Teachers' and Learners' Inclinations towards Animal Organ Dissection and Its Use in Problem-Solving
ERIC Educational Resources Information Center
Kavai, Portia; de Villiers, Rian; Fraser, William
2017-01-01
In Life Sciences (biology) education, both nationally and internationally, the study of animal and organ morphology has traditionally involved dissection since the early 19th century. This study focused on the inclinations of teachers and learners towards animal organ dissection, and its use in problem-solving in Grade 11 Life Sciences education…
English Skills for Life Sciences: Problem Solving in Biology. Tutor Version [and] Student Version.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Language Education and Research.
This manual is part of a series of materials designed to reinforce essential concepts in physical science through interactive, language-sensitive, problem-solving exercises emphasizing cooperative learning. The materials are intended for limited-English-proficient (LEP) students in beginning physical science classes. The materials are for teams of…
Space Life Sciences Social Innovation
NASA Technical Reports Server (NTRS)
Llewellyn, Alicia
2009-01-01
This slide presentation reviews some of the problems in the world, that NASA is working to solve. It reviews some of the problems that NASA has solved in the past, and is working to solve now. Particularly of interest are some of the problems related to medical delivery in rural and remote areas.
NASA Astrophysics Data System (ADS)
Steen-Eibensteiner, Janice Lee
2006-07-01
A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.
ERIC Educational Resources Information Center
Friede, Curtis R.; Irani, Tracy A.; Rhoades, Emily B.; Fuhrman, Nicholas E.; Gallo, Maria
2008-01-01
This study was conducted to examine the statistical relationship between problem solving and critical thinking to guide future teaching and research for agricultural educators using the problem-solving approach. Students enrolled in an undergraduate genetics course in the College of Agricultural and Life Sciences at the University of Florida were…
Suborbital Research and Development Opportunities
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2011-01-01
This slide presentation reviews the new strategies for problem solving in the life sciences in the suborbital realm. Topics covered are: an overview of the space life sciences, the strategic initiatives that the Space Life Sciences organization engaged in, and the new business model that these initiatives were developed. Several opportunities for research are also reviewed.
Creative Problem-Solving Exercises and Training in FCS
ERIC Educational Resources Information Center
Marcketti, Sara B.; Karpova, Elena; Barker, Jessica
2009-01-01
Creative problem-solving has been linked to successful adjustment to the demands of daily life. The ability to recognize problems as opportunities can be an essential skill when dealing with uncertainty and adapting to continuous changes, both in personal and professional lives. Family and consumer sciences (FCS) professionals should strive to…
Animals. Life Science in Action. Teacher's Manual and Workbook.
ERIC Educational Resources Information Center
Roderman, Winifred Ho; Booth, Gerald
The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…
ERIC Educational Resources Information Center
Spires, Hiller A.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C.
2011-01-01
Targeted as a highly desired skill for contemporary work and life, problem solving is central to game-based learning research. In this study, middle grade students achieved significant learning gains from gameplay interactions that required solving a science mystery based on microbiology content. Student trace data results indicated that effective…
Everyday problem solving across the adult life span: solution diversity and efficacy.
Mienaltowski, Andrew
2011-10-01
Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. © 2011 New York Academy of Sciences.
Relating the Learned Knowledge and Acquired Skills to Real Life: Function Sample
ERIC Educational Resources Information Center
Albayrak, Mustafa; Yazici, Nurullah; Simsek, Mertkan
2017-01-01
Considering that Mathematics is a multidimensional problem-solving method that can be effective in all areas of cultural life, it is of great importance because of its contribution to other sciences such as physical and social sciences. It is known that the basic concepts of mathematics, which can also be expressed as a way of life, have helped to…
Translating Knowledge into Action at the Norwegian University of Life Sciences (UMB)
ERIC Educational Resources Information Center
Lund, Trine; Francis, Charles; Pederson, Kristin; Lieblein, Geir; Rahman, Md. Hafizur
2014-01-01
Purpose: This article explores the impacts of action learning on graduates' abilities to use interdisciplinary knowledge to solve problems, practice teamwork on the job and become change agents through study in two MSc programmes at the Norwegian University of Life Sciences (UMB). Design/methodology/approach: Electronic questionnaires were sent to…
NASA Astrophysics Data System (ADS)
Mason, Andrew J.; Bertram, Charles A.
2018-06-01
When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.
Normal Science Education and Its Dangers: The Case of School Chemistry.
ERIC Educational Resources Information Center
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
2000-01-01
Attempts to solve the problem of hidden structure in school chemistry. Argues that normal chemistry education is isolated from common sense, everyday life and society, the history and philosophy of science, technology, school physics, and chemical research. (Author/CCM)
ERIC Educational Resources Information Center
Ferreira, Deller James; Ambrósio, Ana Paula Laboissière; Melo, Tatiane F. N.
2018-01-01
This article describes how it is due to the fact that computer science is present in many activities of daily life, students need to develop skills to solve problems to improve the lives of people in general. This article investigates correlations between teachers' motivational orientations, beliefs and practices with respect to the application of…
ERIC Educational Resources Information Center
Gitari, Wanja
2016-01-01
This qualitative study investigated non-guided applications of school science by high school youth in Ontario in non-school contexts. Although science education (in Ontario and elsewhere) mostly focuses on the meaningful learning of science, learning that can lead to knowledge application, non-guided application of acquired knowledge is rarely…
Teacher's Guide, Ecology, Grade 7.
ERIC Educational Resources Information Center
Yadkin Valley Economic Development District, Inc., Walnut Cove, NC.
This teacher's guide has been constructed to assist in developing and implementing a life science course with an environment/ecological unit for Grade 7. Designed primarily for use with other science units, it offers numerous multidisciplinary activities which emphasize involvement in problem-solving through open-ended investigation rather than…
Teacher's Guide, Ecology, Grade 10.
ERIC Educational Resources Information Center
Yadkin Valley Economic Development District, Inc., Walnut Cove, NC.
This teacher's guide has been constructed to assist in developing and implementing a life science course with an environment/ecological unit for Grade 10. Designed primarily for use with other science units, it offers numerous multidisciplinary activities which emphasize involvement in problem-solving through open-ended investigation rather than…
ERIC Educational Resources Information Center
Stapp, Alicia; Chessin, Debby; Deason, Rebecca
2018-01-01
The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Eliabeth E.; Fogarty, Jennifer A.; Rando, Cynthia M.
2011-01-01
This slide presentation reviews the Space Life Sciences Directorate (SLSD) new business model for problem solving, with emphasis on open collaboration and innovation. The topics that are discussed are: an overview of the work of the Space Life Sciences Directorate and the strategic initiatives that arrived at the new business model. A new business model was required to infuse open collaboration/innovation tools into existing models for research, development and operations (research announcements, procurements, SBIR/STTR etc). This new model involves use of several open innovation partnerships: InnoCentive, Yet2.com, TopCoder and NASA@work. There is also a new organizational structure developed to facilitate the joint collaboration with other NASA centers, international partners, other U.S. Governmental organizations, Academia, Corporate, and Non-Profit organizations: the NASA Human Health and Performance Center (NHHPC).
Devious Lies: Adventures in Freelance Science Outreach
NASA Astrophysics Data System (ADS)
Fatland, D. R.
2003-12-01
Observations are given from two freelance science outreach projects undertaken by the author: Tutoring at-risk secondary students and teaching astronomy to 5th-7th graders in a camp retreat environment. Two recurring thematic challenges in these experiences are considered: First the 'Misperception Problem', the institutionalized chasm between the process of doing science and K-12 science education (wherein science is often portrayed as something distant and inaccessible, while ironically children are necessarily excellent scientists). And second the 'Engagement Problem', engaging a student's attention and energy by matching teaching material and--more importantly--teaching techniques to the student's state of development. The objective of this work is twofold: To learn how to address these two challenges and to empower the students in a manner independent of the scientific content of any particular subject. An underlying hypothesis is that confidence to problem solve (a desirable life-skill) can be made more accessible through a combination of problem solving by the student and seeing how others have solved seemingly impossible problems. This hypothesis (or agenda) compels an emphasis on critical thinking and raises the dilemma of reconciling non-directed teaching with very pointed conclusions about the verity of pseudo-science and ideas prevalent about science in popular culture. An interesting pedagogical found-object in this regard is the useful 'devious lie' which can encourage a student to question the assumption that the teacher (and by extension any professed expert) has the right answers.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Pre-Service Teacher Scientific Behavior: Comparative Study of Paired Science Project Assignments
ERIC Educational Resources Information Center
Bulunuz, Mizrap; Tapan Broutin, Menekse Seden; Bulunuz, Nermin
2016-01-01
Problem Statement: University students usually lack the skills to rigorously define a multi-dimensional real-life problem and its limitations in an explicit, clear and testable way, which prevents them from forming a reliable method, obtaining relevant results and making balanced judgments to solve a problem. Purpose of the Study: The study…
ERIC Educational Resources Information Center
Kazeni, Monde; Onwu, Gilbert
2013-01-01
The study aimed to determine the comparative effectiveness of context-based and traditional teaching approaches in enhancing student achievement in genetics, problem-solving, science inquiry and decision-making skills, and attitude towards the study of life sciences. A mixed method but essentially quantitative research approach involving a…
Geography Education in Asia: Samples from Different Countries and Turkey
ERIC Educational Resources Information Center
Incekara, Suleyman
2010-01-01
With the maximum use of the technology such as geographic information science (GIS), remote sensing (RS), and global positioning systems (GPSs) in geography courses, along with its integrative perspective on the social and life sciences and an emphasis on student-centered education, problem solving, and sustainable and environmental education,…
ERIC Educational Resources Information Center
Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje
2015-01-01
Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investigated the relation between students' reading…
Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.
ERIC Educational Resources Information Center
French, Dan; Phillips, Connie
One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…
Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry
ERIC Educational Resources Information Center
Bliss, Joseph M.; Reid, Christopher W.
2013-01-01
Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…
An Emerging New Risk Analysis Science: Foundations and Implications.
Aven, Terje
2018-05-01
To solve real-life problems-such as those related to technology, health, security, or climate change-and make suitable decisions, risk is nearly always a main issue. Different types of sciences are often supporting the work, for example, statistics, natural sciences, and social sciences. Risk analysis approaches and methods are also commonly used, but risk analysis is not broadly accepted as a science in itself. A key problem is the lack of explanatory power and large uncertainties when assessing risk. This article presents an emerging new risk analysis science based on novel ideas and theories on risk analysis developed in recent years by the risk analysis community. It builds on a fundamental change in thinking, from the search for accurate predictions and risk estimates, to knowledge generation related to concepts, theories, frameworks, approaches, principles, methods, and models to understand, assess, characterize, communicate, and (in a broad sense) manage risk. Examples are used to illustrate the importance of this distinct/separate risk analysis science for solving risk problems, supporting science in general and other disciplines in particular. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
Teaching Bioinformatics in Concert
Goodman, Anya L.; Dekhtyar, Alex
2014-01-01
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792
The Ulam Index: Methods of Theoretical Computer Science Help in Identifying Chemical Substances
NASA Technical Reports Server (NTRS)
Beltran, Adriana; Salvador, James
1997-01-01
In this paper, we show how methods developed for solving a theoretical computer problem of graph isomorphism are used in structural chemistry. We also discuss potential applications of these methods to exobiology: the search for life outside Earth.
Eskin, M; Savk, E; Uslu, M; Küçükaydoğan, N
2014-11-01
Psoriasis is a chronic dermatosis which may cause significant impairment of the patient's quality of life. The purpose of this study was to investigate the social problem-solving skills, perceived stress, negative life events, depression and life satisfaction in psoriasis patients. Data were gathered by means of questionnaires and clinical evaluations from 51 psoriatic patients and 51 matched healthy controls. Average disease duration was 16.47 years and average Psoriasis Area and Severity Index score was 3.67. Compared with the controls, the patients displayed lower social problem-solving skills. They displayed higher negative problem orientation and impulsive-careless problem-solving style scores than the controls. Patients tended also to show more avoidant problem-solving style and lower life satisfaction than controls. There was no difference between psoriatic patients and controls in terms of depression, perceived stress and negative life events. Higher social problem-solving skills were associated with lower depression, perceived stress and fewer numbers of negative life events but higher level of life satisfaction. The patient group largely included mild and moderate psoriatic cases. The findings of the study suggest that problem-solving training or therapy may be a suitable option for alleviating levels of psychological distress in patients suffering from psoriasis. © 2014 European Academy of Dermatology and Venereology.
NASA Astrophysics Data System (ADS)
Akben, Nimet
2018-05-01
The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.
Robotics and Children: Science Achievement and Problem Solving.
ERIC Educational Resources Information Center
Wagner, Susan Preston
1999-01-01
Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…
Favorite Demonstrations: A Macroscopic Demonstration of a Microscopic Phenomenon.
ERIC Educational Resources Information Center
Mellen, John W.
1988-01-01
Finding ways to demonstrate microscopic phenomena and contending with life science students' lack of interest in physical principles are two problems in laboratory courses. Describes a clinical laboratory test for parasite infection that can be used to effectively solve both of them. (RT)
How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.
ERIC Educational Resources Information Center
Scarl, Donald
To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.
Prevost, Luanna B; Lemons, Paula P
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Yenice, Nilgun
2011-01-01
This study was conducted to examine pre-service science teachers' critical thinking dispositions and problem solving skills based on gender, grade level and graduated high school variables. Also relationship between pre-service science teachers' critical thinking dispositions and problem solving skills was examined based on gender, grade level and…
Problem Solving Model for Science Learning
NASA Astrophysics Data System (ADS)
Alberida, H.; Lufri; Festiyed; Barlian, E.
2018-04-01
This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.
ERIC Educational Resources Information Center
Seyhan, Hatice Güngör
2015-01-01
This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
ERIC Educational Resources Information Center
Mahan, Luther A.
1970-01-01
Compares the effects of two problem-solving teaching approaches. Lower ability students in an activity group demonstrated superior growth in basic science understanding, &roblem-solving skills, science interests, personal adjustment, and school attitudes. Neither method favored cognitive learning by higher ability students. (PR)
The profile of problem-solving ability of students of distance education in science learning
NASA Astrophysics Data System (ADS)
Widiasih; Permanasari, A.; Riandi; Damayanti, T.
2018-05-01
This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.
Elements and Principles of Training as a Performance Improvement Solution
ERIC Educational Resources Information Center
Tek Aik, Chong; Tway, Duane C.
2006-01-01
Andragogy is the art and science of adult education that focuses on real-life application and problem-solving capacity (Knowles, Holton, & Swanson, 1998). This approach emphasizes that training effectiveness is enhanced through trainees' actual performance of the task. Workers learn better when they perceive that learning will help them perform…
Mathematical Skills in Undergraduate Students. A Ten-Year Survey of a Plant Physiology Course
ERIC Educational Resources Information Center
Llamas, A.; Vila, F.; Sanz, A.
2012-01-01
In the health and life sciences and many other scientific disciplines, problem solving depends on mathematical skills. However, significant deficiencies are commonly found in this regard in undergraduate students. In an attempt to understand the underlying causes, and to improve students' performances, this article describes a ten-year survey…
Learning from the Land: Teaching Ecology through Stories and Activities.
ERIC Educational Resources Information Center
Ellis, Brian Fox
This book strives to combine creative writing, the whole language approach, thinking skills, and problem-solving strategies with an introduction to ecological concepts. It aims to bring scientific facts to life by creating empathy for wild creatures and teach basic science skills by using creative writing and storytelling. This book contains nine…
Exploring Fencerows--An Outdoor Teaching Technique.
ERIC Educational Resources Information Center
Rillo, Thomas J.
The exploration of fencerows as an outdoor teaching technique is described. The concepts that can be developed as students walk down the fencerows are related to science, life styles, and economy. By dividing a class into small groups, a teacher can employ problem-solving techniques in fencerow exploration. The following group topics are possible…
Rubrics: The Key to Fairness in Performance Based Assessments
ERIC Educational Resources Information Center
Shepherd, Carol M.; Mullane, Ann Mary
2008-01-01
Life involves a myriad of skills. Most of the basic skills are undeniably "classics" such as communication and problem solving. The interpretation and delivery of these skills has morphed into a complicated science, with the changing social environment and the growing prevalence of technology in our everyday existences. Commonplace technology, as…
Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M
2017-08-24
To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.
NASA Astrophysics Data System (ADS)
Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.
2016-07-01
An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.
A Cognitive Model for Problem Solving in Computer Science
ERIC Educational Resources Information Center
Parham, Jennifer R.
2009-01-01
According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…
Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis
ERIC Educational Resources Information Center
Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying
2012-01-01
This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…
Cognitive Science: Problem Solving And Learning For Physics Education
NASA Astrophysics Data System (ADS)
Ross, Brian H.
2007-11-01
Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.
Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna
2017-12-01
To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.
Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A
2011-09-01
In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.
Dubow, E F; Tisak, J
1989-12-01
This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.
Sign use and cognition in automated scientific discovery: are computers only special kinds of signs?
NASA Astrophysics Data System (ADS)
Giza, Piotr
2018-04-01
James Fetzer criticizes the computational paradigm, prevailing in cognitive science by questioning, what he takes to be, its most elementary ingredient: that cognition is computation across representations. He argues that if cognition is taken to be a purposive, meaningful, algorithmic problem solving activity, then computers are incapable of cognition. Instead, they appear to be signs of a special kind, that can facilitate computation. He proposes the conception of minds as semiotic systems as an alternative paradigm for understanding mental phenomena, one that seems to overcome the difficulties of computationalism. Now, I argue, that with computer systems dealing with scientific discovery, the matter is not so simple as that. The alleged superiority of humans using signs to stand for something other over computers being merely "physical symbol systems" or "automatic formal systems" is only easy to establish in everyday life, but becomes far from obvious when scientific discovery is at stake. In science, as opposed to everyday life, the meaning of symbols is, apart from very low-level experimental investigations, defined implicitly by the way the symbols are used in explanatory theories or experimental laws relevant to the field, and in consequence, human and machine discoverers are much more on a par. Moreover, the great practical success of the genetic programming method and recent attempts to apply it to automatic generation of cognitive theories seem to show, that computer systems are capable of very efficient problem solving activity in science, which is neither purposive nor meaningful, nor algorithmic. This, I think, undermines Fetzer's argument that computer systems are incapable of cognition because computation across representations is bound to be a purposive, meaningful, algorithmic problem solving activity.
NASA Astrophysics Data System (ADS)
Jolly, Anju B.
The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.
Science Literacy: How do High School Students Solve PISA Test Items?
NASA Astrophysics Data System (ADS)
Wati, F.; Sinaga, P.; Priyandoko, D.
2017-09-01
The Programme for International Students Assessment (PISA) does assess students’ science literacy in a real-life contexts and wide variety of situation. Therefore, the results do not provide adequate information for the teacher to excavate students’ science literacy because the range of materials taught at schools depends on the curriculum used. This study aims to investigate the way how junior high school students in Indonesia solve PISA test items. Data was collected by using PISA test items in greenhouse unit employed to 36 students of 9th grade. Students’ answer was analyzed qualitatively for each item based on competence tested in the problem. The way how students answer the problem exhibits their ability in particular competence which is influenced by a number of factors. Those are students’ unfamiliarity with test construction, low performance on reading, low in connecting available information and question, and limitation on expressing their ideas effectively and easy-read. As the effort, selected PISA test items can be used in accordance teaching topic taught to familiarize students with science literacy.
Coping and social problem solving correlates of asthma control and quality of life.
McCormick, Sean P; Nezu, Christine M; Nezu, Arthur M; Sherman, Michael; Davey, Adam; Collins, Bradley N
2014-02-01
In a sample of adults with asthma receiving care and medication in an outpatient pulmonary clinic, this study tested for statistical associations between social problem-solving styles, asthma control, and asthma-related quality of life. These variables were measured cross sectionally as a first step toward more systematic application of social problem-solving frameworks in asthma self-management training. Recruitment occurred during pulmonology clinic service hours. Forty-four adults with physician-confirmed diagnosis of asthma provided data including age, gender, height, weight, race, income, and comorbid conditions. The Asthma Control Questionnaire, the Mini Asthma Quality of Life Questionnaire (Short Form), and peak expiratory force measures offered multiple views of asthma health at the time of the study. Maladaptive coping (impulsive and careless problem-solving styles) based on transactional stress models of health were assessed with the Social Problem-Solving Inventory-Revised: Short Form. Controlling for variance associated with gender, age, and income, individuals reporting higher impulsive-careless scores exhibited significantly lower scores on asthma control (β = 0.70, p = 0.001, confidence interval (CI) [0.37-1.04]) and lower asthma-related quality of life (β = 0.79, p = 0.017, CI [0.15-1.42]). These findings suggest that specific maladaptive problem-solving styles may uniquely contribute to asthma health burdens. Because problem-solving coping strategies are both measureable and teachable, behavioral interventions aimed at facilitating adaptive coping and problem solving could positively affect patient's asthma management and quality of life.
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Design, Development and Validation of a Model of Problem Solving for Egyptian Science Classes
ERIC Educational Resources Information Center
Shahat, Mohamed A.; Ohle, Annika; Treagust, David F.; Fischer, Hans E.
2013-01-01
Educators and policymakers envision the future of education in Egypt as enabling learners to acquire scientific inquiry and problem-solving skills. In this article, we describe the validation of a model for problem solving and the design of instruments for evaluating new teaching methods in Egyptian science classes. The instruments were based on…
The Ultimate Challenge: Prove B. F. Skinner Wrong
ERIC Educational Resources Information Center
Chance, Paul
2007-01-01
For much of his career, B. F. Skinner displayed the optimism that is often attributed to behaviorists. With time, however, he became less and less sanguine about the power of behavior science to solve the major problems facing humanity. Near the end of his life he concluded that a fair consideration of principles revealed by the scientific…
Korte, Jojanneke; Bohlmeijer, Ernst T; Westerhof, Gerben J; Pot, Anne Margriet; Pot, Anne M
2011-07-01
The role of reminiscence as a way of adapting to critical life events and chronic medical conditions was investigated in older adults with mild to moderate depressive symptoms. Reminiscence is the (non)volitional act or process of recollecting memories of one's self in the past. 171 Dutch older adults with a mean age of 64 years (SD = 7.4) participated in this study. All of them had mild to moderate depressive symptoms. Participants completed measures on critical life events, chronic medical conditions, depressive symptoms, symptoms of anxiety and satisfaction with life. The reminiscence functions included were: identity, problem solving, bitterness revival and boredom reduction. Critical life events were positively correlated with identity and problem solving. Bitterness revival and boredom reduction were both positively correlated with depressive and anxiety symptoms, and negatively to satisfaction with life. Problem solving had a negative relation with anxiety symptoms. When all the reminiscence functions were included, problem solving was uniquely associated with symptoms of anxiety, and bitterness revival was uniquely associated with depressive symptoms and satisfaction with life. Interestingly, problem solving mediated the relation of critical life events with anxiety. This study corroborates the theory that reminiscence plays a role in coping with critical life events, and thereby maintaining mental health. Furthermore, it is recommended that therapists focus on techniques which reduce bitterness revival in people with depressive symptoms, and focus on problem-solving reminiscences among people with anxiety symptoms.
Eskin, Mehmet; Akyol, Ali; Çelik, Emine Yilmaz; Gültekin, Bülent Kadri
2013-08-01
This study aimed at investigating social problem solving, perceived stress, depression, and life-satisfaction in patients with tension type and migraine headaches. Forty-nine migraine and 42 tension type headache patients (n = 91) consenting to participate were compared to a total of 49 matched healthy control group. Participants filled in a questionnaire consisting self-report measures of problem solving, perceived stress, depression and life satisfaction. They were also asked about headache duration, frequency, pain severity, psychiatric treatment and sense of control in one's life. T-tests, chi-square, analysis of variance, logistic regression analysis and Pearson product moment correlation coefficient procedures were used to analyze the data. Tension type headache patients reported having had more frequent headaches than the migraine patients but migraine patients reported having had more intense pain than the tension type headache patients. Instances of psychiatric treatment were more common among tension type headache patients than the migraine and the control group. Compared to the healthy controls, headache patients displayed a deficiency in problem solving, higher levels of perceived stress and depression. Levels of problem solving skills in headache patients were related inversely to depression, perceived stress and the number of negative life events but problem solving skills of headache patients was related positively to life-satisfaction. The findings from this study suggested that cognitive behavioral problem solving therapy or training might be a viable option for reducing levels of stress and depression, and to increase life-satisfaction in patients suffering from primary headache. © 2013 The Scandinavian Psychological Associations.
The Design Process in the Art Classroom: Building Problem Solving Skills for Life and Careers
ERIC Educational Resources Information Center
Vande Zande, Robin; Warnock, Lauren; Nikoomanesh, Barbara; Van Dexter, Kurt
2014-01-01
Problem solving is essential to everyone's life. People survive if they are nourished, sheltered, and protected--and they construct ways to obtain nourishment, shelter, and protection through problem solving. Though problems vary in complexity--survival at the one end and the pursuit of comfort at the other--we are reliant on our ability to…
How to get paid for having fun.
Koshland, D E
1996-01-01
As I look back, I am still amazed that I was actually paid to do something I loved and others could describe as work. Yet my situation is no different from that of most scientists who find that they are asked to pursue their innate curiosity to solve puzzles, the solutions to which fortunately are of value to society. I enjoyed the beautiful logic of mathematics in elementary grades and was entranced by the exciting solution of puzzles described by DeKruif. So I drifted into the scientific profession without a clear idea of what to do or how to do it. Each experience prepared my mind and supplied the base for the next job, creating what was for me a smooth flow from scientist to professor to editor to scientist. Fortunately for me and fellow scientists the problems of the world never disappear. "The one who rides the tiger can never get off" is an aphorism that expresses society's dependence on science. Automobiles improve transportation and create pollution, medical advantages prolong life and create over-population, pesticides bring cheaper food and create soil problems. Each advance brings on the need for more science to solve the new problems. Society, which likes to live well, is addicted to the products of science, and fortunately a peculiar set of humans are addicted to solving the problems. I am one of those typical addicts who finds the obstacle course fascinating and the endlessness of the quest utopia.
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Grover, Kelly E; Green, Kelly L; Pettit, Jeremy W; Monteith, Lindsey L; Garza, Monica J; Venta, Amanda
2009-12-01
The present study examined the unique and interactive effects of stress and problem-solving skills on suicidal behaviors among 102 inpatient adolescents. As expected, life event stress and chronic stress each significantly predicted suicidal ideation and suicide attempt. Problem solving significantly predicted suicidal ideation, but not suicide attempt. Problem solving moderated the associations between life event stress and suicidal behaviors, as well as between chronic stress and suicidal ideation, but not chronic stress and suicide attempt. At high levels of stress, adolescents with poor problem-solving skills experienced elevated suicidal ideation and were at greater risk of making a nonfatal suicide attempt. The interactive effects decreased to non-significance after controlling for depressive symptoms and hopelessness. Clinical implications are discussed.
A transformative model for undergraduate quantitative biology education.
Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B
2010-01-01
The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.
A Transformative Model for Undergraduate Quantitative Biology Education
Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.
2010-01-01
The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
ERIC Educational Resources Information Center
Dogru, Mustafa
2008-01-01
Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
The LAILAPS search engine: a feature model for relevance ranking in life science databases.
Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe
2010-03-25
Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.
ERIC Educational Resources Information Center
Ylven, Regina; Granlund, Mats; Persson, Carina
2012-01-01
Problem solving is recognized as a skill, helping families of children with disabilities to manage problems in everyday life. Family problem-solving skills may therefore be seen as an important outcome of a child and youth habilitation service. The aim of this pilot feasibility study was to examine the design of a future web-based questionnaire…
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
NASA Astrophysics Data System (ADS)
Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.
2017-05-01
One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Taking the Bite Out of Vector-Borne Diseases
... the 'Bite' Out of Vector-Borne Diseases Inside Life Science View All Articles | Inside Life Science Home Page Taking the 'Bite' Out of Vector- ... Science Solving the Sleeping Sickness 'Mystery' This Inside Life Science article also appears on LiveScience . Learn about related ...
NASA Astrophysics Data System (ADS)
Slavkin, Michael
What impact do gender roles and self-esteem have on early adolescent girls' abilities to solve problems when participating in natural science-related activities? Bronfenbrenner's human ecology model and Barker's behavior setting theory were used to assess how environmental contexts relate to problem solving in scientific contexts. These models also provided improved methodology and increased understanding of these constructs when compared with prior research. Early adolescent girls gender roles and self-esteem were found to relate to differences in problem solving in science-related groups. Specifically, early adolescent girls' gender roles were associated with levels of verbal expression, expression of positive affect, dominance, and supportive behavior during science experiments. Also, levels of early adolescent girls self-esteem were related to verbal expression and dominance in peer groups. Girls with high self-esteem also were more verbally expressive and had higher levels of dominance during science experiments. The dominant model of a masculine-typed and feminine-typed dichotomy of problem solving based on previous literature was not effective in Identifying differences within girls' problem solving. Such differences in the results of these studies may be the result of this study's use of observational measures and analysis of the behavior settings in which group members participated. Group behavior and problem-solving approaches of early adolescent girls seemed most likely to be defined by environmental contexts, not governed solely by the personalities of participants. A discussion for the examination of environmental factors when assessing early adolescent girls' gender roles and self-esteem follows this discussion.
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Connecting Mathematics in Primary Science Inquiry Projects
ERIC Educational Resources Information Center
So, Winnie Wing-mui
2013-01-01
Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…
Commentary: Attitude Adjustment--Educating PhD Scientist for Business Careers
ERIC Educational Resources Information Center
Schuster, Sheldon M.
2011-01-01
The PhD graduate from a US research academic institution who has worked 5-7 years to solve a combination of laboratory and computational problems after an in-depth classroom experience is likely superbly trained in at least a subset of the life sciences and the underlying methodology and thought processes required to perform high level research.…
Me and My Environment, Unit V: Air and Water in My Environment, Experimental Edition 1973-74.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
The experimental 1973-74 edition of Unit V consists of 35 life science curriculum activities intended for 13- to 16-year-old educable mentally handicapped adolescents. The role of the teacher in continuing field trials is noted and environmental themes and elements, inquiry skills, problem solving skills, and applicational behaviors and attitudes…
ERIC Educational Resources Information Center
Kilner, William Cary
2014-01-01
Freshmen with declared life-science majors typically matriculate with a determination to succeed. However, inadequately-prepared students are easily overwhelmed and at risk of abandoning their aspirations for a STEM career. The investigator designed and taught weekly recitations for approximately 850 students during a five-year span, and…
Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.
Riveline, Daniel; Kruse, Karsten
2017-08-01
Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Biological Sciences Curriculum Study, Boulder, CO.
The experimental 1973-74 edition of Unit IV consists of 28 life science curriculum activities for 13- to 16-year-old educable mentally handicapped children. The role of the teacher in continuing field trials is noted and environmental themes and elements, inquiry skills, problem solving skills, and applicational behaviors and attitudes are…
The Missing Curriculum in Physics Problem-Solving Education
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2018-05-01
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.
Bambara, Jennifer K.; Owsley, Cynthia; Wadley, Virginia; Martin, Roy; Porter, Chebon; Dreer, Laura E.
2009-01-01
Purpose To examine the prevalence of persons at risk for depression among family caregivers of visually impaired persons and the extent to which social problem-solving abilities are associated with caregiver depressive symptomatology and life satisfaction. Methods Family caregivers were defined as adults who accompanied their adult relative to an appointment at a low-vision rehabilitation clinic and self-identified themselves as the primary family caregiver responsible for providing some form of assistance for their relative due to vision impairment. Demographic variables, depressive symptoms, life satisfaction, caregiver burden, and social problem-solving abilities were assessed in caregivers. The patient’s visual acuity and depressive symptoms and their relationship to the caregiver’s depressive symptoms and life satisfaction were also examined. Results Ninety-six family caregivers were enrolled. Of those, 35.4% were identified as at risk for depression. Among caregivers, dysfunctional or ineffective social problem-solving abilities were significantly associated with greater depressive symptomatology and decreased life satisfaction after adjustment for caregiver burden and demographic and medical variables for both the caregiver and the visually impaired patient. Problem orientation or motivation to solving problems was also significantly associated with caregiver depression and satisfaction with life. Conclusions A substantial number of caregivers of visually impaired adults experience psychosocial distress, particularly among those who possess poor social problem-solving abilities. These results underscore the need for routine screening and treatment of emotional distress among individuals caring for relatives with vision impairments. Future research should examine the extent to which psychosocial interventions targeting caregiver social problem-solving skills may be useful not only in improving caregiver quality of life but also in subsequently enhancing rehabilitation outcomes for the visually impaired care recipient. PMID:19060279
Bambara, Jennifer K; Owsley, Cynthia; Wadley, Virginia; Martin, Roy; Porter, Chebon; Dreer, Laura E
2009-04-01
To examine the prevalence of persons at risk for depression among family caregivers of visually impaired persons and the extent to which social problem-solving abilities are associated with caregiver depressive symptomatology and life satisfaction. Family caregivers were defined as adults who accompanied their adult relative to an appointment at a low-vision rehabilitation clinic and self-identified themselves as the primary family caregiver responsible for providing some form of assistance for their relative due to vision impairment. Demographic variables, depressive symptoms, life satisfaction, caregiver burden, and social problem-solving abilities were assessed in caregivers. The patient's visual acuity and depressive symptoms and their relationship to the caregiver's depressive symptoms and life satisfaction were also examined. Ninety-six family caregivers were enrolled. Of those, 35.4% were identified as at risk for depression. Among caregivers, dysfunctional or ineffective social problem-solving abilities were significantly associated with greater depressive symptomatology and decreased life satisfaction after adjustment for caregiver burden and demographic and medical variables for both the caregiver and the visually impaired patient. Problem orientation or motivation to solving problems was also significantly associated with caregiver depression and satisfaction with life. A substantial number of caregivers of visually impaired adults experience psychosocial distress, particularly among those who possess poor social problem-solving abilities. These results underscore the need for routine screening and treatment of emotional distress among individuals caring for relatives with vision impairments. Future research should examine the extent to which psychosocial interventions targeting caregiver social problem-solving skills may be useful not only in improving caregiver quality of life but also in subsequently enhancing rehabilitation outcomes for the visually impaired care recipient.
Engaging the creative to better build science into water resource solutions
NASA Astrophysics Data System (ADS)
Klos, P. Z.
2014-12-01
Psychological thought suggests that social engagement with an environmental problem requires 1) cognitive understanding of the problem, 2) emotional engagement with the problem, and 3) perceived efficacy that there is something we can do to solve the problem. Within the water sciences, we form problem-focused, cross-disciplinary teams to help address complex water resource problems, but often we only seek teammates from other disciplines within the realms of engineering and the natural/social sciences. Here I argue that this science-centric focus fails to fully solve these water resource problems, and often the science goes unheard because it is heavily cognitive and lacks the ability to effectively engage the audience through crucial social-psychological aspects of emotion and efficacy. To solve this, future cross-disciplinary collaborations that seek to include creative actors from the worlds of art, humanities, and design can begin to provide a much stronger overlap of the cognition, emotion, and efficacy needed to communicate the science, engage the audience, and create the solutions needed to solve or world's most complex water resource problems. Disciplines across the arts, sciences, and engineering all bring unique strengths that, through collaboration, allow for uniquely creative modes of art-science overlap that can engage people through additions of emotion and efficacy that compliment the science and go beyond the traditional cognitive approach. I highlight examples of this art-science overlap in action and argue that water resource collaborations like these will be more likely to have their hydrologic science accepted and applied by those who decide on water resource solutions. For this Pop-up Talk session, I aim to share the details of this proposed framework in the context of my own research and the work of others. I hope to incite discussion regarding the utility and relevance of this framework as a future option for other water resource collaboratives working to solve hydrologic issues across the globe.
The Development, Implementation, and Evaluation of a Problem Solving Heuristic
ERIC Educational Resources Information Center
Lorenzo, Mercedes
2005-01-01
Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…
ERIC Educational Resources Information Center
Cormas, Peter C.
2016-01-01
Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…
Capturing Problem-Solving Processes Using Critical Rationalism
ERIC Educational Resources Information Center
Chitpin, Stephanie; Simon, Marielle
2012-01-01
The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…
Dionne-Odom, J Nicholas; Lyons, Kathleen D; Akyar, Imatullah; Bakitas, Marie A
2016-01-01
Family caregivers of persons with advanced cancer often take on responsibilities that present daunting and complex problems. Serious problems that go unresolved may be burdensome and result in negative outcomes for caregivers' psychological and physical health and affect the quality of care delivered to the care recipients with cancer, especially at the end of life. Formal problem-solving training approaches have been developed over the past several decades to assist individuals with managing problems faced in daily life. Several of these problem-solving principles and techniques were incorporated into ENABLE (Educate, Nurture, Advise, Before Life End), an "early" palliative care telehealth intervention for individuals diagnosed with advanced cancer and their family caregivers. A hypothetical case resembling the situations of actual caregiver participants in ENABLE that exemplifies the complex problems that caregivers face is presented, followed by presentation of an overview of ENABLE's problem-solving key principles, techniques, and steps in problem-solving support. Though more research is needed to formally test the use of problem-solving support in social work practice, social workers can easily incorporate these techniques into everyday practice.
NASA Astrophysics Data System (ADS)
Crouch, Catherine H.; Heller, Kenneth
2014-05-01
We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
Readings in Life Skills. Readings and Appendices A-N.
ERIC Educational Resources Information Center
Conger, D. Stuart; And Others
Life Skills are problem solving behaviors appropriately and responsibly used in the management of one's life. This book is a collection of papers on the theory, practice and evaluation of Life Skills, and an expanded version of the fifth edition of "Life Skills: A Course In Applied Problem Solving." It includes essays on the purposes and…
A Study on the Application of Creative Problem Solving Teaching to Statistics Teaching
ERIC Educational Resources Information Center
Hu, Ridong; Xiaohui, Su; Shieh, Chich-Jen
2017-01-01
Everyone would encounter the life issue of solving complicated problems generated by economic behaviors among all activities for making a living. Various life problems encountered therefore could be generalized by economic statistics. In other words, a lot of important events in daily life are related to economic statistics. For this reason,…
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
Problem Solving. Research Brief
ERIC Educational Resources Information Center
Muir, Mike
2004-01-01
No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…
ERIC Educational Resources Information Center
Umoren, Grace
2007-01-01
The aim of this study was to investigate the effect of Science-Technology-Society (STS) curriculum on students' scientific literacy, problem solving and decision making. Four hundred and eighty (480) Senior Secondary two science and non-science students were randomly selected from intact classes in six secondary schools in Calabar Municipality of…
ERIC Educational Resources Information Center
Cutumisu, Maria; Bulut, Okan
2017-01-01
This study aims to understand the predictive role of attitudes towards problem solving, such as perseverance and openness for problem solving, as well as of gender and country for Canadian and Finnish students' academic achievement in mathematics and science. We examined the data of students from Canada (n = 21,544) and Finland (n = 8,829) who…
Arie, Miri; Apter, Alan; Orbach, Israel; Yefet, Yael; Zalsman, Gil; Zalzman, Gil
2008-01-01
The aim of the study was to test Williams' (Williams JMG. Depression and the specificity of autobiographical memory. In: Rubin D, ed. Remembering Our Past: Studies in Autobiographical Memory. London: Cambridge University Press; 1996:244-267.) theory of suicidal behavior in adolescents and young adults by examining the relationship among suicidal behaviors, defective ability to retrieve specific autobiographical memories, impaired interpersonal problem solving, negative life events, repression, and hopelessness. Twenty-five suicidal adolescent and young adult inpatients (16.5 y +/- 2.5) were compared with 25 nonsuicidal adolescent and young adult inpatients (16.5 y +/- 2.5) and 25 healthy controls. Autobiographical memory was tested by a word association test; problem solving by the means-ends problem solving technique; negative life events by the Coddington scale; repression by the Life Style Index; hopelessness by the Beck scale; suicidal risk by the Plutchik scale, and suicide attempt by clinical history. Impairment in the ability to produce specific autobiographical memories, difficulties with interpersonal problem solving, negative life events, and repression were all associated with hopelessness and suicidal behavior. There were significant correlations among all the variables except for repression and negative life events. These findings support Williams' notion that generalized autobiographical memory is associated with deficits in interpersonal problem solving, negative life events, hopelessness, and suicidal behavior. The finding that defects in autobiographical memory are associated with suicidal behavior in adolescents and young adults may lead to improvements in the techniques of cognitive behavioral therapy in this age group.
ERIC Educational Resources Information Center
Artzt, Alice F.; Armour-Thomas, Eleanor
The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…
Problem Solving in the PISA and TIMSS 2003 Assessments. Technical Report. NCES 2007-049
ERIC Educational Resources Information Center
Dossey, John A.; McCrone, Sharon S.; O'Sullivan, Christine
2006-01-01
In 2003, the Program for International Student Assessment (PISA) and Trends in International Mathematics and Science Study (TIMSS) included a special focus on problem-solving. This report reviews the problem-solving aspects of each study in order to compare and contrast the nature of problem solving in each assessment. The report's authors develop…
ERIC Educational Resources Information Center
Engstrom, K.
Museums play an important role in the transmission of culture and traditions and provide a collective memory of a community. A number of museum related institutions, known as the Science Centra, have arisen to offer self-directed learning activities in problem solving and understanding the processes related to everyday life. In a modern society,…
Bioethics for Technical Experts
NASA Astrophysics Data System (ADS)
Asano, Shigetaka
Along with rapidly expanding applications of life science and technology, technical experts have been implicated more and more often with ethical, social, and legal problems than before. It should be noted that in this background there are scientific and social uncertainty elements which are inevitable during the progress of life science in addition to the historically-established social unreliability to scientists and engineers. In order to solve these problems, therefore, we should establish the social governance with ‘relief’ and ‘reliance’ which enables for both citizens and engineers to share the awareness of the issues, to design social orders and criterions based on hypothetical sense of values for bioethics, to carry out practical use management of each subject carefully, and to improve the sense of values from hypothetical to universal. Concerning these measures, the technical experts can learn many things from the present performance in the medical field.
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
KNIME for reproducible cross-domain analysis of life science data.
Fillbrunn, Alexander; Dietz, Christian; Pfeuffer, Julianus; Rahn, René; Landrum, Gregory A; Berthold, Michael R
2017-11-10
Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Huber, Richard A.; Smith, Robert W.; Shotsberger, Paul G.
This study examined the effect of a teacher enhancement project combining training on the National Science Education Standards, problem solving and equity education on middle school science teachers' attitudes and practices and, in turn, the attitudes of their students. Participating teachers reported changes in their instructional methods that…
ERIC Educational Resources Information Center
Miller, Bridget; Doughty, Teresa; Krockover, Gerald
2015-01-01
This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…
ERIC Educational Resources Information Center
Hudson, Peter; Matthews, Kelly
2012-01-01
Women are underrepresented in science, technology, engineering and mathematics (STEM) areas in university settings; however this may be the result of attitude rather than aptitude. There is widespread agreement that quantitative problem-solving is essential for graduate competence and preparedness in science and other STEM subjects. The research…
ERIC Educational Resources Information Center
Aydogdu, Bülent; Erkol, Mehmet; Erten, Nuran
2014-01-01
Individuals benefit from science process skills while trying to solve problems through research (Bagci-Kiliç, 2003). To solve these problems individuals must acquire sufficient science process skills. Teachers must be able to understand these skills so that students can obtain the required proficiency (Mutisya, Rotich & Rotich, 2013). This…
ERIC Educational Resources Information Center
Cooper, Melanie M.; Cox, Charles T., Jr.; Nammouz, Minory; Case, Edward; Stevens, Ronald
2008-01-01
Improving students' problem-solving skills is a major goal for most science educators. While a large body of research on problem solving exists, assessment of meaningful problem solving is very difficult, particularly for courses with large numbers of students in which one-on-one interactions are not feasible. We have used a suite of software…
ERIC Educational Resources Information Center
Mills, Nadia Monrose
2015-01-01
The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…
Threshold Concepts in the Development of Problem-Solving Skills
ERIC Educational Resources Information Center
Wismath, Shelly; Orr, Doug; MacKay, Bruce
2015-01-01
Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…
Dionne-Odom, J. Nicholas; Lyons, Kathleen D.; Akyar, Imatullah; Bakitas, Marie
2016-01-01
Family caregivers of persons with advanced cancer often take on responsibilities that present daunting and complex problems. Serious problems that go unresolved may be burdensome and result in negative outcomes for caregivers’ psychological and physical health and affect the quality of care delivered to the care recipients with cancer, especially at the end of life. Formal problem-solving training approaches have been developed over the past several decades to assist individuals with managing problems faced in daily life. Several of these problem-solving principles and techniques were incorporated into ENABLE (Educate, Nurture, Advise, Before Life End), an ‘early’ palliative care telehealth intervention for individuals diagnosed with advanced cancer and their family caregivers. A hypothetical case resembling the situations of actual caregiver participants in ENABLE that exemplifies the complex problems that caregivers face is presented followed by presentation of an overview of ENABLE’s problem-solving key principles, techniques and steps in problem-solving support. Though more research is needed to formally test the use of problem-solving support in social work practice, social workers can easily incorporate these techniques into everyday practice. PMID:27143574
Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era
ERIC Educational Resources Information Center
Sumitha, S.; Jose, Rexlin
2016-01-01
Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…
Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems
ERIC Educational Resources Information Center
Bahar, Abdulkadir; Maker, C. June
2015-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…
ERIC Educational Resources Information Center
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
ERIC Educational Resources Information Center
Turpin, Marita; Matthee, Machdel; Kruger, Anine
2015-01-01
The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…
Students' Concept-Building Approaches: A Novel Predictor of Success in Chemistry Courses
ERIC Educational Resources Information Center
Frey, Regina F.; Cahill, Michael J.; McDaniel, Mark A.
2017-01-01
One primary goal of many science courses is for students to learn creative problem-solving skills; that is, integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in…
The Influence of Cognitive Abilities on Mathematical Problem Solving Performance
ERIC Educational Resources Information Center
Bahar, Abdulkadir
2013-01-01
Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…
Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving
NASA Astrophysics Data System (ADS)
Rakkapao, S.; Prasitpong, S.
2018-03-01
This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2003-07-01
The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
ERIC Educational Resources Information Center
Utah State Office of Education, Salt Lake City.
This guide, which has been developed for Utah's home economics and family life education program, contains materials for use in teaching a life management course emphasizing the problem-solving skills required for independent living. Discussed first are the assumptions underlying the curriculum, development of the guide, and suggestions for its…
Two Great Problems of Learning. Points for Debate.
ERIC Educational Resources Information Center
Maxwell, Nicholas
2003-01-01
Asserts that two great problems of learning confront humanity: (1) learning about the universe and (2) learning how to live wisely. The article further asserts that the first problem was solved with the creation of modern science, but the second problem has not yet been solved. The article suggests that to solve the second problem we need to learn…
NASA Astrophysics Data System (ADS)
Lloyd, Ellen M.
Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?
Assessing Creative Problem-Solving with Automated Text Grading
ERIC Educational Resources Information Center
Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen
2008-01-01
The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…
Tateo, Luca
2014-06-01
Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.
Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey
NASA Astrophysics Data System (ADS)
Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.
2017-01-01
We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.
Macrocognition in Complex Team Problem Solving
2007-06-01
Organization: Office of Naval Research Complete Address: Dr Michael Letsky Office of Naval Research Life Sciences Department Code 341 Rm 1051 875...S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Office of Naval Research ,Code 341 Rm...distribution unlimited 13. SUPPLEMENTARY NOTES Twelfth International Command and Control Research and Technology Symposium (12th ICCRTS), 19-21 June
ERIC Educational Resources Information Center
Miller, Bridget T.
2013-01-01
The purpose of this study was to investigate the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students with moderate cognitive disabilities in both science and functional daily activities. The present study contributes to the literature examining guided inquiry methods as a means for student…
ERIC Educational Resources Information Center
Tai, Robert H.; Loehr, John F.; Brigham, Frederick J.
2006-01-01
This pilot study investigated the capacity of eye-gaze tracking to identify differences in problem-solving behaviours within a group of individuals who possessed varying degrees of knowledge and expertise in three disciplines of science (biology, chemistry and physics). The six participants, all pre-service science teachers, completed an 18-item…
ERIC Educational Resources Information Center
Eyisi, Daniel
2016-01-01
Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…
A Multivariate Model of Physics Problem Solving
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…
Problem Solving on a Monorail.
ERIC Educational Resources Information Center
Barrow, Lloyd H.; And Others
1994-01-01
This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)
Use of Concept Profile Analysis to Identify Difficulties in Solving Science Problems.
ERIC Educational Resources Information Center
Gorodetsky, Malka; Hoz, Ron
1980-01-01
Proposed is a new method for analyzing how concepts are used in the process of problem solving in science. Through the use of a "thinking aloud" interview technique, 21 tenth-grade students worked with a problem concerning the boiling point of water at the Dead Sea. Interview protocols were analyzed to develop students' concept profiles.…
An Application of the Patient-Oriented Problem-Solving (POPS) System.
ERIC Educational Resources Information Center
Chiodo, Gary T.; And Others
1991-01-01
The Patient-Oriented Problem-Solving System, a cooperative learning model, was implemented in a second year immunology course at the Oregon Health Sciences University School of Dentistry, to correlate basic and clinical sciences information about Acquired Immune Deficiency Syndrome. Student enthusiasm and learning were substantial. (MSE)
Pre-University Tuition in Science and Technology Can Influence Executive Functions
ERIC Educational Resources Information Center
Méndez, Marta; Arias, Natalia; Menéndez, José R.; Villar, José R.; Neira, Ángel; Romano, Pedro V.; Núñez, José Carlos; Arias, Jorge L.
2014-01-01
Introduction: Scientific and technological areas include tuition based on highly visuo-spatial specialization and problem solving. Spatial skills and problem solving are embedded in a curriculum that promotes understanding of Science and technical subjects. These abilities are related to the development of executive functions (EFs). We aim to…
Sciencewise: Discovering Scientific Process through Problem Solving. Book 2.
ERIC Educational Resources Information Center
Holley, Dennis
This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…
Sciencewise: Discovering Scientific Process through Problem Solving. Book 1.
ERIC Educational Resources Information Center
Holley, Dennis
This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
Could HPS Improve Problem-Solving?
ERIC Educational Resources Information Center
Coelho, Ricardo Lopes
2013-01-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…
Students' Problem Solving Approaches for Developing Geologic Models in the Field
ERIC Educational Resources Information Center
Balliet, Russell N.; Riggs, Eric M.; Maltese, Adam V.
2015-01-01
Understanding how geologists conduct fieldwork through analysis of problem solving has significant potential impact on field instruction methods within geology and other science fields. Recent work has highlighted many aspects of fieldwork, but the problem solving behaviors displayed by geologists during fieldwork and the associated cognitive…
ERIC Educational Resources Information Center
Sullivan, Florence; Lin, Xiadong
2012-01-01
The purpose of this study is to examine the relationship of middle school students' perceptions of the ideal science student to their problem solving activity and conceptual understanding in the applied science area of robotics. Twenty-six 11 and 12 year-olds (22 boys) attending a summer camp for academically advanced students participated in the…
ERIC Educational Resources Information Center
Slavkin, Michael
2001-01-01
Investigates the role of gender and self-esteem on early adolescent girls' abilities to solve problems when participating in natural science-related activities. Reports girls' gender role association with levels of verbal expression, expression of positive effect, dominance, and supportive behavior during science experiments as well as dominance…
NASA Astrophysics Data System (ADS)
Drndarski, Marina
2015-04-01
Every 21st century student is expected to develop science literacy skills. As this is not part of Serbian national curriculum yet, we decided to introduce it with this project. Experiment-o-mania provides students to experience science in different and exciting way. It makes opportunity for personalized learning offering space and time to ask (why, where, how, what if) and to try. Therefore, we empower young people with skills of experimenting, and they love science back. They ask questions, make hypothesis, make problems and solve them, make mistakes, discuss about the results. Subsequently this raises the students' interest for school curriculum. This vision of science teaching is associated with inquiry-based learning. Experiment-o-mania is the unique and recognizable teaching methodology for the elementary school Drinka Pavlović, Belgrade, Serbia. Experiment-o-mania implies activities throughout the school year. They are held on extra class sessions, through science experiments, science projects or preparations for School's Days of science. Students learn to ask questions, make observations, classify data, communicate ideas, conduct experiments, analyse results and make conclusions. All science teachers participate in designing activities and experiments for students in Experiment-o-mania teaching method. But they are not alone. Teacher of fine arts, English teachers and others also take part. Students have their representatives in this team, too. This is a good way to blend knowledge among different school subject and popularize science in general. All the experiments are age appropriate and related to real life situations, local community, society and the world. We explore Fibonacci's arrays, saving energy, solar power, climate change, environmental problems, pollution, daily life situations in the country or worldwide. We introduce great scientists as Nikola Tesla, Milutin Milanković and sir Isaac Newton. We celebrate all relevant international days, weeks, months or years (this year, 2015. the students will prepare opera science for celebrate the International Year of Light and International Year of Soils). Experiment-o-mania makes science teaching and learning exciting for teachers as well as for students. The acquisition of this kind of teaching method (and its frequency) empowers students and become self-regulated learners, independent, to creatively solve problems, to innovate, to truly understand and appreciate science and to better understand themselves and the world around them.
Solving Integer Programs from Dependence and Synchronization Problems
1993-03-01
DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving
NASA Astrophysics Data System (ADS)
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
Constraint Programming to Solve Maximal Density Still Life
NASA Astrophysics Data System (ADS)
Chu, Geoffrey; Petrie, Karen Elizabeth; Yorke-Smith, Neil
The Maximum Density Still Life problem fills a finite Game of Life board with a stable pattern of cells that has as many live cells as possible. Although simple to state, this problem is computationally challenging for any but the smallest sizes of board. Especially difficult is to prove that the maximum number of live cells has been found. Various approaches have been employed. The most successful are approaches based on Constraint Programming (CP). We describe the Maximum Density Still Life problem, introduce the concept of constraint programming, give an overview on how the problem can be modelled and solved with CP, and report on best-known results for the problem.
ERIC Educational Resources Information Center
Kostousov, Sergei; Kudryavtsev, Dmitry
2017-01-01
Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…
A Crisis in Space--A Futuristic Simulation Using Creative Problem Solving.
ERIC Educational Resources Information Center
Clode, Linda
1992-01-01
An enrichment program developed for sixth-grade gifted students combined creative problem solving with future studies in a way that would simulate real life crisis problem solving. The program involved forecasting problems of the future requiring evacuation of Earth, assuming roles on a spaceship, and simulating crises as the spaceship traveled to…
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Informal schooling and problem-solving skills in second-grade science: A naturalistic investigation
NASA Astrophysics Data System (ADS)
Griffin, Georgia Inez Hunt
The influence of informal schooling on the problem solving skills of urban elementary school children is unclear. The relationship between culture and problem solving can be studied using subjective methodologies, particularly when investigating problem solving strategies that are culturally situated. Yet, little research has been conducted to investigate how informal learning of African American children are integrated as part of the problem solving used in school. This study has been designed to expand the existing literature in this area. The purpose of this study is therefore to explore how 15 African American children attending school in Southwest Philadelphia solve problems presented to them in second grade science. This was accomplished by assessing their ability to observe, classify, recall, and perceive space/time relationships. Think-aloud protocols were used for this examination. A naturalistic approach to the investigation was implemented. Individual children were selected because he or she exhibited unique and subjective characteristics associated with individual approaches to problem solving. Children responded to three tasks: interviews of their parents, an essay on community gardens, and a group diorama collaboratively designed. Content analysis was used to infer themes that were evident in the children's work and that revealed the extent to which informal schooling influenced solutions to a community garden problem. The investigations did increase the researcher's ability to understand and build upon the understanding of African American children in their indigenous community. The study also demonstrated how these same strategies can be used to involve parents in the science curriculum. Additionally, the researcher gained insight on how to bridge the gap between home, community, and school.
Pre-Service Science Teachers' Reflective Thinking Skills toward Problem Solving
ERIC Educational Resources Information Center
Can, Sendil
2015-01-01
The purpose of the present study is to investigate the pre-service science teachers' reflective thinking skills toward problem solving and the effects of gender, grade level, academic achievement, type of graduated high school and father and mother's education level on these skills. The study was conducted through the survey method with the…
Students' Explanations in Complex Learning of Disciplinary Programming
ERIC Educational Resources Information Center
Vieira, Camilo
2016-01-01
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…
ERIC Educational Resources Information Center
Aldous, Carol R.
2007-01-01
This paper examines the intersection between creativity, problem solving, cognitive psychology and neuroscience in a discussion surrounding the genesis of new ideas and innovative science. Three creative activities are considered. These are (a) the interaction between visual-spatial and analytical or verbal reasoning, (b) attending to feeling in…
Gender Differences in Eye Movements in Solving Text-and-Diagram Science Problems
ERIC Educational Resources Information Center
Huang, Po-Sheng; Chen, Hsueh-Chih
2016-01-01
The main purpose of this study was to examine possible gender differences in how junior high school students integrate printed texts and diagrams while solving science problems. We proposed the response style hypothesis and the spatial working memory hypothesis to explain possible gender differences in the integration process. Eye-tracking…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
ERIC Educational Resources Information Center
Moore, Jerilou; Sumrall, William J.
2008-01-01
Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…
An Example Emphasizing Mass-Volume Relationships for Problem Solving in Soils
ERIC Educational Resources Information Center
Heitman, J. L.; Vepraskas, M. J.
2009-01-01
Mass-volume relationships are a useful tool emphasized for problem solving in many geo-science and engineering applications. These relationships also have useful applications in soil science. Developing soils students' ability to utilize mass-volume relationships through schematic diagrams of soil phases (i.e., air, water, and solid) can help to…
ERIC Educational Resources Information Center
Buxton, Cory A.; Salinas, Alejandra; Mahotiere, Margarette; Lee, Okhee; Secada, Walter G.
2013-01-01
Grounded in teacher professional development addressing the intersection of student diversity and content area instruction, this study examined school teachers' pedagogical reasoning complexity as they reflected on their second language learners' science problem solving abilities using both home and school contexts. Teachers responded to interview…
Teaching Science Problem Solving: An Overview of Experimental Work.
ERIC Educational Resources Information Center
Taconis, R.; Ferguson-Hessler, M. G. M.; Broekkamp, H.
2001-01-01
Performs analysis on a number of articles published between 1985 and 1995 describing experimental research into the effectiveness of a wide variety of teaching strategies for science problem solving. Identifies 22 articles describing 40 experiments that met standards for meta-analysis. Indicates that few of the independent variables were found to…
An Investigative Approach to Elementary School Science Teaching.
ERIC Educational Resources Information Center
Schmiess, Elmer G.
This study was conducted to determine whether sixth grade students can successfully engage in scientific investigation. The success of the students' investigation was measured by their proficiency in solving selected problems, interest in science, and growth in solving new problems. One class of 34 sixth grade students was selected. A battery of…
Genetics problem solving and worldview
NASA Astrophysics Data System (ADS)
Dale, Esther
The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.
Penders, Bart; Vos, Rein; Horstman, Klasien
2009-11-01
Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.
INQUIRY TRAINING AND PROBLEM SOLVING IN ELEMENTARY SCHOOL CHILDREN.
ERIC Educational Resources Information Center
BUTTS, DAVID P.; JONES, HOWARD L.
THE EFFECT OF PLANNED GUIDANCE ON THE PROBLEM-SOLVING BEHAVIOR OF ELEMENTARY STUDENTS WAS INVESTIGATED. FACTORS RELATED TO CHANGES IN PROBLEM-SOLVING BEHAVIORS WERE IDENTIFIED. APPROXIMATELY 50 PERCENT OF THE SIXTH-GRADE STUDENTS INCLUDED IN THE STUDY WERE GIVEN INQUIRY TRAINING 30 TO 60 MINUTES DAILY FOR 3 WEEKS. AN INVENTORY OF SCIENCE PROCESSES…
Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages
ERIC Educational Resources Information Center
Beal, Carole R.; Stevens, Ronald H.
2011-01-01
Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…
NASA Astrophysics Data System (ADS)
Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.
2018-04-01
This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with
Everyday problem solving across the adult life span: solution diversity and efficacy
Mienaltowski, Andrew
2013-01-01
Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. PMID:22023569
Childhood Physical Punishment and Problem Solving in Marriage
ERIC Educational Resources Information Center
Cast, Alicia D.; Schweingruber, David; Berns, Nancy
2006-01-01
Drawing from social learning theories and symbolic interactionist understandings of social life, the authors suggest that physical punishment teaches aggressive and controlling strategies for solving the problems of living together and hinders the development of important problem-solving skills, specifically the ability to role take with others.…
Problem Solving in Technology Education: A Taoist Perspective.
ERIC Educational Resources Information Center
Flowers, Jim
1998-01-01
Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)
Trends in life science grid: from computing grid to knowledge grid.
Konagaya, Akihiko
2006-12-18
Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.
Trends in life science grid: from computing grid to knowledge grid
Konagaya, Akihiko
2006-01-01
Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294
Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems
ERIC Educational Resources Information Center
Saunders, Alicia F.; Spooner, Fred; Ley Davis, Luann
2018-01-01
Mathematical problem solving is necessary in many facets of everyday life, yet little research exists on how to teach students with more severe disabilities higher order mathematics like problem solving. Using a multiple probe across participants design, three middle school students with moderate intellectual disability (ID) were taught to solve…
Transdisciplinary translational science and the case of preterm birth
Stevenson, D K; Shaw, G M; Wise, P H; Norton, M E; Druzin, M L; Valantine, H A; McFarland, D A
2013-01-01
Medical researchers have called for new forms of translational science that can solve complex medical problems. Mainstream science has made complementary calls for heterogeneous teams of collaborators who conduct transdisciplinary research so as to solve complex social problems. Is transdisciplinary translational science what the medical community needs? What challenges must the medical community overcome to successfully implement this new form of translational science? This article makes several contributions. First, it clarifies the concept of transdisciplinary research and distinguishes it from other forms of collaboration. Second, it presents an example of a complex medical problem and a concrete effort to solve it through transdisciplinary collaboration: for example, the problem of preterm birth and the March of Dimes effort to form a transdisciplinary research center that synthesizes knowledge on it. The presentation of this example grounds discussion on new medical research models and reveals potential means by which they can be judged and evaluated. Third, this article identifies the challenges to forming transdisciplines and the practices that overcome them. Departments, universities and disciplines tend to form intellectual silos and adopt reductionist approaches. Forming a more integrated (or ‘constructionist'), problem-based science reflective of transdisciplinary research requires the adoption of novel practices to overcome these obstacles. PMID:23079774
Transdisciplinary translational science and the case of preterm birth.
Stevenson, D K; Shaw, G M; Wise, P H; Norton, M E; Druzin, M L; Valantine, H A; McFarland, D A
2013-04-01
Medical researchers have called for new forms of translational science that can solve complex medical problems. Mainstream science has made complementary calls for heterogeneous teams of collaborators who conduct transdisciplinary research so as to solve complex social problems. Is transdisciplinary translational science what the medical community needs? What challenges must the medical community overcome to successfully implement this new form of translational science? This article makes several contributions. First, it clarifies the concept of transdisciplinary research and distinguishes it from other forms of collaboration. Second, it presents an example of a complex medical problem and a concrete effort to solve it through transdisciplinary collaboration: for example, the problem of preterm birth and the March of Dimes effort to form a transdisciplinary research center that synthesizes knowledge on it. The presentation of this example grounds discussion on new medical research models and reveals potential means by which they can be judged and evaluated. Third, this article identifies the challenges to forming transdisciplines and the practices that overcome them. Departments, universities and disciplines tend to form intellectual silos and adopt reductionist approaches. Forming a more integrated (or 'constructionist'), problem-based science reflective of transdisciplinary research requires the adoption of novel practices to overcome these obstacles.
Women Working in Engineering and Science
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Kliss, Mark (Technical Monitor)
1998-01-01
The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.
Using Exploratory Talk to Enhance Problem-Solving and Reasoning Skills in Grade-7 Science Classrooms
ERIC Educational Resources Information Center
Webb, Paul; Treagust, David F.
2006-01-01
This study investigates whether the generation of exploratory talk in grade seven, second-language science classrooms in the Eastern Cape Province, South Africa, has a positive effect on learners in terms of their problem-solving and reasoning skills and whether socio-cultural "milieus" (urban, peri-urban and rural settings of schools)…
ERIC Educational Resources Information Center
Schuchardt, Anita M.; Schunn, Christian D.
2016-01-01
Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2012-01-01
In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…
ERIC Educational Resources Information Center
Gao, Su; Wang, Jian
2016-01-01
Students' frequent exposure to inquiry-based science teaching is presumed more effective than their exposure to traditional didactic instruction in helping improve competence in content knowledge and problem solving. Framed through theoretical perspectives of inquiry-based instruction and culturally relevant pedagogy, this study examines this…
ERIC Educational Resources Information Center
Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.
2016-01-01
An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science…
The Self-Organization of Insight: Entropy and Power Laws in Problem Solving
ERIC Educational Resources Information Center
Stephen, Damian G.; Dixon, James A.
2008-01-01
Explaining emergent structure remains a challenge for all areas of cognitive science, and problem solving is no exception. The modern study of insight has drawn attention to the issue of emergent cognitive structure in problem solving research. We propose that the explanation of insight is beyond the scope of conventional approaches to cognitive…
Puzzling Science: Using the Rubik's Cube to Teach Problem Solving
ERIC Educational Resources Information Center
Rohrig, Brian
2010-01-01
A major goal of education is to help learners store information in long-term memory and use that information on later occasions to effectively solve problems (Vockell 2010). Therefore, this author began to use the Rubik's cube to help students learn to problem solve. There is something special about this colorful three-dimensional puzzle that…
ERIC Educational Resources Information Center
Antonenko, Pavlo D.; Jahanzad, Farzaneh; Greenwood, Carmen
2014-01-01
Collaborative problem solving is an essential component of any 21st century science career. Scientists are hired, retained, and promoted for solving problems in dynamic and interdisciplinary teams. They discuss issues, explain and justify their opinions, debate, elaborate, and reflect on their collective knowledge. At the same time, both…
ERIC Educational Resources Information Center
National Center for Education Statistics, 2017
2017-01-01
The Program for International Student Assessment (PISA) is a global education study of 15-year-old students' reading, mathematics, and science literacy and, in 2015, two optional components: financial literacy and collaborative problem solving. Fifty-one education systems administered the collaborative problem solving assessment, including 32 of…
ERIC Educational Resources Information Center
Miller, Bridget; Taber-Doughty, Teresa
2014-01-01
Three students with mild to moderate intellectual and multiple disability, enrolled in a self-contained functional curriculum class were taught to use a self-monitoring checklist and science notebook to increase independence in inquiry problem-solving skills. Using a single-subject multiple-probe design, all students acquired inquiry…
ERIC Educational Resources Information Center
Ekici, Didem Inel
2016-01-01
This study aimed to determine Turkish junior high-school students' perceptions of the general problem-solving process. The Turkish junior high-school students' perceptions of the general problem-solving process were examined in relation to their gender, grade level, age and their grade point with regards to the science course identified in the…
A Problem-Solving Framework to Assist Students and Teachers in STEM Courses
ERIC Educational Resources Information Center
Phillips, Jeffrey A.; Clemmer, Katharine W.; McCallum, Jeremy E. B.; Zachariah, Thomas M.
2017-01-01
Well-developed, problem-solving skills are essential for any student enrolled in a science, technology, engineering, and mathematics (STEM) course as well as for graduates in the workforce. One of the most essential skills is the ability to monitor one's own progress and understanding while solving a problem. Successful monitoring during the…
ERIC Educational Resources Information Center
Dereli-Iman, Esra
2013-01-01
Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…
ERIC Educational Resources Information Center
Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa
2017-01-01
Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…
Problem Solving with General Semantics.
ERIC Educational Resources Information Center
Hewson, David
1996-01-01
Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)
Social Problem Solving as a Predictor of Well-Being in Adolescents and Young Adults
ERIC Educational Resources Information Center
Siu, Andrew M. H.; Shek, Daniel T. L.
2010-01-01
Social problem solving is the cognitive-affective-behavioral process by which people attempt to resolve real-life problems in a social environment, and is of key importance in the management of emotions and well-being. This paper reviews a series of studies on social problem solving conducted by the authors. First, we developed and validated the…
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
Life Skills Coach Training Manual.
ERIC Educational Resources Information Center
Saskatchewan NewStart, Inc., Prince Albert.
Ways of helping coaches to counsel unemployed adults in the solving of their personal problems are explored in this manual. Originally printed as two separate volumes, this reprinting of the study has bound the two together. Volume I involves a general discussion of life's problems and of the need to solve them. This volume contains four parts.…
Safari, Yahya; Meskini, Habibeh
2016-01-01
Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970
Safari, Yahya; Meskini, Habibeh
2015-05-17
Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.
Flouri, Eirini; Panourgia, Constantina
2012-10-01
The aim of this study was to test whether nonverbal cognitive ability buffers the effect of life stress (number of adverse life events in the last year) on diatheses for depression. It was expected that, as problem-solving aptitude, nonverbal cognitive ability would moderate the effect of life stress on those diatheses (such as dysfunctional attitudes) that are depressogenic because they represent deficits in information-processing or problem-solving skills, but not on diatheses (such as hopelessness) that are depressogenic because they represent deficits in motivation or effort to apply problem-solving skills. The sample included 558 10- to 19-year-olds from a state secondary school in London. Nonverbal cognitive ability was negatively associated with both dysfunctional attitudes and hopelessness. As expected, nonverbal cognitive ability moderated the association between life adversity and dysfunctional attitudes. However, hopelessness was not related to life stress, and therefore, there was no life stress effect for nonverbal cognitive ability to moderate. This study adds to knowledge about the association between problem-solving ability and depressogenic diatheses. By identifying life stress as a risk factor for dysfunctional attitudes but not hopelessness, it highlights the importance of considering outcome specificity in models predicting adolescent outcomes from adverse life events. Importantly for practice, it suggests that an emphasis on recent life adversity will likely underestimate the true level of hopelessness among adolescents. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.
2017-09-01
Environmental problem is a real problem that occur in student’s daily life. Junior high school students’ perception about environmental problem is interesting to be investigated. The major aim of this study is to explore junior high school students’ perception about environmental problems around them and ways to solve the problem. The subject of this study is 69 Junior High School Students from two Junior High School in Bandung. This study use two open ended question. The core of first question is environmental problem around them (near school or house). The core of second question is the way to prevent or to solve the problem. These two question are as an impact of problem based learning in science learning. There are two major findings in this study. The first finding, based on most students’ perception, plastic waste cause an environmental problem. The second finding, environmental awareness can be a solution to prevent environmental pollution. The third finding, most student can classify environmental pollution into land, water and air pollution. We can conclude that Junior High School Students see the environmental problem as a phenomenon and teacher can explore environmental problem to guide the way of preventing and resolving environmental problem.
Mexican high school students' social representations of mathematics, its teaching and learning
NASA Astrophysics Data System (ADS)
Martínez-Sierra, Gustavo; Miranda-Tirado, Marisa
2015-07-01
This paper reports a qualitative research that identifies Mexican high school students' social representations of mathematics. For this purpose, the social representations of 'mathematics', 'learning mathematics' and 'teaching mathematics' were identified in a group of 50 students. Focus group interviews were carried out in order to obtain the data. The constant comparative style was the strategy used for the data analysis because it allowed the categories to emerge from the data. The students' social representations are: (A) Mathematics is…(1) important for daily life, (2) important for careers and for life, (3) important because it is in everything that surrounds us, (4) a way to solve problems of daily life, (5) calculations and operations with numbers, (6) complex and difficult, (7) exact and (6) a subject that develops thinking skills; (B) To learn mathematics is…(1) to possess knowledge to solve problems, (2) to be able to solve everyday problems, (3) to be able to make calculations and operations, and (4) to think logically to be able to solve problems; and (C) To teach mathematics is…(1) to transmit knowledge, (2) to know to share it, (3) to transmit the reasoning ability, and (4) to show how to solve problems.
ERIC Educational Resources Information Center
Alhusaini, Abdulnasser Alashaal F.
2016-01-01
The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general…
ERIC Educational Resources Information Center
Martin, Andrew J.; Liem, Gregory A. D.; Mok, Magdalena M. C.; Xu, Jacob
2012-01-01
The present study investigates problem-solving skill alongside more widely recognized settlement and sociodemographic factors in first-generation (1G) and second-generation (2G) immigrant students' science and mathematics achievement. A total of 113,767 students (ages 15-16 years) from 17 countries were drawn from the 2003 Programme for…
ERIC Educational Resources Information Center
Chen, Yi-Chun; Yang, Fang-Ying
2014-01-01
There were two purposes in the study. One was to explore the cognitive activities during spatial problem solving and the other to probe the relationship between spatial ability and science concept learning. Twenty university students participated in the study. The Purdue Visualization of Rotations Test (PVRT) was used to assess the spatial…
ERIC Educational Resources Information Center
Ismail, Mohd Nasir; Ngah, Nor Azilah; Umar, Irfan Naufal
2010-01-01
The purpose of the study is to investigate the effects of mind mapping with cooperative learning (MMCL) and cooperative learning (CL) on: (a) programming performance; (b) problem solving skill; and (c) metacognitive knowledge among computer science students in Malaysia. The moderating variable is the students' logical thinking level with two…
Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.
Gonzalez, Vivian M; Neander, Lucía L
2018-03-15
This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.
Mathematics as a Course of Study in Problem Solving: Then and Now.
ERIC Educational Resources Information Center
Ellis, Wade, Jr.
The mathematics curriculum in the first 2 years of college is a tool created to assist in solving problems. The current mathematics curriculum has changed little; the same topics, tied to the engineering and science curriculum, are taught as they were being taught in 1945. The problems that students need to solve have changed however. Both the…
Talk aloud problem solving: Exploration of acquisition and frequency building in science text
NASA Astrophysics Data System (ADS)
Dembek, Ginny
Discovering new ways to help students attain higher levels of scientific knowledge and to think critically is a national goal (Educate to Innovate campaign). Despite the best intentions, many students struggle to achieve a basic level of science knowledge (NAEP, 2011). The present study examined Talk Aloud Pair Problem Solving and frequency building with five students who were diagnosed with a disability and receive specialized reading instruction in a special education setting. Acquisition was obtained through scripted lessons and frequency building or practice strengthened the student's verbal repertoire making the problem solving process a durable behavior. Overall, students all demonstrated improvements in problem solving performance when compared to baseline. Students became more significantly accurate in performance and maintenance in learning was demonstrated. Generalization probes indicated improvement in student performance. Implications for practice and future research are discussed.
Paradigms and Problem-Solving: A Literature Review.
ERIC Educational Resources Information Center
Berner, Eta S.
1984-01-01
Thomas Kuhn's conceptions of the influence of paradigms on the progress of science form the framework for analyzing how medical educators have approached research on medical problem solving. A new paradigm emphasizing multiple types of problems with varied solution strategies is proposed. (Author/MLW)
Algorithmics - Is There Hope for a Unified Theory?
NASA Astrophysics Data System (ADS)
Hromkovič, Juraj
Computer science was born with the formal definition of the notion of an algorithm. This definition provides clear limits of automatization, separating problems into algorithmically solvable problems and algorithmically unsolvable ones. The second big bang of computer science was the development of the concept of computational complexity. People recognized that problems that do not admit efficient algorithms are not solvable in practice. The search for a reasonable, clear and robust definition of the class of practically solvable algorithmic tasks started with the notion of the class {P} and of {NP}-completeness. In spite of the fact that this robust concept is still fundamental for judging the hardness of computational problems, a variety of approaches was developed for solving instances of {NP}-hard problems in many applications. Our 40-years short attempt to fix the fuzzy border between the practically solvable problems and the practically unsolvable ones partially reminds of the never-ending search for the definition of "life" in biology or for the definitions of matter and energy in physics. Can the search for the formal notion of "practical solvability" also become a never-ending story or is there hope for getting a well-accepted, robust definition of it? Hopefully, it is not surprising that we are not able to answer this question in this invited talk. But to deal with this question is of crucial importance, because only due to enormous effort scientists get a better and better feeling of what the fundamental notions of science like life and energy mean. In the flow of numerous technical results, we must not forget the fact that most of the essential revolutionary contributions to science were done by defining new concepts and notions.
ERIC Educational Resources Information Center
Loji, K.
2012-01-01
Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…
ERIC Educational Resources Information Center
Kim, SugHee; Chung, KwangSik; Yu, HeonChang
2013-01-01
The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…
Computer-simulated laboratory explorations for middle school life, earth, and physical Science
NASA Astrophysics Data System (ADS)
von Blum, Ruth
1992-06-01
Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.
NASA Astrophysics Data System (ADS)
Yukita, Kazuto; Goto, Tokimasa; Mizuno, Katsunori; Nakano, Hiroyuki; Ichiyanagi, Katsuhiro; Goto, Yasuyuki; Mori, Tsuyoshi
Recently the importance of Monozukuri (manufacturing) has been watched with keen interest as a social; problem, which has a relation with schoolchildren's decline of their academic standards, pointed out by the reports of PISA of OECD and TIMSS, etc., and their “losing interest in science” and “dislike of science”, some people worry about, which will lead to the decline of technology in the home industry, the top-class personnel shortage, and the decrease of economical power in this country in the future. In order to solve such a problem, science pavilions, universities, and academic societies of science and engineering etc. in various places hold “Monozukuiri Classrooms” or “Science Classrooms”. We can say that various activities which try to hold off “losing interest in science” and “dislike of science.” in the whole society. Under such a situation, Aichi Institute of Technology (AIT) to which we belong, also tries to contribute to the activity of solving the problem, and holds various engineering education lectures which intend for elementary, junior high school and senior high school students. AIT has held “The Whole Experience World” which tries to bring up a talented person who has a dream and hope towards science and technology, grows his/her originality, intellectual curiosity and spirit of inquiry, and supports the nation based on science and technology in the summer vacation since 2001. This paper reports the result of a questionnaire about what kind of the long-term learning effect on the children who participated in “The Whole Experience World” and “Boys and Girls Robot Lectures”. As the conclusion of the study, we can say that the lectures could give the participants who were interested in science and technology more interest. And we could give them the idea of what the study of science and technology is. As a result, we could contribute to the participants' decision of the courses' selection in life.
Neutrons for biologists: a beginner's guide, or why you should consider using neutrons.
Lakey, Jeremy H
2009-10-06
From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences.
Neutrons for biologists: a beginner's guide, or why you should consider using neutrons
Lakey, Jeremy H.
2009-01-01
From the structures of isolated protein complexes to the molecular dynamics of whole cells, neutron methods can achieve a resolution in complex systems that is inaccessible to other techniques. Biology is fortunate in that it is rich in water and hydrogen, and this allows us to exploit the differential sensitivity of neutrons to this element and its major isotope, deuterium. Furthermore, neutrons exhibit wave properties that allow us to use them in similar ways to light, X-rays and electrons. This review aims to explain the basics of biological neutron science to encourage its greater use in solving difficult problems in the life sciences. PMID:19656821
Interdisciplinary Curriculum Empowers Cognitive Advancement to Solve Real Life Problems
ERIC Educational Resources Information Center
Al Husni, Noha M.; El Rouadi, Naim
2016-01-01
Interdisciplinary curriculum supports cognitive development through well planned lessons at early age. This article focuses on a specific experimental study done in 2010 on Grade 7 learners in a Lebanese private school to aid them in empowering their skills and competencies to solve a real life problem. The objective of this experimental study is…
ERIC Educational Resources Information Center
Suor, Jennifer H.; Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante
2017-01-01
Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and…
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
NASA Astrophysics Data System (ADS)
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
[Hybris and crisis. The 19th century and transition to modern medicine].
Vatle, A
1993-10-20
Medicine declared itself to be a scientific discipline in the 19th century, and radically cut off its former links with the Hippocratic-Galenic tradition after the French Revolution in 1789. Owing to the great progress made in physics and chemistry, these disciplines came to be regarded as the only ones capable of solving medical problems. This is a reductionist view, in contrast to the vitalist view, which still believed in the existence of the Hippocratic physis or life force. Reductionist medicine led to great advances, though in the 19th century much of the wisdom of earlier times tended to be forgotten, to the detriment of medicine as a whole. It was believed that medicine and science could solve all the world's problems, a belief that, in modern times, has been abandoned as invalid. We now need a new medical anthropology, or rather medicine that is anthropological in its thinking.
Space Life Support Technology Applications to Terrestrial Environmental Problems
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Sleeper, Howard L.
1993-01-01
Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.
Barakat, Lamia P.; Daniel, Lauren C.; Smith, Kelsey; Robinson, M. Renée; Patterson, Chavis A.
2013-01-01
Children with sickle cell disease (SCD) are at risk for poor health-related quality of life (HRQOL). The current analysis sought to explore parent problem-solving abilities/skills as a moderator between SCD complications and HRQOL to evaluate applicability to pediatric SCD. At baseline, 83 children ages 6–12 years and their primary caregiver completed measures of the child HRQOL. Primary caregivers also completed a measure of social problem-solving. A SCD complications score was computed from medical record review. Parent problem-solving abilities significantly moderated the association of SCD complications with child self-report psychosocial HRQOL (p = .006). SCD complications had a direct effect on parent proxy physical and psychosocial child HRQOL. Enhancing parent problem-solving abilities may be one approach to improve HRQOL for children with high SCD complications; however, modification of parent perceptions of HRQOL may require direct intervention to improve knowledge and skills involved in disease management. PMID:24222378
Barakat, Lamia P; Daniel, Lauren C; Smith, Kelsey; Renée Robinson, M; Patterson, Chavis A
2014-03-01
Children with sickle cell disease (SCD) are at risk for poor health-related quality of life (HRQOL). The current analysis sought to explore parent problem-solving abilities/skills as a moderator between SCD complications and HRQOL to evaluate applicability to pediatric SCD. At baseline, 83 children ages 6-12 years and their primary caregiver completed measures of child HRQOL. Primary caregivers also completed a measure of social problem-solving. A SCD complications score was computed from medical record review. Parent problem-solving abilities significantly moderated the association of SCD complications with child self-report psychosocial HRQOL (p = .006). SCD complications had a direct effect on parent proxy physical and psychosocial child HRQOL. Enhancing parent problem-solving abilities may be one approach to improve HRQOL for children with high SCD complications; however, modification of parent perceptions of HRQOL may require direct intervention to improve knowledge and skills involved in disease management.
R. A. Fisher: a faith fit for eugenics.
Moore, James
2007-03-01
In discussions of 'religion-and-science', faith is usually emphasized more than works, scientists' beliefs more than their deeds. By reversing the priority, a lingering puzzle in the life of Ronald Aylmer Fisher (1890-1962), statistician, eugenicist and founder of the neo-Darwinian synthesis, can be solved. Scholars have struggled to find coherence in Fisher's simultaneous commitment to Darwinism, Anglican Christianity and eugenics. The problem is addressed by asking what practical mode of faith or faithful mode of practice lent unity to his life? Families, it is argued, with their myriad practical, emotional and intellectual challenges, rendered a mathematically-based eugenic Darwinian Christianity not just possible for Fisher, but vital.
NASA Astrophysics Data System (ADS)
Zuhaida, A.
2018-04-01
Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.
Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh
2017-01-01
Background: Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. Materials and Methods: This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. Results: The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse (P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse (P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students (P = 0.0004). Conclusions: Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students. PMID:28904539
Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh
2017-01-01
Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse ( P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse ( P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students ( P = 0.0004). Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students.
NASA Astrophysics Data System (ADS)
Kříček, Radek
2015-08-01
The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more effectively with talented youth and stimulate additional interest in science.
Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning
ERIC Educational Resources Information Center
Yeo, Jennifer; Tan, Seng Chee
2014-01-01
The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…
Moe, Aubrey M; Breitborde, Nicholas J K; Bourassa, Kyle J; Gallagher, Colin J; Shakeel, Mohammed K; Docherty, Nancy M
2018-06-01
Schizophrenia researchers have focused on phenomenological aspects of the disorder to better understand its underlying nature. In particular, development of personal narratives-that is, the complexity with which people form, organize, and articulate their "life stories"-has recently been investigated in individuals with schizophrenia. However, less is known about how aspects of narrative relate to indicators of neurocognitive and social functioning. The objective of the present study was to investigate the association of linguistic complexity of life-story narratives to measures of cognitive and social problem-solving abilities among people with schizophrenia. Thirty-two individuals with a diagnosis of schizophrenia completed a research battery consisting of clinical interviews, a life-story narrative, neurocognitive testing, and a measure assessing multiple aspects of social problem solving. Narrative interviews were assessed for linguistic complexity using computerized technology. The results indicate differential relationships of linguistic complexity and neurocognition to domains of social problem-solving skills. More specifically, although neurocognition predicted how well one could both describe and enact a solution to a social problem, linguistic complexity alone was associated with accurately recognizing that a social problem had occurred. In addition, linguistic complexity appears to be a cognitive factor that is discernible from other broader measures of neurocognition. Linguistic complexity may be more relevant in understanding earlier steps of the social problem-solving process than more traditional, broad measures of cognition, and thus is relevant in conceptualizing treatment targets. These findings also support the relevance of developing narrative-focused psychotherapies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ERIC Educational Resources Information Center
Alshamali, Mahmoud A.; Daher, Wajeeh M.
2016-01-01
This study aimed at identifying the levels of scientific reasoning of upper primary stage (grades 4-7) science teachers based on their use of a problem-solving strategy. The study sample (N = 138; 32 % male and 68 % female) was randomly selected using stratified sampling from an original population of 437 upper primary school teachers. The…
ERIC Educational Resources Information Center
Huang, Neng-Tang Norman; Chiu, Li-Jia; Hong, Jon-Chao
2016-01-01
The strong humanistic and ethics-oriented philosophy of Confucianism tends to lead people influenced by these principles to undervalue the importance of hands-on practice and creativity in education. GreenMech, a science and technology contest, was implemented to encourage real-world, hands-on problem solving in an attempt to mitigate this effect.…
Pure science and the problem of progress.
Douglas, Heather
2014-06-01
How should we understand scientific progress? Kuhn famously discussed science as its own internally driven venture, structured by paradigms. He also famously had a problem describing progress in science, as problem-solving ability failed to provide a clear rubric across paradigm change--paradigm changes tossed out problems as well as solving them. I argue here that much of Kuhn's inability to articulate a clear view of scientific progress stems from his focus on pure science and a neglect of applied science. I trace the history of the distinction between pure and applied science, showing how the distinction came about, the rhetorical uses to which the distinction has been put, and how pure science came to be both more valued by scientists and philosophers. I argue that the distinction between pure and applied science does not stand up to philosophical scrutiny, and that once we relinquish it, we can provide Kuhn with a clear sense of scientific progress. It is not one, though, that will ultimately prove acceptable. For that, societal evaluations of scientific work are needed.
ERIC Educational Resources Information Center
Owoh, Jeremy Strickland
2015-01-01
In today's technology enriched schools and workforces, creative problem-solving is involved in many aspects of a person's life. The educational systems of developed nations are designed to raise students who are creative and skillful in solving complex problems. Technology and the age of information require nations to develop generations of…
Integrating Problem-Based Learning and Simulation: Effects on Student Motivation and Life Skills.
Roh, Young Sook; Kim, Sang Suk
2015-07-01
Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, P<.001), problem solving (F=6.91, P=.001), and self-directed learning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.
NASA Astrophysics Data System (ADS)
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante
2017-08-01
Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.
Yang, B; Clum, G A
1994-01-01
The present study tested both a stress-problem-solving model and a stress-social support model in the etiology of depressive symptoms, hopelessness, and suicide ideation for a group of Asian international students in the United States. Problem-solving skills and social support were hypothesized as two mediators between life stress and depressive symptoms, hopelessness, and suicide ideation. The results from a series of stepwise regression analyses and a path analysis support the hypotheses, indicating that these models generalized to a sample of Asian international students. The roles of social support and problem-solving skills in depressive symptoms and hopelessness are discussed. The results also suggest that hopelessness may serve as a cognitive factor directly affecting depressive symptoms and indirectly affecting suicide ideation.
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Courey, Susan J.
2005-01-01
In this article, the authors explain how curriculum-based measurement (CBM) differs from other forms of classroom-based assessment. The development of CBM is traced from computation to concepts and applications to real-life problem solving, with examples of the assessments and illustrations of research to document technical features and utility…
Problem solving therapy - use and effectiveness in general practice.
Pierce, David
2012-09-01
Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.
Visser, Marieke M; Heijenbrok-Kal, Majanka H; Spijker, Adriaan Van't; Oostra, Kristine M; Busschbach, Jan J; Ribbers, Gerard M
2015-08-01
To investigate whether patients with high and low depression scores after stroke use different coping strategies and problem-solving skills and whether these variables are related to psychosocial health-related quality of life (HRQOL) independent of depression. Cross-sectional study. Two rehabilitation centers. Patients participating in outpatient stroke rehabilitation (N=166; mean age, 53.06±10.19y; 53% men; median time poststroke, 7.29mo). Not applicable. Coping strategy was measured using the Coping Inventory for Stressful Situations; problem-solving skills were measured using the Social Problem Solving Inventory-Revised: Short Form; depression was assessed using the Center for Epidemiologic Studies Depression Scale; and HRQOL was measured using the five-level EuroQol five-dimensional questionnaire and the Stroke-Specific Quality of Life Scale. Independent samples t tests and multivariable regression analyses, adjusted for patient characteristics, were performed. Compared with patients with low depression scores, patients with high depression scores used less positive problem orientation (P=.002) and emotion-oriented coping (P<.001) and more negative problem orientation (P<.001) and avoidance style (P<.001). Depression score was related to all domains of both general HRQOL (visual analog scale: β=-.679; P<.001; utility: β=-.009; P<.001) and stroke-specific HRQOL (physical HRQOL: β=-.020; P=.001; psychosocial HRQOL: β=-.054, P<.001; total HRQOL: β=-.037; P<.001). Positive problem orientation was independently related to psychosocial HRQOL (β=.086; P=.018) and total HRQOL (β=.058; P=.031). Patients with high depression scores use different coping strategies and problem-solving skills than do patients with low depression scores. Independent of depression, positive problem-solving skills appear to be most significantly related to better HRQOL. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Problem solving, loneliness, depression levels and associated factors in high school adolescents.
Sahin, Ummugulsum; Adana, Filiz
2016-01-01
To determine problem solving, loneliness, depression levels and associated factors in high school adolescents. This cross-sectional study was conducted in a city west of Turkey (Bursa) in a public high school and the population was 774 and the sampling was 394 students. Students to be included in the study were selected using the multiple sampling method. A personal Information Form with 23 questions, Problem Solving Inventory (PSI), Loneliness Scale (UCLA), Beck Depression Inventory (BDI) were used as data collection tools in the study. Basic statistical analyses, t-test, Kruskall Wallis-H, One Way Anova and Pearson Correlation test were used to evaluate the data. Necessary permissions were obtained from the relevant institution, students, parents and the ethical committee. The study found significant differences between "problem solving level" and family type, health assessment, life quality and mothers', fathers' siblings' closeness level; between "loneliness level" and gender, family income, health assessment, life quality and mothers', fathers', siblings' closeness level; between "depression level" and life quality, family income, fathers' closeness level. Unfavorable socio-economic and cultural conditions can have an effect on the problem solving, loneliness and depression levels of adolescents. Providing structured education to adolescents at risk under school mental health nursing practices is recommended.
Using Clickers to Facilitate Development of Problem-Solving Skills
ERIC Educational Resources Information Center
Levesque, Aime A.
2011-01-01
Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and…
Contemporary HIV/AIDS research: Insights from knowledge management theory.
Callaghan, Chris William
2017-12-01
Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.
Complex Problem Solving: What It Is and What It Is Not
Dörner, Dietrich; Funke, Joachim
2017-01-01
Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242
The Role of Content Knowledge in Ill-Structured Problem Solving for High School Physics Students
ERIC Educational Resources Information Center
Milbourne, Jeff; Wiebe, Eric
2018-01-01
While Physics Education Research has a rich tradition of problem-solving scholarship, most of the work has focused on more traditional, well-defined problems. Less work has been done with ill-structured problems, problems that are better aligned with the engineering and design-based scenarios promoted by the Next Generation Science Standards. This…
NASA Astrophysics Data System (ADS)
Parker, Mary Jo
This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.
ERIC Educational Resources Information Center
Rustling, Ruth; And Others
This manual offers detailed guidelines for parent group trainers who conduct workshops on problem solving, math, and science for parents of young children. In addition, discussion starters, a list of hands-on activities, directions for drawing and using a poster, and learning activities for children are described. Counting books are briefly…
ERIC Educational Resources Information Center
Serin, Oguz
2011-01-01
This study aims to investigate the effects of the computer-based instruction on the achievements and problem solving skills of the science and technology students. This is a study based on the pre-test/post-test control group design. The participants of the study consist of 52 students; 26 in the experimental group, 26 in the control group. The…
Some Aspects of Science Education in European Context
ERIC Educational Resources Information Center
Naumescu, Adrienne Kozan; Pasca, Roxana-Diana
2008-01-01
Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…
Provocative Opinion: Fads in Science Teaching
ERIC Educational Resources Information Center
Parry, R. W.
1975-01-01
Criticizes the post-Sputnik wave of multi-disciplinary science curricula aimed at teaching the students about social problems and how science can help solve these problems. Suggests that science teaching should concentrate more on the basics of a given discipline and should be taught be specialists rather than generalists. (MLH)
The Role of Model Building in Problem Solving and Conceptual Change
ERIC Educational Resources Information Center
Lee, Chwee Beng; Jonassen, David; Teo, Timothy
2011-01-01
This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…
Evaluating the Use of Problem-Based Video Podcasts to Teach Mathematics in Higher Education
ERIC Educational Resources Information Center
Kay, Robin; Kletskin, Ilona
2012-01-01
Problem-based video podcasts provide short, web-based, audio-visual explanations of how to solve specific procedural problems in subject areas such as mathematics or science. A series of 59 problem-based video podcasts covering five key areas (operations with functions, solving equations, linear functions, exponential and logarithmic functions,…
ERIC Educational Resources Information Center
Scott, Fraser J.
2016-01-01
The "mathematics problem" is a well-known source of difficulty for students attempting numerical problem solving questions in the context of science education. This paper illuminates this problem from a biology education perspective by invoking Hogan's numeracy framework. In doing so, this study has revealed that the contextualisation of…
NASA Astrophysics Data System (ADS)
Thurmond, Brandi
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.
Ecological literacy and beyond: Problem-based learning for future professionals.
Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W
2015-03-01
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Modelling human problem solving with data from an online game.
Rach, Tim; Kirsch, Alexandra
2016-11-01
Since the beginning of cognitive science, researchers have tried to understand human strategies in order to develop efficient and adequate computational methods. In the domain of problem solving, the travelling salesperson problem has been used for the investigation and modelling of human solutions. We propose to extend this effort with an online game, in which instances of the travelling salesperson problem have to be solved in the context of a game experience. We report on our effort to design and run such a game, present the data contained in the resulting openly available data set and provide an outlook on the use of games in general for cognitive science research. In addition, we present three geometrical models mapping the starting point preferences in the problems presented in the game as the result of an evaluation of the data set.
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
Science Curriculum Components Favored by Taiwanese Biology Teachers
NASA Astrophysics Data System (ADS)
Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li
2005-09-01
The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
ERIC Educational Resources Information Center
Lawlor, Francis X.
1970-01-01
Indicates that the use of verbal rewards which are not congruent with behavior will result in less efficient problem-solving than either a neutral, no-reward situation, or the use of rewards which are congruent with the problem-solving behavior. The giving of congruent rewards improved the problem-solving efficiency of girls but not of boys. (LS)
ENGAGE: A Game Based Learning and Problem Solving Framework
2012-07-13
Gamification Summit 2012 Mensa Colloquium 2012.2: Social and Video Games Seattle Science Festival TED Salon Vancouver : http...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress
Nonfiction Literature that Highlights Inquiry: How "Real" People Solve "Real" Problems
ERIC Educational Resources Information Center
Zarnowski, Myra; Turkel, Susan
2011-01-01
In this article, the authors explain how nonfiction literature can demonstrate the nature of problem solving within disciplines such as math, science, and social studies. This literature illustrates what it means to puzzle over problems, to apply disciplinary thinking, and to develop creative solutions. The authors look closely at three examples…
ERIC Educational Resources Information Center
Lee, Chwee Beng
2010-01-01
This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…
Students' Problem-Solving in Mechanics: Preference of a Process Based Model.
ERIC Educational Resources Information Center
Stavy, Ruth; And Others
Research in science and mathematics education has indicated that students often use inappropriate models for solving problems because they tend to mentally represent a problem according to surface features instead of referring to scientific concepts and features. The objective of the study reported in this paper was to determine whether 34 Israeli…
Two Aspects of Meaningful Problem Solving in Science.
ERIC Educational Resources Information Center
Stewart, James
1982-01-01
Presents a model for solving genetics problems when problem statements include information on which alleles are dominant/recessive and on what forms of a trait are coded for by the alleles. Includes procedural steps employed in a solution and conceptual knowledge of genetics/meiosis allowing students to justify what they have done. (Author/JN)
The Application of Community Service Learning in Science Education
ERIC Educational Resources Information Center
Ng, Betsy Ling-Ling
2012-01-01
Learning of science has been traditionally conducted in classrooms or in the form of lectures. Science education is usually context-specific learning as students are taught a particular module of content in class. In problem-based learning, they are provided with examples of problems in which they learn how to solve these types of problems.…
ERIC Educational Resources Information Center
Collins, Rachel H.
2014-01-01
In a society that is becoming more dynamic, complex, and diverse, the ability to solve ill-structured problems has become an increasingly critical skill. Emerging adults are at a critical life stage that is an ideal time to develop the skills needed to solve ill-structured problems (ISPs) as they are transitioning to adult roles and starting to…
The Effect of Problem-Solving Video Games on the Science Reasoning Skills of College Students
NASA Astrophysics Data System (ADS)
Fanetti, Tina M.
As the world continues to rapidly change, students are faced with the need to develop flexible skills, such as science reasoning that will help them thrive in the new knowledge economy. Prensky (2001), Gee (2003), and Van Eck (2007) have all suggested that the way to engage learners and teach them the necessary skills is through digital games, but empirical studies focusing on popular games are scant. One way digital games, especially video games, could potentially be useful if there were a flexible and inexpensive method a student could use at their convenience to improve selected science reasoning skills. Problem-solving video games, which require the use of reasoning and problem solving to answer a variety of cognitive challenges could be a promising method to improve selected science reasoning skills. Using think-aloud protocols and interviews, a qualitative study was carried out with a small sample of college students to examine what impact two popular video games, Professor Layton and the Curious Village and Professor Layton and the Diabolical Box, had on specific science reasoning skills. The subject classified as an expert in both gaming and reasoning tended to use more higher order thinking and reasoning skills than the novice reasoners. Based on the assessments, the science reasoning of college students did not improve during the course of game play. Similar to earlier studies, students tended to use trial and error as their primary method of solving the various puzzles in the game and additionally did not recognize when to use the appropriate reasoning skill to solve a puzzle, such as proportional reasoning.
Fong, Kenneth N K; Howie, Dorothy R
2009-01-01
We investigated the effects of an explicit problem-solving skills training program using a metacomponential approach with 33 outpatients with moderate acquired brain injury, in the Hong Kong context. We compared an experimental training intervention with this explicit problem-solving approach, which taught metacomponential strategies, with a conventional cognitive training approach that did not have this explicit metacognitive training. We found significant advantages for the experimental group on the Metacomponential Interview measure in association with the explicit metacomponential training, but transfer to the real-life problem-solving measures was not evidenced in statistically significant findings. Small sample size, limited time of intervention, and some limitations with these tools may have been contributing factors to these results. The training program was demonstrated to have a significantly greater effect than the conventional training approach on metacomponential functioning and the component of problem representation. However, these benefits were not transferable to real-life situations.
Camp, Joanne S; Karmiloff-Smith, Annette; Thomas, Michael S C; Farran, Emily K
2016-12-01
Individuals with neurodevelopmental disorders like Williams syndrome and Down syndrome exhibit executive function impairments on experimental tasks (Lanfranchi, Jerman, Dal Pont, Alberti, & Vianello, 2010; Menghini, Addona, Costanzo, & Vicari, 2010), but the way that they use executive functioning for problem solving in everyday life has not hitherto been explored. The study aim is to understand cross-syndrome characteristics of everyday executive functioning and problem solving. Parents/carers of individuals with Williams syndrome (n=47) or Down syndrome (n=31) of a similar chronological age (m=17 years 4 months and 18 years respectively) as well as those of a group of younger typically developing children (n=34; m=8years 3 months) completed two questionnaires: the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000) and a novel Problem-Solving Questionnaire. The rated likelihood of reaching a solution in a problem solving situation was lower for both syndromic groups than the typical group, and lower still for the Williams syndrome group than the Down syndrome group. The proportion of group members meeting the criterion for clinical significance on the BRIEF was also highest for the Williams syndrome group. While changing response, avoiding losing focus and maintaining perseverance were important for problem-solving success in all groups, asking for help and avoiding becoming emotional were also important for the Down syndrome and Williams syndrome groups respectively. Keeping possessions in order was a relative strength amongst BRIEF scales for the Down syndrome group. Results suggest that individuals with Down syndrome tend to use compensatory strategies for problem solving (asking for help and potentially, keeping items well ordered), while for individuals with Williams syndrome, emotional reactions disrupt their problem-solving skills. This paper highlights the importance of identifying syndrome-specific problem-solving strengths and difficulties to improve effective functioning in everyday life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Teaching basic science to optimize transfer.
Norman, Geoff
2009-09-01
Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.
Testing a model of depression among Thai adolescents.
Vatanasin, Duangjai; Thapinta, Darawan; Thompson, Elaine Adams; Thungjaroenkul, Petsunee
2012-11-01
This predictive correlational study was designed to test a comprehensive model of depression for Thai adolescents. This sample included 800 high school students in Chiang Mai, Thailand. Data were collected using self-reported measures of depression, negative automatic thoughts, effective social problem solving, ineffective social problem solving, rumination, parental care, parental overprotection, and negative life events. Structural equation modeling revealed that negative automatic thoughts, effective and ineffective social problem solving mediated the effects of rumination, negative life events, and parental care and overprotection on adolescent depression. These findings provide new knowledge about identified factors and the mechanisms of their influence on depression among Thai adolescents, which are appropriate for targeting preventive interventions. © 2012 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Sahin, Derya
2011-01-01
Interpersonal cognitive problem solving, one of the most crucial social skills, is a life-long competency that must be supported from the early years of life. In this study, the opinions of 55 Turkish pre-school teachers and 53 Flemish pre-school teachers who work with 3-6-year-old children in private and public pre-schools in metropolitan cities…
Cognitive constraints on high school students' representations of real environmental problems
NASA Astrophysics Data System (ADS)
Barnes, Ervin Kenneth
One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and efforts to increase community awareness. The ways students think about, learn from, and solve real environmental problems were all constrained by the perspective tenets (including cultural tenets of role, status, and power) and envisioning processes. It was concluded that students need help from the community to go further in solving these real environmental problems.
Nanomedicine: Problem Solving to Treat Cancer
ERIC Educational Resources Information Center
Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.
2006-01-01
Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…
[Hippocrates is sick of misunderstanding and fatigue in society. How do I cure it?].
Vázquez-Benítez, Efraín
2010-10-01
Is taken as a paradigm of the physician Hippocrates devoted to care of the sick individual. Under the format of a fictional history focus aspects of the existential problems that affect the current physician in the exercise of their profession to analyze its causes and suggests some possible interventions of the doctors themselves to solve them. It insists that medicine is the art of applying science and technology to solving health problems of the individual and society, in which doctors study and practice the profession to serve others and that medicine not a commodity to be bought or sold according to market rules. Also emphasizes the concept that health is a basic right of man and not a gift or compliment to anyone or only product of legislation. The medical fee is fair, but not enough on a salary or wage, let alone the terms of a tab based on the benefit to investors, institutions or intermediaries, must be complemented with additional features that guarantee a dignified life. These principles must be preserved at all costs and prevent the market outside interests or "industrialize." The first step to solving problems is to become aware of them and understand them. We present possible solutions.
Marine molecular biology: an emerging field of biological sciences.
Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G
2008-01-01
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.
NASA Astrophysics Data System (ADS)
Longo, Palma Joni
2001-12-01
An experimental and interview-based design was used to test the efficacy of visual thinking networking (VTN), a new generation of metacognitive learning strategies. Students constructed network diagrams using semantic and figural elements to represent knowledge relationships. The findings indicated the importance of using color in VTN strategies. The use of color promoted the encoding and reconstruction of earth science knowledge in memory and enhanced higher order thinking skills of problem solving. Fifty-six ninth grade earth science students (13--15 years of age) in a suburban school district outside New York City were randomly assigned to three classes with the same instructor. Five major positive findings emerged in the areas of problem solving achievement, organization of knowledge in memory, problem solving strategy dimensionality, conceptual understanding, and gender differences. A multi-covariate analysis was conducted on the pre-post gain scores of the AGI/NSTA Earth Science Examination (Part 1). Students who used the color VTN strategies had a significantly higher mean gain score on the problem solving criterion test items than students who used the black/white VTN (p = .003) and the writing strategies for learning science (p < .001). During a think-out-loud problem solving interview, students who used the color VTN strategies: (1) significantly recalled more earth science knowledge than students who used the black/white VTN (p = .021) and the writing strategies (p < .001); (2) significantly recalled more interrelated earth science knowledge than students who used black/white VTN strategies (p = .048) and the writing strategy (p < .001); (3) significantly used a greater number of action verbs than students who used the writing strategy (p = .033). Students with low abstract reasoning aptitude who used the color VTNs had a significantly higher mean number of conceptually accurate propositions than students who used the black/white VTN (p = .018) and the writing strategies (p = .010). Gender influenced the choice of VTN strategy. Females used significantly more color VTN strategies, while males used predominately black/white VTN strategies (p = .01). A neurocognitive model, the encoding activation theory of the anterior cingulate (ENACT-AC), is proposed as an explanation for these findings.
ERIC Educational Resources Information Center
Shure, Myrna Beth
1979-01-01
Descriptive and evaluative information is presented about the Interpersonal Cognitive Problem Solving (ICPS) program, which utilizes sequenced games and dialogs to teach young children new ways of thinking about and coping with interpersonal difficulties. (SJL)
Robotics Projects and Learning Concepts in Science, Technology and Problem Solving
ERIC Educational Resources Information Center
Barak, Moshe; Zadok, Yair
2009-01-01
This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…
ERIC Educational Resources Information Center
Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.
2017-01-01
One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to…
2011-03-11
ORLANDO, Fla. – About 60 high school teams take part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – About 60 high school teams take part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
The Ultimate Challenge: Prove B. F. Skinner Wrong
Chance, Paul
2007-01-01
For much of his career, B. F. Skinner displayed the optimism that is often attributed to behaviorists. With time, however, he became less and less sanguine about the power of behavior science to solve the major problems facing humanity. Near the end of his life he concluded that a fair consideration of principles revealed by the scientific analysis of behavior leads to pessimism about our species. In this article I discuss the case for Skinner's pessimism and suggest that the ultimate challenge for behavior analysts today is to prove Skinner wrong. PMID:22478494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, B.
Family science is an informal science education program designed to teach science skills by having children and parents learn and enjoy science together. Aimed at addressing the underrepresentation of women and ethnic and racial minorities in science-based careers, FAMILY SCIENCE involves parents and children in kindergarten through eighth grade in science activities that demonstrate the role science plays in their daily life and future. Family involvement is the key to the program`s effectiveness. Family classes are usually offered in a series of one- to two-hour class meetings for parents and their children after school, evenings, and weekends. During classes, parentsmore » and children work in pairs and small groups to solve problems, work cooperatively, and talk science. The activities provide experiences for the entire family that build skills, confidence, and interest in science. In addition, guest speakers and career activities illustrate for parents in the workforce the significance of math and science in their own jobs, and for kids, it highlights the diversity of jobs and the relevance of math and science.« less
Harper, W James
2010-01-01
This article is largely biographical and relates to my experiences of the past 67 years in research and teaching, both of equal importance in my life. I was fortunate to start at the beginning of the development of instrumental methods of analysis and have eagerly embraced each new methodology as it became available. This paper is dedicated to all those students and colleagues who taught me much and whose efforts are mainly responsible for what has been accomplished in our work with food science and technology. The research focused primarily on trying to find out the "why" behind the problems that food, and especially the dairy products area, encountered over the past 65 years. The teaching has tried to foster thinking and problem solving.
ERIC Educational Resources Information Center
Handler, Philip
Although there are social pressures for the control of science, forcing a redirection to "relevant" problem solving tasks, the future needs are, in essence, unpredictable in detail. For this reason fundamental research is necessary to provide the appropriate base for the new technologies that human society will need. Even to solve the present…
NASA Astrophysics Data System (ADS)
Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani
2017-12-01
The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning device, such as student worksheet, to help students use their metacognitive skills in solving problems, particularly on chemistry subject.
A Portfolio of Energy Ideas: Science.
ERIC Educational Resources Information Center
Clark, Richard C., Ed.
Presented are 10 science energy education units designed to help students learn how to turn science questions and problems about energy into experiments. Each unit focuses on subject-matter knowledge and on the logic and strategy of scientific problem solving. These teacher-oriented materials include an overview of each unit, background…
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
ERIC Educational Resources Information Center
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-01-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…
Dreams and creative problem-solving.
Barrett, Deirdre
2017-10-01
Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.
Teaming to Teach the Information Problem-Solving Process.
ERIC Educational Resources Information Center
Sine, Lynn; Murphy, Becky
1992-01-01
Explains a problem-solving format developed by a school media specialist and first grade teacher that used the framework of Eisenberg and Berkowitz's "Big Six Skills" for library media programs. The application of the format to a science unit on the senses is described. (two references) (MES)
Problem Solving in Biology: A Methodology
ERIC Educational Resources Information Center
Wisehart, Gary; Mandell, Mark
2008-01-01
A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…
Theme: Is Problem-Solving Teaching and SAE Needed in Agricultural Education in the 21st Century?
ERIC Educational Resources Information Center
Wardlow, George, Ed.
1999-01-01
Nine articles in this theme issue address problem-solving teaching and supervised agricultural experience. Topics covered include systems approaches to SAE, SAE for Y2K, SAE for science, applied SAE, types of SAE, and examples of activities. (JOW)
ERIC Educational Resources Information Center
School Science Review, 1990
1990-01-01
Presented are 27 science activities for secondary school science instruction. Topic areas include microbiology, botany, biochemistry, genetics, safety, earthquakes, problem solving, electricity, heat, solutions, mechanics, quantum mechanics, flame tests, and molecular structure. (CW)
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
Problem Solving with Spreadsheets.
ERIC Educational Resources Information Center
Catterall, P.; Lewis, R.
1985-01-01
Documents the educational use of spreadsheets through a description of exploratory work which utilizes spreadsheets to achieve the objectives of Conway's Game of Life, a scientific method game for the development of problem-solving techniques. The implementation and classroom use of the spreadsheet programs are discussed. (MBR)
Making mathematics and science integration happen: key aspects of practice
NASA Astrophysics Data System (ADS)
Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne
2016-02-01
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.
Current Approaches in Implementing Citizen Science in the Classroom
Shah, Harsh R.; Martinez, Luis R.
2016-01-01
Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community. PMID:27047583
Current Approaches in Implementing Citizen Science in the Classroom.
Shah, Harsh R; Martinez, Luis R
2016-03-01
Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.
An IYPT-based undergraduate physics tournament in China
NASA Astrophysics Data System (ADS)
Li, Chuanyong; Song, Feng; Liu, Yubin; Sun, Qian
2013-03-01
International Young Physicists' Tournament (IYPT) is a team-oriented scientific competition of secondary school students. The participants present their solutions to scientific problems they have prepared over several months and discuss their solutions with other teams. It can also be implemented in university level as its physics problems are all open questions and have no standard answers, especially suitable for undergraduates' ability training in China. The annual tournament of physics learning of undergraduates in our school of physics was started in 2008. Each year, there are 15-18 teams, 20 more student volunteers and 30 more faculty jurors involved. The students benefited in different ways. It is project-based, requiring students to solve the problems in a research way. Team work is developed in both experimenting and discussing stages. The knowledge learned in classrooms can be used to solve these practical and life-related problems, raising their interest and initiative in physics learning. Finally, they are building up their skills in scientific presentation and communication. An IYPT-based program called CUPT (China undergraduate physics tournament) was launched in 2010 and annually attracts about 40 universities to attend. It gains its important role in physics education. National Fund for Talent Training in Basic Sciences (J1103208)
1974-07-18
so on. We say OK, we will work with Honda . We made an agreement and got the engine. They don’t have the problem solved at allfor us, but they have me...with our prechamber Honda CVCC program. hhile there are more design problems to be solved with the PROCO engine, and more time may be necessary to...But Mr. Sugiura was quoted by the agency ofcials as explaining Honda still has problems with fuel economy and driving performances and that it Is Impos
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
Rebecca Erikson – Solving Problems with Love for Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erikson, Rebecca
Rebecca Erikson’s love for science began at a young age. Today, she’s a senior scientist at PNNL trying to solve problems that address national security concerns. Through one project, she developed a sleek, simple and inexpensive way to turn a cellphone into a high-powered, high-quality microscope that helps authorities determine if white powder that falls from an envelope is anthrax or something simple like baby powder. Listen as Rebecca describes her work in this Energy Department video.
Contemporary HIV/AIDS research: Insights from knowledge management theory
Callaghan, Chris William
2017-01-01
Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967
Can Good Concept Mappers Be Good Problem Solvers in Science?
ERIC Educational Resources Information Center
Okebukola, Peter Akinsola
1992-01-01
Describes a study of concept mapping as a means of learning problem-solving skills. Concludes that the concept mapping subjects were significantly more successful at solving biological test questions than were the controls. Reports no significant differences between cooperative and individual mapping and mixed results for gender. (DK)
Productive Failure in STEM Education
ERIC Educational Resources Information Center
Trueman, Rebecca J.
2014-01-01
Science education is criticized because it often fails to support problem-solving skills in students. Instead, the instructional methods primarily emphasize didactic models that fail to engage students and reveal how the material can be applied to solve real problems. To overcome these limitations, this study asked participants in a general…
Teaching Students with Moderate Intellectual Disability to Solve Word Problems
ERIC Educational Resources Information Center
Browder, Diane M.; Spooner, Fred; Lo, Ya-yu; Saunders, Alicia F.; Root, Jenny R.; Ley Davis, Luann; Brosh, Chelsi R.
2018-01-01
This study evaluated an intervention developed through an Institute of Education Sciences-funded Goal 2 research project to teach students with moderate intellectual disability (moderate ID) to solve addition and subtraction word problems. The intervention involved modified schema-based instruction that embedded effective practices (e.g.,…
A Problem Solving Model for Use in Science Student Teacher Supervision.
ERIC Educational Resources Information Center
Cavallo, Ann M. L.; Tice, Craig J.
1993-01-01
Describes and suggests the use of a problem-solving model that improves communication between student teachers and supervisors through the student teaching practicum. The aim of the model is to promote experimentation with various teaching techniques and to stimulate thinking among student teachers about their teaching experiences. (PR)
ERIC Educational Resources Information Center
Capraro, Mary Margaret; An, Song A.; Ma, Tingting; Rangel-Chavez, A. Fabiola; Harbaugh, Adam
2012-01-01
Open-ended problems have been regarded as powerful tools for teaching mathematics. This study examined the problem solving of eight mathematics/science middle-school teachers. A semi-structured interview was conducted with (PTs) after completing an open-ended triangle task with four unique solutions. Of particular emphasis was how the PTs used a…
ERIC Educational Resources Information Center
Corlu, M. Sencer; Capraro, Robert M.; Corlu, M. Ali
2011-01-01
Students need to achieve automaticity in learning mathematics without sacrificing conceptual understanding of the algorithms that are essential in being successful in algebra and problem solving, as well as in science. This research investigated the relationship between science-contextualized problems and computational fluency by testing an…
Traffic Flow - USMES Teacher Resource Book. Fourth Edition. Trial Edition.
ERIC Educational Resources Information Center
Keskulla, Jean
This Unified Sciences and Mathematics for Elementary Schools (USMES) unit challenges students to improve traffic flow at a problem location. The challenge is general enough to apply to many problem-solving situations in mathematics, science, social science, and language arts at any elementary school level (grades 1-8). The Teacher Resource Book…
NASA Astrophysics Data System (ADS)
Wardani, D. S.; Kirana, T.; Ibrahim, M.
2018-01-01
The aim of this research is to produce SAS based on MI and problem-solving skills using simple science tools that are suitable to be used by elementary school students. The feasibility of SAS is evaluated based on its validity, practicality, and effectiveness. The completion Lesson Plan (LP) implementation and student’s activities are the indicators of SAS practicality. The effectiveness of SAS is measured by indicators of increased learning outcomes and problem-solving skills. The development of SAS follows the 4-D (define, design, develop, and disseminate) phase. However, this study was done until the third stage (develop). The written SAS was then validated through expert evaluation done by two experts of science, before its is tested to the target students. The try-out of SAS used one group with pre-test and post-test design. The result of this research shows that SAS is valid with “good” category. In addition, SAS is considered practical as seen from the increase of student activity at each meeting and LP implementation. Moreover, it was considered effective due to the significant difference between pre-test and post-test result of the learning outcomes and problem-solving skill test. Therefore, SAS is feasible to be used in learning.
On a New Approach to Education about Ethics for Engineers at Meijou University
NASA Astrophysics Data System (ADS)
Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu
We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.
Spatial visualization in physics problem solving.
Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary
2007-07-08
Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.
2015-12-01
The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.
Problem Solving Process Research of Everyone Involved in Innovation Based on CAI Technology
NASA Astrophysics Data System (ADS)
Chen, Tao; Shao, Yunfei; Tang, Xiaowo
It is very important that non-technical department personnel especially bottom line employee serve as innovators under the requirements of everyone involved in innovation. According the view of this paper, it is feasible and necessary to build everyone involved in innovation problem solving process under Total Innovation Management (TIM) based on the Theory of Inventive Problem Solving (TRIZ). The tools under the CAI technology: How TO mode and science effects database could be very useful for all employee especially non-technical department and bottom line for innovation. The problem solving process put forward in the paper focus on non-technical department personnel especially bottom line employee for innovation.
Changing from computing grid to knowledge grid in life-science grid.
Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy
2009-09-01
Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.
STEM education and Fermi problems
NASA Astrophysics Data System (ADS)
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
Revisiting software specification and design for large astronomy projects
NASA Astrophysics Data System (ADS)
Wiant, Scott; Berukoff, Steven
2016-07-01
The separation of science and engineering in the delivery of software systems overlooks the true nature of the problem being solved and the organization that will solve it. Use of a systems engineering approach to managing the requirements flow between these two groups as between a customer and contractor has been used with varying degrees of success by well-known entities such as the U.S. Department of Defense. However, treating science as the customer and engineering as the contractor fosters unfavorable consequences that can be avoided and opportunities that are missed. For example, the "problem" being solved is only partially specified through the requirements generation process since it focuses on detailed specification guiding the parties to a technical solution. Equally important is the portion of the problem that will be solved through the definition of processes and staff interacting through them. This interchange between people and processes is often underrepresented and under appreciated. By concentrating on the full problem and collaborating on a strategy for its solution a science-implementing organization can realize the benefits of driving towards common goals (not just requirements) and a cohesive solution to the entire problem. The initial phase of any project when well executed is often the most difficult yet most critical and thus it is essential to employ a methodology that reinforces collaboration and leverages the full suite of capabilities within the team. This paper describes an integrated approach to specifying the needs induced by a problem and the design of its solution.
Mumford, Michael D.; Antes, Alison L.; Caughron, Jared J.; Connelly, Shane; Beeler, Cheryl
2010-01-01
In the present study, 258 doctoral students working in the health, biological, and social sciences were asked to solve a series of field-relevant problems calling for creative thought. Proposed solutions to these problems were scored with respect to critical creative thinking skills such as problem definition, conceptual combination, and idea generation. Results indicated that health, biological, and social scientists differed with respect to their skill in executing various operations, or processes, involved in creative thought. Interestingly, no differences were observed as a function of the students’ level of experience. The implications of these findings for understanding cross-field, and cross-experience level, differences in creative thought are discussed. PMID:20936085
Could HPS Improve Problem-Solving?
NASA Astrophysics Data System (ADS)
Coelho, Ricardo Lopes
2013-05-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.
ERIC Educational Resources Information Center
Bisogno, Janet; JeanPierre, Bobby
2008-01-01
The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…
Student Involvement in Problem Solving and Decision Making--A Look at the Facts of Life.
ERIC Educational Resources Information Center
Sweeney, Jim
1979-01-01
The author contends that, in spite of the belief by principals and teachers that students participate in school decision making and problem solving, in reality they really do not. He suggests ways in which this condition can be rectified. (KC)
A critical narrative review of transfer of basic science knowledge in health professions education.
Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole
2018-06-01
'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Life Skills: a Course in Applied Problem Solving.
ERIC Educational Resources Information Center
Saskatchewan NewStart, Inc., Prince Albert.
This paper describes a Life Skills Course developed by Saskatchewan Newstart Inc. The course represents an attempt to integrate educational and psychotherapeutic principles and techniques for the development of personal competence in many aspects of life among the disadvantaged. It provides the student with competence in the use of problem solving…
Chalmers, Charlotte; Leathem, Janet; Bennett, Simon; McNaughton, Harry; Mahawish, Karim
2017-11-26
To investigate the efficacy of problem solving therapy for reducing the emotional distress experienced by younger stroke survivors. A non-randomized waitlist controlled design was used to compare outcome measures for the treatment group and a waitlist control group at baseline and post-waitlist/post-therapy. After the waitlist group received problem solving therapy an analysis was completed on the pooled outcome measures at baseline, post-treatment, and three-month follow-up. Changes on outcome measures between baseline and post-treatment (n = 13) were not significantly different between the two groups, treatment (n = 13), and the waitlist control group (n = 16) (between-subject design). The pooled data (n = 28) indicated that receiving problem solving therapy significantly reduced participants levels of depression and anxiety and increased quality of life levels from baseline to follow up (within-subject design), however, methodological limitations, such as the lack of a control group reduce the validity of this finding. The between-subject results suggest that there was no significant difference between those that received problem solving therapy and a waitlist control group between baseline and post-waitlist/post-therapy. The within-subject design suggests that problem solving therapy may be beneficial for younger stroke survivors when they are given some time to learn and implement the skills into their day to day life. However, additional research with a control group is required to investigate this further. This study provides limited evidence for the provision of support groups for younger stroke survivors post stroke, however, it remains unclear about what type of support this should be. Implications for Rehabilitation Problem solving therapy is no more effective for reducing post stroke distress than a wait-list control group. Problem solving therapy may be perceived as helpful and enjoyable by younger stroke survivors. Younger stroke survivors may use the skills learnt from problem solving therapy to solve problems in their day to day lives. Younger stroke survivors may benefit from age appropriate psychological support; however, future research is needed to determine what type of support this should be.
Visualization as an Aid to Problem-Solving: Examples from History.
ERIC Educational Resources Information Center
Rieber, Lloyd P.
This paper presents a historical overview of visualization as a human problem-solving tool. Visualization strategies, such as mental imagery, pervade historical accounts of scientific discovery and invention. A selected number of historical examples are presented and discussed on a wide range of topics such as physics, aviation, and the science of…
A Teaching-Learning Method Enhancing Problem Solving and Motivation in Secondary Schools.
ERIC Educational Resources Information Center
Markoczi-Revak, Ibolya
2003-01-01
Presents a teaching-learning method for enhancing problem solving and motivation for studying science in secondary schools. Emerges from a former survey which, found that the motivation of 14-18-year-olds as measured by the Kozekik-Entwistle test was at a rather low level. (Contains 16 references.) (Author/YDS)
ERIC Educational Resources Information Center
Cho, Seokhee; Lin, Chia-Yi
2011-01-01
Predictive relationships among perceived family processes, intrinsic and extrinsic motivation, incremental beliefs about intelligence, confidence in intelligence, and creative problem-solving practices in mathematics and science were examined. Participants were 733 scientifically talented Korean students in fourth through twelfth grades as well as…
Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education
ERIC Educational Resources Information Center
Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.
2015-01-01
Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…
Learning Algebra by Example in Real-World Classrooms
ERIC Educational Resources Information Center
Booth, Julie L.; Oyer, Melissa H.; Paré-Blagoev, E. Juliana; Elliot, Andrew J.; Barbieri, Christina; Augustine, Adam; Koedinger, Kenneth R.
2015-01-01
Math and science textbook chapters invariably supply students with sets of problems to solve, but this widely used approach is not optimal for learning; instead, more effective learning can be achieved when many problems to solve are replaced with correct and incorrect worked examples for students to study and explain. In the present study, the…
Determining the Exchangeability of Concept Map and Problem-Solving Essay Scores
ERIC Educational Resources Information Center
Hollenbeck, Keith; Twyman, Todd; Tindal, Gerald
2006-01-01
This study investigated the score exchangeability of concept maps with problem-solving essays. Of interest was whether sixth-grade students' concept maps predicted their scores on essay responses that used concept map content. Concept maps were hypothesized to be alternatives to performance assessments for content-area domain knowledge in science.…
ERIC Educational Resources Information Center
Howard, Bruce C.; McGee, Steven; Shia, Regina; Hong, Namsoo Shin
This study sought to examine the effects of meta cognitive self-regulation on problem solving across three conditions: (1) an interactive, computer-based treatment condition; (2) a noninteractive computer-based alternative treatment condition; and (3) a control condition. Also investigated was which of five components of metacognitive…
ERIC Educational Resources Information Center
Anderson, William L.; Sensibaugh, Cheryl A.; Osgood, Marcy P.; Mitchell, Steven M.
2011-01-01
The evaluation of higher-level cognitive skills can augment traditional discipline-based knowledge testing by providing timely assessment of individual student problem-solving abilities that are critical for success in any professional development program. However, the wide-spread acceptance and implementation of higher level cognitive skills…
SCAMPER and Creative Problem Solving in Political Science: Insights from Classroom Observation
ERIC Educational Resources Information Center
Radziszewski, Elizabeth
2017-01-01
This article describes the author's experience using SCAMPER, a creativity-building technique, in a creative problem-solving session that was conducted in an environmental conflict course to generate ideas for managing postconflict stability. SCAMPER relies on cues to help students connect ideas from different domains of knowledge, explore random…
Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving
ERIC Educational Resources Information Center
Kim, H. S.; Prevost, L.; Lemons, P. P.
2015-01-01
The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…
Cognitive Science and Instructional Technology: Improvements in Higher Order Thinking Strategies.
ERIC Educational Resources Information Center
Tennyson, Robert D.
This paper examines the cognitive processes associated with higher-order thinking strategies--i.e., cognitive processes directly associated with the employment of knowledge in the service of problem solving and creativity--in order to more clearly define a prescribed instructional method to improve problem-solving skills. The first section of the…
Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.
ERIC Educational Resources Information Center
Zuckerman, June Trop
This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…
Wikis for a Collaborative Problem-Solving (CPS) Module for Secondary School Science
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah; Spector, Jonathan Michael
2017-01-01
Collaborative problem solving (CPS) can support online learning by enabling interactions for social and cognitive processes. Teachers may not have sufficient knowledge to support such interactions, so support needs to be designed into learning modules for this purpose. This study investigates to what extent an online module for teaching nutrition…
Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving
ERIC Educational Resources Information Center
Levitin, Anany
2017-01-01
The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
ERIC Educational Resources Information Center
Lippert, Renate
The application of recent advances in the understanding of problem solving to the classroom is reviewed. Current research findings are described, and the instructional validity of these findings is illustrated by a research study of an instructional strategy called novice knowledge engineering. How various instructional strategies serve as…
Students Use Graphic Organizers to Improve Mathematical Problem-Solving Communications
ERIC Educational Resources Information Center
Zollman, Alan
2009-01-01
Improving students' problem-solving abilities is a major, if not the major, goal of middle grades mathematics. To address this goal, the author, who is a university mathematics educator, and nine inner-city middle school teachers developed a math/science action research project. This article describes their unique approach to mathematical problem…
Solving the problems with chirality as a biomarker for alien life
NASA Astrophysics Data System (ADS)
Levin, Gilbert V.
2010-09-01
The basis for chiral biomarkers that have been increasingly proposed to obtain evidence for life is reviewed. Specific problems in accepting them and other biomarkers as proof of life are cited. A new chiral method is offered to overcome these difficulties, a method that can make an unambiguous determination of extant microbial life.
Normal Science Education and its Dangers: The Case of School Chemistry
NASA Astrophysics Data System (ADS)
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
We started the Conceptual Structure of School Chemistry research project, a part of which is reported on here, with an attempt to solve the problem of the hidden structure in school chemistry. In order to solve that problem, and informed by previous research, we performed a content analysis of school chemistry textbooks and syllabi. This led us to the hypothesis that school chemistry curricula are based on an underlying, coherent structure of chemical concepts that students are supposed to learn for the purpose of explaining and predicting chemical phenomena. The elicited comments and criticisms of an International Forum of twenty-eight researchers of chemical education, though, refuted the central claims of this hypothesis. This led to a descriptive theory of the currently dominant school chemistry curriculum in terms of a rigid combination of a specific substantive structure, based on corpuscular theory, a specific philosophical structure, educational positivism, and a specific pedagogical structure, involving initiatory and preparatory training of future chemists. Secondly, it led to an explanatory theory of the structure of school chemistry - based on Kuhn's theory of normal science and scientific training - in which dominant school chemistry is interpreted as a form of normal science education. Since the former has almost all characteristics in common with the latter, dominant school chemistry must be regarded as normal chemistry education. Forum members also formulated a number of normative criticisms on dominant school chemistry, which we interpret as specific dangers of normal chemistry education, complementing Popper's discussion of the general dangers of normal science and its teaching. On the basis of these criticisms, it is argued that normal chemistry education is isolated from common sense, everyday life and society, history and philosophy of science, technology, school physics, and from chemical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.
It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it ismore » intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.« less
No Solutions: Resisting Certainty in Water Supply Management
NASA Astrophysics Data System (ADS)
Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.
2017-12-01
Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management needs. Rather, reconsidering the language used to frame water management concerns can help us recognize our own culpability in creating water problems and our responsibility in continuously managing this most essential resource.
Toward Peace: Using Literature to Aid Conflict Resolution.
ERIC Educational Resources Information Center
Luke, Jennifer L.; Myers, Catherine M.
1995-01-01
Children are exposed to violence in media and everyday life, which may promote aggression as a means to solve problems. Skills and strategies of problem solving, conflict resolution, and peace making can be learned through well-organized and frequent exposure to literature. Books that deal with misunderstanding, jealousy, playground skirmishes,…
Fostering Student Engagement: Creative Problem-Solving in Small Group Facilitations
ERIC Educational Resources Information Center
Samson, Patricia L.
2015-01-01
Creative Problem-Solving (CPS) can be a transformative teaching methodology that supports a dialogical learning atmosphere that can transcend the traditional classroom and inspire excellence in students by linking real life experiences with the curriculum. It supports a sense of inquiry that incorporates both experiential learning and the…
Automating the Detection of Reflection-on-Action
ERIC Educational Resources Information Center
Saucerman, Jenny; Ruis, A. R.; Shaffer, David Williamson
2017-01-01
Learning to solve "complex problems"--problems whose solutions require the application of more than basic facts and skills--is critical to meaningful participation in the economic, social, and cultural life of the digital age. In this paper, we use a theoretical understanding of how professionals use reflection-in-action to solve complex…
ERIC Educational Resources Information Center
Wallace, Richard L.; Clark, Susan G.
2014-01-01
The contemporary fields of interdisciplinary studies and the policy sciences have evolved over similar intellectual paths and timelines, beginning in the early 20th century. Both have their roots in professional efforts--within and outside the academy--to address numerous, growing, and complex problems that face humanity. The policy sciences'…
Application of artificial intelligence to pharmacy and medicine.
Dasta, J F
1992-04-01
Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
van Nieuwenhuijzen, Maroesjka; de Castro, Bram Orobio; Wijnroks, Lex; Vermeer, Adri; Matthys, Walter
2009-01-01
Relations among externalizing behavior, therapeutic context (community care vs. residential care), and social problem-solving by children with mild intellectual disabilities or borderline intelligence were examined. Participants were 186 children (12 to 14 years of age) who responded to a video-based social problem-solving task. Of these, 130 received residential care and the majority suffered from severe externalizing behavior problems. The results indicated that externalizing behavior was related to encoding, generation of aggressive responses, and negative evaluation of assertive responses. Therapeutic context was related to encoding, positive evaluation of assertive responses, and negative evaluation of aggressive responses. Results indicate a discrepancy between appropriate problem-solving skills and behavior in daily life. Implications for interventions are discussed.
New Curricular Material for Science Classes: How Do Students Evaluate It?
NASA Astrophysics Data System (ADS)
Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro
2013-02-01
Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.
Unsolved problems in biology--The state of current thinking.
Dev, Sukhendu B
2015-03-01
Many outstanding problems have been solved in biology and medicine for which scientists have been awarded prestigious prizes including the Nobel Prize, Lasker Award and Breakthrough Prizes in life sciences. These have been the fruits of years of basic research. From time to time, publications have appeared listing "unsolved" problems in biology. In this article, I ask the question whether it is possible to have such a list, if not a unique one, at least one that is analogous to the Millennium Prize in mathematics. My approach to finding an answer to this question was to gather views of leading biologists. I have also included my own views. Analysis of all the responses received over several years has convinced me that it is difficult, but not impossible, to have such a prize. Biology is complex and very interdisciplinary these days at times involving large numbers of teams, unlike mathematics, where Andrew Wiles spent seven years in complete isolation and secrecy solving Fermat's last theorem. Such an approach is simply not possible in biology. Still I would like to suggest that a similar prize can be established by a panel of distinguished scientists. It would be awarded to those who solved one of the listed problems in biology that warrant a verifiable solution. Despite many different opinions, I found that there is some commonality in the responses I received - I go on to discuss what these are and how they may impact future thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to high school students taking part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to high school students taking part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Collaboration with Community Partners
ERIC Educational Resources Information Center
Sterling, Donna R.; Frazier, Wendy M.
2006-01-01
For eight years, relationships with community partners have been the mainstay of a science enrichment program for secondary students. Through the use of problem-based learning, science classes use, the techniques and tools of scientists to solve authentic problems directly related to students' interests and needs. In this article, the author…
The Second and Perhaps the First High School Science Course.
ERIC Educational Resources Information Center
Andersen, Hans O.
1984-01-01
Discusses reasons for the failure of the post-Sputnik science curricula and offers criteria for selecting relevant curriculum content, suggesting that these curricula focus on problem-solving. Lists seven problem areas (technological, environmental, empirical, historical, aesthetic, philosophical, and futuristic) with recommended topics for each…
Science Classroom Inquiry (SCI) Simulations: A Novel Method to Scaffold Science Learning
Peffer, Melanie E.; Beckler, Matthew L.; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students’ self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study. PMID:25786245
Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.
Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda
2015-01-01
Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.
2015-01-01
programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa
NASA Astrophysics Data System (ADS)
Widodo, W.; Sudibyo, E.; Sari, D. A. P.
2018-04-01
This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.
Empowering Students in Science through Active Learning: Voices From Inside the Classroom
NASA Astrophysics Data System (ADS)
Erickson, Sabrina Ann
Preparing students for success in the 21st century has shifted the focus of science education from acquiring information and knowledge to mastery of critical thinking and problem-solving skills. The purpose of this qualitative case study was to examine teacher and student perspectives of the relationship between (a) active learning, problem solving, and achievement in science and (b) the conditions that help facilitate this environment. Adapting a social constructivist theoretical framework, high school science teachers and students were interviewed, school records analyzed, curriculum documents studied, and classes observed. The findings revealed that students were engaged with the material in an active learning environment, which led to a sense of involvement, interest, and meaningful learning. Students felt empowered to take ownership of their learning, developed the critical thinking skills necessary to solve problems independently and became aware of how they learn best, which students reported as interactive learning. Moreover, student reflections revealed that an active environment contributed to deeper understanding and higher skills through interaction and discussion, including questioning, explaining, arguing, and contemplating scientific concepts with their peers. Recommendations are for science teachers to provide opportunities for students to work actively, collaborate in groups, and discuss their ideas to develop the necessary skills for achievement and for administrators to facilitate the conditions needed for active learning to occur.
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Pakakis, Michael; Christie, Ian
2011-09-01
The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive environment promotes high order thinking skills such as problem solving, team work, communication skills and leadership. To promote the teaching of science in the classroom, and prepare the students for their mission, the program includes a pre-visit program. These classroom-based lessons model best practice in effective science teaching and learning to support the development of confident primary science teachers.
GPR survey, as one of the best geophysical methods for social and industrial needs
NASA Astrophysics Data System (ADS)
Chernov, Anatolii
2016-04-01
This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).
How do precision medicine and system biology response to human body's complex adaptability?
Yuan, Bing
2016-12-01
In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.
NASA Astrophysics Data System (ADS)
Baird, William E.; Preston Prather, J.; Finson, Kevin D.; Oliver, J. Steve
A 100-item survey was distributed to science teachers in eight states to determine characteristics of teachers, schools, programs, and perceived needs. Results from 1258 secondary science teachers indicate that they perceive the following to be among their greatest needs: (1) to motivate students to want to learn science; (2) to discover sources of free and inexpensive science materials; (3) to learn more about how to use computers to deliver and manage instruction; (4) to find and use materials about science careers; and (5) to improve problem solving skills among their students. Based on whether teachers classified themselves as nonrural or rural, rural teachers do not perceive as much need for help with multicultural issues in the classroom or maintaining student discipline as their nonrural peers. Rural teachers report using the following classroom activities less often than nonrural teachers: cooperative learning groups, hands-on laboratory activities, individualized strategies, and inquiry teaching. More rural than nonrural teachers report problems with too many class preparations per day, a lack of career role models in the community, and lack of colleagues with whom to discuss problems. Among all secondary science teachers, the most pronounced problems reported by teachers were (in rank order): (1) insufficient student problem-solving skills; (2) insufficient funds for supplies; (3) poor student reading ability; (4) lack of student interest in science: and (5) inadequate laboratory facilities.
Indirection and computer security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Michael J.
2011-09-01
The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyzemore » common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.« less
The Influence of Science Knowledge Structures on Children's Success in Solving Academic Problems.
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
Presented is a study of eighth-grade students' academic problem-solving ability based on their knowledge structures, or their information stored in semantic or long-term memory. The authors describe a technique that they developed to probe knowledge structures with an extension of the card-sort method. The method, known as the Concept Structure…
ERIC Educational Resources Information Center
Kim, Mijung
2016-01-01
Research on young children's reasoning show the complex relationships of knowledge, theories, and evidence in their decision-making and problem solving. Most of the research on children's reasoning skills has been done in individualized and formal research settings, not collective classroom environments where children often engage in learning and…
ERIC Educational Resources Information Center
Beck, Terence A.
Leslie Herrenkohl's work in science (1998) has demonstrated that introducing "problem-solving steps" and "audience roles" to an elementary classroom can have a dramatic impact on rates of student engagement as measured through classroom talk. It is not known to what extent the success of the intervention was due to its…
ERIC Educational Resources Information Center
Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.
2013-01-01
Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…
ERIC Educational Resources Information Center
Ogunleye, Ayodele O.
2009-01-01
In recent times, science education researchers have identified a lot of instruments for evaluating conceptual understanding as well as students' attitudes and beliefs about physics; unfortunately however, there are no broad based evaluation instruments in the field of problem-solving in physics. This missing tool is an indication of the complexity…
Problem Solving and the Use of Math in Physics Courses
ERIC Educational Resources Information Center
Redish, Edward F.
2006-01-01
Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are…
Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines
ERIC Educational Resources Information Center
English, Lyn D.; Hudson, Peter; Dawes, Les
2013-01-01
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…
Analysis of Errors Made by Students Solving Genetics Problems.
ERIC Educational Resources Information Center
Costello, Sandra Judith
The purpose of this study was to analyze the errors made by students solving genetics problems. A sample of 10 non-science undergraduate students was obtained from a private college in Northern New Jersey. The results support prior research in the area of genetics education and show that a weak understanding of the relationship of meiosis to…
ERIC Educational Resources Information Center
Marshall, Matthew M.; Carrano, Andres L.; Dannels, Wendy A.
2016-01-01
Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and…
ERIC Educational Resources Information Center
Lai, Su-Huei
The conceptual framework of the Modes of Problem Solving Action (MPSA) model integrates Dewey's pragmatism, critical science theory, and theory regarding the three modes of inquiry. The MPSA model is formulated in the shape of a matrix. Horizontally, there are the following modes: technical, interpretive, and emancipating. Vertically, there are…
Does Problem Solving = Prior Knowledge + Reasoning Skills in Earth Science? An Exploratory Study
ERIC Educational Resources Information Center
Chang, Chun-Yen
2010-01-01
This study examined the interrelationship between tenth-grade students' problem solving ability (PSA) and their domain-specific knowledge (DSK) as well as reasoning skills (RS) in a secondary school of Taiwan. The PSA test was designed to emphasize students' divergent-thinking ability (DTA) and convergent-thinking ability (CTA) subscales in the…
ERIC Educational Resources Information Center
Ionas, Ioan Gelu; Cernusca, Dan; Collier, Harvest L.
2012-01-01
This exploratory study presents the outcomes of using self-explanation to improve learners' performance in solving basic chemistry problems. The results of the randomized experiment show the existence of a moderation effect between prior knowledge and the level of support self-explanation provides to learners, suggestive of a synergistic effect…
ERIC Educational Resources Information Center
Gonda, Rebecca L.; DeHart, Kyle; Ashman, Tia-Lynn; Legg, Alison Slinskey
2015-01-01
Achieving a deep understanding of the many topics covered in middle school biology classes is difficult for many students. One way to help students learn these topics is through scenario-based learning, which enhances students' performance. The scenario-based problem-solving module presented here, "The Strawberry Caper," not only…
Using Clickers to Facilitate Development of Problem-Solving Skills
Levesque, Aime A.
2011-01-01
Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and were polled for the correct answer. A histogram of class responses was displayed, and students were encouraged to discuss the problem, which enabled them to better understand the correct answer. Students were then presented with a similar problem and were again polled. My results indicate that those students who were initially unable to solve the problem were then able to figure out how to solve similar types of problems through a combination of trial and error and class discussion. This was reflected in student performance on exams, where there was a statistically significant positive correlation between grades and the percentage of clicker questions answered. Interestingly, there was no clear correlation between exam grades and the percentage of clicker questions answered correctly. These results suggest that students who attempt to solve problems in class are better equipped to solve problems on exams. PMID:22135374
Raising a Thinking Preteen: The "I Can Problem Solve" Program for 8- to 12-Year-Olds.
ERIC Educational Resources Information Center
Shure, Myrna B.
Aimed at parents of early adolescents, this book helps parents provide the skills teens need to cope with life's everyday frustrations and to make informed decisions about problems such as the stresses of homework, friendship, contending with peer pressure, and dealing with bullies. The foundation of the book is the "I Can Problem Solve" (ICPS)…
Science modelling in pre-calculus: how to make mathematics problems contextually meaningful
NASA Astrophysics Data System (ADS)
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-04-01
'Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum' (National Council of Teachers of Mathematics (NCTM), Principles and Standards for School Mathematics, NCTM, Reston, VA, 2000). Commonly used pre-calculus textbooks provide a wide range of application problems. However, these problems focus students' attention on evaluating or solving pre-arranged formulas for given values. The role of scientific content is reduced to provide a background for these problems instead of being sources of data gathering for inducing mathematical tools. Students are neither required to construct mathematical models based on the contexts nor are they asked to validate or discuss the limitations of applied formulas. Using these contexts, the instructor may think that he/she is teaching problem solving, where in reality he/she is teaching algorithms of the mathematical operations (G. Kulm (ed.), New directions for mathematics assessment, in Assessing Higher Order Thinking in Mathematics, Erlbaum, Hillsdale, NJ, 1994, pp. 221-240). Without a thorough representation of the physical phenomena and the mathematical modelling processes undertaken, problem solving unintentionally appears as simple algorithmic operations. In this article, we deconstruct the representations of mathematics problems from selected pre-calculus textbooks and explicate their limitations. We argue that the structure and content of those problems limits students' coherent understanding of mathematical modelling, and this could result in weak student problem-solving skills. Simultaneously, we explore the ways to enhance representations of those mathematical problems, which we have characterized as lacking a meaningful physical context and limiting coherent student understanding. In light of our discussion, we recommend an alternative to strengthen the process of teaching mathematical modelling - utilization of computer-based science simulations. Although there are several exceptional computer-based science simulations designed for mathematics classes (see, e.g. Kinetic Book (http://www.kineticbooks.com/) or Gizmos (http://www.explorelearning.com/)), we concentrate mainly on the PhET Interactive Simulations developed at the University of Colorado at Boulder (http://phet.colorado.edu/) in generating our argument that computer simulations more accurately represent the contextual characteristics of scientific phenomena than their textual descriptions.
Eye Movements Reveal Students' Strategies in Simple Equation Solving
ERIC Educational Resources Information Center
Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan
2014-01-01
Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…
ERIC Educational Resources Information Center
LeGrand, Karen; Yamashita, Lina; Trexler, Cary J.; Vu, Thi Lam An; Young, Glenn M.
2017-01-01
Although many educators now recognize the value of problem-based learning and experiential learning, undergraduate-level food science courses that reflect these pedagogical approaches are still relatively novel, especially in East and Southeast Asia. Leveraging existing partnerships with farmers in Vietnam, a food science course for students at…
Janice VanCleave's Electricity: Mind-Boggling Experiments You Can Turn into Science Fair Projects.
ERIC Educational Resources Information Center
VanCleave, Janice
This book is designed to provide guidance and ideas for science projects to help students learn more about science as they search for answers to specific problems. The 20 topics on electricity in this book suggest many possible problems to solve. Each topic has one detailed experiment followed by a section that provides additional questions about…
Nuclear Science Teaching Aids and Activities.
ERIC Educational Resources Information Center
Woodburn, John H.
This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…
News Focus: Presidential Candidates Give Views on Science and Technology.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1984
1984-01-01
Presents the views of Ronald Reagan and Walter Mondale on various science issues. Major areas examined include: science policy goals; science education; adequate research and development funding; importance of research activities; role of science and technology in solving national problems; and other issues. (JN)
Creating Alien Life Forms: Problem Solving in Biology.
ERIC Educational Resources Information Center
Grimnes, Karin A.
1996-01-01
Describes a project that helps students integrate biological concepts using both creativity and higher-order problem-solving skills. Involves students playing the roles of junior scientists aboard a starship in orbit around a class M planet and using a description of habitats, seasonal details, and a surface map of prominent geographic features to…
ERIC Educational Resources Information Center
Marchis, Iuliana
2013-01-01
Developing the problem solving competency is one of the main goals of school education, as it is a very important competency in someone's everyday life and career as well. Mathematics is highly appropriate for developing this competence. This research studies future Primary and Preschool Pedagogy specialization students' mathematical problem…
Teaching Creativity and Inventive Problem Solving in Science
2009-01-01
Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures. PMID:19723812
Teaching creativity and inventive problem solving in science.
DeHaan, Robert L
2009-01-01
Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.
A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance
NASA Technical Reports Server (NTRS)
Thomas, Valerie L.
2004-01-01
U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.
Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.
Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T
2012-06-01
Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.
Teaching the process of science: faculty perceptions and an effective methodology.
Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa
2010-01-01
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.
Teaching the Process of Science: Faculty Perceptions and an Effective Methodology
Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew
2010-01-01
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy. PMID:21123699
Ingenuity in Action: Connecting Tinkering to Engineering Design Processes
ERIC Educational Resources Information Center
Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen
2013-01-01
The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…
A Portfolio of Energy Ideas: Science.
ERIC Educational Resources Information Center
Clark, Richard C., Ed.
Ten units which focus on subject-matter knowledge about energy and on the logic and strategy of problem-solving within science are provided in this user's guide. Each unit includes: a detailed summary of unit problems and activities; recommended grade levels and subject areas; possible learner outcomes and general goals; teacher background…
On Evaluating Human Problem Solving of Computationally Hard Problems
ERIC Educational Resources Information Center
Carruthers, Sarah; Stege, Ulrike
2013-01-01
This article is concerned with how computer science, and more exactly computational complexity theory, can inform cognitive science. In particular, we suggest factors to be taken into account when investigating how people deal with computational hardness. This discussion will address the two upper levels of Marr's Level Theory: the computational…
Application of NASA's advanced life support technologies in polar regions
NASA Astrophysics Data System (ADS)
Bubenheim, D. L.; Lewis, C.
1997-01-01
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.
Development of Mastery during Adolescence: The Role of Family Problem Solving*
Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M.; Masyn, Katherine E.; Shebloski, Barbara
2009-01-01
A sense of mastery is an important component of psychological health and well-being across the life-span; however, relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family SES in the form of parental education promotes effective family problem solving which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence. PMID:19413137
Development of mastery during adolescence: the role of family problem-solving.
Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M; Masyn, Katherine E; Shebloski, Barbara
2009-03-01
A sense of mastery is an important component of psychological health and wellbeing across the life-span; however relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family socioeconomic status (SES) in the form of parental education promotes effective family problem-solving, which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem-solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem-solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem-solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence.
Complexity in Nature and Society: Complexity Management in the Age of Globalization
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.
Nature of the Physical Observer
NASA Astrophysics Data System (ADS)
Osoroma, Drahcir S.
2010-12-01
The nature of the observer has long plagued physical science. Here we review the current status of cognitive science in the context of a cosmology of mind in an Anthropic Multiverse. The concept of an élan vital or life force has long been considered the elementary action principle driving the evolution of living-systems by theologically minded scientists and individuals. Sufficiently extending Einstein's original model of a Static Universe, to a Holographic Anthropic Multiverse (HAM), provides a context for solving this centuries old problem for introducing this type of teleological principle into Physics, Biology, Medicine and Psychology. This means the contemporary framework of biological mechanism should no longer be considered the formal philosophical basis for describing living systems and contemporary allopathic (scientific) medicine. The new noetic action principle has far reaching implications for medicine and transpersonal psychology.
2011-03-11
ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
ERIC Educational Resources Information Center
McGhee, James
1984-01-01
Ordinary household appliances can be used in the classroom to inspire unusual research, artwork, and problem solving. Suggestions on how to organize and collect materials to develop an appliance science unit are offered. (DF)
To Solve or Not to Solve, that Is the Problem
ERIC Educational Resources Information Center
Braiden, Doug
2011-01-01
The senior school Mathematics syllabus is often restricted to the study of single variable differential equations of the first order. Unfortunately most real life examples do not follow such types of relations. In addition, very few differential equations in real life have exact solutions that can be expressed in finite terms. Even if the solution…
Analysis of mathematical problem-solving ability based on metacognition on problem-based learning
NASA Astrophysics Data System (ADS)
Mulyono; Hadiyanti, R.
2018-03-01
Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.
An Ada Based Expert System for the Ada Version of SAtool II. Volume 1 and 2
1991-06-06
Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF 0 stands for ICAM Definition Method Zero . IDEF0 defines a subset of SA that omits...reasoning that has been programmed). An expert’s knowledge is specific to one problem domain as opposed to knowledge about general problem-solving...techniques. General problem domains are medicine, finance, science or engineering and so forth in which an expert can solve specific problems very well
Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context
NASA Astrophysics Data System (ADS)
Crouch, Catherine
2014-03-01
Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of materials, and present initial assessment data evaluating both content learning and student attitudes.
[Profile of social problem solving and coping profile in anxious and depressed Chileans].
Kramp, Uwe
2012-11-01
According to the Pan American Health Organization and the World Health Organization, in 2020, depression will become the second cause of disability worldwide. In Chile, anxiety and depressive disorders account for almost 28% of the total years of healthy life lost due to illness. This research seeks to explore a profile of social problem solving and coping present in people who suffer from anxious and depressive symptoms. The sample consisted of 1179 analogous Chilean participants (55.9% women), with a mean of 22.23 years (range between 18-48 years). The results suggest statistically significant differences for all social problem solving and coping strategies evaluated. Thus, if anxious or depressive symptoms increase, social problem solving or coping strategies become less adaptive.
Development and validation of a physics problem-solving assessment rubric
NASA Astrophysics Data System (ADS)
Docktor, Jennifer Lynn
Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.
NASA Astrophysics Data System (ADS)
Ochsner, Karl
Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and ISTE NET*S, along with the framework from the Partnership for 21st Century Learning Standards, our society demands students not only to learn curriculum, but to think critically, problem solve effectively, and become adept at communicating and collaborating. Didactic digital movie making in the science classroom may be one way that these twenty-first century learning skills may be implemented. An action research study using a mixed-methods approach to collect data was used to investigate if didactic moviemaking can help eighth grade students learn physical science content while incorporating 21st century learning skills of collaboration, communication, problem solving and critical thinking skills through their group production. Over a five week period, students researched lessons, wrote scripts, acted, video recorded and edited a didactic movie that contained a narrative plot to teach a science strand from the Arizona State Standards in physical science. A pretest/posttest science content test and KWL chart was given before and after the innovation to measure content learned by the students. Students then took a 21st Century Learning Skills Student Survey to measure how much they perceived that communication, collaboration, problem solving and critical thinking were taking place during the production. An open ended survey and a focus group of four students were used for qualitative analysis. Three science teachers used a project evaluation rubric to measure science content and production values from the movies. Triangulating the science content test, KWL chart, open ended questions and the project evaluation rubric, it appeared that science content was gained from this project. Students felt motivated to learn and had positive experience. Students also felt that the repetition of production and watching their movies helped them remember science. Students also perceived that creating the didactic digital movie helped them use collaboration, communication, problem solving and critical thinking skills throughout their production.
Transcending as a driver of development.
Travis, Frederick
2016-06-01
This paper draws from three different bodies of research to discuss the hypothesis that age-appropriate experiences enhance brain and cognitive development throughout the life span. These age-appropriate experiences could be considered as the drivers of development at each age, including drivers to foster development beyond adult abstract thinking, as described in Piaget's formal operational stage. We explore how a nurturing caregiver is the driver in the first 2 years of life, how language learning is the driver from 3 to 10 years, and how problem solving is the driver in the teenage years. To develop beyond adult rational thinking, we suggest that the driver is transcending thought, which can result when practicing meditations in the automatic self-transcending category, such as Transcendental Meditation. © 2016 New York Academy of Sciences.
Survival ethics in the real world: the research university and sustainable development.
Verharen, Charles; Tharakan, John; Bugarin, Flordeliz; Fortunak, Joseph; Kadoda, Gada; Middendorf, George
2014-03-01
We discuss how academically-based interdisciplinary teams can address the extreme challenges of the world's poorest by increasing access to the basic necessities of life. The essay's first part illustrates the evolving commitment of research universities to develop ethical solutions for populations whose survival is at risk and whose quality of life is deeply impaired. The second part proposes a rationale for university responsibility to solve the problems of impoverished populations at a geographical remove. It also presents a framework for integrating science, engineering and ethics in the efforts of multidisciplinary teams dedicated to this task. The essay's third part illustrates the efforts of Howard University researchers to join forces with African university colleagues in fleshing out a model for sustainable and ethical global development.
Issues in Science Education: Changing Purposes of Science Education.
ERIC Educational Resources Information Center
Williamson, Stan
This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…
One More Time: The Need for More Mathematical Problem Solving and What the Research Says about It
ERIC Educational Resources Information Center
Woodward, John
2013-01-01
This article reviews recent research in math problem solving for students with learning disabilities. Two recently published syntheses of research on mathematics by the Institute of Education Sciences (IES) are used as frameworks for interpreting this body of work. A significant amount of the work in special education over the last decade is…
ERIC Educational Resources Information Center
Chu, Hui-Chun; Hung, Chun-Ming
2015-01-01
In this study, the game-based development approach is proposed for improving the learning motivation, problem solving skills, and learning achievement of students. An experiment was conducted on a learning activity of an elementary school science course to evaluate the performance of the proposed approach. A total of 59 sixth graders from two…
ERIC Educational Resources Information Center
Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen
2016-01-01
Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Hung, Chun-Ming; Chen, Nian-Shing
2014-01-01
In this study, a peer assessment-based game development approach is proposed for improving students' learning achievements, motivations and problem-solving skills. An experiment has been conducted to evaluate the effectiveness of the proposed approach in a science course at an elementary school. A total of 167 sixth graders participated in…
NASA Astrophysics Data System (ADS)
Ebomoyi, Josephine Itota
The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.
NASA Astrophysics Data System (ADS)
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-03-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.
NASA Astrophysics Data System (ADS)
Doganca Kucuk, Zerrin; Saysel, Ali Kerem
2017-03-01
A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.
Bringing NASA Technology Down to Earth
NASA Technical Reports Server (NTRS)
Lockney, Daniel P.; Taylor, Terry L.
2018-01-01
Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.
Cognitive Predictors of Everyday Problem Solving across the Lifespan.
Chen, Xi; Hertzog, Christopher; Park, Denise C
2017-01-01
An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Pugliese, Cara E.; White, Susan W.
2014-01-01
Students with autism spectrum disorder (ASD), though academically capable, can have difficulty succeeding in college. Evidence-based intervention to promote effective problem solving may improve quality of life, as well as success and satisfaction in college. This study adapted and piloted a group-based cognitive-behavioral intervention program,…
Training Mothers to Help Their Children Solve Real-Life Problems.
ERIC Educational Resources Information Center
Shure, Myrna B.; Spivack, George
An experiment was performed to determine whether the mothers of 20 inner-city black preschoolers could successfully train their children in interpersonal problem-solving skills. The skills acquired by the mother-trained children were compared with those of 113 teacher-trained and 106 non-trained 4-year-olds, equated on initial IQ scores and school…
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
ERIC Educational Resources Information Center
Smith, Ruth Baynard
1994-01-01
Intermediate level academically talented students learn essential elements of computer programming by working with robots at enrichment workshops at Dwight-Englewood School in Englewood, New Jersey. The children combine creative thinking and problem-solving skills to program the robots' microcomputers to perform a variety of movements. (JDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, B.L.; Saturnelli, A.M.
1994-12-31
Our goal is to ensure that All students have the opportunity to learn science, and it is being accomplished through a unique working model program that: (1) changes the way that teaching and learning take place; (2) incorporates the advanced technology of microscopy directly into the K-12 curriculum; and (3) develops R & D teacher specialists. We conducted three in-service science courses, a Summer Science Microscopy Camp, and a staff development program (the latter funded by a NYS Education Department grant) in which science professors, industrial engineers and scientists interacted with teachers and students to explore the world using highmore » technology. This year, all 5th and 7th graders in the district (200 students) and about 1,000 high school science students are having experiences as active researchers, solving real-life, multi-step problems using all levels of microscopy, including scanning tunneling. Students develop a chronological portfolio, using multimedia formats. Our 1993 Summer Microscopy Camp attendance record was 98%, compared to the typical 75% for other programs.« less
Internet computer coaches for introductory physics problem solving
NASA Astrophysics Data System (ADS)
Xu Ryan, Qing
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.
Where civics meets science: building science for the public good through Civic Science.
Garlick, J A; Levine, P
2017-09-01
Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody
2017-10-24
Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.
Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm
NASA Astrophysics Data System (ADS)
Myers, J. D.; Campbell-Stone, E.; Massey, G.
2008-12-01
Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to promoting scientific literacy, L(SC)2 courses explicitly promote mastery of fundamental quantitative and qualitative skills critical to science and commonly a barrier to student success in science. Scientific content addresses the principles and disciplines necessary to tackle the multifaceted problems that must be solved in any sustainability transition and illustrates the limitations on what can be accomplished. Finally, social context adds the place-based component that is critical to sustainability science while revealing how science impacts students' everyday lives. Experience in addressing realistic, real-life problems fosters the habits of mind necessary to address these problems and instills a sense of social and political efficacy and responsibility. The L(SC)2 course paradigm employs a variety of educational tools (active problem-based learning, collaborative work, peer instruction, interdisciplinarity, and global context-based instruction) that improve lasting comprehension by creating a more effective learning environment. In this paradigm, STEM students learn that although there may be a technically or scientifically optimal solution to a problem, it must be responsive to a society's social, legal, cultural and religious parameters. Conversely, students in non-STEM fields learn that solutions to societal problems must be scientifically valid and technologically feasible. The interaction of STEM and non-STEM students in L(SC)2 courses builds bridges between the natural and social sciences that are critical for a successful sustainability transition and lacking in most traditional science courses.
Environmental Science Curriculum Guide, 1987. Bulletin 1792.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.
This guide for environmental science is intended to make students aware of the problems they will be facing in their environment, and of alternative measures to solve these problems. The course is designed to use scientific principles to study the processes of the environment; examine changes within the environment from a broad perspective;…
Abraham Pais Prize Lecture: Shifting Problems and Boundaries in the History of Modern Physics
NASA Astrophysics Data System (ADS)
Nye, Mary-Jo
A long established category of study in the history of science is the ``history of physical sciences.'' It is a category that immediately begs the question of disciplinary boundaries for the problems and subjects addressed in historical inquiry. As a historian of the physical sciences, I often have puzzled over disciplinary boundaries and the means used to create or justify them. Scientists most often have been professionally identified with specific institutionalized fields since the late 19th century, but the questions they ask and the problems they solve are not neatly carved up by disciplinary perimeters. Like institutional departments or professorships, the Nobel Prizes in the 20th century often have delineated the scope of ``Physics'' or ``Chemistry'' (and ``Physiology or Medicine''), but the Prizes do not reflect disciplinary rigidity, despite some standard core subjects. In this paper I examine trends in Nobel Prize awards that indicate shifts in problem solving and in boundaries in twentieth century physics, tying those developments to changing themes in the history of physics and physical science in recent decades.
Carducci, Michael; Loscalzo, Matthew J.; Linder, John; Greasby, Tamara; Beckett, Laurel A.
2011-01-01
Abstract Context Patients on investigational clinical trials and their caregivers experience poor quality of life (QOL), which declines as the disease progresses. Objective To examine the effect of a standardized cognitive–behavioral problem-solving educational intervention on the QOL of patients enrolled on investigational clinical trials and their caregivers. Design Prospective, multi-institution, randomized trial. QOL was measured repeatedly over 6 months. Participants Patients were simultaneously enrolled onto phase 1, 2, or 3 Institutional Review Board (IRB)-approved cancer clinical trials. Intervention Intervention arm dyads participated in three conjoint educational sessions during the first month, learning the COPE problem solving model. Nonintervention arm dyads received usual care. Outcome Measures Global QOL was measured by the City of Hope Quality of Life Instruments for Patients or Caregivers; problem solving skills were measured by the Social Problem Solving Inventory-Revised. Results The results are reported using the CONSORT statement. The analytic data set included 476 dyads including 1596 patient data points and 1576 care giver data points. Patient QOL showed no significant difference in the rate of change between the intervention and usual care arms (p = 0.70). Caregiver QOL scores in the intervention arm declined, but at less than half the rate in the control arm (p = 0.02). Conclusions The COPE intervention enabled the average caregiver to come much closer to stable QOL over the 6-month follow-up. Future studies should enroll subjects much earlier in the cancer illness trajectory, a common patient/caregiver theme. The maximum effect was seen in caregivers who completed the 6-month follow-up, suggesting that the impact may increase over time. PMID:21413846
GLAD: a system for developing and deploying large-scale bioinformatics grid.
Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong
2005-03-01
Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.
Aiding the search: Examining individual differences in multiply-constrained problem solving.
Ellis, Derek M; Brewer, Gene A
2018-07-01
Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.
Hayashi, Yugo
2018-05-01
Integrating different perspectives is a sophisticated strategy for developing constructive interactions in collaborative problem solving. However, cognitive aspects such as individuals' knowledge and bias often obscure group consensus and produce conflict. This study investigated collaborative problem solving, focusing on a group member interacting with another member having a different perspective (a "maverick"). It was predicted that mavericks might mitigate disadvantages and facilitate perspective taking during problem solving. Thus, 344 university students participated in two laboratory-based experiments by engaging in a simple rule-discovery task that raised conflicts among perspectives. They interacted with virtual partners whose conversations were controlled by multiple conversational agents. Results show that when participants interacted with a maverick during the task, they were able to take others' perspectives and integrate different perspectives to solve the problem. Moreover, when participants interacted in groups with a positive mood, groups with a maverick outperformed groups having several perspectives. Copyright © 2018 Cognitive Science Society, Inc.
Maddoux, John; Symes, Lene; McFarlane, Judith; Koci, Anne; Gilroy, Heidi; Fredland, Nina
2014-01-01
The environmental stress of intimate partner violence is common and often results in mental health problems of depression, anxiety, and PTSD for women and behavioral dysfunctions for their children. Problem-solving skills can serve to mitigate or accentuate the environmental stress of violence and associated impact on mental health. To better understand the relationship between problem-solving skills and mental health of abused women with children, a cross-sectional predictive analysis of 285 abused women who used justice or shelter services was completed. The women were asked about social problem-solving, and mental health symptoms of depression, anxiety, and PTSD as well as behavioral functioning of their children. Higher negative problem-solving scores were associated with significantly (P < 0.001) greater odds of having clinically significant levels of PTSD, anxiety, depression, and somatization for the woman and significantly (P < 0.001) greater odds of her child having borderline or clinically significant levels of both internalizing and externalizing behaviors. A predominately negative problem-solving approach was strongly associated with poorer outcomes for both mothers and children in the aftermath of the environmental stress of abuse. Interventions addressing problem-solving ability may be beneficial in increasing abused women's abilities to navigate the daily stressors of life following abuse.
Modern problems of thermodynamics
NASA Astrophysics Data System (ADS)
Novikov, I. I.
2012-12-01
The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
Teaching problem solving: Don't forget the problem solver(s)
NASA Astrophysics Data System (ADS)
Ranade, Saidas M.; Corrales, Angela
2013-05-01
The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.
Computers in Science: Thinking Outside the Discipline.
ERIC Educational Resources Information Center
Hamilton, Todd M.
2003-01-01
Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…
Research in progress in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1990-01-01
Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.
NASA Astrophysics Data System (ADS)
Schuchardt, Anita
Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM approaches, the types and amount of teacher support needed to achieve these types of student learning gains were investigated. In the context of providing teachers with access to educative materials, students achieved learning gains in both areas in the absence of face-to-face teacher professional development. However, maximal student learning gains required the investment of face-to-face professional development. This finding can govern distribution of scarce resources, but does not preclude implementation of MCM instruction even where resource availability does not allow for face-to-face professional development.
ERIC Educational Resources Information Center
Khajapeer, M.
1976-01-01
The interrelated nature of the problems of illiteracy, overpopulation, and poverty in developing countries is explored and an integrated approach to solving these problems in India, the Functional Literacy and Family Life Planning Education program, is described. (MS)
Cognitive Predictors of Everyday Problem Solving across the Lifespan
Chen, Xi; Hertzog, Christopher; Park, Denise C.
2017-01-01
Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664
Social Science Research Serving Rural America.
ERIC Educational Resources Information Center
Miron, Mary, Ed.
This collection of articles provides an overview of some of the recent social science research projects performed by state agricultural experiment stations. The examples highlight social science's contribution to problem-solving in rural business, industry, farming, communities, government, education, and families. The following programs are…
Principles of Gestalt Psychology and Their Application to Teaching Junior High School Science
ERIC Educational Resources Information Center
Blosser, Patricia E.
1973-01-01
Discusses insightful learning, trace system,'' and laws of perception and Pragnanz in connection with problem solving and critical thinking in science teaching. Suggests 19 guidelines for sequencing curriculum and identifying activities for use in science classes. (CC)
Dilemmas in Bioethics. Teacher's Guide. Preparing for Tomorrow's World.
ERIC Educational Resources Information Center
Iozzi, Louis A.
"Preparing for Tomorrow's World" is an interdisciplinary, future-oriented program which incorporates information from the sciences and social sciences and addresses societal concerns which interface science/technology/society. The program promotes responsible citizenry with increased abilities in critical thinking, problem-solving,…
[Forensic evidence-based medicine in computer communication networks].
Qiu, Yun-Liang; Peng, Ming-Qi
2013-12-01
As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.
ERIC Educational Resources Information Center
Cain, Jim; Jolliff, Barry
Challenge and adventure programs create situations that challenge the abilities of individuals and groups and that are metaphors for the problems and challenges of daily life. This book describes dozens of group activities that foster individual and group skills such as cooperation, problem solving, and communication. Each activity has a…
Sociotropic or autonomous personality and problem solving in peritoneal dialysis patients.
Demir, S; Tufan, G; Erem, O
2010-01-01
This study investigated the sociotropic and autonomous personality characteristics and perceived problem solving ability of continuous ambulatory peritoneal dialysis (CAPD) patients, and their relationship with quality of life. The study included 14 CAPD patients and 54 healthy volunteers. Sociotropy and autonomy scores were significantly higher in CAPD patients than in the healthy control group. Among CAPD patients, there was a significant correlation between problem solving and serum phosphate, parathormone levels and erythrocyte sedimentation rate. There was a negative correlation between total dialysis time and sociotropy in CAPD patients, and a positive correlation between general health/pain perception and autonomy. Appropriate medical management, time on dialysis and positive self-perception of health were correlated with better problem solving ability and higher autonomous but lower sociotropic personality styles.
AI tools in computer based problem solving
NASA Technical Reports Server (NTRS)
Beane, Arthur J.
1988-01-01
The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-06-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
NASA Astrophysics Data System (ADS)
McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.
2012-02-01
Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.
ERIC Educational Resources Information Center
van Nieuwenhuijzen, M.; Bijman, E. R.; Lamberix, I. C. W.; Wijnroks, L.; de Castro, B. Orobio; Vermeer, A.; Matthys, W.
2005-01-01
Abstract: Background Most research on children's social problem-solving skills is based on responses to hypothetical vignettes. Just how these responses relate to actual behaviour in real-life social situations is, however, unclear, particularly for children with mild intellectual disabilities (MID). Method: In the present study, the spontaneous…
ERIC Educational Resources Information Center
Liem, Gregory Arief D.; Martin, Andrew J.; Anderson, Michael; Gibson, Robyn; Sudmalis, David
2014-01-01
Drawing on the Programme for International Student Assessment 2003 data set comprising over 190,000 15-year-old students in 25 countries, the current study sought to examine the role of arts-related information and communication technology (ICT) use in students' problem-solving skill and science and mathematics achievement. Structural equation…
ERIC Educational Resources Information Center
Gillies, Robyn M.; Nichols, Kim; Burgh, Gilbert; Haynes, Michele
2012-01-01
Teaching students to ask and answer questions is critically important if they are to engage in reasoned argumentation, problem-solving, and learning. This study involved 35 groups of grade 6 children from 18 classrooms in three conditions (cognitive questioning condition, community of inquiry condition, and the comparison condition) who were…
ERIC Educational Resources Information Center
Rajaeipoor, Saeed; Siadat, Ali; Hoveida, Reza; Mohammadi, Nazanin; Keshavarz, Akbar; Salimi, Mohammad Hossein; Abbasian, Mohammad Reza; Shamsi, Ali
2015-01-01
The objective of the present study is considering the relationship between EQ & constructive and non-constructive problem solving styles among students. The applied methodology is cross-correlation method. The statistical population in this study is all the educational sciences' students of Payame Noor university of Abadan in the year 2014 and…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
Performance objectives are stated for each of the three secondary school units included in this package prepared for the Dade County Florida Quinmester Program. The units all concern some aspect of instruction in scientific method. "The Scientific Approach to Solving Problems" introduces students to the use of experimental testing of…
ERIC Educational Resources Information Center
Niaz, Mansoor
The main objective of this study is to construct models based on strategies students use to solve chemistry problems and to show that these models form sequences of progressive transitions similar to what Lakatos (1970) in the history of science refers to as progressive 'problemshifts' that increase the explanatory' heuristic power of the models.…
A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree
ERIC Educational Resources Information Center
de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel
2017-01-01
Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…
Ethical Issues and the Life Sciences. Test Edition. AAAS Study Guides on Contemporary Problems.
ERIC Educational Resources Information Center
Kieffer, George H.
This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. This study guide on Ethical Issues and the Life Sciences includes the following sections: (1) Introduction; (2) The Search for an Ethic; (3) Biomedical Issues including…
Cross-national comparisons of complex problem-solving strategies in two microworlds.
Güss, C Dominik; Tuason, Ma Teresa; Gerhard, Christiane
2010-04-01
Research in the fields of complex problem solving (CPS) and dynamic decision making using microworlds has been mainly conducted in Western industrialized countries. This study analyzes the CPS process by investigating thinking-aloud protocols in five countries. Participants were 511 students from Brazil, Germany, India, the Philippines, and the United States who worked on two microworlds. On the basis of cultural-psychological theories, specific cross-national differences in CPS strategies were hypothesized. Following theories of situatedness of cognition, hypotheses about the specific frequency of problem-solving strategies in the two microworlds were developed. Results of the verbal protocols showed (a) modification of the theoretical CPS model, (b) task dependence of CPS strategies, and (c) cross-national differences in CPS strategies. Participants' CPS processes were particularly influenced by country-specific problem-solving strategies. Copyright © 2009 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Rakkapao, S.; Pengpan, T.; Srikeaw, S.; Prasitpong, S.
2014-01-01
This study aims to investigate the use of the predict-observe-explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials.
[Methods of quantitative proteomics].
Kopylov, A T; Zgoda, V G
2007-01-01
In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.
2011-03-11
ORLANDO, Fla. – Teams prepare for the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. About 60 high school teams took part in hopes of advancing to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – Teams prepare for the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. About 60 high school teams took part in hopes of advancing to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Use of Inappropriate and Inaccurate Conceptual Knowledge to Solve an Osmosis Problem.
ERIC Educational Resources Information Center
Zuckerman, June Trop
1995-01-01
Presents correct solutions to an osmosis problem of two high school science students who relied on inaccurate and inappropriate conceptual knowledge. Identifies characteristics of the problem solvers, salient properties of the problem that could contribute to the problem misrepresentation, and spurious correct answers. (27 references) (Author/MKR)
ERIC Educational Resources Information Center
Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel
2015-01-01
Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…
Testing the effectiveness of problem-based learning with learning-disabled students in biology
NASA Astrophysics Data System (ADS)
Guerrera, Claudia Patrizia
The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.
Testing foreign language impact on engineering students' scientific problem-solving performance
NASA Astrophysics Data System (ADS)
Tatzl, Dietmar; Messnarz, Bernd
2013-12-01
This article investigates the influence of English as the examination language on the solution of physics and science problems by non-native speakers in tertiary engineering education. For that purpose, a statistically significant total number of 96 students in four year groups from freshman to senior level participated in a testing experiment in the Degree Programme of Aviation at the FH JOANNEUM University of Applied Sciences, Graz, Austria. Half of each test group were given a set of 12 physics problems described in German, the other half received the same set of problems described in English. It was the goal to test linguistic reading comprehension necessary for scientific problem solving instead of physics knowledge as such. The results imply that written undergraduate English-medium engineering tests and examinations may not require additional examination time or language-specific aids for students who have reached university-entrance proficiency in English as a foreign language.
ERIC Educational Resources Information Center
Cowden, Chapel D.; Santiago, Manuel F.
2016-01-01
Interdisciplinary approaches to research in the sciences have become increasingly important in solving a wide range of pressing problems at both global and local levels. It is imperative then that science majors in higher education understand the need for exploring information from a wide array of disciplines. With this in mind, interdisciplinary…
ERIC Educational Resources Information Center
Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria
2012-01-01
Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piburn, Jesse; Morton, April
Jesse Piburn and April Morton of Oak Ridge National Laboratory's Geographic Information Science & Technology Group discuss the science and technology Pokémon GO and how it is used every day to solve real-world problems. (Pokémon GO photos/videos courtesy of Pokémon/Nintendo).
ERIC Educational Resources Information Center
Cobb, Kitty B., Ed.; Conwell, Catherine R., Ed.
The purpose of the EQUALS programs is to increase the interest and awareness that females and minorities have concerning mathematics and science related careers. This book, produced by an EQUALS program in North Carolina, contains 35 hands-on, discovery science activities that center around four EQUALS processes--problem solving, cooperative…
The Screaming Boredom of Learning Science
ERIC Educational Resources Information Center
Krips, H.
1977-01-01
Advocates changing the role of secondary school science from one of theory verification and problem solving to the formulation and acceptance of hypotheses for observed phenomena. Provides an example of the procedure using Hooke's Law. (CP)
Development and implementation of web based infrastructure for problem management at UNPRI
NASA Astrophysics Data System (ADS)
WijayaDewantoro, Rico; Wardani, Sumita; Rudy; Surya Perdana Girsang, Batara; Dharma, Abdi
2018-04-01
Information technology drastically affects human way of thinking. It has entered every part of human life and also became one of the most significant contributors to make human life more manageable. Reporting a problem of facilities and infrastructure in Universitas Prima Indonesia was done manually where the complainant have to meet the responsible person directly and describe how the problem looks like. Then, the responsible person only solve the problem but have no good documentation on it like Five Ws and How. Moreover, the other issue is to avoid a person who is mischievous for giving false reports. In this paper, we applied a set of procedures called Universitas Prima Indonesia Problem Management System (UNPRI-PMS) which also integrated with academic information system. Implemetation of UNPRI-PMS affects all of the problems about facilities and infrastructure at Universitas Prima Indonesia can be solved more efficient, structured, and accurate.
Public-Private Collaborations with Earth-Space Benefits
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Elizabeth E.
2014-01-01
The NASA Human Health and Performance Center (NHHPC) was established in October 2010 to promote collaborative problem solving and project development to advance human health and performance innovations benefiting life in space and on Earth. The NHHPC, which now boasts over 135 corporate, government, academic and non-profit members, has convened four successful workshops and engaged in multiple collaborative projects. The center is currently developing a streamlined partner engagement process to capture technical needs and opportunities of NHHPC members, facilitate partnership development, and establish and manage collaborative projects for NASA. The virtual center facilitates member engagement through a variety of vehicles, including annual inperson workshops, webcasts, quarterly electronic newsletters, web postings, and the new system for partner engagement. The most recent NHHPC workshop was conducted in November 2013 on the topic of "Accelerating Innovation: New Organizational Business Models," and focused on various collaborative approaches successfully used by organizations to achieve their goals. The powerful notion of collaboration across sectors to solve intractable problems was recently highlighted in Williams Eggers' book "The Solution Revolution,"i which provides numerous examples of how business, government and social enterprises partner to solve tough problems. Mr. Eggers was a keynote speaker at the workshop, along with Harvard Business School, Jump Associates, and the Conrad Foundation. The robust program also included an expert panel addressing collaboration across sectors, four interactive breakout sessions, and a concluding keynote on innovative ways to increase science, technology, engineering, and math (STEM) education by NASA Associate Administrator for Education, Leland Melvin. The NHHPC forum also provides a platform for international partners to interact on many topics. Members from around the world include ISS International Partner JAXA; the World Biomimetic Foundation in Spain who is interested in advancing the use of biomimicry to provide technical solutions in many industries; Satellite Application Catapult in London, England who interested in pursuing U.S. collaborations with the Space and Life Sciences Innovation Centre under development in Scotland; and DLR in Cologne, Germany who developed :envihab, a collaborative facility for partners to pursue research and technology projects of mutual interest. The NHHPC has sponsored two global networking forums on innovation by partners Wyle, NASA, and DLR, was featured in the 2013 Humans in Space Symposium Panel on "NHHPC and :envihab - reach out to Future Markets," and is working on an international meeting for Spring 2014 in Cologne with :envihab.
ERIC Educational Resources Information Center
Lakin, Joni M.; Wallace, Carolyn S.
2015-01-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…