use of a Real Life Simulated Problem Based Learning Activity in a Corporate Environment
ERIC Educational Resources Information Center
Laurent, Mark A.
2013-01-01
This narrative study examines using a real life simulated problem base learning activity during education of clinical staff, which is expected to design and develop clinically correct electronic charting systems. Expertise in healthcare does not readily transcend to the realm of manipulating software to collect patient data that is pertinent to…
Factors Influencing the Use of Cognitive Tools in Web-Based Learning Environments: A Case Study
ERIC Educational Resources Information Center
Ozcelik, Erol; Yildirim, Soner
2005-01-01
High demands on learners in Web-based learning environments and constraints of the human cognitive system cause disorientation and cognitive overload. These problems could be inhibited if appropriate cognitive tools are provided to support learners' cognitive processes. The purpose of this study was to explore the factors influencing the use of…
ERIC Educational Resources Information Center
Lee, Young-Jin
2012-01-01
This paper presents a computational method that can efficiently estimate the ability of students from the log files of a Web-based learning environment capturing their problem solving processes. The computational method developed in this study approximates the posterior distribution of the student's ability obtained from the conventional Bayes…
Development of a Mobile Learning System Based on a Collaborative Problem-Posing Strategy
ERIC Educational Resources Information Center
Sung, Han-Yu; Hwang, Gwo-Jen; Chang, Ya-Chi
2016-01-01
In this study, a problem-posing strategy is proposed for supporting collaborative mobile learning activities. Accordingly, a mobile learning environment has been developed, and an experiment on a local culture course has been conducted to evaluate the effectiveness of the proposed approach. Three classes of an elementary school in southern Taiwan…
ERIC Educational Resources Information Center
Savelsbergh, Elwin R.; Ferguson-Hessler, Monica G. M.; de Jong, Ton
An approach to teaching problem-solving based on using the computer software Mathematica is applied to the study of electrostatics and is compared with the normal approach to the module. Learning outcomes for both approaches were not significantly different. The experimental course successfully addressed a number of misconceptions. Students in the…
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
ERIC Educational Resources Information Center
Nitta, Takuya; Takaoka, Ryo; Ahama, Shigeki; Shimokawa, Masayuki
2014-01-01
The competency and curriculum for human resource development in knowledge based society are proposed in each country. We think the keywords are "collaborative problem solving" and "effective use of ICT". In particular, the competency to perform the collaborative problem solving and learning with others on the network is…
ERIC Educational Resources Information Center
Chen, Ching-Huei; Liu, Jun-Han; Shou, Wen-Chuan
2018-01-01
Although educational games have become prevalent in recent research, only a limited number of studies have considered learners' learning behaviors while playing a science problem-solving game. Introducing a competitive element to game-based learning is promising; however, research has produced ambiguous results, indicating that more studies should…
Active Learning in a Large General Physics Classroom.
NASA Astrophysics Data System (ADS)
Trousil, Rebecca
2008-04-01
In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.
ERIC Educational Resources Information Center
Gurpinar, Erol; Zayim, Nese; Ozenci, Ciler Celik; Alimoglu, Mustafa Kemal
2009-01-01
The purpose of the study was to determine applicability of e-learning in problem based learning (PBL) by investigating its usage and acceptability among students and its effect on academic achievement. The study was carried out among first year medical students of Akdeniz University, Turkey. A web-based learning environment (WBLE) including…
ERIC Educational Resources Information Center
Sedig, Kamran
2008-01-01
Many children do not like learning mathematics. They do not find mathematics fun, motivating, and engaging, and they think it is difficult to learn. Computer-based games have the potential and possibility of addressing this problem. This paper proposes a strategy for designing game-based learning environments that takes advantage of the…
2011-01-01
Background Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. Methods We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. Results We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. Conclusions The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer. PMID:22032775
Welter, Petra; Deserno, Thomas M; Fischer, Benedikt; Günther, Rolf W; Spreckelsen, Cord
2011-10-27
Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.
ERIC Educational Resources Information Center
Kember, David; Leung, Doris Y. P.
2005-01-01
The effect of the teaching and learning environment on the development of generic capabilities was examined through a survey of 1756 undergraduate students at a university in Hong Kong. The survey assessed students' perceptions of the development of the six capabilities of critical thinking, self-managed learning, adaptability, problem solving,…
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
The Design of Computerized Practice Fields for Problem Solving and Contextualized Transfer
ERIC Educational Resources Information Center
Riedel, Jens; Fitzgerald, Gail; Leven, Franz; Toenshoff, Burkhard
2003-01-01
Current theories of learning emphasize the importance of learner-centered, active, authentic, environments for meaningful knowledge construction. From this perspective, computerized case-based learning systems afford practice fields for learners to build domain knowledge and problem-solving skills and to support contextualized transfer of…
Semantic Annotation of Ubiquitous Learning Environments
ERIC Educational Resources Information Center
Weal, M. J.; Michaelides, D. T.; Page, K.; De Roure, D. C.; Monger, E.; Gobbi, M.
2012-01-01
Skills-based learning environments are used to promote the acquisition of practical skills as well as decision making, communication, and problem solving. It is important to provide feedback to the students from these sessions and observations of their actions may inform the assessment process and help researchers to better understand the learning…
An Architecture for Case-Based Learning
ERIC Educational Resources Information Center
Cifuentes, Laurent; Mercer, Rene; Alverez, Omar; Bettati, Riccardo
2010-01-01
We report on the design, development, implementation, and evaluation of a case-based instructional environment designed for learning network engineering skills for cybersecurity. We describe the societal problem addressed, the theory-based solution, and the preliminary testing and evaluation of that solution. We identify an architecture for…
Comparing Students' Attitudes in Problem-Based and Conventional Curricula.
ERIC Educational Resources Information Center
Kaufman, David M.; Mann, Karen V.
1996-01-01
A survey of 2 medical school classes at Dalhousie University (Canada) compared student attitudes toward the conventional (n=57 students) and problem-based (n=73) curricula. Students in the problem-based group had more positive attitudes toward the learning environment and curriculum, but were less positive on a student-interaction scale. No…
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom
2007-01-01
Innovation Education (IE) is a new subject area in Icelandic schools. The aim of the subject is to train students to identify the needs and problems in their environment and to develop solutions: a process of ideation. This activity has been classroom based but now a Virtual Reality Learning Environment technology (VRLE) has been designed to…
A Knowledge-Based Approach to Retrieving Teaching Materials for Context-Aware Learning
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong
2009-01-01
With the rapid development of wireless communication and sensor technologies, ubiquitous learning has become a promising solution to educational problems. In context-aware ubiquitous learning environments, it is required that learning content is retrieved according to environmental contexts, such as learners' location. Also, a learning content…
ERIC Educational Resources Information Center
McLinden, Mike; McCall, Steve; Hinton, Danielle; Weston, Annette; Douglas, Graeme
2006-01-01
This article presents a summary of the results from phase 1 of a two-phase research project. Drawing on the principles of problem-based learning (PBL), the aims of phase 1 were to design, develop and evaluate a set of flexible online teaching resources for use within a virtual learning environment. Participants in the project (n = 10) were…
ERIC Educational Resources Information Center
Williams, Judith C.; Alwis, W. A. M.; Rotgans, Jerome I.
2011-01-01
The purpose of this study was to investigate the stability of three distinct tutor behaviors (1) use of subject-matter expertise, (2) social congruence and (3) cognitive congruence, in a problem-based learning (PBL) environment. The data comprised the input from 16,047 different students to a survey of 762 tutors administered in three consecutive…
Systems Thinking: A New Lens for Old Problems
ERIC Educational Resources Information Center
Bierema, Laura L.
2003-01-01
This article introduces systems thinking and identifies its implications for practice-based learning and improvement. The article defines systems, identifies fundamental aspects of systems thinking, and provides strategies for creating more practice-based learning environments in medical contexts. (Contains 1 table.)
Leatemia, Lukas D; Susilo, Astrid P; van Berkel, Henk
2016-12-03
To identify the student's readiness to perform self-directed learning and the underlying factors influencing it on the hybrid problem based learning curriculum. A combination of quantitative and qualitative studies was conducted in five medical schools in Indonesia. In the quantitative study, the Self Directed Learning Readiness Scale was distributed to all students in all batches, who had experience with the hybrid problem based curriculum. They were categorized into low- and high -level based on the score of the questionnaire. Three focus group discussions (low-, high-, and mixed level) were conducted in the qualitative study with six to twelve students chosen randomly from each group to find the factors influencing their self-directed learning readiness. Two researchers analysed the qualitative data as a measure of triangulation. The quantitative study showed only half of the students had a high-level of self-directed learning readiness, and a similar trend also occurred in each batch. The proportion of students with a high level of self-directed learning readiness was lower in the senior students compared to more junior students. The qualitative study showed that problem based learning processes, assessments, learning environment, students' life styles, students' perceptions of the topics, and mood, were factors influencing their self-directed learning. A hybrid problem based curriculum may not fully affect the students' self-directed learning. The curriculum system, teacher's experiences, student's background and cultural factors might contribute to the difficulties for the student's in conducting self-directed learning.
ERIC Educational Resources Information Center
Koretsky, Milo D.; Kelly, Christine; Gummer, Edith
2011-01-01
The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…
Student Reflections as Artifacts of Self-Regulatory Behaviors for Learning: A Tale of Two Courses
ERIC Educational Resources Information Center
Bigenho, Christopher William
2011-01-01
The rapid growth of online and blended learning environments in both higher education and K-12, along with the development of innovative game based, narrative driven, problem-based learning (PBL) systems known as Alternate Reality Games (AltRG), has led to the need to understand student's abilities to self-regulate their learning behaviors…
Applying Social Tagging to Manage Cognitive Load in a Web 2.0 Self-Learning Environment
ERIC Educational Resources Information Center
Huang, Yueh-Min; Huang, Yong-Ming; Liu, Chien-Hung; Tsai, Chin-Chung
2013-01-01
Web-based self-learning (WBSL) has received a lot of attention in recent years due to the vast amount of varied materials available in the Web 2.0 environment. However, this large amount of material also has resulted in a serious problem of cognitive overload that degrades the efficacy of learning. In this study, an information graphics method is…
Post Secondary Project-Based Learning in Science, Technology, Engineering and Mathematics
ERIC Educational Resources Information Center
Ralph, Rachel A.
2015-01-01
Project-based learning (PjBL--to distinguish from problem-based learning--PBL) has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions. The purpose of this paper is to examine the research that has studied a variety of science, technology,…
Increasing Students' Science Writing Skills through a PBL Simulation
ERIC Educational Resources Information Center
Brown, Scott W.; Lawless, Kimberly A.; Rhoads, Christopher; Newton, Sarah D.; Lynn, Lisa
2016-01-01
Problem-based learning (PBL) is an instructional design approach for promoting student learning, in context-rich settings. GlobalEd 2 (GE2) is PBL intervention that combines face-to-face and online environments into a 12-week simulation of international negotiations of science advisors on global water resource issues. The GE2 environment is…
Knowledge acquisition and learning process description in context of e-learning
NASA Astrophysics Data System (ADS)
Kiselev, B. G.; Yakutenko, V. A.; Yuriev, M. A.
2017-01-01
This paper investigates the problem of design of e-learning and MOOC systems. It describes instructional design-based approaches to e-learning systems design: IMS Learning Design, MISA and TELOS. To solve this problem we present Knowledge Field of Educational Environment with Competence boundary conditions - instructional engineering method for self-learning systems design. It is based on the simplified TELOS approach and enables a user to create their individual learning path by choosing prerequisite and target competencies. The paper provides the ontology model for the described instructional engineering method, real life use cases and the classification of the presented model. Ontology model consists of 13 classes and 15 properties. Some of them are inherited from Knowledge Field of Educational Environment and some are new and describe competence boundary conditions and knowledge validation objects. Ontology model uses logical constraints and is described using OWL 2 standard. To give TELOS users better understanding of our approach we list mapping between TELOS and KFEEC.
Mobile robots exploration through cnn-based reinforcement learning.
Tai, Lei; Liu, Ming
2016-01-01
Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in several different simulated environments. It is the first time that the reinforcement learning is used to build an exploration strategy for mobile robots through raw sensor information.
Reinforcement Learning in a Nonstationary Environment: The El Farol Problem
NASA Technical Reports Server (NTRS)
Bell, Ann Maria
1999-01-01
This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.
Thai nursing students' adaption to problem-based learning: a qualitative study.
Klunklin, Areewan; Subpaiboongid, Pornpun; Keitlertnapha, Pongsri; Viseskul, Nongkran; Turale, Sue
2011-11-01
Student-centred forms of learning have gained favour internationally over the last few decades including problem based learning, an approach now incorporated in medicine, nursing and other disciplines' education in many countries. However, it is still new in Thailand and being piloted to try to offset traditional forms of didactic, teacher-centred forms of teaching. In this qualitative study, 25 undergraduate nursing students in northern Thailand were interviewed about their experiences with problem-based learning in a health promotion subject. Content analysis was used to interrogate interview data, which revealed four categories: adapting, seeking assistance, self-development, and thinking process development. Initially participants had mixed emotions of confusion, negativity or boredom in the adaption process, but expressed satisfaction with creativity in learning, group work, and leadership development. They described increased abilities to problem solve and think critically, but struggled to develop questioning behaviours in learning. Socio-culturally in Thai education, students have great respect for teachers, but rarely question or challenge them or their learning. We conclude that problem-based learning has great potential in Thai nursing education, but educators and systems need to systematically prepare appropriate learning environments, their staff and students, to incorporate this within curricula. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Korucu, Agâh Tugrul; Cakir, Hasan
2018-01-01
Some of the 21st century proficiencies expected from people are determined as collaborative working and problem solving. One way to gain these proficiencies is by using collaborative problem solving based on social constructivism theory. Collaborative problem solving is one of the methods allowing for social constructivism in the class. In…
The Validation of the Active Learning in Health Professions Scale
ERIC Educational Resources Information Center
Kammer, Rebecca; Schreiner, Laurie; Kim, Young K.; Denial, Aurora
2015-01-01
There is a need for an assessment tool for evaluating the effectiveness of active learning strategies such as problem-based learning in promoting deep learning and clinical reasoning skills within the dual environments of didactic and clinical settings in health professions education. The Active Learning in Health Professions Scale (ALPHS)…
ERIC Educational Resources Information Center
Hou, Huei-Tse; Yu, Tsai-Fang; Wu, Yi-Xuan; Sung, Yao-Ting; Chang, Kuo-En
2016-01-01
The theory of spatial thinking is relevant to the learning and teaching of many academic domains. One promising method to facilitate learners' higher-order thinking is to utilize a web map mind tool to assist learners in applying spatial thinking to cooperative problem solving. In this study, an environment is designed based on the theory of…
Undergraduate medical student's perceptions on traditional and problem based curricula: pilot study.
Meo, Sultan Ayoub
2014-07-01
To evaluate and compare students' perceptions about teaching and learning, knowledge and skills, outcomes of course materials and their satisfaction in traditional Lecture Based learning versus Problem-Based Learning curricula in two different medical schools. The comparative cross-sectional questionnaire-based study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia, from July 2009 to January 2011. Two different undergraduate medical schools were selected; one followed the traditional curriculum, while the other followed the problem-based learning curriculum. Two equal groups of first year medical students were selected. They were taught in respiratory physiology and lung function lab according to their curriculum for a period of two weeks. At the completion of the study period, a five-point Likert scale was used to assess students' perceptions on satisfaction, academic environment, teaching and learning, knowledge and skills and outcomes of course materials about effectiveness of problem-based learning compared to traditional methods. SPSS 19 was used for statistical analysis. Students used to problem-based learning curriculum obtained marginally higher scores in their perceptions (24.10 +/- 3.63) compared to ones following the traditional curriculum (22.67 +/- 3.74). However, the difference in perceptions did not achieve a level of statistical significance. Students following problem-based learning curriculum have more positive perceptions on teaching and learning, knowledge and skills, outcomes of their course materials and satisfaction compared to the students belonging to the traditional style of medical school. However, the difference between the two groups was not statistically significant.
Four Sides to Every Story: Creating Effective Multimedia Business Simulations.
ERIC Educational Resources Information Center
Graham, William; Legere, Sylvie M.
1998-01-01
Discusses the goal-based design concepts used to build a CD-ROM-based course for senior executives at Andersen Consulting. Topics include quality management; continuous improvement; problem-centered learning; video storytelling; feedback; multimedia learning environments; course organization; and possible future applications. (Author/LRW)
ERIC Educational Resources Information Center
Demetriadis, S. N.; Papadopoulos, P. M.; Stamelos, I. G.; Fischer, F.
2008-01-01
This study investigates the hypothesis that students' learning and problem-solving performance in ill-structured domains can be improved, if elaborative question prompts are used to activate students' context-generating cognitive processes, during case study. Two groups of students used a web-based learning environment to criss-cross and study…
ERIC Educational Resources Information Center
Kunsting, Josef; Wirth, Joachim; Paas, Fred
2011-01-01
Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…
Problem Based Learning in Design and Technology Education Supported by Hypermedia-Based Environments
ERIC Educational Resources Information Center
Page, Tom; Lehtonen, Miika
2006-01-01
Audio-visual advances in virtual reality (VR) technology have given rise to innovative new ways to teach and learn. However, so far teaching and learning processes have been technologically driven as opposed to pedagogically led. This paper identifies the development of a pedagogical model and its application for teaching, studying and learning…
Designing a Problem-Based Learning Environment for ESL Students in Business Communication.
ERIC Educational Resources Information Center
Allen, Roberta; Rooney, Pam
1998-01-01
Describes a problem-based course structure (that focuses on problem solving, critical thinking, and team skills) for an upper-level business writing course that allows both English-as-a-Second-Language (ESL) and Native English-speaking students the opportunity to improve communication abilities in cross-cultural work groups. Discusses cooperative…
ERIC Educational Resources Information Center
Aronis, Alexis
2016-01-01
Previous studies report the involvement of the use of video in the frameworks of problem-based learning (PBL), case-based learning, and project-based learning. This systematic literature review, through two research questions, explores the positive influence of the use of video in those instructional methods, and, while focusing on PBL, identifies…
NASA Astrophysics Data System (ADS)
Kim, Nam Ju
This multiple paper dissertation addressed several issues in Problem-based learning (PBL) through conceptual analysis, meta-analysis, and empirical research. PBL is characterized by ill-structured tasks, self-directed learning process, and a combination of individual and cooperative learning activities. Students who lack content knowledge and problem-solving skills may struggle to address associated tasks that are beyond their current ability levels in PBL. This dissertation addressed a) scaffolding characteristics (i.e., scaffolding types, delivery method, customization) and their effects on students' perception of optimal challenge in PBL, b) the possibility of virtual learning environments for PBL, and c) the importance of information literacy for successful PBL learning. Specifically, this dissertation demonstrated the effectiveness of scaffolding customization (i.e., fading, adding, and fading/adding) to enhance students' self-directed learning in PBL. Moreover, the effectiveness of scaffolding was greatest when scaffolding customization is self-selected than based on fixed-time interval and their performance. This suggests that it might be important for students to take responsibility for their learning in PBL and individualized and just-in-time scaffolding can be one of the solutions to address K-12 students' difficulties in improving problem-solving skills and adjusting to PBL.
Könings, Karen D; de Jong, Nynke; Lohrmann, Christa; Sumskas, Linas; Smith, Tony; O'Connor, Stephen J; Spanjers, Ingrid A E; Van Merriënboer, Jeroen J G; Czabanowska, Katarzyna
2018-01-01
Public health leaders are confronted with complex problems, and developing effective leadership competencies is essential. The teaching of leadership is still not common in public health training programs around the world. A reconceptualization of professional training is needed and can benefit from innovative educational approaches. Our aim was to explore learners' perceptions of the effectiveness and appeal of a public health leadership course using problem-based, blended learning methods that used virtual learning environment technologies. In this cross-sectional evaluative study, the Self-Assessment Instrument of Competencies for Public Health Leaders was administered before and after an online, blended-learning, problem-based (PBL) leadership course. An evaluation questionnaire was also used to measure perceptions of blended learning, problem-based learning, and tutor functioning among 19 public health professionals from The Netherlands ( n = 8), Lithuania ( n = 5), and Austria ( n = 6).Participants showed overall satisfaction and knowledge gains related to public health leadership competencies in six of eight measured areas, especially Political Leadership and Systems Thinking. Some perceptions of blended learning and PBL varied between the institutions. This might have been caused by lack of experience of the educational approaches, differing professional backgrounds, inexperience of communicating in the online setting, and different expectations towards the course. Blended, problem-based learning might be an effective way to develop leadership competencies among public health professionals in international and interdisciplinary context.
Susilo, Astrid P.; van Berkel, Henk
2016-01-01
Objectives To identify the student’s readiness to perform self-directed learning and the underlying factors influencing it on the hybrid problem based learning curriculum. Methods A combination of quantitative and qualitative studies was conducted in five medical schools in Indonesia. In the quantitative study, the Self Directed Learning Readiness Scale was distributed to all students in all batches, who had experience with the hybrid problem based curriculum. They were categorized into low- and high -level based on the score of the questionnaire. Three focus group discussions (low-, high-, and mixed level) were conducted in the qualitative study with six to twelve students chosen randomly from each group to find the factors influencing their self-directed learning readiness. Two researchers analysed the qualitative data as a measure of triangulation. Results The quantitative study showed only half of the students had a high-level of self-directed learning readiness, and a similar trend also occurred in each batch. The proportion of students with a high level of self-directed learning readiness was lower in the senior students compared to more junior students. The qualitative study showed that problem based learning processes, assessments, learning environment, students’ life styles, students’ perceptions of the topics, and mood, were factors influencing their self-directed learning. Conclusion A hybrid problem based curriculum may not fully affect the students’ self-directed learning. The curriculum system, teacher’s experiences, student’s background and cultural factors might contribute to the difficulties for the student’s in conducting self-directed learning. PMID:27915308
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
Evaluating Biology Achievement Scores in an ICT Integrated PBL Environment
ERIC Educational Resources Information Center
Osman, Kamisah; Kaur, Simranjeet Judge
2014-01-01
Students' achievement in Biology is often looked up as a benchmark to evaluate the mode of teaching and learning in higher education. Problem-based learning (PBL) is an approach that focuses on students' solving a problem through collaborative groups. There were eighty samples involved in this study. The samples were divided into three groups: ICT…
Statistical Inference-Based Cache Management for Mobile Learning
ERIC Educational Resources Information Center
Li, Qing; Zhao, Jianmin; Zhu, Xinzhong
2009-01-01
Supporting efficient data access in the mobile learning environment is becoming a hot research problem in recent years, and the problem becomes tougher when the clients are using light-weight mobile devices such as cell phones whose limited storage space prevents the clients from holding a large cache. A practical solution is to store the cache…
Authentic Education by Providing a Situation for Student-Selected Problem-Based Learning
ERIC Educational Resources Information Center
Strimel, Greg
2014-01-01
Students are seldom given an authentic experience within school that allows them the opportunity to solve real-life complex engineering design problems that have meaning to their lives and/ or the greater society. They are often confined to learning environments that are limited by the restrictions set by course content for assessment purposes and…
Instructional Strategies for Online Introductory College Physics Based on Learning Styles
ERIC Educational Resources Information Center
Ekwue, Eleazer U.
2013-01-01
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…
ERIC Educational Resources Information Center
Saye, John W.; Brush, Thomas
2007-01-01
This article summarizes findings from a nine-year research program investigating how technological affordances might be used as a part of holistic learning environments to support teachers and learners in disciplined inquiry about persistent social issues. We discuss what our findings suggest about the potential and the limitations of…
Conway, J; Sharkey, R
2002-10-01
The Faculty of Nursing, University of Newcastle, Australia, has been keen to initiate strategies that enhance student learning and nursing practice. Two strategies are problem based learning (PBL) and clinical practice. The Faculty has maintained a comparatively high proportion of the undergraduate hours in the clinical setting in times when financial constraints suggest that simulations and on campus laboratory experiences may be less expensive.Increasingly, computer based technologies are becoming sufficiently refined to support the exploration of nursing practice in a non-traditional lecture/tutorial environment. In 1998, a group of faculty members proposed that computer mediated instruction would provide an opportunity for partnership between students, academics and clinicians that would promote more positive outcomes for all and maintain the integrity of the PBL approach. This paper discusses the similarities between problem based and practice based learning and presents the findings of an evaluative study of the implementation of a practice based learning model that uses computer mediated communication to promote integration of practice experiences with the broader goals of the undergraduate curriculum.
Student Perceptions of Group-Based Competitive Exercises in the Chemistry Classroom
ERIC Educational Resources Information Center
Cannon, Kevin C.; Mody, Tina; Breen, Maureen P.
2008-01-01
A non-traditional teaching method that can operate as a vehicle for engaging students is group-based competitive exercises. These exercises combine cooperative learning with a competitive environment and may be employed to promote subject- and problem-based learning. Survey responses of college-level organic chemistry and biochemistry students…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chang, Shao-Chen; Chen, Pei-Ying; Chen, Xiang-Ya
2018-01-01
Engaging students in real-world learning contexts has been identified by educators as being an important way of helping them learn to apply what they have learned from textbooks to practical problems. The advancements in mobile and image-processing technologies have enabled students to access learning resources and receive learning guidance in…
Problem-Based Learning: A Learning Environment for Enhancing Learning Transfer
ERIC Educational Resources Information Center
Hung, Woei
2013-01-01
Knowledge application and transfer is one of the ultimate learning goals in education. For adult learners, these abilities are not only beneficial but also critical. The ability to apply knowledge learned from school is only a basic requirement in workplaces. In this ever-changing world, the ability to near and far transfer knowledge is the skill…
When Learning and Change Collide: Examining Student Claims to Have "Learned Nothing"
ERIC Educational Resources Information Center
White, Justin; Pinnegar, Stefinee; Esplin, Pat
2010-01-01
The study presents an analysis of student papers at the end of a problem-based course designed to create an active learning environment and encourage a deep approach to learning. It explores the achievement and participation characteristics of students claiming to have "learned nothing" and suggests the impact of student resistance. (Contains 3…
ERIC Educational Resources Information Center
Çolak, Esma
2015-01-01
Problem Statement: For this study, a cooperative learning process was designed in which students with different learning styles could help each other in heterogeneous groups to perform teamwork-based activities. One aspect deemed important in this context was whether the instructional environment designed to reach students with different learning…
The Place of Game-Based Learning in an Age of Austerity
ERIC Educational Resources Information Center
Whitton, Nicola
2012-01-01
Digital games have the potential to create active and engaging environments for learning, supporting problem-solving, communication and group activities, as well as providing a forum for practice and learning through failure. The use of game techniques such as gradually increasing levels of difficulty and contextual feedback support learning, and…
Influence of Students' Learning Styles on the Effectiveness of Instructional Interventions
ERIC Educational Resources Information Center
Lehmann, Thomas; Ifenthaler, Dirk
2012-01-01
This research contributes to answer the question whether learning/cognitive styles of students serve as a justified starting point for creating target-group appropriate instruction. The study was realized in a self-regulated problem-based learning environment. Data of 56 participants on their individual learning styles, their acquired problem…
ERIC Educational Resources Information Center
Chen, Chih-Ming
2013-01-01
Despite rapid and continued adoption of mobile devices, few learning modes integrate with mobile technologies and libraries' environments as innovative learning modes that emphasize the key roles of libraries in facilitating learning. In addition, some education experts have claimed that transmitting knowledge to learners is not the only…
An Investigation into Cooperative Learning in a Virtual World Using Problem-Based Learning
ERIC Educational Resources Information Center
Parson, Vanessa; Bignell, Simon
2017-01-01
Three-dimensional multi-user virtual environments (MUVEs) have the potential to provide experiential learning qualitatively similar to that found in the real world. MUVEs offer a pedagogically-driven immersive learning opportunity for educationalists that is cost-effective and enjoyable. A family of digital virtual avatars was created within…
Medical students' evaluation of physiology learning environments in two Nigerian medical schools.
Anyaehie, U S B; Nwobodo, E; Oze, G; Nwagha, U I; Orizu, I; Okeke, T; Anyanwu, G E
2011-06-01
The expansion of biomedical knowledge and the pursuit of more meaningful learning have led to world-wide evidence-based innovative changes in medical education and curricula. The recent emphasis on problem-based learning (PBL) and student-centred learning environments are, however, not being implemented in Nigerian medical schools. Traditional didactic lectures thus predominate, and learning is further constrained by funding gaps, poor infrastructure, and increasing class sizes. We reviewed medical students' perceptions of their exposed learning environment to determine preferences, shortcomings, and prescriptions for improvements. The results confirm declining interest in didactic lectures and practical sessions with preferences for peer-tutored discussion classes, which were considered more interactive and interesting. This study recommends more emphasis on student-centered learning with alternatives to passive lecture formats and repetitive cookbook practical sessions. The institutionalization of student feedback processes in Nigerian medical schools is also highly recommended.
Docherty, Charles; Hoy, Derek; Topp, Helena; Trinder, Kathryn
2004-01-01
This paper details the results of the first phase of a project that used eLearning to support students' learning within a simulated environment. The locus was a purpose built Clinical Simulation Laboratory (CSL) where the School's newly adopted philosophy of Problem Based Learning (PBL) was challenged through lecturers reverting to traditional teaching methods. The solution, a student-centred, problem-based approach to the acquisition of clinical skills was developed using learning objects embedded within web pages that substituted for lecturers providing instruction and demonstration. This allowed lecturers to retain their facilitator role, and encouraged students to explore, analyse and make decisions within the safety of a clinical simulation. Learning was enhanced through network communications and reflection on video performances of self and others. Evaluations were positive, students demonstrating increased satisfaction with PBL, improved performance in exams, and increased self-efficacy in the performance of nursing activities. These results indicate that an elearning approach can support PBL in delivering a student centred learning experience.
ERIC Educational Resources Information Center
Manouselis, Nikos; Sampson, Demetrios
This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…
ERIC Educational Resources Information Center
Blackburn, Greg
2017-01-01
Much has been written about the promise and peril of technology in education. This paper presents an empirical study that explores how technology can play a pivotal role in student learning and how teaching staff can adopt innovative technology-based approaches in the creation of interactive online problem-based learning (PBL) resources, allowing…
An Intelligent Web-Based System for Diagnosing Student Learning Problems Using Concept Maps
ERIC Educational Resources Information Center
Acharya, Anal; Sinha, Devadatta
2017-01-01
The aim of this article is to propose a method for development of concept map in web-based environment for identifying concepts a student is deficient in after learning using traditional methods. Direct Hashing and Pruning algorithm was used to construct concept map. Redundancies within the concept map were removed to generate a learning sequence.…
Preparing new nurses with complexity science and problem-based learning.
Hodges, Helen F
2011-01-01
Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.
[E-learning and problem based learning integration in cardiology education].
Gürpinar, Erol; Zayim, Neşe; Başarici, Ibrahim; Gündüz, Filiz; Asar, Mevlüt; Oğuz, Nurettin
2009-06-01
The aim of this study was to determine students' satisfaction with an e-learning environment which is developed to support classical problem-based learning (PBL) in medical education and its effect on academic achievement. In this cross-sectional study, students were provided with a web-based learning environment including learning materials related to objectives of the subject of PBL module, which could be used during independent study period. The study group comprised of all of the second year students (164 students) of Akdeniz University, Medical Faculty, during 2007-2008 education period. In order to gather data about students' satisfaction with learning environment, a questionnaire was administered to the students. Comparison of students' academic achievement was based on their performance score in PBL exam. Statistical analyses were performed using unpaired t test and Mann Whitney U test. Findings indicated that 72.6% of the students used e-learning practice. There is no statistically significant difference between mean PBL performance scores of users and non-users of e-learning practice (103.58 vs. 100.88) (t=-0.998, p=0.320). It is found that frequent users of e-learning application had statistically significant higher scores than non-frequent users (106.28 vs. 100.59) (t=-2.373, p=0.01). In addition, 72.6% of the students declared they were satisfied with the application. Our study demonstrated that the most of the students use e-learning application and are satisfied with it. In addition, it is observed that e-learning application positively affects the academic achievement of the students. This study gains special importance by providing contribution to limited literature in the area of instructional technology in PBL and Cardiology teaching.
Interactive knowledge networks for interdisciplinary course navigation within Moodle.
Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael
2012-12-01
Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.
Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.
Jacobs, Joshua; Caudell, Thomas; Wilks, David; Keep, Marcus F; Mitchell, Steven; Buchanan, Holly; Saland, Linda; Rosenheimer, Julie; Lozanoff, Beth K; Lozanoff, Scott; Saiki, Stanley; Alverson, Dale
2003-01-01
Distance education delivery has increased dramatically in recent years as a result of the rapid advancement of communication technology. The National Computational Science Alliance's Access Grid represents a significant advancement in communication technology with potential for distance medical education. The purpose of this study is to provide an overview of the TOUCH project (Telehealth Outreach for Unified Community Health; http://hsc.unm.edu/touch) with special emphasis on the process of problem-based learning case development for distribution over the Access Grid. The objective of the TOUCH project is to use emerging Internet-based technology to overcome geographic barriers for delivery of tutorial sessions to medical students pursuing rotations at remote sites. The TOUCH project also is aimed at developing a patient simulation engine and an immersive virtual reality environment to achieve a realistic health care scenario enhancing the learning experience. A traumatic head injury case is developed and distributed over the Access Grid as a demonstration of the TOUCH system. Project TOUCH serves as an example of a computer-based learning system for developing and implementing problem-based learning cases within the medical curriculum, but this system should be easily applied to other educational environments and disciplines involving functional and clinical anatomy. Future phases will explore PC versions of the TOUCH cases for increased distribution. Copyright 2003 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
The effectiveness of problem-based learning on teaching the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Tatar, Erdal; Oktay, Münir
2011-11-01
Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.
Back, David A; Haberstroh, Nicole; Antolic, Andrea; Sostmann, Kai; Schmidmaier, Gerhard; Hoff, Eike
2014-01-27
While e-learning is enjoying increasing popularity as adjunct in modern teaching, studies on this topic should shift from mere evaluation of students' satisfaction towards assessing its benefits on enhancement of knowledge and skills. This pilot study aimed to detect the teaching effects of a blended learning program on students of orthopedics and traumatology in the context of a problem-based learning environment. The project NESTOR (network for students in traumatology and orthopedics) was offered to students in a problem-based learning course. Participants completed written tests before and directly after the course, followed by a final written test and an objective structured clinical examination (OSCE) as well as an evaluation questionnaire at the end of the semester. Results were compared within the group of NESTOR users and non-users and between these two groups. Participants (n = 53) rated their experiences very positively. An enhancement in knowledge was found directly after the course and at the final written test for both groups (p < 0.001). NESTOR users scored higher than non-users in the post-tests, while the OSCE revealed no differences between the groups. This pilot study showed a positive effect of the blended learning approach on knowledge enhancement and satisfaction of participating students. However, it will be an aim for the future to further explore the chances of this approach and internet-based technologies for possibilities to improve also practical examination skills.
2014-01-01
Background While e-learning is enjoying increasing popularity as adjunct in modern teaching, studies on this topic should shift from mere evaluation of students’ satisfaction towards assessing its benefits on enhancement of knowledge and skills. This pilot study aimed to detect the teaching effects of a blended learning program on students of orthopedics and traumatology in the context of a problem-based learning environment. Methods The project NESTOR (network for students in traumatology and orthopedics) was offered to students in a problem-based learning course. Participants completed written tests before and directly after the course, followed by a final written test and an objective structured clinical examination (OSCE) as well as an evaluation questionnaire at the end of the semester. Results were compared within the group of NESTOR users and non-users and between these two groups. Results Participants (n = 53) rated their experiences very positively. An enhancement in knowledge was found directly after the course and at the final written test for both groups (p < 0.001). NESTOR users scored higher than non-users in the post-tests, while the OSCE revealed no differences between the groups. Conclusions This pilot study showed a positive effect of the blended learning approach on knowledge enhancement and satisfaction of participating students. However, it will be an aim for the future to further explore the chances of this approach and internet-based technologies for possibilities to improve also practical examination skills. PMID:24690365
Community-Based Learning: Engaging Students for Success and Citizenship
ERIC Educational Resources Information Center
Melaville, Atelia; Berg, Amy C.; Blank, Martin J.
2006-01-01
Community schools foster a learning environment that extends far beyond the classroom walls. Students learn and problem solve in the context of their lives and communities. Community schools nurture this natural engagement. Because of the deep and purposeful connections between schools and communities, the curriculum is influenced and enhanced,…
Process Systems Engineering Education: Learning by Research
ERIC Educational Resources Information Center
Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.
2009-01-01
In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…
ERIC Educational Resources Information Center
Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil
2015-01-01
Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…
ERIC Educational Resources Information Center
Harris, Richard
2017-01-01
Understanding the way humans communicate linguistically helps to define what proficiency in a particular language is. The general problem is scholars' assumption that the implementation of technology in the language learning environment acts a substitute for the human dynamic in achieving language proficiency. The purpose of this quantitative…
ERIC Educational Resources Information Center
Upfold, Christopher
2016-01-01
Technology facilitated teaching and learning can now influence the way both lecturers and students collaborate. The problem is that many of these interventions are conducted in a non-systematic ad-hoc way. There are concerns that merely adopting a traditional lecturing approach to a technology based environment provides little if any advantage to…
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
de Leng, Bas A; Dolmans, Diana H J M; Muijtjens, Arno M M; van der Vleuten, Cees P M
2006-06-01
To investigate the effects of a virtual learning environment (VLE) on group interaction and consultation of information resources during the preliminary phase, self-study phase and reporting phase of the problem-based learning process in an undergraduate medical curriculum. A questionnaire was administered to 355 medical students in Years 1 and 2 to ask them about the perceived usefulness of a virtual learning environment that was created with Blackboard for group interaction and the use of learning resources. The students indicated that the VLE supported face-to-face interaction in the preliminary discussion and in the reporting phase but did not stimulate computer-mediated distance interaction during the self-study phase. They perceived that the use of multimedia in case presentations led to a better quality of group discussion than if case presentations were exclusively text-based. They also indicated that the information resources that were hyperlinked in the VLE stimulated the consultation of these resources during self-study, but not during the reporting phase. Students indicated that the use of a VLE in the tutorial room and the inclusion of multimedia in case presentations supported processes of active learning in the tutorial groups. However, if we want to exploit the full potential of asynchronous computer-mediated communication to initiate in-depth discussion during the self-study phase, its application will have to be selective and deliberate. Students indicated that the links in the VLE to selected information in library repositories supported their learning.
Learning to soar in turbulent environments
NASA Astrophysics Data System (ADS)
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence; Vergassola, Massimo
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. Soaring provides a remarkable instance of complex decision-making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. The formation of thermals unavoidably generates strong turbulent fluctuations, which make deriving an efficient policy harder and thus constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the virtual gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the virtual glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
ERIC Educational Resources Information Center
Gratch, Jonathan
2012-01-01
Project-based learning has long been used in the educational realm as it emphasis a student-centered strategy which promotes meaning, enriched learning that enhances inquiry and problem-solving skills in a rich, authentic environment. The relevance and authentic design of projects may further be enhanced by the use of technology in the classroom.…
Problem-based learning in an on-line biotechnology course
NASA Astrophysics Data System (ADS)
Cheaney, James Daniel
Problem-based learning (PBL) is a pedagogical tool that uses a "real world" problem or situation as a context for learning. PBL encourages student development of critical thinking skills, a high professional competency, problem-solving ability, knowledge acquisition, the ability to work productively as a team member and make decisions in unfamiliar situations, and the acquisition of skills that support self-directed life-long learning, metacognition, and adaptation to change. However, little research has focused on the use of PBL in on-line "virtual" classes. We conducted two studies exploring the use of PBL in an on-line biotechnology course. In the first study, ethical, legal, social, and human issues were used as a motivation for learning about DNA testing technologies, applications, and bioethical issues. In the second study, we combined PBL pedagogy with a rich multimedia environment of streaming video interviews, physical artifacts, and extensive links to articles and databases to create a multidimensional immersive PBL environment called "Robert's World". In "Robert's World", a man is determining whether to undergo a pre-symptomatic DNA test for an untreatable, incurable, fatal genetic disease for which he has a family history. In both studies, design and implementation issues of the on-line PBL environment are discussed, as are differences between on-line PBL and face-to-face PBL. Both studies provide evidence to suggest that PBL stimulates higher-order learning in students. However, in both studies, student performance on an exam testing acquisition of lower-order factual learning was lower for PBL students than for students who learned the same material through a traditional lecture-based approach. Possible reasons for this lower level of performance are explored. Student feedback expressed engagement with the issues and material covered, with reservations about some aspects of the PBL format, such as the lack of flexibility provided in cooperative learning. We conclude that on-line PBL is a powerful tool in helping to develop higher-order learning in students. The reasons for the decrease in student understanding of factual information are unclear. However, there are certain circumstances unique to on-line classes to keep in mind when implementing on-line PBL. These are summarized in concluding recommendations.
The Role of Guidance in Computer-Based Problem Solving for the Development of Concepts of Logic.
ERIC Educational Resources Information Center
Eysink, Tessa H. S.; Dijkstra, Sanne; Kuper, Jan
2002-01-01
Describes a study at the University of Twente (Netherlands) that investigated the effect of two instructional variables, manipulation of objects and guidance, in learning to use the logical connective, conditional with a computer-based learning environment, Tarski's World, designed to teach first-order logic. Discusses results of…
Using a web-based system for the continuous distance education in cytopathology.
Stergiou, Nikolaos; Georgoulakis, Giannis; Margari, Niki; Aninos, Dionisios; Stamataki, Melina; Stergiou, Efi; Pouliakis, Abraam; Karakitsos, Petros
2009-12-01
The evolution of information technologies and telecommunications has made the World Wide Web a low cost and easily accessible tool for the dissemination of information and knowledge. Continuous Medical Education (CME) sites dedicated in cytopathology field are rather poor, they do not succeed in following the constant changes and lack the ability of providing cytopathologists with a dynamic learning environment, adaptable to the development of cytopathology. Learning methods including skills such as decision making, reasoning and problem solving are critical in the development of such a learning environment. The objectives of this study are (1) to demonstrate on the basis of a web-based training system the successful application of traditional learning theories and methods and (2) to effectively evaluate users' perception towards the educational program, using a combination of observers, theories and methods. Trainees are given the opportunity to browse through the educational material, collaborate in synchronous and asynchronous mode, practice their skills through problems and tasks and test their knowledge using the self-evaluation tool. On the other hand, the trainers are responsible for editing learning material, attending students' progress and organizing the problem-based and task-based scenarios. The implementation of the web-based training system is based on the three-tier architecture and uses an Apache Tomcat web server and a MySQL database server. By December 2008, CytoTrainer's learning environment contains two courses in cytopathology: Gynaecological Cytology and Thyroid Cytology offering about 2000 digital images and 20 case sessions. Our evaluation method is a combination of both qualitative and quantitative approaches to explore how the various parts of the system and students' attitudes work together. Trainees approved of the course's content, methodology and learning activities. The triangulation of evaluation methods revealed that the training program is suitable for the continuous distance education in cytopathology and that it has improved the trainees' skills in diagnostic cytopathology. The web-based training system can be successfully involved in the continuous distance education in cytopathology. It provides the opportunity to access learning material from any place at any time and supports the acquisition of diagnostic knowledge.
Design guidelines for interactive multimedia learning environments to promote social inclusion.
Brown, D J; Powell, H M; Battersby, S; Lewis, J; Shopland, N; Yazdanparast, M
There is a continuing need for guidelines to aid in the design of Interactive Multimedia Learning Environments (IMLE) to promote effective learning. The project introduced in this paper looks at an important subset of this problem, the design of interactive learning environments to promote social inclusion. A consortium of six partners contributed toward defining learning material to develop a range of work based skills, including horticulture, IT and catering. These were then developed into IMLE prototypes. Formative evaluation of these prototypes then revealed a range of usability problems, which were grouped into generic types and frequency of occurrence. The most important and frequently occurring problems were used to distil a set of design guidelines for the development of effective IMLE. The results from this usability content analysis were also used to refine the initial prototypes to improve their usability and effectiveness. These guidelines, termed the Greenhat Design Guidelines, can be adopted for use by all multimedia developers aiming to promote the social inclusion of vulnerable or socially disadvantaged groups of people. The refined IMLE can be accessed via the Greenhat Server to improve the employment-related skills of socially excluded people.
Weeks, Keith W; Higginson, Ray; Clochesy, John M; Coben, Diana
2013-03-01
This paper evaluates nursing students' transition through schemata construction and competence development in medication dosage calculation problem-solving (MDC-PS). We advance a grounded theory from interview data that reflects the experiences and perceptions of two groups of undergraduate pre-registration nursing students: eight students exposed to a prototype authentic MDC-PS environment and didactic transmission methods of education and 15 final year students exposed to the safeMedicate authentic MDC-PS environment. We advance a theory of how classroom-based 'chalk and talk' didactic transmission environments offered multiple barriers to accurate MDC-PS schemata construction among novice students. While conversely it was universally perceived by all students that authentic learning and assessment environments enabled MDC-PS schemata construction through facilitating: 'seeing' the authentic features of medication dosage problems; context-based and situational learning; learning within a scaffolded environment that supported construction of cognitive links between the concrete world of clinical MDC-PS and the abstract world of mathematics; and confidence-building in their cognitive and functional competence ability. Drawing on the principle of veni, vidi, duci (I came, I saw, I calculated), we combined the two sets of evaluations to offer a grounded theoretical basis for schemata construction and competence development within this critical domain of professional practice. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chikotas, Noreen Elaine
2008-01-01
The need to evaluate current strategies in educating the advanced practice nurse, specifically the nurse practitioner, is becoming more and more imperative due to the ever-changing health care environment. This article addresses the role of problem-based learning (PBL) as an instructional strategy in educating and preparing the nurse practitioner for future practice.Two theoretical frameworks supporting PBL, andragogy and constructivism, are presented as important to the use of PBL in the education of the nurse practitioner.
An Emic Lens into Online Learning Environments in PPL in Undergraduate Dentistry
ERIC Educational Resources Information Center
Bridges, Susan
2015-01-01
Whilst face-to-face tutorial group interaction has been the focus of quantitative and qualitative studies in problem-based learning (PBL), little work has explored the independent learning phase of the PBL cycle from an interactionist perspective. An interactional ethnographic logic of inquiry guided collection and analysis of video recordings and…
Psychological Factors Affecting Medical Students' Learning with Erroneous Worked Examples
ERIC Educational Resources Information Center
Klopp, Eric; Stark, Robin; Kopp, Veronika; Fischer, Martin R.
2013-01-01
The acquisition of diagnostic competence is seen as a major goal during the course of study in medicine. One innovative method to foster this goal is problem-based learning with erroneous worked examples provided in a computer learning environment. The present study explores the relationship of attitudinal, emotional and cognitive factors for…
2012-05-17
theories work together to explain learning in aviation—behavioral learning theory , cognitive learning theory , constructivism, experiential ...solve problems, and make decisions. Experiential learning theory incorporates both behavioral and cognitive theories .104 This theory harnesses the...34Evaluation of the Effectiveness of Flight School XXI," 7. 106 David A. Kolb , Experiential Learning : Experience as the Source of
The experiment editor: supporting inquiry-based learning with virtual labs
NASA Astrophysics Data System (ADS)
Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.
2017-05-01
Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.
Fostering Problem-Solving in a Virtual Environment
ERIC Educational Resources Information Center
Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George
2015-01-01
This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…
Validation of learning style measures: implications for medical education practice.
Chapman, Dane M; Calhoun, Judith G
2006-06-01
It is unclear which learners would most benefit from the more individualised, student-structured, interactive approaches characteristic of problem-based and computer-assisted learning. The validity of learning style measures is uncertain, and there is no unifying learning style construct identified to predict such learners. This study was conducted to validate learning style constructs and to identify the learners most likely to benefit from problem-based and computer-assisted curricula. Using a cross-sectional design, 3 established learning style inventories were administered to 97 post-Year 2 medical students. Cognitive personality was measured by the Group Embedded Figures Test, information processing by the Learning Styles Inventory, and instructional preference by the Learning Preference Inventory. The 11 subscales from the 3 inventories were factor-analysed to identify common learning constructs and to verify construct validity. Concurrent validity was determined by intercorrelations of the 11 subscales. A total of 94 pre-clinical medical students completed all 3 inventories. Five meaningful learning style constructs were derived from the 11 subscales: student- versus teacher-structured learning; concrete versus abstract learning; passive versus active learning; individual versus group learning, and field-dependence versus field-independence. The concurrent validity of 10 of 11 subscales was supported by correlation analysis. Medical students most likely to thrive in a problem-based or computer-assisted learning environment would be expected to score highly on abstract, active and individual learning constructs and would be more field-independent. Learning style measures were validated in a medical student population and learning constructs were established for identifying learners who would most likely benefit from a problem-based or computer-assisted curriculum.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
NASA Astrophysics Data System (ADS)
Zhou, Andrew F.
2014-07-01
Bringing research into an undergraduate curriculum is a proven and powerful practice with many educational benefits to students and the professional rewards to faculty mentors. In recent years, undergraduate research has gained national prominence as an effective problem-based learning strategy. Developing and sustaining a vibrant undergraduate research program of high quality and productivity is an outstanding example of the problem-based learning. To foster student understanding of the content learned in the classroom and nurture enduring problem-solving and critical-thinking abilities, we have created a collaborative learning environment by building research into the Electro-Optics curriculum for the first- and second-year students. The teaching methodology is described and examples of the research projects are given. Such a research-integrated curriculum effectively enhances student learning and critical thinking skills, and strengthens the research culture for the first- and second-year students.
NASA Astrophysics Data System (ADS)
Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo
2002-04-01
Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.
A Framework for Designing Scaffolds That Improve Motivation and Cognition
Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.
2013-01-01
A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b) problem-based learning and scaffolding as one way to help, (c) how scaffolding has strayed from what was originally equal parts motivational and cognitive support, and (d) a conceptual framework for the design of scaffolds that can enhance motivation as well as cognitive outcomes. We propose guidelines for the design of computer-based scaffolds to promote motivation and engagement while students are solving authentic problems. Remaining questions and suggestions for future research are then discussed. PMID:24273351
Robotic Mission to Mars: Hands-on, minds-on, web-based learning
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion
2012-11-01
Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages students to work scientifically and explores the interaction between scientists and engineers. This paper presents the development of the program, including the involvement of university students in the development of the rover, the software, and the collation of the scientific data. It also presents the results of the trial phase of this program including the impact on student engagement and learning outcomes.
ERIC Educational Resources Information Center
Titova, Svetlana
2014-01-01
Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…
Problem-Based Learning for Didactic Presentation to Baccalaureate Nursing Students.
Montenery, Susan
2017-05-01
Nursing judgment is an essential component in the delivery of safe, quality patient care. Nurses must have the knowledge and skills to question authority, make judgments, substantiate evidence, and advocate for the patient. Traditional pedagogy in content-laden courses remains primarily lecture based. Incorporating active strategies to strengthen professional practice is essential. A pilot study assessed senior baccalaureate nursing students' perceptions of problem-based learning (PBL) and their readiness for self-directed learning. In addition, the authors analyzed the relationship between readiness for self-directed learning and course content mastery using PBL. Students completed the Self-directed Learning Readiness Scale, the Problem-Based Learning Environment Inventory, and course content mastery exams. Students reported positive experiences with PBL and readiness for self-directed learning. Readiness for self-directed learning and 2 of 5 exam scores were inversely, significantly related. Students' perceptions of their readiness for self-directed learning did not always correspond with course content mastery. Specifically, some students who perceived themselves as ready for self-directed learning did not perform well on course content exams. This inverse relationship has not been reported by other researchers and brings an interesting perspective to student perceptions and actual performance. Four themes emerged from students' narrative responses: Prepared Me for Real Life Professional Situations, Stimulated My Critical Thinking, Promoted Independent Problem Solving, and Supported Learning Retention. PBL as a pedagogical approach provides opportunities for nursing students to explore their professional independence while attempting to master content.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
NASA Astrophysics Data System (ADS)
Gweon, Gey-Hong; Lee, Hee-Sun; Dorsey, Chad; Tinker, Robert; Finzer, William; Damelin, Daniel
2015-03-01
In tracking student learning in on-line learning systems, the Bayesian knowledge tracing (BKT) model is a popular model. However, the model has well-known problems such as the identifiability problem or the empirical degeneracy problem. Understanding of these problems remain unclear and solutions to them remain subjective. Here, we analyze the log data from an online physics learning program with our new model, a Monte Carlo BKT model. With our new approach, we are able to perform a completely unbiased analysis, which can then be used for classifying student learning patterns and performances. Furthermore, a theoretical analysis of the BKT model and our computational work shed new light on the nature of the aforementioned problems. This material is based upon work supported by the National Science Foundation under Grant REC-1147621 and REC-1435470.
ERIC Educational Resources Information Center
Bhagat, Kaushal Kumar; Spector, J. Michael
2017-01-01
Much of the focus on learning technologies has been on structuring innovative learning experiences and on managing distance and hybrid learning environments. This article focuses on the use of technology as an important formative assessment and feedback tool. The rationale for this focus is based on prior research findings that suggest that timely…
ERIC Educational Resources Information Center
Lee, Young-Jin
2010-01-01
This study reports the effects of different types of instructional preparation strategies on the problem solving performance of college students taking an introductory physics class. Students were divided into four equally skilled groups and solved the same physics problems after receiving different instructional preparations (engaging in…
ERIC Educational Resources Information Center
Ramnarain, Umesh
2014-01-01
A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…
Integrating Worked Examples into Problem Posing in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Hsiao, Ju-Yuan; Hung, Chun-Ling; Lan, Yu-Feng; Jeng, Yoau-Chau
2013-01-01
Most students always lack of experience and perceive difficult regarding problem posing. The study hypothesized that worked examples may have benefits for supporting students' problem posing activities. A quasi-experiment was conducted in the context of a business mathematics course for examining the effects of integrating worked examples into…
ERIC Educational Resources Information Center
Lubin, Ian A.; Ge, Xun
2012-01-01
This paper discusses a qualitative study which examined students' problem-solving, metacognition, and motivation in a learning environment designed for teaching educational technology to pre-service teachers. The researchers converted a linear and didactic learning environment into a new open learning environment by contextualizing domain-related…
Learning to soar in turbulent environments
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J.; Vergassola, Massimo
2016-01-01
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments. PMID:27482099
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
Bishop, Christopher M
2013-02-13
Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.
Bishop, Christopher M.
2013-01-01
Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications. PMID:23277612
Machine vision and appearance based learning
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-03-01
Smart algorithms are used in Machine vision to organize or extract high-level information from the available data. The resulted high-level understanding the content of images received from certain visual sensing system and belonged to an appearance space can be only a key first step in solving various specific tasks such as mobile robot navigation in uncertain environments, road detection in autonomous driving systems, etc. Appearance-based learning has become very popular in the field of machine vision. In general, the appearance of a scene is a function of the scene content, the lighting conditions, and the camera position. Mobile robots localization problem in machine learning framework via appearance space analysis is considered. This problem is reduced to certain regression on an appearance manifold problem, and newly regression on manifolds methods are used for its solution.
Q & A with Ed Tech Leaders: Interview with John R. Savery
ERIC Educational Resources Information Center
Fulgham, Susan M.; Shaughnessy, Michael F.
2014-01-01
John R. Savery is Professor of Education and Director of Instructional Services at the University of Akron. His research and teaching interests focus on problem-based learning and technology-rich learning environments. As Director he supports faculty integration of instructional technology across the spectrum, from traditional classrooms to…
Design Rationale for a Complex Performance Assessment
ERIC Educational Resources Information Center
Williamson, David M.; Bauer, Malcolm; Steinberg, Linda S.; Mislevy, Robert J.; Behrens, John T.; DeMark, Sarah F.
2004-01-01
In computer-based interactive environments meant to support learning, students must bring a wide range of relevant knowledge, skills, and abilities to bear jointly as they solve meaningful problems in a learning domain. To function effectively as an assessment, a computer system must additionally be able to evoke and interpret observable evidence…
ERIC Educational Resources Information Center
Owens, Norma J.; Padula, Cynthia A.; Hume, Anne L.
2002-01-01
Interdisciplinary clinical case studies in geriatrics were developed using active and problem-based learning approaches that simulate clinical environments. Feedback from their use in continuing education indicated that facilitators need interdisciplinary group skills, well-written discussion questions enhanced learning, and the presence of all…
Laboratory Control System's Effects on Student Achievement and Attitudes
ERIC Educational Resources Information Center
Cicek, Fatma Gozalan; Taspinar, Mehmet
2016-01-01
Problem Statement: The current study investigates whether the learning environment designed based on the laboratory control system affects the academic achievement, the attitude toward the learning-teaching process and the retention of the students in computer education. Purpose of Study: The study aims to identify the laboratory control system…
Engineering Sustainable Solutions Program: Critical Literacies for Engineers Portfolio
ERIC Educational Resources Information Center
Paten, Cheryl J. K.; Palousis, Nicholas; Hargroves, Karlson; Smith, Michael
2005-01-01
Purpose: While a number of universities in Australia have embraced concepts such as project/problem-based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a "critical literacy" into all engineering streams. This paper was presented…
Structuring a Clinical Learning Environment for a Hybrid-PBL Dental Curriculum.
ERIC Educational Resources Information Center
MacNeil, M. A. J.; Walton, Joanne N.; Clark, D. Christopher; Tobias, David L.; Harrison, Rosamund L.
1998-01-01
Describes the evolution and implementation of a joint medical-dental problem-based learning (PBL) curriculum at the University of British Columbia's medical and dental schools, featuring development of an integrated care clinic. Issues in structuring the new curriculum are discussed, including management of the clinic's group practices, affective…
Inverting an Introductory Statistics Classroom
ERIC Educational Resources Information Center
Kraut, Gertrud L.
2015-01-01
The inverted classroom allows more in-class time for inquiry-based learning and for working through more advanced problem-solving activities than does the traditional lecture class. The skills acquired in this learning environment offer benefits far beyond the statistics classroom. This paper discusses four ways that can make the inverted…
ERIC Educational Resources Information Center
Chung, Pansy; Yeh, Ron Chuen; Chen, Yi-Cheng
2016-01-01
In order to respond to the ever-changing global economic environment, the technological and vocational education system in Taiwan needs to be dramatically reformed to the changing needs of the domestic industrial structure. Integrating practical talents with practical industrial experiences and competences can help avoid discrepancy and close the…
Holen, Are; Manandhar, Kedar; Pant, Devendra S; Karmacharya, Biraj M; Olson, Linda M; Koju, Rajendra; Mansur, Dil I
2015-07-19
The aim of this study was to explore positive and negative preferences towards problem-based learning in relation to personality traits and socio-cultural context. The study was an anonymous and voluntary cross-sectional survey of medical students (N=449) in hybrid problem-based curricula in Nepal, Norway and North Dakota. Data was collected on gender, age, year of study, cohabitation and medical school. The PBL Preference Inventory identified students' positive and negative preferences in relation to problem-based learning; the personality traits were detected by the NEO Five-Factor Inventory. The determinants of the two kinds of preferences were analyzed by hierarchical multiple linear regressions. Positive preferences were mostly determined by personality; associations were found with the traits Extra-version, Openness to experience, Conscientiousness and Neuroticism; the first three are related to sociability, curiosity and orderliness, the last, to mental health. The learn-ing environments of such curricula may be supportive for some and unnerving for others who score high on Neuroticism. Negative preferences were rather determined by culture, but also, they correlated with Neuroticism and Conscientiousness. Negative preferences were lower among females and students living in symmetrical relationships. Some high on Conscientiousness disliked group work, and the negative correlation with Agreeableness indicated that less sociable students were not predisposed to this kind of learning activity. Preferences related to problem-based learning were significantly and independently determined both by personality traits and culture. More insights into the nature of students' preferences may guide aspects of curriculum modifications and the daily facilitation of groups.
[Problem-based learning, description of a pedagogical method leading to evidence-based medicine].
Chalon, P; Delvenne, C; Pasleau, F
2000-04-01
Problem-Based Learning is an educational method which uses health care scenarios to provide a context for learning and to elaborate knowledge through discussion. Additional expectations are to stimulate critical thinking and problem-solving skills, and to develop clinical reasoning taking into account the patient's psychosocial environment and preferences, the economic requirements as well as the best evidence from biomedical research. Appearing at the end of the 60's, it has been adopted by 10% of medical schools world-wide. PBL follows the same rules as Evidence-Based Medicine but is student-centered and provides the information-seeking skills necessary for self-directed life long learning. In this short article, we review the theoretical basis and process of PBL, emphasizing the teacher-student relationship and discussing the suggested advantages and disadvantages of this curriculum. Students in PBL programs make greater use of self-selected references and online searching. From this point of view, PBL strengthens the role of health libraries in medical education, and prepares the future physician for Evidence-Based Medicine.
Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval
ERIC Educational Resources Information Center
Tawfik, Andrew A.; Alhoori, Hamed; Keene, Charles Wayne; Bailey, Christian; Hogan, Maureen
2018-01-01
In case library learning environments, learners are presented with an array of narratives that can be used to guide their problem solving. However, according to theorists, learners struggle to identify and retrieve the optimal case to solve a new problem. Given the challenges novice face during case retrieval, recommender systems can be embedded…
3D Sound Interactive Environments for Blind Children Problem Solving Skills
ERIC Educational Resources Information Center
Sanchez, Jaime; Saenz, Mauricio
2006-01-01
Audio-based virtual environments have been increasingly used to foster cognitive and learning skills. A number of studies have also highlighted that the use of technology can help learners to develop effective skills such as motivation and self-esteem. This study presents the design and usability of 3D interactive environments for children with…
NASA Astrophysics Data System (ADS)
Hibbard, Bill
2012-05-01
Orseau and Ring, as well as Dewey, have recently described problems, including self-delusion, with the behavior of agents using various definitions of utility functions. An agent's utility function is defined in terms of the agent's history of interactions with its environment. This paper argues, via two examples, that the behavior problems can be avoided by formulating the utility function in two steps: 1) inferring a model of the environment from interactions, and 2) computing utility as a function of the environment model. Basing a utility function on a model that the agent must learn implies that the utility function must initially be expressed in terms of specifications to be matched to structures in the learned model. These specifications constitute prior assumptions about the environment so this approach will not work with arbitrary environments. But the approach should work for agents designed by humans to act in the physical world. The paper also addresses the issue of self-modifying agents and shows that if provided with the possibility to modify their utility functions agents will not choose to do so, under some usual assumptions.
Jukema, Jan S; Harps-Timmerman, Annelies; Stoopendaal, Annemiek; Smits, Carolien H M
2015-11-01
Change management is an important area of training in undergraduate nursing education. Successful change management in healthcare aimed at improving practices requires facilitation skills that support teams in attaining the desired change. Developing facilitation skills in nursing students requires formal educational support. A Dutch Regional Care Improvement Program based on a nationwide format of change management in healthcare was designed to act as a Powerful Learning Environment for nursing students developing competencies in facilitating change. This article has two aims: to provide comprehensive insight into the program components and to describe students' learning experiences in developing their facilitation skills. This Dutch Regional Care Improvement Program considers three aspects of a Powerful Learning Environment: self-regulated learning; problem-based learning; and complex, realistic and challenging learning tasks. These three aspects were operationalised in five distinct areas of facilitation: increasing awareness of the need for change; leadership and project management; relationship building and communication; importance of the local context; and ongoing monitoring and evaluation. Over a period of 18 months, 42 nursing students, supported by trained lecturer-coaches, took part in nine improvement teams in our Regional Care Improvement Program, executing activities in all five areas of facilitation. Based on the students' experiences, we propose refinements to various components of this program, aimed at strengthenin the learning environment. There is a need for further detailed empirical research to study the impact this kind of learning environment has on students developing facilitation competencies in healthcare improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ng, Manwa L; Bridges, Susan; Law, Sam Po; Whitehill, Tara
2014-01-01
Problem-based learning (PBL) has been shown to be effective for promoting student competencies in self-directed and collaborative learning, critical thinking, self-reflection and tackling novel situations. However, the need for face-to-face interactions at the same place and time severely limits the potential of traditional PBL. The requirements of space and for meeting at a specific location at the same time create timetabling difficulties. Such limitations need to be tackled before all potentials of PBL learning can be realized. The present study aimed at designing and implementing an online PBL environment for undergraduate speech/language pathology students, and assessing the associated pedagogical effectiveness. A group of eight PBL students were randomly selected to participate in the study. They underwent 4 weeks of online PBL using Adobe Connect. Upon completion of the experiment, they were assessed via a self-reported questionnaire and quantitative comparison with traditional PBL students based on the same written assignment. The questionnaire revealed that all participating students enjoyed online PBL, without any perceived negative effects on learning. Online PBL unanimously saved the students travel time to and from school. Statistical analysis indicated no significant difference in assignment grades between the online and traditional PBL groups, indicating that online PBL learning appears to be similarly effective as traditional face-to-face PBL learning.
Cognitive components underpinning the development of model-based learning.
Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A
2017-06-01
Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Pecore, John L.
Current curriculum trends promote inquiry-based student-centered strategies as a way to foster critical thinking and learning. Problem-based learning (PBL), a type of inquiry focusing on an issue or "problem," is an instructional approach taught on the basis that science reform efforts increase scientific literacy. PBL is a constructivist approach to learning real life problems where understanding is a function of content, context, experiences, and learner goals; historical PBL situates the lesson in a historical context and provides opportunities for teaching NOS concepts. While much research exists on the benefits of historical PBL to student learning in general, more research is warranted on how teachers implement PBL in the secondary science curriculum. The purpose of this study was to examine the classroom-learning environment of four science teachers implementing a historical PBL instructional unit to identify the teachers' understandings, successes and obstacles. By identifying teachers' possible achievements and barriers with implementing a constructivist philosophy when executing historical PBL, educators and curriculum designers may improve alignment of the learning environment to constructivist principles. A qualitative interpretive case study guided this research study. The four participants of this study were purposefully and conveniently selected from biology teachers with at least three years of teaching experience, degrees in education, State Licensure, and completion of a PBL workshop. Data collection consisted of pre and post questionnaires, structured interviews, a card sort activity in which participants categorized instructional outcomes, and participant observations. Results indicated that the four teachers assimilated reform-based constructivist practices to fit within their preexisting routines and highlighted the importance of incorporating teachers' current systems into reform-based teacher instruction. While participating teachers addressed a few NOS tenets, emphasizing the full range of possible NOS objectives included in historical PBL is warranted. This study also revealed the importance of creating a collaborative classroom culture and building positive student-teacher relationships when implementing PBL instruction. The four teachers agreed that the historical PBL instructional unit provided a context for learning state standards, and they positively viewed their experiences teaching the lesson. Thus findings from this study suggest that teaching science in a historical context using PBL can be effective.
ERIC Educational Resources Information Center
Özerem, Aysen; Akkoyunlu, Buket
2015-01-01
Problem Statement: While designing a learning environment it is vital to think about learner characteristics (learning styles, approaches, motivation, interests… etc.) in order to promote effective learning. The learning environment and learning process should be designed not to enable students to learn in the same manner and at the same level,…
Using Immersive Virtual Reality for Electrical Substation Training
ERIC Educational Resources Information Center
Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana
2015-01-01
Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…
Tertiary EE Student Projects: What the Academics Learnt
ERIC Educational Resources Information Center
Meehan, Barry; Thomas, Ian
2006-01-01
Problem solving and teamwork abilities are important skills for graduates entering the environment profession. Through a problem based learning approach small groups of students from the environmental courses at RMIT University have been gaining these professional skills by undertaking projects in Vietnam. With three years experience in running…
A Framework for Designing Scaffolds that Improve Motivation and Cognition
ERIC Educational Resources Information Center
Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.
2013-01-01
A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b)…
Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report. Updated
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"Connected Mathematics Project" (CMP) is a math curriculum for students in grades 6-8. It uses interactive problems and everyday situations to explore mathematical ideas, with a goal of fostering a problem-centered, inquiry-based learning environment. At each grade level, the curriculum covers numbers, algebra, geometry/measurement,…
Constructing Temporally Extended Actions through Incremental Community Detection
Li, Ge
2018-01-01
Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543
Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning
Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien
2015-01-01
Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction. PMID:26065018
Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.
Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien
2015-01-01
Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.
Community Education. AONTAS Policy Series.
ERIC Educational Resources Information Center
Irish National Association of Adult Education, Dublin.
Ireland's economic and social problems in the 1980s spawned a new kind of community education. Key characteristics of the new community education are as follows: (1) it is a learning environment and located in the community; (2) it provides learning programs based on identified needs; (3) its control remains in the local community's hands; (4) its…
NASA Astrophysics Data System (ADS)
Kersting, Magdalena; Henriksen, Ellen Karoline; Bøe, Maria Vetleseter; Angell, Carl
2018-06-01
Because of its abstract nature, Albert Einstein's theory of general relativity is rarely present in school physics curricula. Although the educational community has started to investigate ways of bringing general relativity to classrooms, field-tested educational material is rare. Employing the model of educational reconstruction, we present a collaborative online learning environment that was introduced to final year students (18-19 years old) in six Norwegian upper secondary physics classrooms. Design-based research methods guided the development of the learning resources, which were based on a sociocultural view of learning and a historical-philosophical approach to teaching general relativity. To characterize students' learning from and interaction with the learning environment we analyzed focus group interviews and students' oral and written responses to assigned problems and discussion tasks. Our findings show how design choices on different levels can support or hinder understanding of general relativity, leading to the formulation of design principles that help to foster qualitative understanding and encourage collaborative learning. The results indicate that upper secondary students can obtain a qualitative understanding of general relativity when provided with appropriately designed learning resources and sufficient scaffolding of learning through interaction with teacher and peers.
Model of Distributed Learning Objects Repository for a Heterogenic Internet Environment
ERIC Educational Resources Information Center
Kaczmarek, Jerzy; Landowska, Agnieszka
2006-01-01
In this article, an extension of the existing structure of learning objects is described. The solution addresses the problem of the access and discovery of educational resources in the distributed Internet environment. An overview of e-learning standards, reference models, and problems with educational resources delivery is presented. The paper…
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven; Masui, Chris
2004-01-01
A major challenge for education and educational research is to build on our present understanding of learning for designing environments for education that are conducive to fostering in students self-regulatory and cooperative learning skills, transferable knowledge, and a disposition toward competent thinking and problem solving. Taking into…
Deep Learning Based Binaural Speech Separation in Reverberant Environments.
Zhang, Xueliang; Wang, DeLiang
2017-05-01
Speech signal is usually degraded by room reverberation and additive noises in real environments. This paper focuses on separating target speech signal in reverberant conditions from binaural inputs. Binaural separation is formulated as a supervised learning problem, and we employ deep learning to map from both spatial and spectral features to a training target. With binaural inputs, we first apply a fixed beamformer and then extract several spectral features. A new spatial feature is proposed and extracted to complement the spectral features. The training target is the recently suggested ideal ratio mask. Systematic evaluations and comparisons show that the proposed system achieves very good separation performance and substantially outperforms related algorithms under challenging multi-source and reverberant environments.
Cognitive Components Underpinning the Development of Model-Based Learning
Potter, Tracey C.S.; Bryce, Nessa V.; Hartley, Catherine A.
2016-01-01
Reinforcement learning theory distinguishes “model-free” learning, which fosters reflexive repetition of previously rewarded actions, from “model-based” learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9–25, we examined whether the abilities to infer sequential regularities in the environment (“statistical learning”), maintain information in an active state (“working memory”) and integrate distant concepts to solve problems (“fluid reasoning”) predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. PMID:27825732
ERIC Educational Resources Information Center
Symons, Duncan; Pierce, Robyn
2015-01-01
In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…
Ding, Yongxia; Zhang, Peili
2018-06-12
Problem-based learning (PBL) is an effective and highly efficient teaching approach that is extensively applied in education systems across a variety of countries. This study aimed to investigate the effectiveness of web-based PBL teaching pedagogies in large classes. The cluster sampling method was used to separate two college-level nursing student classes (graduating class of 2013) into two groups. The experimental group (n = 162) was taught using a web-based PBL teaching approach, while the control group (n = 166) was taught using conventional teaching methods. We subsequently assessed the satisfaction of the experimental group in relation to the web-based PBL teaching mode. This assessment was performed following comparison of teaching activity outcomes pertaining to exams and self-learning capacity between the two groups. When compared with the control group, the examination scores and self-learning capabilities were significantly higher in the experimental group (P < 0.01) compared with the control group. In addition, 92.6% of students in the experimental group expressed satisfaction with the new web-based PBL teaching approach. In a large class-size teaching environment, the web-based PBL teaching approach appears to be more optimal than traditional teaching methods. These results demonstrate the effectiveness of web-based teaching technologies in problem-based learning. Copyright © 2018. Published by Elsevier Ltd.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
NASA Astrophysics Data System (ADS)
Hizer, Suzanne Elizabeth
Higher education in science has been criticized and calls to increase student learning and persistence to degree has been recognized as a national problem by the Department of Education, the National Science Foundation, the National Research Council, and the National Academy of Sciences. One mode of academic assistance that may directly address this issue is the implementation of Supplemental Instruction (SI) in science courses. SI is a specific model of academic assistance designed to help students in historically difficult science classes master course content, thus increasing their academic achievement and retention. This study assessed the SI program at California State University, San Marcos, in supported science courses. Specifically, academic achievement based on final course grades were compared between SI participating and nonparticipating students, multiple affective factors were measured at the beginning and end of the semester, and students' perceptions of the classroom and SI session learning environments recorded. Overall, students who attended five or more SI sessions achieved higher final course grades. Students who chose to participate in SI had higher initial levels of responsibility and anxiety. Additionally, SI participants experienced a reduction in anxiety over the semester whereas nonparticipants experienced an increase in anxiety from beginning to the end of the semester. The learning environment of SI embodies higher levels of constructivist principles of active learning such as cooperation, cohesiveness, innovation, and personalization---with one exception for the physics course, which is a based on problem-based learning. Structural equation modeling of variables indicates that high self-efficacy at the end of the semester is directly related to high final course grades; this is mediated by cohesion in the classroom and the cooperation evidenced in SI sessions. These findings are elaborated by student descriptions of what happened in SI sessions and discussed given the theoretical frameworks of Bandura's concept of self-efficacy and learning environment activities that embody constructivist principles.
Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.
2003-01-01
Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
The Use of Comics-Based Cases in Anchored Instruction
ERIC Educational Resources Information Center
Kneller, Matthew F.
2009-01-01
The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…
ERIC Educational Resources Information Center
Darabi, Aubteen; Nelson, David W.; Meeker, Richard; Liang, Xinya; Boulware, Wilma
2010-01-01
In a diagnostic problem solving operation of a computer-simulated chemical plant, chemical engineering students were randomly assigned to two groups: one studying product-oriented worked examples, the other practicing conventional problem solving. Effects of these instructional strategies on the progression of learners' mental models were examined…
Creative and Critical Thinking Skills in Problem-Based Learning Environments
ERIC Educational Resources Information Center
Birgili, Bengi
2015-01-01
Creative and critical thinking skills are the abilities, which can sometimes be used interchangeably in definition. In fact, they have different constructs because they differentiate in outcome of human behaviours. Also one of today's requirements is that individuals should approach everyday problems by using both competences. So, one of the…
Teaching Global Change in Local Places: The HERO Research Experiences for Undergraduates Program
ERIC Educational Resources Information Center
Yarnal, Brent; Neff, Rob
2007-01-01
The Human-Environment Research Observatory (HERO) Research Experience for Undergraduates (REU) program aimed to develop the next generation of researchers working on place-based human-environment problems. The program followed a cooperative learning model to foster an integrated approach to geographic research and to build collaborative research…
NASA Astrophysics Data System (ADS)
Nelson, Diane Patricia
2002-09-01
This study is a formative evaluation of problem-based learning as an effective course delivery strategy in a second year introductory Medical Laboratory Technician discipline-specific hematology course. This strategy can serve two purposes in this type of course: discipline specific content knowledge and process skills learning. A needs study identified that students required additional workplace skills as they entered the clinical internship. Students tested well on the national registry examinations, discipline-specific content knowledge, but group process skills needed improvement in the areas of collaboration, communication, and critical reasoning. Problem-based learning was identified as an change intervention to help provide these skills. A search of the literature revealed that the Baker College cultural and physical environment would support this intervention. Twelve cases were written, situated in a clinical laboratory environment, addressing learning issues identified in a modified Delphi survey of laboratory personnel e.g. fiscal responsibility, turn-around time, invasiveness of laboratory techniques, and holistic view of healthcare environment. A hematology class of 13 students received the intervention. The cases were structured to proceed from instructor-centered (guided) learning issues to learner-centered learning issues. Observations of the in-group collaboration processes were documented, as well as oral presentations and critical reasoning, with students given periodic feedback on these skills. Student surveys provided data about satisfaction, attitude to PBL process, and self-efficacy. Multiple choice discipline-specific content examinations were given and compared with classes from the previous four years. The study found that students receiving the PBL treatment scored as well as or better than students from previous years on traditional multiple choice exams. Recall questions showed positive significance and application/analysis questions showed no significance from previous years. Clinical correlations end-of-case evaluations addressing the issues of thoroughness of investigation, supporting evidence, accuracy of information, order and clarity of thought showed positive improvement across the intervention, as did the PBL processes of in-group collaboration skills, teamwork skills, and presentation skills. By the end of the intervention, students expressed preference for student-centered learning issues.
Schauber, Stefan K; Hecht, Martin; Nouns, Zineb M; Kuhlmey, Adelheid; Dettmer, Susanne
2015-10-01
In medical education, the effect of the educational environment on student achievement has primarily been investigated in comparisons between traditional and problem-based learning (PBL) curricula. As many of these studies have reached no clear conclusions on the superiority of the PBL approach, the effect of curricular reform on student performance remains an issue. We employed a theoretical framework that integrates antecedents of student achievement from various psychosocial domains to examine how students interact with their curricular environment. In a longitudinal study with N = 1,646 participants, we assessed students in a traditional and a PBL-centered curriculum. The measures administered included students' perception of the learning environment, self-efficacy beliefs, positive study-related affect, social support, indicators of self-regulated learning, and academic achievement assessed through progress tests. We compared the relations between these characteristics in the two curricular environments. The results are two-fold. First, substantial relations of various psychosocial domains and their associations with achievement were identified. Second, our analyses indicated that there are no substantial differences between traditional and PBL-based curricula concerning the relational structure of psychosocial variables and achievement. Drawing definite conclusions on the role of curricular-level interventions in the development of student's academic achievement is constrained by the quasi-experimental design as wells as the selection of variables included. However, in the specific context described here, our results may still support the view of student activity as the key ingredient in the acquisition of achievement and performance.
ERIC Educational Resources Information Center
Wirussawa, Seatuch; Tesaputa, Kowat; Duangpaeng, Amporn
2016-01-01
This study aimed at 1) investigating the element of the learning environment management system in the secondary schools, 2) exploring the current states and problems of the system on the learning environment management in the secondary schools, 3) designing the learning environment management system for the secondary schools, and 4) identifying…
Instructional strategies for online introductory college physics based on learning styles
NASA Astrophysics Data System (ADS)
Ekwue, Eleazer U.
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.
Using Web 2.0 Technology to Enhance, Scaffold and Assess Problem-Based Learning
ERIC Educational Resources Information Center
Hack, Catherine
2013-01-01
Web 2.0 technologies, such as social networks, wikis, blogs, and virtual worlds provide a platform for collaborative working, facilitating sharing of resources and joint document production. They can act as a stimulus to promote active learning and provide an engaging and interactive environment for students, and as such align with the philosophy…
ERIC Educational Resources Information Center
Chuang, Tsung-Yen; Kuo, Ming-Shiou
2016-01-01
Children with Sensory Integration Dysfunction (SID, also known as Sensory Processing Disorder, SPD) are also learners with disabilities with regard to responding adequately to the demands made by a learning environment. With problems of organizing and processing the sensation information coming from body modalities, children with SID (CwSID)…
Learning about Flood Risk: Comparing the Web-Based and Physical Flood-Walk Learning Environments
ERIC Educational Resources Information Center
Chang Rundgren, Shu-Nu; Nyberg, Lars; Evers, Mariele; Alexandersson, Jan
2015-01-01
Numerous of sustainable development related challenges are emerging today, e.g. flooding problems. Our group has developed "the flood walk" project since 2010 to convey flood risk knowledge in an authentic context. Considering the limitation of time and space to educate people the flood risk knowledge, we tried to transform the physical…
Strategies for Sustaining Quality in PBL Facilitation for Large Student Cohorts
ERIC Educational Resources Information Center
Young, Louise; Papinczak, Tracey
2013-01-01
Problem-based learning (PBL) has been used to scaffold and support student learning in many Australian medical programs, with the role of the facilitator in the process considered crucial to the overall educational experience of students. With the increasing size of student cohorts and in an environment of financial constraint, it is important to…
Learning Outcome, Presence and Satisfaction from a Science Activity in Second Life
ERIC Educational Resources Information Center
Vrellis, Ioannis; Avouris, Nikolaos; Mikropoulos, Tassos A.
2016-01-01
Although problem-based learning (PBL) has many advantages, it often fails to connect to the real world outside the classroom. The integration with the laboratory setting and the use of information and communication technologies (ICTs) have been proposed to address this deficiency. Multi-user virtual environments (MUVEs) like Second Life (SL) are…
ERIC Educational Resources Information Center
Lan, Yu-Feng; Tsai, Pei-Wei; Yang, Shih-Hsien; Hung, Chun-Ling
2012-01-01
In recent years, researchers have conducted various studies on applying wireless networking technology and mobile devices in education settings. However, research on behavioral patterns in learners' online asynchronous discussions with mobile devices is limited. The purposes of this study are to develop a mobile learning system, mobile interactive…
ERIC Educational Resources Information Center
NoorShah, Mohd Salleh
2001-01-01
Describes the use of a Web-based learning environment for practice teaching at the Universiti Malaysia Sarawak (UNIMAS). Topics include overcoming communication problems between student teachers and between students and instructors; participation rates; and the Program Khas Pensiswazahan Guru (PKPG) program, an inservice course for nongraduate…
Reflective Outcomes of Convergent and Divergent Group Tasking in the Online Learning Environment
ERIC Educational Resources Information Center
Hawkes, Mark
2007-01-01
Using collaborative critical reflection as an index, this study examines the asynchronous and face-to-face discourse of 28 suburban Chicago elementary teachers developing problem based learning (PBL) curriculum. Statistical analysis of the corpus produced by the 2 mediums shows that the asynchronous online network emerges as the medium of choice…
Motivating Calculus-Based Kinematics Instruction with Super Mario Bros
NASA Astrophysics Data System (ADS)
Nordine, Jeffrey C.
2011-09-01
High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Determination of Science Teachers' Opinions about Outdoor Education
ERIC Educational Resources Information Center
Kubat, Ulas
2017-01-01
The aim of this research is to discover what science teachers' opinions about outdoor education learning environments are. Outdoor education learning environments contribute to problem-solving, critical and creative thinking skills of students. For this reason, outdoor education learning environments are very important for students to learn by…
NASA Astrophysics Data System (ADS)
Supianto, A. A.; Hayashi, Y.; Hirashima, T.
2017-02-01
Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.
Emerging Approach of Natural Language Processing in Opinion Mining: A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
Natural language processing (NLP) is a subfield of artificial intelligence and computational linguistics. It studies the problems of automated generation and understanding of natural human languages. This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment. We propose some ideas for using the computer as a practical tool for learning foreign language where the most of courseware is generated automatically. We then describe how to build Computer Based Learning tools, discuss its effectiveness, and conclude with some possibilities using on-line resources.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Learning Problems and Classroom Instruction.
ERIC Educational Resources Information Center
Adelman, Howard S.
Defined are categories of learning disabilities (LD) that can be remediated in regular public school classes, and offered are remedial approaches. Stressed in four studies is the heterogeneity of LD problems. Suggested is grouping LD children into three categories: no disorder (problem is from the learning environment); minor disorder (problem is…
NASA Astrophysics Data System (ADS)
Wright, Bob
1994-07-01
Drawing on current research the author explicates twelve assertions relating to curricula, teaching, learners and learning environments in lower primary school mathematics. Topics discussed include: unchanging and under-challenging curricula; the need for greater emphasis on developing children's verbal number strategies and number sense, and on activities specifically suited to prenumerical children; curriculum constraints on teachers; the role of problem solving and differing interpretations of problem solving; the need for a better understanding of how children learn mathematics; differences in children's knowledge; "anti-interventionism," discovery learning, constructivism, children's autonomy and developmental learning; the need for compensatory programs; and learning in collaborative settings. The author concludes that learning and teaching lower primary mathematics continues to be an important area of focus and challenge for teachers and researchers.
Brain-Emulating Cognition and Control Architecture (BECCA) v. 0.2 beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROHRER, BRANDON; & MORROW, JAMES
2009-06-16
BECCA is a learning and control method based on the function of the human brain. The goal behind its creation is to learn to control robots in unfamiliar environments in a way that is very robust, similar to the way that an infant learns to interact with her environment by trial and error. As of this release, this software contains an application for controlling robot hardware through a socket. The code was created so as to make it extensible to new applications. It is modular, object-oriented code in which the portions of the code that are specific to one robotmore » are easily separable from those portions that are the constant between implementations. BECCA makes very few assumptions about the robot and environment it is learning, and so is applicable to a wide range of learning and control problems.« less
ERIC Educational Resources Information Center
Kiesmuller, Ulrich
2009-01-01
At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
NASA Astrophysics Data System (ADS)
Shelton, Angela
Many United States secondary students perform poorly on standardized summative science assessments. Situated Assessments using Virtual Environments (SAVE) Science is an innovative assessment project that seeks to capture students' science knowledge and understanding by contextualizing problems in a game-based virtual environment called Scientopolis. Within Scientopolis, students use an "avatar" to interact with non-player characters (NPCs), artifacts, embedded clues and "sci-tools" in order to help solve the problems of the townspeople. In an attempt to increase students' success on assessments, SAVE science places students in an environment where they can use their inquiry skills to solve problems instead of reading long passages which attempt to contextualize questions but ultimately cause construct-irrelevant variance. However, within these assessments reading is still required to access the test questions and character interactions. This dissertation explores how students' in-world performances differ when exposed to a Reading Aloud Accommodation (RAA) treatment in comparison to a control group. Student perceptions of the treatment are also evaluated. While a RAA is typically available for students with learning disabilities or English language learners, within this study, all students were randomly assigned to either the treatment or control, regardless of any demographic factors or learning barriers. The theories of Universal design for learning and brain-based learning advocate for multiple ways for students to engage, comprehend, and illustrate their content knowledge. Further, through providing more ways for students to interact with content, all students should benefit, not just those with learning disabilities. Students in the experimental group listened to the NPCs speak the dialogue that provides them with the problem, clues, and assessment questions, instead of relying on reading skills to gather the information. Overall, students in the treatment group statistically outperformed those in the control. Student perceptions of using the reading aloud accommodation were generally positive. Ideas for future research are presented to investigate the accommodation further.
Education for the Information Age.
ERIC Educational Resources Information Center
Breivik, Patricia Senn
1992-01-01
To be effective in the current rapidly changing environment, individuals need more than a knowledge base. They also need information literacy which includes techniques for exploring new information, synthesizing it, and using it in practical ways. Undergraduate education should focus on such resource-based learning directed at problem solving.…
Klegeris, Andis; Hurren, Heather
2011-12-01
Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.
Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J
2005-01-01
A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be combined with other approaches to enhance and enliven classroom discussions in the veterinary curriculum.
Open Learning Environments and the Impact of a Pedagogical Agent
ERIC Educational Resources Information Center
Clarebout, Geraldine; Elen, Jan
2006-01-01
Research reveals that in highly structured learning environments pedagogical agents can act as tools to direct students' learning processes by providing content or problem solving guidance. It has not yet been addressed whether pedagogical agents have a similar impact in more open learning environments that aim at fostering students' acquisition…
Structuring an Adult Learning Environment. Part IV: Establishing an Environment for Problem Solving.
ERIC Educational Resources Information Center
Frankel, Alan; Brennan, James
Through the years, many researchers have advanced theories of problem solving. Probably the best definition of problem solving to apply to adult learning programs is Wallas' (1926) four-stage theory. The stages are (1) a preparation, (2) an incubation period, (3) a moment of illumination, and (4) final application or verification of the solution.…
"Growing" Education in Difficult Environments Promoting Problem Solving: A Case from Palestine
ERIC Educational Resources Information Center
Jabr, Dua
2009-01-01
This paper presents a collaborative educational experiment "The Death of the Dead Sea: A Problem Based Learning" that was applied in two governmental high schools in Ramallah, Palestine in the school year 2006-2007. The students' role was to raise awareness to the phenomenon of the saltiest lake that shrinks towards extinction. In spite…
ERIC Educational Resources Information Center
Kim, Hye Jeong; Pedersen, Susan
2011-01-01
Hypothesis development is a complex cognitive activity, but one that is critical as a means of reducing uncertainty during ill-structured problem solving. In this study, we examined the effect of metacognitive scaffolds in strengthening hypothesis development. We also examined the influence of hypothesis development on young adolescents'…
Alkhuwaiter, Shahad S; Aljuailan, Roqayah I; Banabilh, Saeed M
2016-01-01
The objectives of this study were to assess perceptions of the Saudi dental students of the problem-based learning (PBL) curriculum and to compare their perceptions among different sex and academic years. Data was collected through a questionnaire-based survey at Qassim College of dentistry. The questionnaire consisted of 19 questions regarding the perception of PBL curriculum and was distributed to 240 students. The chi-square test was used for statistical analysis of the data. Out of the 240 students recruited for this study, 146 returned a complete questionnaire (the response rate was 60.8%). The majority of the students perceived that PBL enhances the ability to speak in front of people (91.1%); improved the ability to find the information using the internet/library (81.5%); enhances the problem-solving skills (71.3%); increases the practice of cooperative and collaborative learning (69.2%); improves the decision-making skills (66.4%). Sixty-five percent ( n = 96) noted that some students dominate whereas others are passive during PBL discussion session. Statistically, significant differences were found in the following variables according to the academic year students assuming before responsibility for their own learning ( P < 0.037) and the role of facilitator in the process ( P < 0.034). Moreover, according to gender; there were statistically significant differences in the following variables, assuming responsibility for own learning ( P < 0.003); activating prior knowledge and learning to elaborate and organize their knowledge ( P < 0.009); enhancing the ability to find the information using the Internet/library ( P < 0.014); PBL is effective without having lecture of the same topic ( P < 0.025); helping in identifying the areas of weakness for improvement ( P < 0.031); student understanding the objectives of the PBL session better than the conventional way ( P < 0.040); and enhancing the ability to speak in front of people ( P < 0.040). Perceptions of Saudi dental students regarding their education environments at Qassim College of dentistry using PBL hybrid curriculum were more positive than negative. However, improvements are still required to provide students with stimulating favorable learning environment and to take the students recommendations into consideration.
Learning classifier systems for single and multiple mobile robots in unstructured environments
NASA Astrophysics Data System (ADS)
Bay, John S.
1995-12-01
The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.
A Framework and a Methodology for Developing Authentic Constructivist e-Learning Environments
ERIC Educational Resources Information Center
Zualkernan, Imran A.
2006-01-01
Semantically rich domains require operative knowledge to solve complex problems in real-world settings. These domains provide an ideal environment for developing authentic constructivist e-learning environments. In this paper we present a framework and a methodology for developing authentic learning environments for such domains. The framework is…
ERIC Educational Resources Information Center
Yurdugül, Halil; Menzi Çetin, Nihal
2015-01-01
Problem Statement: Learners can access and participate in online learning environments regardless of time and geographical barriers. This brings up the umbrella concept of learner autonomy that contains self-directed learning, self-regulated learning and the studying process. Motivation and learning strategies are also part of this umbrella…
Learning class descriptions from a data base of spectral reflectance with multiple view angles
NASA Technical Reports Server (NTRS)
Kimes, Daniel S.; Harrison, Patrick R.; Harrison, P. A.
1992-01-01
A learning program has been developed which combines 'learning by example' with the generate-and-test paradigm to furnish a robust learning environment capable of handling error-prone data. The problem is shown to be capable of learning class descriptions from positive and negative training examples of spectral and directional reflectance data taken from soil and vegetation. The program, which used AI techniques to automate very tedious processes, found the sequence of relationships that contained the most important information which could distinguish the classes.
Problem-Based Learning Spanning Real and Virtual Words: A Case Study in Second Life
ERIC Educational Resources Information Center
Good, Judith; Howland, Katherine; Thackray, Liz
2008-01-01
There is a growing use of immersive virtual environments for educational purposes. However, much of this activity is not yet documented in the public domain, or is descriptive rather than analytical. This paper presents a case study in which university students were tasked with building an interactive learning experience using Second Life as a…
ERIC Educational Resources Information Center
Morales, Roosevelt Barros; Guerra, Mara Cabanilla; Barros, Carlos; Froment, Sunny Bores
2018-01-01
This article is based on education for power and citizenship and related educational and social problems, where the axis of the issue is the environmental resources applied to learning geometry. These have a great impact on the teaching process, as it is currently considered that education should be interactive with respect to the environment. In…
ERIC Educational Resources Information Center
Titova, Svetlana; Talmo, Tord
2014-01-01
Mobile devices can enhance learning and teaching by providing instant feedback and better diagnosis of learning problems, helping design new assessment models, enhancing learner autonomy and creating new formats of enquiry-based activities. The objective of this paper is to investigate the pedagogical impact of mobile voting tools. The authors'…
Video-Based Affect Detection in Noninteractive Learning Environments
ERIC Educational Resources Information Center
Chen, Yuxuan; Bosch, Nigel; D'Mello, Sidney
2015-01-01
The current paper explores possible solutions to the problem of detecting affective states from facial expressions during text/diagram comprehension, a context devoid of interactive events that can be used to infer affect. These data present an interesting challenge for face-based affect detection because likely locations of affective facial…
Kim, Jung-Hee; Shin, Jwa-Seop
2014-09-01
The purpose of this study was to test the effectiveness of an online problem-based learning (e-PBL) program that offers multimedia scenarios to develop sexual health care competencies. A pretest–posttest control group design was used with two randomized groups in one Korean tertiary hospital. The sample included 32 RNs who cared for oncology patients. The intervention group completed an e-PBL cycle consisting of eight tutorials. Nurses in the intervention group scored significantly higher on knowledge than did those in the control group. The intervention group exhibited no significant differences in attitude and practices following the intervention. The results show the potential of e-PBL to enhance traditional PBL by offering multimedia scenarios in an interactive and flexible learning environment.
Planning the Learning Environment.
ERIC Educational Resources Information Center
Singel, Raymond J.
The learning environment and its interrelationship with educational policies and the coordinated planning and design of schools and their facilities are discussed in the light of the human organism or student. The problems and hazards of present learning environments are reviewed in conjunction with environmental control and its influence on…
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
Constructive Use of Authoritative Sources in Science Meaning-making
NASA Astrophysics Data System (ADS)
Yeo, Jennifer; Chee Tan, Seng
2010-09-01
Researchers are skeptical about the role of authoritative sources of information in a constructivist learning environment for fear of usurping students' critical thinking. Taking a social semiotics perspective in this study, authoritative sources are regarded as inscriptions of cultural artifacts, and science learning involves meaning-making of these cultural artifacts. In studying the meaning-making process of a group of students doing problem-based learning (PBL), our findings show that authoritative sources played an important role in deepening and expanding students' scientific knowledge. We also found that constructive use of authoritative sources involves interpretation of meaning in context. This structural coupling of authoritative sources and context for meaningful sense-making has to be taken into consideration in the design of learning environment.
Defining a Set of Architectural Requirements for Service-Oriented Mobile Learning Environments
ERIC Educational Resources Information Center
Filho, Nemésio Freitas Duarte; Barbosa, Ellen Francine
2014-01-01
Even providing several benefits and facilities with regard to teaching and learning, mobile learning environments present problems and challenges that must be investigated, especially with respect to the definition and standardization of architectural aspects. Most of these environments are still built in isolation, with particular structures and…
Design and Effects of a Concept Focused Discussion Environment in E-Learning
ERIC Educational Resources Information Center
Yilmaz, Erdi Okan; Yurdugul, Halil
2016-01-01
Problem Statement: Within the frame of learning management systems, this study develops a concept focused discussion environment and validates the effectiveness of this environment's use through an experimental study. Purpose of the Study: Online discussion forums, which are commonly used in learning management systems (LMS), can negatively…
NASA Astrophysics Data System (ADS)
Verma, H. K.; Mafidar, P.
2013-09-01
In view of growing concern towards environment, power system engineers are forced to generate quality green energy. Hence the economic dispatch (ED) aims at the power generation to meet the load demand at minimum fuel cost with environmental and voltage constraints along with essential constraints on real and reactive power. The emission control which reduces the negative impact on environment is achieved by including the additional constraints in ED problem. Presently, the power system mostly operates near its stability limits, therefore with increased demand the system faces voltage problem. The bus voltages are brought within limit in the present work by placement of static var compensator (SVC) at weak bus which is identified from bus participation factor. The optimal size of SVC is determined by univariate search method. This paper presents the use of Teaching Learning based Optimization (TLBO) algorithm for voltage stable environment friendly ED problem with real and reactive power constraints. The computational effectiveness of TLBO is established through test results over particle swarm optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms for the ED problem.
NASA Astrophysics Data System (ADS)
Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia
2007-12-01
To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.
The Impact of Adaptive Complex Assessment on the HOT Skill Development of Students
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2016-01-01
In this paper we propose a method for the adaptive complex assessment (ACA) of the higher-order thinking (HOT) skills needed by students for problem solving, and we examine the impact of the method on the development of HOT skills in a problem-based learning (PBL) environment. Complexity in the assessment is provided by initial, formative, and…
ERIC Educational Resources Information Center
Hooshyar, D.; Ahmad, R. B.; Yousefi, M.; Yusop, F. D.; Horng, S.-J.
2015-01-01
Intelligent tutoring and personalization are considered as the two most important factors in the research of learning systems and environments. An effective tool that can be used to improve problem-solving ability is an Intelligent Tutoring System which is capable of mimicking a human tutor's actions in implementing a one-to-one personalized and…
ERIC Educational Resources Information Center
Hsu, T. Ella; And Others
This study was designed to investigate the effects of the presence or absence of metacognitive skill tools available in hyperspace environments on field independent and field dependent learners. Learners were engaged in problem solving in an information-rich hyperspace based on a lesson on the attack on Pearl Harbor. Forty undergraduates were…
Inquiry, Play, and Problem Solving in a Process Learning Environment
ERIC Educational Resources Information Center
Thwaits, Anne Y.
2016-01-01
What is the nature of art/science collaborations in museums? How do art objects and activities contribute to the successes of science centers? Based on the premise that art exhibitions and art-based activities engage museum visitors in different ways than do strictly factual, information-based displays, I address these questions in a case study…
ERIC Educational Resources Information Center
Fiallo, Jorge; Gutiérrez, Angel
2017-01-01
We present results from a classroom-based intervention designed to help a class of grade 10 students (14-15 years old) learn proof while studying trigonometry in a dynamic geometry software environment. We analysed some students' solutions to conjecture-and-proof problems that let them gain experience in stating conjectures and developing proofs.…
Problem Solving Learning Environments and Assessment: A Knowledge Space Theory Approach
ERIC Educational Resources Information Center
Reimann, Peter; Kickmeier-Rust, Michael; Albert, Dietrich
2013-01-01
This paper explores the relation between problem solving learning environments (PSLEs) and assessment concepts. The general framework of evidence-centered assessment design is used to describe PSLEs in terms of assessment concepts, and to identify similarities between the process of assessment design and of PSLE design. We use a recently developed…
ERIC Educational Resources Information Center
Kapur, Manu; Kinzer, Charles K.
2007-01-01
This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…
Learner-Controlled Scaffolding Linked to Open-Ended Problems in a Digital Learning Environment
ERIC Educational Resources Information Center
Edson, Alden Jack
2017-01-01
This exploratory study reports on how students activated learner-controlled scaffolding and navigated through sequences of connected problems in a digital learning environment. A design experiment was completed to (re)design, iteratively develop, test, and evaluate a digital version of an instructional unit focusing on binomial distributions and…
Clipping in neurocontrol by adaptive dynamic programming.
Fairbank, Michael; Prokhorov, Danil; Alonso, Eduardo
2014-10-01
In adaptive dynamic programming, neurocontrol, and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimize a total cost function. In this paper, we show that when discretized time is used to model the motion of the agent, it can be very important to do clipping on the motion of the agent in the final time step of the trajectory. By clipping, we mean that the final time step of the trajectory is to be truncated such that the agent stops exactly at the first terminal state reached, and no distance further. We demonstrate that when clipping is omitted, learning performance can fail to reach the optimum, and when clipping is done properly, learning performance can improve significantly. The clipping problem we describe affects algorithms that use explicit derivatives of the model functions of the environment to calculate a learning gradient. These include backpropagation through time for control and methods based on dual heuristic programming. However, the clipping problem does not significantly affect methods based on heuristic dynamic programming, temporal differences learning, or policy-gradient learning algorithms.
Pearlman, Bob
2006-01-01
The most pertinent question concerning teaching and learning in the twenty-first century is not what knowledge and skills students need--that laundry list was identified over a decade ago--but rather how to foster twenty-first century learning. What curricula, experiences, assessments, environments, and technology best support twenty-first century learning? New Technology High School (NTHS) in Napa, California, is one example of a successful twenty-first century school. In this chapter, the author describes the components of this exemplary high school, illustrating an environment that will cultivate twenty-first century student learning. New Technology High School began by defining eight learning outcomes, aligned with the standards of the Partnership for 21st Century Skills; to graduate, students demonstrate mastery of these outcomes through an online portfolio. To help students achieve the outcomes, NTHS employs project- and problem-based learning. Whereas in traditional classrooms students work alone on short-term assignments that do not lend themselves to deep understanding, the project-based learning approach has students working in teams on long-term, in-depth, rigorous projects. Students' work is supported by the school's workplace-like environment and effectiv use of technology. Meaningful assessment is essential to project-based learning; students receive continuous feedback, helping them become self-directed learners. In fact, NTHS uses outcome-based grading through which students constantly know how they are performing on the twenty-first century outcomes. Research has shown that NTHS graduates are better prepared for postsecondary education, careers, and citizenship than their peers from other schools. To facilitate twenty-first century learning, all schools need to rethink their approach to teaching and learning. New Technology High School is one way to do so.
The effect of brain based learning with contextual approach viewed from adversity quotient
NASA Astrophysics Data System (ADS)
Kartikaningtyas, V.; Kusmayadi, T. A.; Riyadi, R.
2018-05-01
The aim of this research was to find out the effect of Brain Based Learning (BBL) with contextual approach viewed from adversity quotient (AQ) on mathematics achievement. BBL-contextual is the model to optimize the brain in the new concept learning and real life problem solving by making the good environment. Adversity Quotient is the ability to response and faces the problems. In addition, it is also about how to turn the difficulties into chances. This AQ classified into quitters, campers, and climbers. The research method used in this research was quasi experiment by using 2x3 factorial designs. The sample was chosen by using stratified cluster random sampling. The instruments were test and questionnaire for the data of AQ. The results showed that (1) BBL-contextual is better than direct learning on mathematics achievement, (2) there is no significant difference between each types of AQ on mathematics achievement, and (3) there is no interaction between learning model and AQ on mathematics achievement.
Supporting Distance Learners for Collaborative Problem Solving.
ERIC Educational Resources Information Center
Verdejo, M. F.; Barros, B.; Abad, M. T.
This paper describes a computer-supported environment designed to facilitate distance learning through collaborative problem-solving. The goal is to encourage distance learning students to work together, in order to promote both learning of collaboration and learning through collaboration. Collaboration is defined as working together on a common…
Exploring Small Group Analysis of Instructional Design Cases in Online Learning Environments
ERIC Educational Resources Information Center
Trespalacios, Jesus
2017-01-01
The case-based approach is a constructivist instructional strategy that helps students apply their emerging knowledge by studying design problems in authentic real-world situations. One important instructional strategy in case-based instruction is to analyze cases in small groups before discussing them with the whole class. This study investigates…
Closing the Achievement Gap with Culturally Relevant Technology-Based Learning Environments
ERIC Educational Resources Information Center
Joseph, Roberto
2009-01-01
The most significant educational problem of our time has been the achievement gap. The author discusses the need for the field of educational technology to join in the social movement to close this gap. He provides background on the significance of incorporating culture throughout the design and development of technology-based learning…
Adaptive Sampling for Urban Air Quality through Participatory Sensing
Zeng, Yuanyuan; Xiang, Kai
2017-01-01
Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766
ERIC Educational Resources Information Center
Huang, Xudong
2016-01-01
Help-seeking is a crucial behavior during learning in interactive learning environments (ILEs). Appropriate help-seeking promotes learning, while inappropriate help-seeking prohibits learning. However, many students are unaware of effective help-seeking behaviors. Therefore, research is needed to examine how students seek help in ILEs. Although…
Learning Objects and Virtual Learning Environments Technical Evaluation Criteria
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Dagiene, Valentina
2009-01-01
The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…
Chan, Engle Angela
2009-05-01
While problem-based learning (PBL) is a teaching strategy to promote critical thinking, creativity and self-directedness in learning is very important. It is the meaning of the learning, with a contextual understanding, that marks the significance of this approach in our healthcare education. At the 2008 Kaohsiung Medical University International Conference and Workshop on PBL, the scholarly discourse on sharing empirical findings and practical experience with various aspects of PBL brought forth the importance of the teachers' continued learning about the meaning, the dynamics of the process, and the pragmatic details of PBL. This quest for a continuous learning and understanding about PBL parallels our search to extend the classroom PBL into students' clinical experience. The development of clinical teachers in the understanding of PBL was explored as part of their experiential learning in clinical teaching after their PBL workshops. While the clinical teachers who participated in the project appreciated the merits of clinical PBL, the complex balance between patient service and student teaching--in an unpredictable clinical setting--has led to the use of a simulated clinical environment with simulated patients. We also piloted PBL for interprofessional education of undergraduate students of nursing and social work. The ways we can adopt PBL in various settings with different intents will help prepare our healthcare graduates in meeting the challenges of our ever more complex healthcare systems, and the demands of holistic patient care.
Globalization of problem-based learning (PBL): cross-cultural implications.
Gwee, Matthew Choon-Eng
2008-03-01
Problem-based learning (PBL) is essentially a learning system design that incorporates several educational strategies to optimize student-centered learning outcomes beyond just knowledge acquisition. PBL was implemented almost four decades ago as an innovative and alternative pathway to learning in medical education in McMaster University Medical School. Since then, PBL has spread widely across the world and has now been adopted globally, including in much of Asia. The globalization of PBL has important cross-cultural implications. Delivery of instruction in PBL involves active peer teaching-learning in an open communication style. Consequently, this may pose an apparent serious conflict with the Asian communication style generally dominated by a cultural reticence. However, evidence available, especially from the PBL experience of some senior Korean medical students doing an elective in the University of Toronto Medical School and the cross-cultural PBL experience initiated by Kaohsiung Medical University, strongly suggests creating a conducive and supportive learning environment for students learning in a PBL setting can overcome the perceived cultural barriers; that is, nurture matters more than culture in the learning environment. Karaoke is very much an Asian initiative. The Karaoke culture and philosophy provide a useful lesson on how to create a conducive and supportive environment to encourage, enhance and motivate group activity. Some key attributes associated with Asian culture are in fact consistent with, and aligned to, some of the basic tenets of PBL, including the congruence between the Asian emphasis on group before individual interest, and the collaborative small group learning design used in PBL. Although there are great expectations of the educational outcomes students can acquire from PBL, the available evidence supports the contention the actual educational outcomes acquired from PBL do not really match the expected educational outcomes commonly intended and specified for a PBL program. Proficiency in the English language can pose serious problems for some Asian medical schools, which choose to use English as the language for discussion in PBL tutorials. A novel approach that can be applied to overcome this problem is to allow students to engage in discussions using both their native language as well as English, a highly successful practice implemented by the University of Airlangga, Surabaya, Indonesia. As PBL is a highly resource-intensive pedagogy, Asian medical educators need to have a clear understanding of the PBL process, philosophy and practice in order to be able to optimize the educational outcomes that can be derived from a PBL curriculum.
Automated Decomposition of Model-based Learning Problems
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Millar, Bill
1996-01-01
A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.
Torija, Antonio J; Ruiz, Diego P
2015-02-01
The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McKenna, Ann Frances
2001-07-01
Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated on post-test measures. Specifically, female students scored significantly lower than males on the overall pre-tests but scored as well as males on the same post-test measures. MESA students also scored significantly lower than ATDP students on pre-test measures but both populations scored equally well on the post-tests. This dissertation has therefore shown the SIMALE to support a collaborative, reflective, and generative learning environment. Furthermore, the SIMALE clearly contributes to students' mechanical reasoning and understanding of simple machines concepts for a diverse population of students.
From Saying to Doing Interdisciplinary Learning: Is Problem-Based Learning the Answer?
ERIC Educational Resources Information Center
Stentoft, Diana
2017-01-01
Problem-based learning is often characterised as an approach encompassing interdisciplinary learning; however, little attention has been explicitly paid to what a claim of interdisciplinary problem-based learning means in practice. Even less attention has been given to address the consequences of interdisciplinary problem-based learning for…
Rethinking the lecture: the application of problem based learning methods to atypical contexts.
Rogal, Sonya M M; Snider, Paul D
2008-05-01
Problem based learning is a teaching and learning strategy that uses a problematic stimulus as a means of motivating and directing students to develop and acquire knowledge. Problem based learning is a strategy that is typically used with small groups attending a series of sessions. This article describes the principles of problem based learning and its application in atypical contexts; large groups attending discrete, stand-alone sessions. The principles of problem based learning are based on Socratic teaching, constructivism and group facilitation. To demonstrate the application of problem based learning in an atypical setting, this article focuses on the graduate nurse intake from a teaching hospital. The groups are relatively large and meet for single day sessions. The modified applications of problem based learning to meet the needs of atypical groups are described. This article contains a step by step guide of constructing a problem based learning package for large, single session groups. Nurse educators facing similar groups will find they can modify problem based learning to suit their teaching context.
ERIC Educational Resources Information Center
Cunningham, Carlton A.
2011-01-01
Technology enhancements of the past two decades have not successfully overcome the problem of low motivation in Kindergarten through Grade 12 (K-12). Motivation and math achievement have been identified as major factors contributing to the high school dropout problem (30-50% in traditional/online programs). The impact of extrinsic rewards on…
ERIC Educational Resources Information Center
Huang, T. K.
2018-01-01
The study makes use of the photo-hosting site, namely Flickr, for students to upload screenshots to demonstrate computer software problems and troubleshooting software. By creating non-text stickers and text-based annotations above the screenshots, students are able to help one another to diagnose and solve problems with greater certainty. In…
Mi, Misa; Halalau, Alexandra
2016-07-03
To explore possible relationships between residents' lifelong learning orientation, skills in practicing evidence-based medicine (EBM), and perceptions of the environment for learning and practicing EBM. This was a pilot study with a cross-sectional survey design. Out of 60 residents in a medical residency program, 29 participated in the study. Data were collected using a survey that comprised three sections: the JeffSPLL Scale, EBM Environment Scale, and an EBM skill questionnaire. Data were analyzed using SPSS and were reported with descriptive and inferential statistics (mean, standard deviation, Pearson's correlation, and a two-sample t-test). Mean scores on the JeffSPLL Scale were significantly correlated with perceptions of the EBM Scale and use of EBM resources to keep up to date or solve a specific patient care problem. There was a significant correlation between mean scores on the EBM Scale and hours per week spent in reading medical literature to solve a patient care problem. Two-sample t-tests show that residents with previous training in research methods had significantly higher scores on the JeffSPLL Scale (p=0.04), EBM Scale (p=0.006), and self-efficacy scale (p =0.024). Given the fact that physicians are expected to be lifelong learners over the course of their professional career, developing residents' EBM skills and creating interventions to improve specific areas in the EBM environment would likely foster residents' lifelong learning orientation.
A course director's perspectives on problem-based learning curricula in biochemistry.
Smith, Harold C
2002-12-01
Knowledge of the applications of biochemistry, molecular biology, and genetics in the practice of medicine has been and continues to be a vital part of medical students' and continuing education. The technical background and the rapid expansion of information and new applications have made it an arduous task to learn and teach this material within the already crowded medical school curriculum. Problem-based learning (PBL) formats are rapidly being adopted at all levels of education as not only a major paradigm shift in education but also a solution for the instruction of biochemistry in medical school. Designing an effective biochemistry curriculum with PBL-based or lecture-based formats requires an appreciation for their strengths and weakness. The author's experiences in the Double Helix Curriculum at the University of Rochester School of Medicine and Dentistry (which employs PBL cases and complementing lectures) has shown that students are excited about learning in the PBL environment and explore in depth ways of integrating biochemistry, cell biology, genetics, and molecular biology into the practice of medicine. At the same time, complementary lectures greatly enhance uniformity in the quality and, importantly, the accuracy of the students' learning.
NASA Astrophysics Data System (ADS)
Syifahayu
2017-02-01
The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.
Model learning for robot control: a survey.
Nguyen-Tuong, Duy; Peters, Jan
2011-11-01
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.
The dynamics of student learning within a high school virtual reality design class
NASA Astrophysics Data System (ADS)
Morales, Teresa M.
This mixed method study investigated knowledge and skill development of high school students in a project-based VR design class, in which 3-D projects were developed within a student-centered, student-directed environment. This investigation focused on student content learning, and problem solving. Additionally the social dynamics of the class and the role of peer mentoring were examined to determine how these factors influenced student behavior and learning. Finally, parent and teachers perceptions of the influence of the class were examined. The participants included freshmen through senior students, parents, teachers and the high school principal. Student interviews and classroom observations were used to collect data from students, while teachers and parents completed surveys. The results of this study suggested that this application of virtual reality (VR) learning environment promoted the development of; meaningful cognitive experiences, creativity, leadership, global socialization, problem solving and a deeper understanding of academic content. Further theoretical implications for 3-D virtual reality technology are exceedingly promising, and warrant additional research and development as an instructional tool for practical use.
NASA Astrophysics Data System (ADS)
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-04-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.
Incorporating active learning in psychiatry education.
Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith
2017-06-01
We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.
The Relationship of Scaffolding on Cognitive Load in an Online Self-Regulated Learning Environment
ERIC Educational Resources Information Center
Danilenko, Eugene Paul
2010-01-01
Scaffolding learners in self-regulated learning environments is a topic of increasing importance as implementation of online learning grows. Since cognitive overload in hypermedia environments can be a problem for some learners, instructional design strategies can be used to decrease extraneous load or encourage germane load in order to help…
ERIC Educational Resources Information Center
Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.
2015-01-01
Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…
NASA Astrophysics Data System (ADS)
DeVore, Seth; Marshman, Emily; Singh, Chandralekha
2017-06-01
As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar introductory physics courses and then propose a framework for helping students engage effectively with the learning tools. The tutorials were developed via research in physics education and were found to be effective for a diverse group of introductory physics students in one-on-one implementation. Instructors encouraged the use of these tools in a self-paced learning environment by telling students that they would be helpful for solving the assigned homework problems and that the underlying physics principles in the tutorial problems would be similar to those in the in-class quizzes (which we call paired problems). We find that many students in the courses in which these interactive electronic learning tutorials were assigned as a self-study tool performed poorly on the paired problems. In contrast, a majority of student volunteers in one-on-one implementation greatly benefited from the tutorials and performed well on the paired problems. The significantly lower overall performance on paired problems administered as an in-class quiz compared to the performance of student volunteers who used the research-based tutorials in one-on-one implementation suggests that many students enrolled in introductory physics courses did not effectively engage with the tutorials outside of class and may have only used them superficially. The findings suggest that many students in need of out-of-class remediation via self-paced learning tools may have difficulty motivating themselves and may lack the self-regulation and time-management skills to engage effectively with tools specially designed to help them learn at their own pace. We conclude by proposing a theoretical framework to help students with diverse prior preparations engage effectively with self-paced learning tools.
Development of Learning Resources to Promote Knowledge Sharing in Problem Based Learning
ERIC Educational Resources Information Center
Uden, Lorna; Page, Tom
2008-01-01
Problem Based Learning offers many benefits to students' learning, however, the design and implementation of effective problem based learning (PBL) is not trivial. Central to effective implementation of PBL are the problem design and group working of the students. Design of good problems requires that the learning outcomes of the subject are…
Collaboration and Dialogue in Virtual Reality
ERIC Educational Resources Information Center
Jensen, Camilla Gyldendahl
2017-01-01
"Virtual reality" adds a new dimension to problem-based learning (PBL) environments in the architecture and building construction educations, where a realistic and lifelike presence in a building enables students to assess and discuss how the various solutions interact with each other. Combined with "Building Information…
Problems as Possibilities: Problem-Based Learning for K-12 Education.
ERIC Educational Resources Information Center
Torp, Linda; Sage, Sara
Problem-based learning (PBL) is an experiential form of learning centered around the collaborative investigation and resolution of "messy, real-world" problems. This book offers opportunities to learn about problem-based learning from the perspectives of teachers, students, parents, administrators, and curriculum developers. Chapter 1 tells…
Cognitive theories and the design of e-learning environments.
Gillani, Bijan; O'Guinn, Christina
2004-01-01
Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.
The Effect of a Constructivist-Based Approach on Fifth Grade Reading Achievement
ERIC Educational Resources Information Center
Harkness, Lori M.
2016-01-01
The problem investigated in this quantitative study was that schools in a small, rural East Texas town were falling below acceptable ratings in reading on the Texas Assessment of Knowledge and Skills (TAKS) and the State of Texas Assessment of Academic Readiness (STAAR). Researchers have found that constructive-based learning environments (CBLEs)…
ERIC Educational Resources Information Center
Baghaei, Nilufar; Mitrovic, Antonija; Irwin, Warwick
2007-01-01
We present COLLECT-UML, a constraint-based intelligent tutoring system (ITS) that teaches object-oriented analysis and design using Unified Modelling Language (UML). UML is easily the most popular object-oriented modelling technology in current practice. While teaching how to design UML class diagrams, COLLECT-UML also provides feedback on…
ERIC Educational Resources Information Center
Jungert, Tomas; Rosander, Michael
2009-01-01
The purpose of this study was to investigate the relationship between student influence, students' strategic approaches to studying and academic achievement, and to examine differences between students in a Master's programme in Engineering with conventional teaching and one based on problem-based learning in a sample of 268 students. A version of…
Integrating Problem-Based Learning and Simulation: Effects on Student Motivation and Life Skills.
Roh, Young Sook; Kim, Sang Suk
2015-07-01
Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, P<.001), problem solving (F=6.91, P=.001), and self-directed learning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.
Early Childhood Environmental Education in Tropical and Coastal Areas: A Meta-Analysis
NASA Astrophysics Data System (ADS)
Sawitri, D. R.
2017-02-01
Early childhood years are the period of the greatest and most significant developments in ones’ life, and are generally regarded as the basis upon which the rest of their life is constructed. However, these early years are those that traditionally have received the least attention from environmental education. This paper was aimed to summarize several day-to-day activities that can be conducted to educate children in their early years about environment. Environmental education is an educational process that deals with the human interrelationships with the environment, and that uses an interdisciplinary problem solving approach with value clarification. Environmental education is aimed at producing a community that is knowledgeable about the biophysical environment and its associated problems, aware of how to solve these problems, and enthusiastic to work toward their solution. It highlights the progress of knowledge, understanding, attitudes, skills, and commitment for environmental problems and considerations. Further, environmental education can help children expand their ecological worldview, promote active care to the environment, and explain the relationship between modern life style and current environmental problems. Several types of environmental education have been identified from the literature, such as outdoor activities in natural outdoor setting, school gardening, play-based learning, and drawing activities. Each of these activities has its own characteristics and effects on children’s environmental-related attitudes and behaviors. Through these activities, the unique characteristics of tropical and coastal areas can potentially be used to facilitate children to learn about nature and environment. Recommendations for childhood education practitioners and future researchers are discussed.
Tutoring electronic troubleshooting in a simulated maintenance work environment
NASA Technical Reports Server (NTRS)
Gott, Sherrie P.
1987-01-01
A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.
Incorporating Problem-Based Learning in Physical Education Teacher Education
ERIC Educational Resources Information Center
Hushman, Glenn; Napper-Owen, Gloria
2011-01-01
Problem-based learning (PBL) is an educational method that identifies a problem as a context for student learning. Critical-thinking skills, deductive reasoning, knowledge, and behaviors are developed as students learn how theory can be applied to practical settings. Problem-based learning encourages self-direction, lifelong learning, and sharing…
Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry
ERIC Educational Resources Information Center
Overton, Tina L.; Randles, Christopher A.
2015-01-01
This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…
Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry
NASA Astrophysics Data System (ADS)
Sariyasa
2017-04-01
Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.
Riley, Jeffrey B; Austin, Jon W; Holt, David W; Searles, Bruce E; Darling, Edward M
2004-09-01
A challenge faced by many university-based perfusion education (PE) programs is the need for student clinical rotations at hospital locations that are geographically disparate from the main educational campus. The problem has been addressed through the employment of distance-learning environments. The purpose of this educational study is to evaluate the effectiveness of this teaching model as it is applied to PE. Web-based virtual classroom (VC) environments and educational management system (EMS) software were implemented independently and as adjuncts to live, interactive Internet-based audio/video transmission from classroom to classroom in multiple university-based PE programs. These Internet environments have been used in a variety of ways including: 1) forum for communication between the university faculty, students, and preceptors at clinical sites, 2) didactic lectures from expert clinicians to students assigned to distant clinical sites, 3) small group problem-based-learning modules designed to enhance students analytical skills, and 4) conversion of traditional face-to-face lectures to asynchronous learning modules. Hypotheses and measures of student and faculty satisfaction, clinical experience, and learning outcomes are proposed, and some early student feedback was collected. For curricula that emphasize both didactic and clinical education, the use of Internet-based VC and EMS software provides significant advancements over traditional models. Recognized advantages include: 1) improved communications between the college faculty and the students and clinical preceptors, 2) enhanced access to a national network of clinical experts in specialized techniques, 3) expanded opportunity for student distant clinical rotations with continued didactic course work, and 4) improved continuity and consistency of clinical experiences between students through implementation of asynchronous learning modules. Students recognize the learning efficiency of on-line information presentation but still prefer the traditional face-to-face classroom environment. Traditional paradigms impose limitations that are rooted in dependence upon the students and instructors being physically located in the same place at the same time. These represents significant impediments for PE programs that use geographically separate clinical sites to provide clinical experience. Historically this has led to a disintegration of the presentation of theory, and a reduction in the quantity or quality of clinical experience opportunities. New PE models help to eliminate limitations and improve the quality of education especially in the face of economic challenges. Perfusion education students and faculty will have to work together to find computer-based offerings that are equivalent to traditional classroom methods.
ERIC Educational Resources Information Center
Mossuto, Mark
2009-01-01
The adoption of problem-based learning as a teaching method in the advertising and public relations programs offered by the Business TAFE (Technical and Further Education) School at RMIT University is explored in this paper. The effect of problem-based learning on student engagement, student learning and contextualised problem-solving was…
Effects of personality traits on collaborative performance in problem-based learning tutorials
Jang, Hye Won; Park, Seung Won
2016-01-01
Objectives To examine the relationship between students’ collaborative performance in a problem-based learning (PBL) environment and their personality traits. Methods This retrospective, cross-sectional study was conducted using student data of a PBL program between 2013 and 2014 at Sungkyunkwan University School of Medicine, Seoul, South Korea. Eighty students were included in the study. Student data from the Temperament and Character Inventory were used as a measure of their personality traits. Peer evaluation scores during PBL were used as a measure of students’ collaborative performance. Results Simple regression analyses indicated that participation was negatively related to harm avoidance and positively related to persistence, whereas preparedness for the group work was negatively related to reward dependence. On multiple regression analyses, low reward dependence remained a significant predictor of preparedness. Grade-point average (GPA) was negatively associated with novelty seeking and cooperativeness and was positively associated with persistence. Conclusion Medical students who are less dependent on social reward are more likely to complete assigned independent work to prepare for the PBL tutorials. The findings of this study can help educators better understand and support medical students who are at risk of struggling in collaborative learning environments. PMID:27874153
Effects of personality traits on collaborative performance in problem-based learning tutorials.
Jang, Hye Won; Park, Seung Won
2016-12-01
To examine the relationship between students' collaborative performance in a problem-based learning (PBL) environment and their personality traits. Methods:This retrospective, cross-sectional study was conducted using student data of a PBL program between 2013 and 2014 at Sungkyunkwan University School of Medicine, Seoul, South Korea. Eighty students were included in the study. Student data from the Temperament and Character Inventory were used as a measure of their personality traits. Peer evaluation scores during PBL were used as a measure of students' collaborative performance. Results: Simple regression analyses indicated that participation was negatively related to harm avoidance and positively related to persistence, whereas preparedness for the group work was negatively related to reward dependence. On multiple regression analyses, low reward dependence remained a significant predictor of preparedness. Grade-point average (GPA) was negatively associated with novelty seeking and cooperativeness and was positively associated with persistence. Conclusion: Medical students who are less dependent on social reward are more likely to complete assigned independent work to prepare for the PBL tutorials. The findings of this study can help educators better understand and support medical students who are at risk of struggling in collaborative learning environments.
Deep and surface learning in problem-based learning: a review of the literature.
Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David
2016-12-01
In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.
Making connections: Where STEM learning and Earth science data services meet
NASA Astrophysics Data System (ADS)
Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.
2016-12-01
STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.
ERIC Educational Resources Information Center
Limanauskiene, Virginija; Stuikys, Vytautas
2009-01-01
With the expansion of e-learning, the understanding and evaluation of already created e-learning environments is becoming an extremely important issue. One way to dealing with the problem is analysis of case studies, i.e. already created environments, from the reuse perspective. The paper presents a general framework and model to assess UNITE, the…
Graduate Teaching Assistants' Epistemological and Metacognitive Development
ERIC Educational Resources Information Center
Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.
2011-01-01
Research in general chemistry laboratory instruction has rarely focused on the impact of the learning environment on the graduate teaching assistants (GTAs). We decided to investigate the effect that facilitating a well established cooperative problem-based chemistry laboratory has on GTAs' epistemological and metacognitive development, and how…
ERIC Educational Resources Information Center
Samur, Yavuz
2011-01-01
In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…
ERIC Educational Resources Information Center
Boyce, Mary C.; Singh, Kuki
2008-01-01
This paper describes a student-focused activity that promotes effective learning in analytical chemistry. Providing an environment where students were responsible for their own learning allowed them to participate at all levels from designing the problem to be addressed, planning the laboratory work to support their learning, to providing evidence…
Problem-Based Learning in Higher Education: Untold Stories.
ERIC Educational Resources Information Center
Savin-Baden, Maggi
The central argument of this book is that the potential of problem-based learning is yet to be realized in higher education. Problem-based learning is an important approach to learning, based in the experiential learning tradition, that needs to be more centrally located in higher education curricula. Part 1 of this book explores problem-based…
NASA Astrophysics Data System (ADS)
Chuah, Kee Man; Chen, Chwen Jen; Teh, Chee Siong
Virtual reality (VR) has been prevalently used as a tool to help students learn and to simulate situations that are too hazardous to practice in real life. The present study aims to explore the capability of VR to achieve these two purposes and demonstrate a novel application of the result, using VR to help school students learn about road safety skills, which are impractical to be carried out in real-life situations. This paper describes the system design of the VR-based learning environment known as Virtual Simulated Traffics for Road Safety Education (ViSTREET) and its various features. An overview of the technical procedures for its development is also included. Ultimately, this paper highlights the potential use of VR in addressing the learning problem concerning road safety education programme in Malaysia.
Still-to-video face recognition in unconstrained environments
NASA Astrophysics Data System (ADS)
Wang, Haoyu; Liu, Changsong; Ding, Xiaoqing
2015-02-01
Face images from video sequences captured in unconstrained environments usually contain several kinds of variations, e.g. pose, facial expression, illumination, image resolution and occlusion. Motion blur and compression artifacts also deteriorate recognition performance. Besides, in various practical systems such as law enforcement, video surveillance and e-passport identification, only a single still image per person is enrolled as the gallery set. Many existing methods may fail to work due to variations in face appearances and the limit of available gallery samples. In this paper, we propose a novel approach for still-to-video face recognition in unconstrained environments. By assuming that faces from still images and video frames share the same identity space, a regularized least squares regression method is utilized to tackle the multi-modality problem. Regularization terms based on heuristic assumptions are enrolled to avoid overfitting. In order to deal with the single image per person problem, we exploit face variations learned from training sets to synthesize virtual samples for gallery samples. We adopt a learning algorithm combining both affine/convex hull-based approach and regularizations to match image sets. Experimental results on a real-world dataset consisting of unconstrained video sequences demonstrate that our method outperforms the state-of-the-art methods impressively.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Weeks, Keith W; Meriel Hutton, B; Coben, Diana; Clochesy, John M; Pontin, David
2013-03-01
When designing learning and assessment environments it is essential to articulate the underpinning education philosophy, theory, model and learning style support mechanisms that inform their structure and content. We elaborate on original PhD research that articulates the design rationale of authentic medication dosage calculation problem-solving (MDC-PS) learning and diagnostic assessment environments. These environments embody the principles of authenticity, building knowledge and skills and competency assessment and are designed to support development of competence and bridging of the theory-practice gap. Authentic learning and diagnostic assessment environments capture the features and expert practices that are located in real world practice cultures and recreate them in authentic virtual clinical environments. We explore how this provides students with a safe virtual authentic environment to actively experience, practice and undertake MDC-PS learning and assessment activities. We argue that this is integral to the construction and diagnostic assessment of schemata validity (mental constructions and frameworks that are an individual's internal representation of their world), bridging of the theory-practice gap and cognitive and functional competence development. We illustrate these principles through the underpinning pedagogical design of two online virtual authentic learning and diagnostic assessment environments (safeMedicate and eDose™). Copyright © 2012. Published by Elsevier Ltd.
Social Knowledge Awareness Map for Computer Supported Ubiquitous Learning Environment
ERIC Educational Resources Information Center
El-Bishouty, Moushir M.; Ogata, Hiroaki; Rahman, Samia; Yano, Yoneo
2010-01-01
Social networks are helpful for people to solve problems by providing useful information. Therefore, the importance of mobile social software for learning has been supported by many researches. In this research, a model of personalized collaborative ubiquitous learning environment is designed and implemented in order to support learners doing…
Determination of Teacher Characteristics That Support Constructivist Learning Environments
ERIC Educational Resources Information Center
Aydogdu, Bulent; Selanik-Ay, Tugba
2016-01-01
Problem Statement: Exploring the variables that affect teachers' teaching approaches in learning environments is crucial to determining their response to new trends. Their teaching and learning characteristics set the success level of the new reforms. In addition, monitoring the usage of constructivist pedagogies and giving feedback about them are…
Managing the Complexity of Design Problems through Studio-Based Learning
ERIC Educational Resources Information Center
Cennamo, Katherine; Brandt, Carol; Scott, Brigitte; Douglas, Sarah; McGrath, Margarita; Reimer, Yolanda; Vernon, Mitzi
2011-01-01
The ill-structured nature of design problems makes them particularly challenging for problem-based learning. Studio-based learning (SBL), however, has much in common with problem-based learning and indeed has a long history of use in teaching students to solve design problems. The purpose of this ethnographic study of an industrial design class,…
ERIC Educational Resources Information Center
Shultz, Ginger V.; Li, Ye
2016-01-01
Problem-based learning methods support student learning of content as well as scientific skills. In the course of problem-based learning, students seek outside information related to the problem, and therefore, information literacy skills are practiced when problem-based learning is used. This work describes a mixed-methods approach to investigate…
Students' perceptions of clinical teaching and learning strategies: a Pakistani perspective.
Khan, Basnama Ayaz; Ali, Fauziya; Vazir, Nilofar; Barolia, Rubina; Rehan, Seema
2012-01-01
The complexity of the health care environment is increasing with the explosion of technology, coupled with the issues of patients' access, equity, time efficiency, and cost containment. Nursing education must focus on means that enable students to develop the processes of active learning, problem-solving, and critical thinking, in order to enable them to deal with the complexities. This study aims at identifying the nursing students' perceptions about the effectiveness of utilized teaching and learning strategies of clinical education, in improving students' knowledge, skills, and attitudes. A descriptive cross sectional study design was utilized using both qualitative and quantitative approaches. Data were collected from 74 students, using a questionnaire that was developed for the purpose of the study and analyzed using descriptive and non-parametric statistics. The findings revealed that demonstration was the most effective strategy for improving students' skills; reflection, for improving attitudes; and problem based learning and concept map for improving their knowledge. Students' responses to open-ended questions confirmed the effectiveness of these strategies in improving their learning outcomes. Recommendations have been provided based on the findings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hoffmann, Michael; Borenstein, Jason
2014-03-01
As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.
Teachers' experiences of teaching in a blended learning environment.
Jokinen, Pirkko; Mikkonen, Irma
2013-11-01
This paper considers teachers' experiences of teaching undergraduate nursing students in a blended learning environment. The basic idea of the study programme was to support students to reflect on theory and practice, and provide with access to expert and professional knowledge in real-life problem-solving and decision making. Learning was organised to support learning in and about work: students worked full-time and this provided excellent opportunities for learning both in practice, online and face-to-face sessions. The aim of the study was to describe teachers' experiences of planning and implementing teaching and learning in a blended-learning-based adult nursing programme. The research method was qualitative, and the data were collected by three focus group interviews, each with four to six participants. The data were analysed using qualitative content analysis. The results show that the blended learning environment constructed by the combination of face-to-face learning and learning in practice with technology-mediated learning creates challenges that must be taken into consideration when planning and implementing blended teaching and learning. However, it provides good opportunities to enhance students' learning in and about work. This is because such programmes support student motivation through the presence of "real-life" and their relevance to the students' own places of work. Nevertheless, teachers require knowledge of different pedagogical approaches; they need professional development support in redesigning teaching and learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hall, Mona L.; Vardar-Ulu, Didem
2014-01-01
The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…
Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine
ERIC Educational Resources Information Center
Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.
2003-01-01
Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…
Implementing and Assessing Computational Modeling in Introductory Mechanics
ERIC Educational Resources Information Center
Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.
2012-01-01
Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…
ERIC Educational Resources Information Center
Horsch, Patricia; Chen, Jie-Qi; Wagner, Suzanne L.
2002-01-01
The Schools Project, a partnership between the Erickson Institute and low-income Chicago elementary schools, which optimized student learning through various school-based interventions, particularly developmentally appropriate curricula, tended to aggravate students' behavioral problems. The Responsive Classroom approach was implemented to support…
Paternity Testing in a PBL Environment
ERIC Educational Resources Information Center
Casla, Alberto Vicario; Zubiaga, Isabel Smith
2010-01-01
Problem Based Learning (PBL) makes use of real-life scenarios to stimulate students' prior knowledge and to provide a meaningful context that is also related to the student's future professional work. In this article, Paternity testing is presented using a PBL approach that involves a combination of classroom, laboratory, and out-of-class…
Computer-Assisted Instruction to Avert Teen Pregnancy.
ERIC Educational Resources Information Center
Starn, Jane Ryburn; Paperny, David M.
Teenage pregnancy has become a major public health problem in the United States. A study was conducted to assess an intervention based upon computer-assisted instruction (CAI) to avert teenage pregnancy. Social learning and decision theory were applied to mediate the adolescent environment through CAI so that adolescent development would be…
Social Justice Lessons and Mathematics
ERIC Educational Resources Information Center
Johnson, Jason D.
2011-01-01
Assigning activities based on current or past events allows students to explore mathematics in a social context. Using social justice events in the mathematics classroom is a way for teachers to provide contextual problems that will reach all students and promote equity. Learning mathematics in an environment in which social issues are explored…
Indian River County Environmental Education Instructional Guide. Social Studies, Grade Nine.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The teaching guide presents social studies activities to help ninth graders learn about environmental concepts, problems, and responsibilities. Based on the Indian River County environment in Florida, it is part of a series for teachers, students, and community members. The introduction describes the county's geography, natural resources,…
Indian River County Environmental Education Instructional Guide. Social Studies, Eighth Grade.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The teaching guide presents social studies activities for eighth graders to learn about environmental concepts, problems, and responsibilities. Part of a series for teachers, students, and community members, it is based on the Indian River County environment in Florida. The introduction identifies the county's natural resources, wildlife, and…
Promoting Quantitative Literacy in an Online College Algebra Course
ERIC Educational Resources Information Center
Tunstall, Luke; Bossé, Michael J.
2016-01-01
College algebra (a university freshman level algebra course) fulfills the quantitative literacy requirement of many college's general education programs and is a terminal course for most who take it. An online problem-based learning environment provides a unique means of engaging students in quantitative discussions and research. This article…
Deductive Error Diagnosis and Inductive Error Generalization for Intelligent Tutoring Systems.
ERIC Educational Resources Information Center
Hoppe, H. Ulrich
1994-01-01
Examines the deductive approach to error diagnosis for intelligent tutoring systems. Topics covered include the principles of the deductive approach to diagnosis; domain-specific heuristics to solve the problem of generalizing error patterns; and deductive diagnosis and the hypertext-based learning environment. (Contains 26 references.) (JLB)
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu
2007-01-01
This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.
Networked Environments that Create Hybrid Spaces for Learning Science
ERIC Educational Resources Information Center
Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen
2014-01-01
Networked learning environments that embed the essence of the Community of Inquiry (CoI) framework utilise pedagogies that encourage dialogic practices. This can be of significance for classroom teaching across all curriculum areas. In science education, networked environments are thought to support student investigations of scientific problems,…
Empowering Students in Science through Active Learning: Voices From Inside the Classroom
NASA Astrophysics Data System (ADS)
Erickson, Sabrina Ann
Preparing students for success in the 21st century has shifted the focus of science education from acquiring information and knowledge to mastery of critical thinking and problem-solving skills. The purpose of this qualitative case study was to examine teacher and student perspectives of the relationship between (a) active learning, problem solving, and achievement in science and (b) the conditions that help facilitate this environment. Adapting a social constructivist theoretical framework, high school science teachers and students were interviewed, school records analyzed, curriculum documents studied, and classes observed. The findings revealed that students were engaged with the material in an active learning environment, which led to a sense of involvement, interest, and meaningful learning. Students felt empowered to take ownership of their learning, developed the critical thinking skills necessary to solve problems independently and became aware of how they learn best, which students reported as interactive learning. Moreover, student reflections revealed that an active environment contributed to deeper understanding and higher skills through interaction and discussion, including questioning, explaining, arguing, and contemplating scientific concepts with their peers. Recommendations are for science teachers to provide opportunities for students to work actively, collaborate in groups, and discuss their ideas to develop the necessary skills for achievement and for administrators to facilitate the conditions needed for active learning to occur.
NASA Astrophysics Data System (ADS)
Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.
2012-07-01
Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and opportunities provided.
[Continuum, the continuing education platform based on a competency matrix].
Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S
2016-04-01
Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Features and Characteristics of Problem Based Learning
ERIC Educational Resources Information Center
Ceker, Eser; Ozdamli, Fezile
2016-01-01
Throughout the years, there appears to be an increase in Problem Based Learning applications in education; and Problem Based Learning related research areas. The main aim of this research is to underline the fundamentals (basic elements) of Problem Based Learning, investigate the dimensions of research approached to PBL oriented areas (with a look…
Pre-Service English Teachers in Blended Learning Environment in Respect to Their Learning Approaches
ERIC Educational Resources Information Center
Yilmaz, M. Betul; Orhan, Feza
2010-01-01
Blended learning environment (BLE) is increasingly used in the world, especially in university degrees and it is based on integrating web-based learning and face-to-face (FTF) learning environments. Besides integrating different learning environments, BLE also addresses to students with different learning approaches. The "learning…
Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.
ERIC Educational Resources Information Center
Baylor, Amy L.
2002-01-01
Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…
Weeks, Keith W; Clochesy, John M; Hutton, B Meriel; Moseley, Laurie
2013-03-01
Advancing the art and science of education practice requires a robust evaluation of the relationship between students' exposure to learning and assessment environments and the development of their cognitive competence (knowing that and why) and functional competence (know-how and skills). Healthcare education translation research requires specific education technology assessments and evaluations that consist of quantitative analyses of empirical data and qualitative evaluations of the lived student experience of the education journey and schemata construction (Weeks et al., 2013a). This paper focuses on the outcomes of UK PhD and USA post-doctorate experimental research. We evaluated the relationship between exposure to traditional didactic methods of education, prototypes of an authentic medication dosage calculation problem-solving (MDC-PS) environment and nursing students' construction of conceptual and calculation competence in medication dosage calculation problem-solving skills. Empirical outcomes from both UK and USA programmes of research identified highly significant differences in the construction of conceptual and calculation competence in MDC-PS following exposure to the authentic learning environment to that following exposure to traditional didactic transmission methods of education (p < 0.001). This research highlighted that for many students exposure to authentic learning environments is an essential first step in the development of conceptual and calculation competence and relevant schemata construction (internal representations of the relationship between the features of authentic dosage problems and calculation functions); and how authentic environments more ably support all cognitive (learning) styles in mathematics than traditional didactic methods of education. Functional competence evaluations are addressed in Macdonald et al. (2013) and Weeks et al. (2013e). Copyright © 2012. Published by Elsevier Ltd.
Physics students' approaches to learning and cognitive processes in solving physics problems
NASA Astrophysics Data System (ADS)
Bouchard, Josee
This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.
NASA Astrophysics Data System (ADS)
Barak, Miri; Dori, Yehudit Judy
2005-01-01
Project-based learning (PBL), which is increasingly supported by information technologies (IT), contributes to fostering student-directed scientific inquiry of problems in a real-world setting. This study investigated the integration of PBL in an IT environment into three undergraduate chemistry courses, each including both experimental and control students. Students in the experimental group volunteered to carry out an individual IT-based project, whereas the control students solved only traditional problems. The project included constructing computerized molecular models, seeking information on scientific phenomena, and inquiring about chemistry theories. The effect of the PBL was examined both quantitatively and qualitatively. The quantitative analysis was based on a pretest, a posttest, and a final examination, which served for comparing the learning gains of the two research groups. For the qualitative analysis, we looked into the experimental students' performance, as reflected by the projects they had submitted. In addition, think alou interviews and observations helped us gain insight into the students' conceptual understanding of molecular structures. Students who participated in the IT-enhanced PBL performed significantly better than their control classmates not only on their posttest but also on their course final examination. Analyzing the qualitative findings, we concluded that the construction of computerized models and Web-based inquiry activities helped promote students' ability of mentally traversing the four levels of chemistry understanding: symbolic, macroscopic, microscopic, and process. More generally, our results indicated that incorporating IT-rich PBL into freshmen courses can enhance students' understanding of chemical concepts, theories, and molecular structures.
Teach Me in the Way I Learn: Education and the Internet Generation
ERIC Educational Resources Information Center
Baker, Russell; Matulich, Erika; Papp, Raymond
2007-01-01
College students learn differently than their professors. This disconnect between learning styles is not a new problem, however the problem has been magnified by the technology driven environment which exists in contemporary higher education. Students who grew up using computers and Playstations while surfing MySpace blogs and listening to their…
ERIC Educational Resources Information Center
Abdu, Rotem; Schwarz, Baruch; Mavrikis, Manolis
2015-01-01
We investigate teachers' practices in a whole-class context when they scaffold students' learning in situations where students use technologies that facilitate group learning to solve mathematical problems in small groups. We describe teachers' practices in order to evaluate their contribution to "Whole-Class Scaffolding" in the context…
Technology-Enhanced Learning Environments to Solve Performance Problems: A Case of a Korean Company
ERIC Educational Resources Information Center
Kim, Min Kyu
2010-01-01
This is a case describing how technology enhanced learning environments can be used to improve employees' competence development. For this purpose, specific problematic situations in a Korean insurance company are portrayed. These situations demonstrate that everyday life in a workplace provides opportunities for learning and performance…
Learning and Teaching in a Synchronous Collaborative Environment.
ERIC Educational Resources Information Center
Marjanovic, Olivera
1999-01-01
Describes a new synchronous collaborative environment that combines interactive learning and Group Support Systems for computer-mediated collaboration. Illustrates its potential to improve critical thinking, problem solving, and communication skills, and describes how teachers' roles are changed. (Author/LRW)
A survey of automated methods for sensemaking support
NASA Astrophysics Data System (ADS)
Llinas, James
2014-05-01
Complex, dynamic problems in general present a challenge for the design of analysis support systems and tools largely because there is limited reliable a priori procedural knowledge descriptive of the dynamic processes in the environment. Problem domains that are non-cooperative or adversarial impute added difficulties involving suboptimal observational data and/or data containing the effects of deception or covertness. The fundamental nature of analysis in these environments is based on composite approaches involving mining or foraging over the evidence, discovery and learning processes, and the synthesis of fragmented hypotheses; together, these can be labeled as sensemaking procedures. This paper reviews and analyzes the features, benefits, and limitations of a variety of automated techniques that offer possible support to sensemaking processes in these problem domains.
Metacognitive components in smart learning environment
NASA Astrophysics Data System (ADS)
Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.
2018-03-01
Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.
Distraction during learning with hypermedia: difficult tasks help to keep task goals on track
Scheiter, Katharina; Gerjets, Peter; Heise, Elke
2014-01-01
In educational hypermedia environments, students are often confronted with potential sources of distraction arising from additional information that, albeit interesting, is unrelated to their current task goal. The paper investigates the conditions under which distraction occurs and hampers performance. Based on theories of volitional action control it was hypothesized that interesting information, especially if related to a pending goal, would interfere with task performance only when working on easy, but not on difficult tasks. In Experiment 1, 66 students learned about probability theory using worked examples and solved corresponding test problems, whose task difficulty was manipulated. As a second factor, the presence of interesting information unrelated to the primary task was varied. Results showed that students solved more easy than difficult probability problems correctly. However, the presence of interesting, but task-irrelevant information did not interfere with performance. In Experiment 2, 68 students again engaged in example-based learning and problem solving in the presence of task-irrelevant information. Problem-solving difficulty was varied as a first factor. Additionally, the presence of a pending goal related to the task-irrelevant information was manipulated. As expected, problem-solving performance declined when a pending goal was present during working on easy problems, whereas no interference was observed for difficult problems. Moreover, the presence of a pending goal reduced the time on task-relevant information and increased the time on task-irrelevant information while working on easy tasks. However, as revealed by mediation analyses these changes in overt information processing behavior did not explain the decline in problem-solving performance. As an alternative explanation it is suggested that goal conflicts resulting from pending goals claim cognitive resources, which are then no longer available for learning and problem solving. PMID:24723907
Deal or No Deal: using games to improve student learning, retention and decision-making
NASA Astrophysics Data System (ADS)
Chow, Alan F.; Woodford, Kelly C.; Maes, Jeanne
2011-03-01
Student understanding and retention can be enhanced and improved by providing alternative learning activities and environments. Education theory recognizes the value of incorporating alternative activities (games, exercises and simulations) to stimulate student interest in the educational environment, enhance transfer of knowledge and improve learned retention with meaningful repetition. In this case study, we investigate using an online version of the television game show, 'Deal or No Deal', to enhance student understanding and retention by playing the game to learn expected value in an introductory statistics course, and to foster development of critical thinking skills necessary to succeed in the modern business environment. Enhancing the thinking process of problem solving using repetitive games should also improve a student's ability to follow non-mathematical problem-solving processes, which should improve the overall ability to process information and make logical decisions. Learning and retention are measured to evaluate the success of the students' performance.
Web-Based Learning Environment Based on Students’ Needs
NASA Astrophysics Data System (ADS)
Hamzah, N.; Ariffin, A.; Hamid, H.
2017-08-01
Traditional learning needs to be improved since it does not involve active learning among students. Therefore, in the twenty-first century, the development of internet technology in the learning environment has become the main needs of each student. One of the learning environments to meet the needs of the teaching and learning process is a web-based learning environment. This study aims to identify the characteristics of a web-based learning environment that supports students’ learning needs. The study involved 542 students from fifteen faculties in a public higher education institution in Malaysia. A quantitative method was used to collect the data via a questionnaire survey by randomly. The findings indicate that the characteristics of a web-based learning environment that support students’ needs in the process of learning are online discussion forum, lecture notes, assignments, portfolio, and chat. In conclusion, the students overwhelmingly agreed that online discussion forum is the highest requirement because the tool can provide a space for students and teachers to share knowledge and experiences related to teaching and learning.
Engaging Future Teachers in Problem-Based Learning with the Park City Mathematics Institute Problems
ERIC Educational Resources Information Center
Pilgrim, Mary E.
2014-01-01
Problem-based learning (PBL) is a pedagogical technique recommended for K-12 mathematics classrooms. However, the mathematics courses in future teachers' degree programs are often lecture based. Students typically learn about problem-based learning in theory, but rarely get to experience it first-hand in their mathematics courses. The premise…
Learning from external environments using Soar
NASA Technical Reports Server (NTRS)
Laird, John E.
1989-01-01
Soar, like the previous PRODIGY and Theo, is a problem-solving architecture that attempts to learn from experience; unlike them, it takes a more uniform approach, using a single forward-chaining architecture for planning and execution. Its single learning mechanism, designated 'chunking', is domain-independent. Two developmental approaches have been employed with Soar: the first of these allows the architecture to attempt a problem on its own, while the second involves a degree of external guidance. This learning through guidance is integrated with general problem-solving and autonomous learning, leading to an avoidance of human interaction for simple problems that Soar can solve on its own.
Effects of tutor-related behaviours on the process of problem-based learning.
Chng, Esther; Yew, Elaine H J; Schmidt, Henk G
2011-10-01
Tutors in a Problem-Based Learning (PBL) curriculum are thought to play active roles in guiding students to develop frameworks for use in the construction of knowledge. This implies that both subject-matter expertise and the ability of tutors to facilitate the learning process must be important in helping students learn. This study examines the behavioural effects of tutors in terms of subject-matter expertise, social congruence and cognitive congruence on students' learning process and on their final achievement. The extent of students' learning at each PBL phase was estimated by tracking the number of relevant concepts recalled at the end of each learning phase, while student achievement was based on students' ability to describe and elaborate upon the relationship between relevant concepts learned. By using Analysis of Covariance, social congruence of the tutor was found to have a significant influence on learning in each PBL phase while all of the tutor-related behaviours had a significant impact on student achievement. The results suggest that the ability of tutors to communicate informally with students and hence create a less threatening learning environment that promotes a free flow exchange of ideas, has a greater impact on learning at each of the PBL phases as compared to tutors' subject-matter expertise and their ability to explain concepts in a way that is easily understood by students. The data presented indicates that these tutor-related behaviours are determinants of learning in a PBL curriculum, with social congruence having a greater influence on learning in the different PBL phases.
Interaction Network Estimation: Predicting Problem-Solving Diversity in Interactive Environments
ERIC Educational Resources Information Center
Eagle, Michael; Hicks, Drew; Barnes, Tiffany
2015-01-01
Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…
American Chemical Society Student Affiliates Chapters: More Than Just Chemistry Clubs
NASA Astrophysics Data System (ADS)
Montes, Ingrid; Collazo, Carmen
2003-10-01
Chemistry educators often examine and implement various instructional techniques, such as mentoring programs, to advance learning objectives and to equip students with analytical and technical skills, as well as the skills required of chemical science professionals. Student organizations, such as an American Chemical Society Student Affiliates (SA) chapter, can create a learning environment for undergraduates by engaging them in activities that develop communication, teamwork and inquiry, analysis, and problem-solving skills within a real-world setting. The environment is student-based, has personal meaning for the learner, emphasizes a process-and-product orientation, and emphasizes evaluation. Participation in SAs enhance the traditional chemistry curriculum, complementing the learning goals and meeting learning objectives that might not otherwise be addressed in the curriculum. In this article we discuss how SA chapters enhance the educational experience of undergraduate chemical science students, help develop new chemistry professionals, and shape enthusiastic and committed future chemical science leaders.
Cooperative Learning through Team-Based Projects in the Biotechnology Industry †
Luginbuhl, Sarah C.; Hamilton, Paul T.
2013-01-01
We have developed a cooperative-learning, case studies project model that has teams of students working with biotechnology professionals on company-specific problems. These semester-long, team-based projects can be used effectively to provide students with valuable skills in an industry environment and experience addressing real issues faced by biotechnology companies. Using peer-evaluations, we have seen improvement in students’ professional skills such as time-management, quality of work, and level of contribution over multiple semesters. This model of team-based, industry-sponsored projects could be implemented in other college and university courses/programs to promote professional skills and expose students to an industry setting. PMID:24358386
Cooperative Learning through Team-Based Projects in the Biotechnology Industry.
Luginbuhl, Sarah C; Hamilton, Paul T
2013-01-01
We have developed a cooperative-learning, case studies project model that has teams of students working with biotechnology professionals on company-specific problems. These semester-long, team-based projects can be used effectively to provide students with valuable skills in an industry environment and experience addressing real issues faced by biotechnology companies. Using peer-evaluations, we have seen improvement in students' professional skills such as time-management, quality of work, and level of contribution over multiple semesters. This model of team-based, industry-sponsored projects could be implemented in other college and university courses/programs to promote professional skills and expose students to an industry setting.
ERIC Educational Resources Information Center
Rué, Joan; Font, Antoni; Cebrián, Gisela
2013-01-01
There is wide agreement that problem-based learning is a key strategy to promote individual abilities for "learning how to learn". This paper presents the main contributions that reflective journals and the problem-based learning approach can make to foster professional knowledge and quality learning in higher education. Thirty-six…
ERIC Educational Resources Information Center
van Til, Cita T.; And Others
Problem-based learning (PBL) as a new instructional method is becoming increasingly popular. PBL is hypothesized to have a number of advantages for learning because it applies insights from cognitive learning theory and it fosters a lifelong learning strategy. As in all learning programs there are individual differences between students. This…
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
ERIC Educational Resources Information Center
Tropper, Natalie; Leiss, Dominik; Hänze, Martin
2015-01-01
Empirical findings show that students have manifold difficulties when dealing with mathematical modeling problems. Accordingly, approaches for supporting students in modeling-based learning environments have to be investigated. In the research presented here, we adopted a scaffolding perspective on teaching modeling with the aim of both providing…
ERIC Educational Resources Information Center
Babuca, Pamela; Meade, Kelly
2012-01-01
Today's educators are passionate about shifting the standard classroom towards technology rich, collaborative spaces that support multiple types of learning environments (e.g. individual; peer-to-peer; problem based; hands-on; student-centered). On the other hand, facilities planners are challenged to create solutions within existing, restrictive…
Team Building and Problem-Based Learning in the Leadership Classroom: Findings from a Two-Year Study
ERIC Educational Resources Information Center
Barbour, JoAnn
2006-01-01
Leader educators know that demands on leaders of organizations are increasing, requiring different strategies of leading, for example, working in diverse and global environments, using shared decision-making, and developing effective work teams. To educate future leaders in a postmodern era, instructors must attempt nontraditional teaching methods…
Changing Schools and Communities: A Systemic Approach to Dropout Prevention.
ERIC Educational Resources Information Center
French, Dan; Nellhaus, Jeff
This handbook draws attention to the problem of dropouts in Massachusetts and offers solutions to increase the chances that all students will succeed. It suggests the need for systemic, school-based changes to foster learning environments that meet the emotional, social, physical, and cognitive needs of all students and staff. The handbook is…
ERIC Educational Resources Information Center
Walter, Justin D.; Littlefield, Peter; Delbecq, Scott; Prody, Gerry; Spiegel, P. Clint
2010-01-01
New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described…
The Relationship of the World Wide Web to Thinking Skills.
ERIC Educational Resources Information Center
Bradshaw, Amy C.; Bishop, Jeanne L.; Gens, Linda S.; Miller, Sharla L.; Rogers, Martha A.
2002-01-01
Discusses use of the World Wide Web in education and its possibilities for developing higher order critical thinking skills to successfully deal with the demands of the future information society. Suggests that teachers need to provide learning environments that are learner-centered, authentic, problem-based, and collaborative. (Contains 61…
Preferences on Internet Based Learning Environments in Student-Centered Education
ERIC Educational Resources Information Center
Cubukcu, Zuhal
2008-01-01
Nowadays, educational systems are being questioned to find effective solutions to problems that are being encountered, and discussions are centered on the ways of restructuring systems so as to overcome difficulties. As the consequences of the traditional teaching approach, we can indicate that the taught material is not long-lasting but easily…
The Influence of PBL on Students' Self-Efficacy Beliefs in Chemistry
ERIC Educational Resources Information Center
Mataka, Lloyd M.; Grunert Kowalske, Megan
2015-01-01
A convergent mixed methods research study was used to investigate whether or not undergraduate students who participated in a problem-based learning (PBL) laboratory environment improved their self-efficacy beliefs in chemistry. The Chemistry Attitude and Experience Questionnaire (CAEQ) was used as a pre- and post-test to determine changes in…
Virtual Quests As Learning Environments for K-12 Students.
ERIC Educational Resources Information Center
Spudic, Linda
Perhaps some of the most engaging, unique, Web-based activities are virtual quests that take student participants along on real expeditions, following a team in the field as they explore new territory or do research on authentic scientific problems. Virtual quests, such as the MayaQuest expedition produced by Classroom Connect, are excellent…
A Study of Students' Attitudes towards Using ICT in a Social Constructivist Environment
ERIC Educational Resources Information Center
Yang, Silin; Kwok, David
2017-01-01
This study aims to examine the factors that support or hinder students' attitudes towards using information and communication technology (ICT) in problem-based learning (PBL) using the technology acceptance model (TAM) (Davis, 1989) among polytechnic students. A total of 737 first-year polytechnic students in Singapore participated in the…
ERIC Educational Resources Information Center
Kapralos, Bill; Hogan, Michelle; Pribetic, Antonin I.; Dubrowski, Adam
2011-01-01
Purpose: Gaming and interactive virtual simulation environments support a learner-centered educational model allowing learners to work through problems acquiring knowledge through an active, experiential learning approach. To develop effective virtual simulations and serious games, the views and perceptions of learners and educators must be…
ERIC Educational Resources Information Center
Lant, Christopher; Pérez-Lapeña, Blanca; Xiong, Weidong; Kraft, Steven; Kowalchuk, Rhonda; Blair, Michael
2016-01-01
Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief--carbon, energy, water, and watershed--and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and math (STEM) education simulations illustrate…
Problem Based Learning in Science
ERIC Educational Resources Information Center
Pepper, Coral
2009-01-01
Problem based learning (PBL) is a recognised teaching and learning strategy used to engage students in deep rather than surface learning. It is also viewed as a successful strategy to align university courses with the real life professional work students are expected to undertake on graduation (Biggs, 2003). Problem based learning is practised…
A Cybernetic Design Methodology for 'Intelligent' Online Learning Support
NASA Astrophysics Data System (ADS)
Quinton, Stephen R.
The World Wide Web (WWW) provides learners and knowledge workers convenient access to vast stores of information, so much that present methods for refinement of a query or search result are inadequate - there is far too much potentially useful material. The problem often encountered is that users usually do not recognise what may be useful until they have progressed some way through the discovery, learning, and knowledge acquisition process. Additional support is needed to structure and identify potentially relevant information, and to provide constructive feedback. In short, support for learning is needed. The learning envisioned here is not simply the capacity to recall facts or to recognise objects. The focus is on learning that results in the construction of knowledge. Although most online learning platforms are efficient at delivering information, most do not provide tools that support learning as envisaged in this chapter. It is conceivable that Web-based learning environments can incorporate software systems that assist learners to form new associations between concepts and synthesise information to create new knowledge. This chapter details the rationale and theory behind a research study that aims to evolve Web-based learning environments into 'intelligent thinking' systems that respond to natural language human input. Rather than functioning simply as a means of delivering information, it is argued that online learning solutions will 1 day interact directly with students to support their conceptual thinking and cognitive development.
Beyond Risk and Protective Factors: An Adaptation-Based Approach to Resilience.
Ellis, Bruce J; Bianchi, JeanMarie; Griskevicius, Vladas; Frankenhuis, Willem E
2017-07-01
How does repeated or chronic childhood adversity shape social and cognitive abilities? According to the prevailing deficit model, children from high-stress backgrounds are at risk for impairments in learning and behavior, and the intervention goal is to prevent, reduce, or repair the damage. Missing from this deficit approach is an attempt to leverage the unique strengths and abilities that develop in response to high-stress environments. Evolutionary-developmental models emphasize the coherent, functional changes that occur in response to stress over the life course. Research in birds, rodents, and humans suggests that developmental exposures to stress can improve forms of attention, perception, learning, memory, and problem solving that are ecologically relevant in harsh-unpredictable environments (as per the specialization hypothesis). Many of these skills and abilities, moreover, are primarily manifest in currently stressful contexts where they would provide the greatest fitness-relevant advantages (as per the sensitization hypothesis). This perspective supports an alternative adaptation-based approach to resilience that converges on a central question: "What are the attention, learning, memory, problem-solving, and decision-making strategies that are enhanced through exposures to childhood adversity?" At an applied level, this approach focuses on how we can work with, rather than against, these strengths to promote success in education, employment, and civic life.
A Framework for Web-Based Interprofessional Education for Midwifery and Medical Students.
Reis, Pamela J; Faser, Karl; Davis, Marquietta
2015-01-01
Scheduling interprofessional team-based activities for health sciences students who are geographically dispersed, with divergent and often competing schedules, can be challenging. The use of Web-based technologies such as 3-dimensional (3D) virtual learning environments in interprofessional education is a relatively new phenomenon, which offers promise in helping students come together in online teams when face-to-face encounters are not possible. The purpose of this article is to present the experience of a nurse-midwifery education program in a Southeastern US university in delivering Web-based interprofessional education for nurse-midwifery and third-year medical students utilizing the Virtual Community Clinic Learning Environment (VCCLE). The VCCLE is a 3D, Web-based, asynchronous, immersive clinic environment into which students enter to meet and interact with instructor-controlled virtual patient and virtual preceptor avatars and then move through a classic diagnostic sequence in arriving at a plan of care for women throughout the lifespan. By participating in the problem-based management of virtual patients within the VCCLE, students learn both clinical competencies and competencies for interprofessional collaborative practice, as described by the Interprofessional Education Collaborative Core Competencies for Interprofessional Collaborative Practice. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.
Online Resource-Based Learning Environment: Case Studies in Primary Classrooms
ERIC Educational Resources Information Center
So, Winnie Wing Mui; Ching, Fiona Ngai Ying
2012-01-01
This paper discusses the creation of learning environments with online resources by three primary school teachers for pupil's learning of science-related topics with reference to the resource-based e-learning environments (RBeLEs) framework. Teachers' choice of contexts, resources, tools, and scaffolds in designing the learning environments are…
Cognitive Diffusion Model: Facilitating EFL Learning in an Authentic Environment
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu
2017-01-01
For this study, we designed learning activities in which students applied newly acquired knowledge to solve meaningful daily life problems in their local community--a real, familiar, and relevant environment for students. For example, students learned about signs and rules in class and then applied this new knowledge to create their own rules for…
Eye Tracking and Early Detection of Confusion in Digital Learning Environments: Proof of Concept
ERIC Educational Resources Information Center
Pachman, Mariya; Arguel, Amaël; Lockyer, Lori; Kennedy, Gregor; Lodge, Jason M.
2016-01-01
Research on incidence of and changes in confusion during complex learning and problem-solving calls for advanced methods of confusion detection in digital learning environments (DLEs). In this study we attempt to address this issue by investigating the use of multiple measures, including psychophysiological indicators and self-ratings, to detect…
Integration of Problem-Based Learning and Web-Based Multimedia to Enhance Soil Management Course
NASA Astrophysics Data System (ADS)
Strivelli, R.; Krzic, M.; Crowley, C.; Dyanatkar, S.; Bomke, A.; Simard, S.; Grand, S.
2012-04-01
In an attempt to address declining enrolment in soil science programs and the changing learning needs of 21st century students, several universities in North America and around the world have re-organized their soil science curriculum and adopted innovative educational approaches and web-based teaching resources. At the University of British Columbia, Canada, an interdisciplinary team set out to integrate teaching approaches to address this trend. The objective of this project was to develop an interactive web-based teaching resource, which combined a face-to-face problem-based learning (PBL) case study with multimedia to illustrate the impacts of three land-uses on soil transformation and quality. The Land Use Impacts (LUI) tool (http://soilweb.landfood.ubc.ca/luitool/) was a collaborative and concentrated effort to maximize the advantages of two educational approaches: (1) the web's interactivity, flexibility, adaptability and accessibility, and (2) PBL's ability to foster an authentic learning environment, encourage group work and promote the application of core concepts. The design of the LUI case study was guided by Herrington's development principles for web-based authentic learning. The LUI tool presented students with rich multimedia (streaming videos, text, data, photographs, maps, and weblinks) and real world tasks (site assessment and soil analysis) to encourage students to utilize knowledge of soil science in collaborative problem-solving. Preliminary student feedback indicated that the LUI tool effectively conveyed case study objectives and was appealing to students. The resource is intended primarily for students enrolled in an upper level undergraduate/graduate university course titled Sustainable Soil Management but it is flexible enough to be adapted to other natural resource courses. Project planning and an interactive overview of the tool will be given during the presentation.
PUCK: An Automated Prompting System for Smart Environments
Das, Barnan; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Seelye, Adriana M.
2014-01-01
The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the “PUCK” prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed. PMID:25364323
Das, Barnan; Cook, Diane J; Schmitter-Edgecombe, Maureen; Seelye, Adriana M
2012-10-01
The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the "PUCK" prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed.
Problem-based learning in comparison with lecture-based learning among medical students.
Faisal, Rizwan; Bahadur, Sher; Shinwari, Laiyla
2016-06-01
To compare performance of medical students exposed to problem-based learning and lecture-based learning. The descriptive study was conducted at Rehman Medical College, Peshawar, Pakistan from May 20 to September 20, 2014, and comprised 146 students of 3rd year MBBS who were randomised into two equal groups. One group was taught by the traditional lecture based learning, while problem-based learning was conducted for the other group on the same topic. At the end of sessions, the performance of the two groups was evaluated by one-best type of 50 multiple choice questions. Total marks were 100, with each question carrying 2 marks. SPSS 15 was used for statistical analysis. There were 146 students who were divided into two equal groups of 73(50%) each. The mean score in the group exposed to problem-based learning was 3.2 ± 0.8 while those attending lecture-based learning was 2.7±0.8 (p= 0.0001). Problem-based learning was more effective than lecture based learning in the academic performance of medical students.
Scale-Up: Improving Large Enrollment Physics Courses
NASA Astrophysics Data System (ADS)
Beichner, Robert
1999-11-01
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.
NASA Astrophysics Data System (ADS)
Miatun, A.; Muntazhimah
2018-01-01
The aim of this research was to determine the effect of learning models on mathematics achievement viewed from student’s self-regulated learning. The learning model compared were discovery learning and problem-based learning. The population was all students at the grade VIII of Junior High School in Boyolali regency. The samples were students of SMPN 4 Boyolali, SMPN 6 Boyolali, and SMPN 4 Mojosongo. The instruments used were mathematics achievement tests and self-regulated learning questionnaire. The data were analyzed using unbalanced two-ways Anova. The conclusion was as follows: (1) discovery learning gives better achievement than problem-based learning. (2) Achievement of students who have high self-regulated learning was better than students who have medium and low self-regulated learning. (3) For discovery learning, achievement of students who have high self-regulated learning was better than students who have medium and low self-regulated learning. For problem-based learning, students who have high and medium self-regulated learning have the same achievement. (4) For students who have high self-regulated learning, discovery learning gives better achievement than problem-based learning. Students who have medium and low self-regulated learning, both learning models give the same achievement.
Medical Students’ Perception of Their Educational Environment
Pai, Preethi G; Menezes, Vishma; Srikanth; Subramanian, Atreya M.; Shenoy, Jnaneshwara P.
2014-01-01
Background: Students’ perception of the environment within which they study has shown to have a significant impact on their behavior, academic progress and sense of well-being. This study was undertaken to evaluate the students’ perception of their learning environment in an Indian medical school following traditional curricula and to study differences, if any, between the students according to the stages of medical education, i.e., the pre-clinical and clinical stages. Methodology: In the present study, the Dundee Ready Education Environment Measure (DREEM) inventory was administered to undergraduate medical students of first (n = 227), third (n = 175), fifth (n = 171) and seventh (n = 123) semesters. Scores obtained were expressed as mean ± Standard Deviation (SD) and analyzed using one-way ANOVA and Dunnett’s test. P-value < 0.05 was considered as significant. Results: The mean DREEM score for our medical school was 123/200.The first-year students were found to be more satisfied with learning environment (indicated by their higher DREEM score) compared to other semester students. Progressive decline in scores with each successive semester was observed. Evaluating the sub-domains of perception, the registrars in all semesters had a more positive perception of learning (Average mean score: 29.44), their perception of course organizers moved in the right direction (Average mean score: 26.86), their academic self-perception was more on the positive side (Average mean score: 20.14), they had a more positive perception of atmosphere (Average mean score: 29.07) and their social self-perception could be graded as not too bad (Average mean score: 17.02). Conclusion: The present study revealed that all the groups of students perceived their learning environment positively. However, a few problematic areas of learning environment were perceived such as: students were stressed more often; they felt that the course organizers were authoritarian and emphasized factual learning. Implementing more problem-based learning, student counseling and workshops on teaching-learning for educators might enable us to remedy and enrich our learning environment. PMID:24596737
Saunder, Lorna; Berridge, Emma-Jane
2015-11-01
Poor preparation of nurses, regarding learning disabilities can have devastating consequences. High-profile reports and the Nursing and Midwifery Council requirements led this University to introduce Shareville into the undergraduate and postgraduate nursing curriculum. Shareville is a virtual environment developed at Birmingham City University, in which student nurses learn from realistic, problem-based scenarios featuring people with learning disabilities. Following the implementation of the resource an evaluation of both staff and student experience was undertaken. Students reported that problem-based scenarios were sufficiently real and immersive. Scenarios presented previously unanticipated considerations, offering new insights, and giving students the opportunity to practise decision-making in challenging scenarios before encountering them in practice. The interface and the quality of the graphics were criticised, but, this did not interfere with learning. Nine lecturers were interviewed, they generally felt positively towards the resource and identified strengths in terms of blended learning and collaborative teaching. The evaluation contributes to understandings of learning via simulated reality, and identifies process issues that will inform the development of further resources and their roll-out locally, and may guide other education providers in developing and implementing resources of this nature. There was significant parity between lecturers' expectations of students' experience of Shareville. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saffran, Jenny R.; Kirkham, Natasha Z.
2017-01-01
Perception involves making sense of a dynamic, multimodal environment. In the absence of mechanisms capable of exploiting the statistical patterns in the natural world, infants would face an insurmountable computational problem. Infant statistical learning mechanisms facilitate the detection of structure. These abilities allow the infant to compute across elements in their environmental input, extracting patterns for further processing and subsequent learning. In this selective review, we summarize findings that show that statistical learning is both a broad and flexible mechanism (supporting learning from different modalities across many different content areas) and input specific (shifting computations depending on the type of input and goal of learning). We suggest that statistical learning not only provides a framework for studying language development and object knowledge in constrained laboratory settings, but also allows researchers to tackle real-world problems, such as multilingualism, the role of ever-changing learning environments, and differential developmental trajectories. PMID:28793812
ERIC Educational Resources Information Center
Kostousov, Sergei; Kudryavtsev, Dmitry
2017-01-01
Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…
Münscher, C.; Pukrop, T.; Anders, S.; Harendza, S.
2009-01-01
In recent years, increasing attention has been paid to web-based learning although the advantages of computer-aided instruction over traditional teaching formats still need to be confirmed. This study examined whether participation in an online module on the differential diagnosis of dyspnoea impacts on student performance in a multiple choice examination of factual knowledge in cardiology and pneumology. A virtual problem-based learning environment for medical students supervised by postgraduate teachers was created. Seventy-four out of 183 fourth-year medical students volunteered to use the online module while attending a 6-week cardio-respiratory curriculum in summer 2007. Of these, 40 were randomly selected to be included (intervention group); the remaining 34 served as an internal control group. Analysis of all written exams taken during the preceding term showed that both groups were comparable (86.4 ± 1.1 vs. 85.9 ± 1.1%; p = 0.751). Students in the intervention group scored significantly higher in the final course assessment than students allocated to the control group (84.8 ± 1.3 vs. 79.5 ± 1.4%; p = 0.006; effect size 0.67). Thus, additional problem-based learning with an online module as part of an undergraduate cardio-respiratory curriculum lead to higher students’ scores in an exam testing factual knowledge. Whether using this teaching format increases overall student motivation to engage in the learning process needs to be further investigated. PMID:19774475
Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning
Zhang, Yue; Song, Bin; Zhang, Ying; Du, Xiaojiang; Guizani, Mohsen
2016-01-01
Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users’ patterns. Reinforcement learning methods are introduced to estimate users’ patterns and verify the outcomes in our market models. Experimental results show the efficiency of our methods, which are also capable of guiding topology management. PMID:27916841
Robotics Projects and Learning Concepts in Science, Technology and Problem Solving
ERIC Educational Resources Information Center
Barak, Moshe; Zadok, Yair
2009-01-01
This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…
The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package
ERIC Educational Resources Information Center
Gonen, Selahattin; Basaran, Bulent
2008-01-01
In this article, two basic purposes are presented. First, taking effective feedbacks in the electronic learning environment about the learning level of students at the problem solving which are told in physics lessons and laboratories. Second, providing a possibility for students to repeat the subjects and solved problems by watching and…
2017-01-01
Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently. PMID:28255297
Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X
2017-01-01
Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.
ERIC Educational Resources Information Center
Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos
2014-01-01
Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…
ERIC Educational Resources Information Center
Tunca, Nihal
2015-01-01
Problem Statement: One of the main aims of constructivism is to improve critical thinking skills/tendencies via experiences. In this sense, it is believed that the more the constructivist-learning environment is improved, the more the appropriateness of supporting critical thinking is improved. However, no study has yet statistically tested this…
The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers
ERIC Educational Resources Information Center
Le Doux, Joseph M.; Waller, Alisha A.
2016-01-01
This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…
Barron, Carol; Lambert, Veronica; Conlon, Joy; Harrington, Tracey
2008-11-01
Despite the abundance of literature on problem based learning (PBL) [Murray, I., Savin-Baden, M., 2000. Staff development in problem-based learning. Teaching in Higher Education 5 (1), 107-126; Johnson, A.K., Tinning, R.S., 2001. Meeting the challenge of problem-based learning: developing the facilitators. Nurse Education Today 21 (3), 161-169; McCourt, C., Thomas, G., 2001. Evaluation of a problem based curriculum in midwifery. Midwifery 17 (4), 323-331; Cooke, M., Moyle, K., 2002. Students' evaluation of problem-based learning. Nurse Education Today 22, 330-339; Haith-Cooper, M., 2003a. An exploration of tutors' experiences of facilitating problem-based learning. Part 1--an educational research methodology combining innovation and philosophical tradition. Nurse Education Today 23, 58-64; Haith-Cooper, M., 2003b. An exploration of tutor' experiences of facilitating problem-based learning. Part 2--implications for the facilitation of problem based learning. Nurse Education Today 23, 65-75; Rowan, C.J., Mc Court, C., Beake, S., 2007. Problem based learning in midwifery--The teacher's perspective. Nurse Education Today 27, 131-138; Rowan, C.J., Mc Court, C., Beake, S., 2008. Problem based learning in midwifery--The students' perspective. Nurse Education Today 28, 93-99] few studies focus on describing "triggers", the process involved in their development and their evaluation from students' perspective. It is clearly documented that well designed, open ended, real life and challenging "triggers" are key to the success of PBL implementation [Roberts, D., Ousey, K., 2004. Problem based learning: developing the triggers. Experiences from a first wave site. Nurse Education in Practice 4, 154-158, Gibson, I., 2005. Designing projects for learning. In: Barrett, T., Mac Labhrainn, I., Fallon, H., (Eds.), Handbook of Enquiry and Problem-based Learning: Irish Case Studies and International Perspectives. AISHE & CELT: NUI Galway.
Quantum Speedup for Active Learning Agents
NASA Astrophysics Data System (ADS)
Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.
2014-07-01
Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
Nursing students' perceptions of effective problem-based learning tutors.
Matthew-Maich, Nancy; Martin, Lynn; Hammond, Cynthia; Palma, Amy; Pavkovic, Maria; Sheremet, Darlene; Roche, Carmen
2016-11-16
Aim To explore baccalaureate nursing students' perceptions of what makes an effective tutor in problem-based learning courses, and the influence of effective teaching on students' learning and experience. Method Students enrolled in all four years of a baccalaureate nursing programme completed online surveys (n=511) and participated in focus groups (n=19). Data were analysed and combined using content analysis. Findings The data were summarised using five themes, the '5 Ps' of effective teaching in problem-based learning. Nursing students perceived effective problem-based learning tutors to be prepared with knowledge and facilitation skills, person-centred, passionate, professional and able to prepare students for success in the nursing programme. Effective tutors adjusted their approaches to students throughout the four years of the nursing programme. Conclusion Effective teaching in problem-based learning is essential and has significant effects on nursing students' learning, motivation and experience. Important attributes, skills and strategies of effective problem-based learning tutors were identified and may be used to enhance teaching and plan professional development initiatives.
Problem based learning: the effect of real time data on the website to student independence
NASA Astrophysics Data System (ADS)
Setyowidodo, I.; Pramesti, Y. S.; Handayani, A. D.
2018-05-01
Learning science developed as an integrative science rather than disciplinary education, the reality of the nation character development has not been able to form a more creative and independent Indonesian man. Problem Based Learning based on real time data in the website is a learning method focuses on developing high-level thinking skills in problem-oriented situations by integrating technology in learning. The essence of this study is the presentation of authentic problems in the real time data situation in the website. The purpose of this research is to develop student independence through Problem Based Learning based on real time data in website. The type of this research is development research with implementation using purposive sampling technique. Based on the study there is an increase in student self-reliance, where the students in very high category is 47% and in the high category is 53%. This learning method can be said to be effective in improving students learning independence in problem-oriented situations.
Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2015-03-07
Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.
NASA Astrophysics Data System (ADS)
Darma, I. K.
2018-01-01
This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.
Cheng, Brenda Siu Shan
2009-08-01
Problem-based learning (PBL) has been implemented in the dental hygiene program at the University of Hong Kong since 2001, but research is lacking to address the level of retention in the workplace. The purpose of this study was to explore whether dental hygienists continue to use their PBL skills and how well those skills are being applied in the workplace. A total of eighteen dental hygienists from the 2006 program were invited to participate in this study. A survey was conducted and follow-up group interviews carried out in 2008. The results revealed that dental hygienists continue to use the PBL skills of communication with the patient, patient education, and independent learning, but seldom use dental knowledge, teamwork, and communication with colleagues. Critical thinking, self-evaluation, and lifelong learning skills showed contradictory results. Besides, stressors under individual work environments, including certain Chinese cultural values, affect the way in which dental hygienists utilize PBL skills. This study concludes that the PBL approach is a worthwhile learning process for dental hygiene. However, many different variables affect the effectiveness of applying PBL skills after academic training, especially under the influence of Chinese culture in Hong Kong.
Distributing vs. Blocking Learning Questions in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Kapp, Felix; Proske, Antje; Narciss, Susanne; Körndle, Hermann
2015-01-01
Effective studying in web-based learning environments (web-LEs) requires cognitive engagement and demands learners to regulate their learning activities. One way to support learners in web-LEs is to provide interactive learning questions within the learning environment. Even though research on learning questions has a long tradition, there are…
NASA Astrophysics Data System (ADS)
Partin, Matthew L.
The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to encourage them to prepare for class and to participate in class activities. Faculty may be viewed as students of pedagogy and leaders should model best practices and provide support for reform-based motivation-minded introductory biology courses. By enhancing attitudes and motivation of both faculty and students, the recommendations from this study may be a step forward in addressing some of the critical problems faced by leaders and educators in postsecondary science.
Sato, Atsuko; Morone, Mieko; Azuma, Yutaka
2011-01-01
At Tohoku Pharmaceutical University, problem-based learning (PBL) tutorials were incorporated into "prescription analysis" and "case analysis" for fifth-year students in 2010 with the following objectives: ① application and confirmation of acquired knowledge and skills, and acquisition of ② communication ability, ③ presentation ability, ④ cooperativeness through groupwork, and ⑤ information collecting ability. In the present study, we conducted a questionnaire survey on a total of 158 fifth-year students in order to investigate the educational benefits of PBL tutorials. The results showed that the above five objectives of PBL tutorials were being achieved, and confirmed the educational benefits expected of PBL tutorials. In contrast, it was found to be necessary to improve the contents of scenarios and lectures, time allocation regarding schedules, the learning environment, the role of tutors, and other matters. In order to maximize the educational benefits of PBL tutorials, it will be necessary in the future to continue to conduct surveys on students and make improvements to the curriculum based on survey results.
Baldominos, Alejandro; Saez, Yago; Isasi, Pedro
2018-04-23
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.
2018-01-01
Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587
Integration of problem-based learning and innovative technology into a self-care course.
McFalls, Marsha
2013-08-12
To assess the integration of problem-based learning and technology into a self-care course. Problem-based learning (PBL) activities were developed and implemented in place of lectures in a self-care course. Students used technology, such as computer-generated virtual patients and iPads, during the PBL sessions. Students' scores on post-case quizzes were higher than on pre-case quizzes used to assess baseline knowledge. Student satisfaction with problem-based learning and the use of technology in the course remained consistent throughout the semester. Integrating problem-based learning and technology into a self-care course enabled students to become active learners.
ERIC Educational Resources Information Center
Zhu, Chang; Van Winkel, Lies
2016-01-01
Research has shown that the continuation of education by chronically ill adolescents is an important way to avoid social isolation, psychosocial problems and the accumulation of learning difficulties. In this light, virtual learning environments (VLEs), which connect sick adolescents to their schools, play an important role in ensuring that the…
ERIC Educational Resources Information Center
Listyawardani, Dwi; Hariastuti, Iswari
2016-01-01
Systems thinking is needed due to the growing complexity of the problems faced family planning field workers in the external environment that is constantly changing. System thinking ability could not be separated from efforts to develop learning for the workers, both learning at the individual, group, or organization level. The design of the study…
ERIC Educational Resources Information Center
Said, Asnah; Syarif, Edy
2016-01-01
This research aimed to evaluate of online tutorial program design by applying problem-based learning Research Methods currently implemented in the system of Open Distance Learning (ODL). The students must take a Research Methods course to prepare themselves for academic writing projects. Problem-based learning basically emphasizes the process of…
Experimenting in a constructivist high school physics laboratory
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.
Green, Carolyn J; van Gyn, Geraldine H; Moehr, Jochen R; Lau, Francis Y; Coward, Patricia M
2004-03-18
To investigate the effect on learner satisfaction of introducing a technology-enabled problem-based learning (PBL) approach into a health informatics curriculum. Course redesign was undertaken to prepare students for three 4-month work terms and a rapidly changing professional environment upon graduation. Twenty-six Canadian undergraduate students of a redesigned course in biomedical fundamentals completed a midterm questionnaire in 2002. Eight of these students participated in a focus group. Students agreed that seven of nine functions provided by the web-based online course management system enhanced their learning: private email (92.3%), calendaring (88.5%), course notes (88.5%), discussion forums (84.5%), online grades (84.5%) assignment descriptions (80.8%) and online quizzes (80.8%). Although students agreed that two PBL activities enhanced learning (learning to present information) (84.5%) and learning to identify information needed (73.1%), the majority of students (69.2%) expressed a preference for the traditional lecture approach over the PBL approach. Students reported feeling uncertain of what was required of them and related anxiety accounted for most of the negative feedback. These findings give us clear goals for improvement in the course beginning with a comprehensive, carefully guided introduction to the processes of PBL. The positive trends are encouraging for the use of web-enabled courseware and for the further development of the PBL approach.
Chan, Zenobia C Y
2013-08-01
To explore students' attitude towards problem-based learning, creativity and critical thinking, and the relevance to nursing education and clinical practice. Critical thinking and creativity are crucial in nursing education. The teaching approach of problem-based learning can help to reduce the difficulties of nurturing problem-solving skills. However, there is little in the literature on how to improve the effectiveness of a problem-based learning lesson by designing appropriate and innovative activities such as composing songs, writing poems and using role plays. Exploratory qualitative study. A sample of 100 students participated in seven semi-structured focus groups, of which two were innovative groups and five were standard groups, adopting three activities in problem-based learning, namely composing songs, writing poems and performing role plays. The data were analysed using thematic analysis. There are three themes extracted from the conversations: 'students' perceptions of problem-based learning', 'students' perceptions of creative thinking' and 'students' perceptions of critical thinking'. Participants generally agreed that critical thinking is more important than creativity in problem-based learning and clinical practice. Participants in the innovative groups perceived a significantly closer relationship between critical thinking and nursing care, and between creativity and nursing care than the standard groups. Both standard and innovative groups agreed that problem-based learning could significantly increase their critical thinking and problem-solving skills. Further, by composing songs, writing poems and using role plays, the innovative groups had significantly increased their awareness of the relationship among critical thinking, creativity and nursing care. Nursing educators should include more types of creative activities than it often does in conventional problem-based learning classes. The results could help nurse educators design an appropriate curriculum for preparing professional and ethical nurses for future clinical practice. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Li, Chuanhao; Peng, Gaoliang; Chen, Yuanhang; Zhang, Zhujun
2018-02-01
In recent years, intelligent fault diagnosis algorithms using machine learning technique have achieved much success. However, due to the fact that in real world industrial applications, the working load is changing all the time and noise from the working environment is inevitable, degradation of the performance of intelligent fault diagnosis methods is very serious. In this paper, a new model based on deep learning is proposed to address the problem. Our contributions of include: First, we proposed an end-to-end method that takes raw temporal signals as inputs and thus doesn't need any time consuming denoising preprocessing. The model can achieve pretty high accuracy under noisy environment. Second, the model does not rely on any domain adaptation algorithm or require information of the target domain. It can achieve high accuracy when working load is changed. To understand the proposed model, we will visualize the learned features, and try to analyze the reasons behind the high performance of the model.
Problem-Based Learning in Foods and Nutrition Classes
ERIC Educational Resources Information Center
Smith, Bettye P.; Katz, Shana H.
2006-01-01
This article focuses on the use of problem-based learning in high school foods and nutrition classes. Problem-based learning, an instructional approach that promotes active learning, is the elaboration of knowledge that occurs through discussion, answering questions, peer teaching, and critiquing. Students are confronted with a simulated or real…
Problem-Based Learning: A Critical Rationalist Perspective
ERIC Educational Resources Information Center
Parton, Graham; Bailey, Richard
2008-01-01
Although problem-based learning is being adopted by many institutions around the world as an effective model of learning in higher education, there is a surprising lack of critique in the problem-based learning literature in relation to its philosophical characteristics. This paper explores epistemology as a starting point for investigating the…
Investigative Primary Science: A Problem-Based Learning Approach
ERIC Educational Resources Information Center
Etherington, Matthew B.
2011-01-01
This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…
Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S
2013-09-01
A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.
Problem-based learning in the NICU.
Pilcher, Jobeth
2014-01-01
Problem-based learning (PBL) is an educational strategy that provides learners with the opportunity to investigate and solve realistic problem situations. It is also referred to as project-based learning or work-based learning. PBL combines several learning strategies including the use of case studies coupled with collaborative, facilitated, and self-directed learning. Research has demonstrated that use of PBL can result in learners having improved problem-solving skills, increased breadth and analysis of complex data, higher-level thinking skills, and improved collaboration. This article will include background information and a description of PBL, followed by examples of how this strategy can be used for learning in neonatal settings.
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
Buildings as Artifacts: What Are Buildings in World History Telling Us?
ERIC Educational Resources Information Center
O'Brien, Joe; Peavey, Scott; Fuller, Molly
2016-01-01
Learning about people from long ago and far away poses a challenge for students because such people seem so distant and different. The lack of easily comprehensible text-based primary sources compounds this problem. Using a built environment as a primary source makes people from the distant past more accessible, concrete and exciting. Broadly…