Ferenchick, Gary S; Foreback, Jami; Towfiq, Basim; Kavanaugh, Kevin; Solomon, David; Mohmand, Asad
2010-01-29
Facilitating direct observation of medical students' clinical competencies is a pressing need. We developed an electronic problem-specific Clinical Evaluation Exercise (eCEX) based on a national curriculum. We assessed its feasibility in monitoring and recording students' competencies and the impact of a grading incentive on the frequency of direct observations in an internal medicine clerkship. Students (n = 56) at three clinical sites used the eCEX and comparison students (n = 56) at three other clinical sites did not. Students in the eCEX group were required to arrange 10 evaluations with faculty preceptors. Students in the second group were required to document a single, faculty observed 'Full History and Physical' encounter with a patient. Students and preceptors were surveyed at the end of each rotation. eCEX increased students' and evaluators' understanding of direct-observation objectives and had a positive impact on the evaluators' ability to provide feedback and assessments. The grading incentive increased the number of times a student reported direct observation by a resident preceptor. eCEX appears to be an effective means of enhancing student evaluation.
Bernardino, Susana M S A; Fernandes, Pedro; Fonseca, Luís P
2009-05-01
The present work focuses on the development and basic characterization of a new magnetic biocatalyst, namely penicillin G acylase (PGA), immobilized in sol-gel matrices with magnetic properties, ultimately aimed for application in cephalexin (CEX) synthesis. A mechanically stable carrier, based on porous xerogels silica matrixes starting from tetramethoxysilane (TMOS), was prepared leading to micro-carriers with medium sized particles of 30 microm, as determined by scanning electron microscopy. An immobilization yield of 95-100% and a recovered activity of 50-65% at 37 degrees C, as determined by penicillin G (PG) hydrolysis (pH STAT method), were observed. These results clearly exceed those reported in a previous work on PGA immobilization in sol-gel, where only 10% of activity was recovered. The values of activity were kept constant for 6 months. Immobilized PGA (682 U/g(dry weight)) retained high specific activity throughout ten consecutive runs for PG hydrolysis, suggesting adequate biocatalyst stability. The CEX synthesis was performed at 14 degrees C, using the free and immobilized PGA in aqueous medium. Phenylglycine methyl ester was used as acyl donor at 90 mM and 7-aminodeacetoxycephalosporanic acid was the limiting substrate at 30 mM. The CEX stoichiometric yield after 1-h reaction was close to 68% (23 mM CEX/h) and 65% (19 mM CEX/h), respectively.
Two-photon momentum density in La2-xSrxCuO4 and Nd2-xCexCuO4
NASA Astrophysics Data System (ADS)
Blandin, P.; Massidda, S.; Barbiellini, B.; Jarlborg, T.; Lerch, P.; Manuel, A. A.; Hoffmann, L.; Gauthier, M.; Sadowski, W.; Walker, E.; Peter, M.; Yu, Jaejun; Freeman, A. J.
1992-07-01
We present calculations of the electron-positron momentum density for the high-Tc superconductors La2-xSrxCuO4 and Nd2-xCexCuO4, together with experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) for Nd2-xCexCuO4. The calculations are based on first-principles electronic structure obtained using the full-potential linearized augmented-plane-wave and the linear muffin-tin orbital methods. Our results indicate a non-negligible overlap of the positron wave function with the CuO2 plane electrons responsible for the Fermi surfaces in these compounds. Therefore, these compounds may be well suited for investigating Fermi-surface-related effects. After the folding of umklapp terms according to Lock, Crisp, and West, the predicted Fermi-surface breaks are mixed with strong effects induced by the positron wave function in La2-xSrxCuO4, while their resolution is better in Nd2-xCexCuO4. A comparison of our calculations with the most recent experimental results for La2-xSrxCuO4 shows good agreement. For Nd2-xCexCuO4 good agreement is observed between theoretical and experimental 2D-ACAR profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gout, Delphine J; Gourdon, Olivier; Bauer, E. D.
2008-01-01
Crystal structures of a series of La1−xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an ellipsoidal elongation (La-rich compounds) or a butterfly-like distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.
Time-Dependent Erosion of Ion Optics
NASA Technical Reports Server (NTRS)
Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.
2008-01-01
The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.
NASA Astrophysics Data System (ADS)
Nakamura, S.; Endo, M.; Yamamoto, H.; Isshiki, T.; Kimura, N.; Aoki, H.; Nojima, T.; Otani, S.; Kunii, S.
2006-12-01
We report unusual evolution of the conduction-electron state in the localized f electron system CexLa1-xB6 from normal electron state to heavy Fermi liquid (FL) state through local FL and non-FL states with increasing Ce concentration and/or with increasing magnetic field. The effective mass of quasiparticle or the coefficient A of T2 term of resistivity is found to increase divergently near the boundary between FL state and non-FL state. The features of the non-FL state are also different from those of the typical non-FL systems previously observed or theoretically predicted.
Utilisation, Reliability and Validity of Clinical Evaluation Exercise in Otolaryngology Training.
Awad, Z; Hayden, L; Muthuswamy, K; Tolley, N S
2015-10-01
To investigate the utilisation, reliability and validity of clinical evaluation exercise (CEX) in otolaryngology training. Retrospective database analysis. Online assessment database. We analysed all CEXs submitted by north London core (CT) and speciality trainees (ST) in otolaryngology from 2010 to 2013. Internal consistency of the 7 CEX items rated as either O: outstanding, S: satisfactory or D: development required. Overall performance rating (pS) of 1-4 assessed against completion of training level. Receiver operating characteristic was used to describe CEX sensitivity and specificity. Overall score (cS), pS and the number of 'D'-rated items were used to investigate construct validity. One thousand one hundred and sixty CEXs from 45 trainees were included. CEX showed good internal consistency (Cronbach's alpha= 0.85). CEX was highly sensitive (99%), yet not specific (6%). cS and pS for ST was higher than CT (99.1% ± 0.4 versus 96.6% ± 0.8 and 3.06 ± 0.05 versus 1.92 ± 0.04, respectively P < 0.001). pS showed a significant stepwise increase from CT1 to ST6 (P < 0.001). In contrast, cS only showed improvement up to ST4 (P = 0.025). The most frequently utilised item 'management and follow-up planning' was found to be the best predictor of cS and pS (rs = +0.69 and +0.21, respectively). CEX is reliable in assessing early years otolaryngology trainees in clinical examination, but not at higher level. It has the potential to be used in a summative capacity in selecting trainees for ST positions. This would also encourage trainees to master all domains of otolaryngology clinical examination by end of CT. © 2015 John Wiley & Sons Ltd.
Appearance of the octupole ordered phase IV in CexLa1 -x B6
NASA Astrophysics Data System (ADS)
Sera, M.; Kunimori, K.; Matsumura, T.; Kondo, A.; Tanida, H.; Tou, H.; Iga, F.
2018-05-01
We investigated the physical properties of CexLa1 -xB6 at x ˜0.8 , below which the Tβ-type antiferro-octupole (AFO) ordered phase IV appears as a result of the larger suppression rate of TQ than TN by La doping. The most important result is that while the peak of the specific heat at TQ is rapidly suppressed and broadened by La doping, that at TIV is sharp and large. This indicates that although the Tβ-AFO order in the phase IV is robust against the local lattice distortion induced by La doping, the Ox y-type antiferroquadrupole (AFQ) ordered phase II is very weak. The Tx y z-AFO interaction is robust against La doping from the observation of the pronounced enhancement of TQ even in a small x region. Based on these La-doping effect of the multipole interactions, we carried out the mean-field calculation for the four-sublattice model to reproduce the magnetic phase diagrams of CexLa1 -xB6 . Based on the calculated results, we propose that the small splitting of the quartet is induced by La doping in phase I to explain the magnetic phase diagram for x <0.65 . We could obtain the calculated results roughly consistent with the experimental results, although there appear new problems. We classified the mechanisms of the four different types of the competition among the four interactions with roughly the same magnitude, which induce the interesting and complicated properties in CexLa1 -xB6 .
NASA Astrophysics Data System (ADS)
Aoki, Haruyoshi; Kimura, Noriaki; Terashima, Taichi
2014-07-01
This article describes the Fermi surface properties of CeRu2Si2 and its alloy systems CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 studied by the de Haas-van Alphen (dHvA) effect. We pay particular attention to how the Fermi surface properties and the f electron state change with magnetic properties, in particular how they change associated with metamagnetic transition and quantum phase transition. After summarizing the important physical properties of CeRu2Si2, we present the magnetic phase diagrams of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of temperature, magnetic field and concentration x. From the characteristic features of the magnetic phase diagram, we argue that the ferromagnetic interaction in addition to the antiferromagnetic interaction and the Kondo effect is responsible for the magnetic properties and that the metamagnetic transitions in these systems are relevant to the ferromagnetic interaction. We summarize the Fermi surface properties of CeRu2Si2 in fields below the metamagnetic transition where the f electron state is now well understood theoretically as well as experimentally. We present experimental results in fields above the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as well as CeRu2Si2 to show that the Fermi surface properties above the metamagnetic transitions are significantly different from those below in many important aspects. We argue that the Fermi surface properties above the metamagnetic transitions are not appropriately described in terms of either itinerant or localized f electron. The experimental results in fields below the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 are presented to discuss the f electron state in the ground state. The Fermi surface properties of dilute Kondo alloys of CexLa1-xRu2Si2 have been revealed as a function of Ce concentration and temperature. We show that the f electron state can be regarded as itinerant in the ground state together with the definition of the term "itinerant" in this case. The Fermi surface properties are measured also in high concentration alloys of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of x. With the help of the angle resolved photoemission spectroscopy studies, we show that the f electron nature does not change at the quantum phase transition between the paramagnetic and antiferromagnetic phases. However, the picture for the f electron state may be ambiguous and depend on which property one considers in the magnetic states of these systems. The ambiguity and confusion of the f electron state may come from the inherent dual nature of the f electron and we would like to point out that it is sometimes misleading and may not be fruitful to discriminate the f electron state either as itinerant or localized without any clear definition for the terms "itinerant" and "localized".
Spectroscopic Study of Local Interactions of Platinum in Small [CexOy]Ptx' - Clusters
NASA Astrophysics Data System (ADS)
Ray, Manisha; Kafader, Jared O.; Chick Jarrold, Caroline
2016-06-01
Cerium oxide is a good ionic conductor, and the conductivity can be enhanced with oxygen vacancies and doping. This conductivity may play an important role in the enhancement of noble or coinage metal toward the water-gas shift reaction when supported by cerium oxide. The ceria-supported platinum catalyst in particular has received much attention because of higher activity at lower temperatures (LT) compared to the most common commercial LT-WGS catalyst. We have used a combination of anion photoelectron spectroscopy and density functional theory calculations to study the interesting molecular and electronic structures and properties of cluster models of ceria-supported platinum. [CexOy]Ptx' - (x,x'=1,2 ; y≤2x') clusters exhibit evidence of ionic bonding possible because of the high electron affinity of Pt and the low ionization potential of cerium oxide clusters. In addition, Pt- is a common daughter ion resulting from photodissociation of [CexOy]Ptx' - clusters. Finally, several of the anion and neutral clusters have profoundly different structures. These features may play a role in the enhancement of catalytic activity toward the water-gas shift reaction.
Evolution of Fermi Surface Properties in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Endo, Motoki; Nakamura, Shintaro; Isshiki, Toshiyuki; Kimura, Noriaki; Nojima, Tsutomu; Aoki, Haruyoshi; Harima, Hisatomo; Kunii, Satoru
2006-11-01
We report the de Haas-van Alphen (dHvA) effect measurements of the Fermi surface properties in LaB6, CexLa1-xB6 (x = 0.1, 0.25, 0.5, 0.75, 1.0) and PrxLa1-xB6 (x = 0.25, 0.5, 0.75, 1.0) with particular attention to the spin dependence of the Fermi surface properties. The Fermi surface shape and dimension of CexLa1-xB6 change considerably with Ce concentration, while those of PrxLa1-xB6 change very slightly up to x = 0.75, and in PrB6 the Fermi surface splits into the up and down spin Fermi surfaces. The effective mass of CexLa1-xB6 increases considerably with Ce concentration and is nearly proportional to the number of Ce ions, whereas that of PrxLa1-xB6 increases slightly with Pr concentration. In CexLa1-xB6 the effective mass depends very strongly on field and increases divergently with decreasing field, while that of PrxLa1-xB6 increases slightly with decreasing field. The contribution to the dHvA signal from the conduction electrons of one spin direction diminishes with Ce concentration and appears to disappear somewhere around x = 0.25--0.5. A weak spin dependence is also found in PrxLa1-xB6. The behaviors of CexLa1-xB6 and PrxLa1-xB6 are compared to discuss the origin of the spin dependence of the Fermi surface properties.
ERIC Educational Resources Information Center
Cook, David A.; Beckman, Thomas J.; Mandrekar, Jayawant N.; Pankratz, V. Shane
2010-01-01
The mini-CEX is widely used to rate directly observed resident-patient encounters. Although several studies have explored the reliability of mini-CEX scores, the dimensionality of mini-CEX scores is incompletely understood. Objective: Explore the dimensionality of mini-CEX scores through factor analysis and generalizability analysis. Design:…
NASA Astrophysics Data System (ADS)
Song, Dongjoon; Han, Garam; Kyung, Wonshik; Seo, Jeongjin; Cho, Soohyun; Kim, Beom Seo; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Yoshida, Y.; Eisaki, H.; Park, Seung Ryong; Kim, C.
2017-03-01
We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr1 -xLaCex CuO4 -δ (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x . The electron number (n ) is estimated from the experimentally obtained Fermi surface volume for x =0.10 , 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x . In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n ; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n . Different from the x -based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates
Doping-dependent charge order correlations in electron-doped cuprates
da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea
2016-01-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726
Boker, Ama
2016-01-01
The anesthesia training program of the Saudi Commission for health specialties has introduced a developed competency-based anesthesia residency program starting from 2015 with the utilization of the workplace-based assessment (WBA) tools, namely mini-clinical exercises (mini-CEX), direct observation of procedural skills (DOPS), and case-based discussion (CBD). This work aimed to describe the process of development of anesthesia-specific list of mini-CEX, DOPS, and CBD tools within the Saudi Arabian Anesthesia Training Programs. To introduce the main concepts of formative WBA tools and to develop anesthesia-specific applications for each of the selected WBA tools, four 1-day workshops were held at the level of major training committees at eastern (Dammam), western (Jeddah), and central (Riyadh) regions in the Kingdom were conducted. Sixty-seven faculties participated in these workshops. After conduction of the four workshops, the anesthesia-specific applications setting of mini-CEX, DOPS, and CBD tools among the 5-year levels were fully described. The level of the appropriate consultation skills was divided according to the case complexity adopted from the American Society of Anesthesiologists physical classification for adult and obstetric and pediatric patient as well as the type of the targeted anesthetic procedure. WBA anesthesia-specific lists of mini-CEX, DOPS, and CBD forms were easily incorporated first into guidelines to help the first stage of implementation of formative assessment in the Saudi Arabian Anesthesia Residency Program, and this can be helpful to replicate such program within other various training programs in Saudi Arabia and abroad.
Solution and Gas-Phase H/D Exchange of Protein-Small-Molecule Complexes: Cex and Its Inhibitors
NASA Astrophysics Data System (ADS)
Kang, Yang; Terrier, Peran; Ding, Chuanfan; Douglas, D. J.
2012-01-01
The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase ("Cex") with three aza-sugar inhibitors, deoxynojirimycin (X2DNJ), isofagomine lactam (X2IL), and isofagomine (X2IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation "remember" their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.
Urman, Gabriela; Folgueral, Silvana; Gasparri, Mercedes; López, Diana; Urman, Jorge; Grosman, Arnoldo; Alves de Lima, Alberto
2011-12-01
Faced with the increased challenge of assessing competences in young doctors, the purpose of the study was to evaluate the implementation of a pediatric version of the Mini-Cex in pediatric trainees as well as the level of satisfaction of teachers and students with the new assessment tool. From July 2007 to August 2009, 54 pediatric trainees were periodically monitored in a variety of clinical settings by 50 teachers. The competences evaluated included medical interviewing, physical examination and counseling skills, humanistic qualities/ professionalism, clinical judgment, organization and overall clinical competence. The feasibility of this study was defined as an average 4 observations per participant, and observations in all clinical rotations. During the study, 388 observations were carried over 54 students (average of 7.18 observations per student); 57% took place in ambulatory settings, 60% were of low complexity and 85% involved healthy children programmed consultations. The ratings for specific competences had little variation; the focus related to the setting. Used in a variety of settings, with different patient problems, the method was well accepted by both students and teachers.
Cerium LIII-edge x-ray absorption study of the CexFe4-yCoySb12 skutterudites
NASA Astrophysics Data System (ADS)
Grandjean, Fernande; Long, Gary J.; Cortes, Robert; Morelli, Donald T.; Meisner, Gregory P.
2000-11-01
The cerium LIII-edge x-ray absorption near-edge spectra of the CexFe4-yCoySb12 compounds have been obtained at 295 K and unambiguously indicate that cerium is in the 4f1 electronic ground state for all values of 0.22<=x<=0.98 and 0.0<=y<=3.5. This stable trivalent state of cerium is in agreement with the proposed (CeFe4Sb12)1-α(□Co4Sb12)α, solid solution structure, in which the cerium atoms are always surrounded by twelve antimony first neighbors and six iron second neighbors, the observed magnetic properties of CeFe4Sb12 and Ce0.9Fe3CoSb12, and the electronic structure of CeFe4Sb12 obtained from band-structure calculations.
Thermopower of CexR1-xB6 (R=La, Pr and Nd)
NASA Astrophysics Data System (ADS)
Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru
2006-06-01
The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.
McGuire, Andrew T; Mangroo, Dev
2007-01-24
The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism.
Lee, Victor; Brain, Keira; Martin, Jenepher
2017-06-01
At present, little is known about how mini-clinical evaluation exercise (mini-CEX) raters translate their observations into judgments and ratings. The authors of this systematic literature review aim both to identify the factors influencing mini-CEX rater judgments in the medical education setting and to translate these findings into practical implications for clinician assessors. The authors searched for internal and external factors influencing mini-CEX rater judgments in the medical education setting from 1980 to 2015 using the Ovid MEDLINE, PsycINFO, ERIC, PubMed, and Scopus databases. They extracted the following information from each study: country of origin, educational level, study design and setting, type of observation, occurrence of rater training, provision of feedback to the trainee, research question, and identified factors influencing rater judgments. The authors also conducted a quality assessment for each study. Seventeen articles met the inclusion criteria. The authors identified both internal and external factors that influence mini-CEX rater judgments. They subcategorized the internal factors into intrinsic rater factors, judgment-making factors (conceptualization, interpretation, attention, and impressions), and scoring factors (scoring integration and domain differentiation). The current theories of rater-based judgment have not helped clinicians resolve the issues of rater idiosyncrasy, bias, gestalt, and conflicting contextual factors; therefore, the authors believe the most important solution is to increase the justification of rater judgments through the use of specific narrative and contextual comments, which are more informative for trainees. Finally, more real-world research is required to bridge the gap between the theory and practice of rater cognition.
Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias
2017-07-01
Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.
Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery
McGuire, Andrew T; Mangroo, Dev
2007-01-01
The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism. PMID:17203074
Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm.
Nozawa, Kayo; Ishitani, Ryuichiro; Yoshihisa, Tohru; Sato, Mamoru; Arisaka, Fumio; Kanamaru, Shuji; Dohmae, Naoshi; Mangroo, Dev; Senger, Bruno; Becker, Hubert D; Nureki, Osamu
2013-04-01
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.
Spin-split fermi surfaces in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Isshiki, T.; Endo, M.; Sugi, M.; Kimura, N.; Nakamura, S.; Nojima, T.; Aoki, H.; Kunii, S.
2006-05-01
We have performed the dHvA measurements on CexLa1-xB6 and PrxLa1-xB6 compounds to study spin splitting of the Fermi surfaces. In PrB 6 we have found new frequency branches to confirm that the Fermi surface splits into up and down spin Fermi surfaces, whereas no spin splitting has been found for x=0.25,0.5,0.75. We have also found several new frequency branches in CeB6. The new frequency branches imply that the Fermi surfaces of up and down spin conduction electrons are significantly different in CeB6 as well as in PrB6.
NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan
2015-05-01
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.
Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias
2017-01-01
ABSTRACT Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner. PMID:28379786
Suhoyo, Yoyo; Schönrock-Adema, Johanna; Rahayu, Gandes Retno; Kuks, Jan B M; Cohen-Schotanus, Janke
2014-10-01
Abstract Background: Medical schools all over the world try to adapt their programs to meet international standards. However, local culture might hamper innovation attempts. To describe challenges in implementing the mini-CEX in Indonesia and investigate its effect on students' clinical competence. The study was conducted in the Internal Medicine and Neurology departments of the Universitas Gadjah Mada, Indonesia. Implementing the mini-CEX into the existing curriculum, while taking the Indonesian culture into account, implied a shift from group to individual feedback. We compared students' final clinical competence before (Internal Medicine n = 122, Neurology n = 183) and after (n = 183 and 186, respectively) the implementation of the mini-CEX, using a modified Objective Structured Long Examination Record (OSLER). The Mann-Whitney test was used to analyze the data. We took power distance and individualism into account to facilitate the implementation process. After implementing the mini-CEX, the OSLER results were significant higher in Internal Medicine (p < 0.05). However, no differences were found in Neurology. By managing the innovation process carefully and taking culture and local context into account, the mini-CEX can be implemented without changing the underlying concept. The shift from group to individual feedback seems to have a positive effect on student learning.
Electronic excitations in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Unger, P.; Fulde, P.
1995-04-01
We calculate the electronic single-particle spectrum of an electron-doped cuprate superconductor such as Nd2-xCexCuO4-y. The dynamics of holes in the Cu-O planes is described by the extended Hubbard or Emery model. We consider the system at half-filling (one hole per unit cell, nh=1) and in the case of electron doping where the ground state is paramagnetic. The projection technique of Mori and Zwanzig is applied to derive the equations of motion for the Green's functions of Cu and O holes. These equations are solved self-consistently as in a previous calculation, where we considered the case of hole doping. At half-filling the system exhibits a charge-transfer gap bounded by Zhang-Rice singlet states and the upper Hubbard band. Upon electron doping the upper Hubbard band crosses the Fermi level and the system becomes metallic. With increasing electron doping the singlet band loses intensity and finally vanishes for nh=0. The corresponding spectral weight is transferred to the upper Hubbard band, which becomes a usual tight-binding band for zero hole concentration. The shape of the flat band crossing the Fermi level fits well to angle-resolved photoemission spectra of Nd2-xCexCuO4-y for x=0.15 and 0.22. Furthermore, our findings are in excellent agreement with exact diagonalization studies of 2×2 CuO2 cluster with periodic boundary conditions.
Nernst effect in electron-doped Pr2-xCexCuO4
NASA Astrophysics Data System (ADS)
Balci, Hamza; Hill, C. P.; Qazilbash, M. M.; Greene, R. L.
2003-08-01
The Nernst effect of Pr2-xCexCuO4 (x=0.13, 0.15, and 0.17) has been measured on thin film samples between 5 120 K and 0 14 T. In comparison to recent measurements on hole-doped cuprates that showed an anomalously large Nernst effect above the resistive Tc and Hc2 [Z. A. Xu et al., Nature (London) 406, 486 (2000); Yayu Wang et al., Phys. Rev. B 64, 224519 (2001); Yayu Wang et al., Phys. Rev. Lett. 88, 257003 (2002); C. Caplan et al., ibid 88, 056601 (2002)], we find a normal Nernst effect above Tc and Hc2 for all dopings. The lack of an anomalous Nernst effect in the electron-doped compounds supports the models that explain this effect in terms of amplitude and phase fluctuations in the hole-doped cuprates. In addition, the Hc2(T) determined from the Nernst effect shows a conventional behavior for all dopings. The energy gap determined from Hc2(0) decreases as the system goes from underdoping to overdoping in agreement with the recent tunneling experiments.
Cook, David A; Dupras, Denise M; Beckman, Thomas J; Thomas, Kris G; Pankratz, V Shane
2009-01-01
Mini-CEX scores assess resident competence. Rater training might improve mini-CEX score interrater reliability, but evidence is lacking. Evaluate a rater training workshop using interrater reliability and accuracy. Randomized trial (immediate versus delayed workshop) and single-group pre/post study (randomized groups combined). Academic medical center. Fifty-two internal medicine clinic preceptors (31 randomized and 21 additional workshop attendees). The workshop included rater error training, performance dimension training, behavioral observation training, and frame of reference training using lecture, video, and facilitated discussion. Delayed group received no intervention until after posttest. Mini-CEX ratings at baseline (just before workshop for workshop group), and four weeks later using videotaped resident-patient encounters; mini-CEX ratings of live resident-patient encounters one year preceding and one year following the workshop; rater confidence using mini-CEX. Among 31 randomized participants, interrater reliabilities in the delayed group (baseline intraclass correlation coefficient [ICC] 0.43, follow-up 0.53) and workshop group (baseline 0.40, follow-up 0.43) were not significantly different (p = 0.19). Mean ratings were similar at baseline (delayed 4.9 [95% confidence interval 4.6-5.2], workshop 4.8 [4.5-5.1]) and follow-up (delayed 5.4 [5.0-5.7], workshop 5.3 [5.0-5.6]; p = 0.88 for interaction). For the entire cohort, rater confidence (1 = not confident, 6 = very confident) improved from mean (SD) 3.8 (1.4) to 4.4 (1.0), p = 0.018. Interrater reliability for ratings of live encounters (entire cohort) was higher after the workshop (ICC 0.34) than before (ICC 0.18) but the standard error of measurement was similar for both periods. Rater training did not improve interrater reliability or accuracy of mini-CEX scores. clinicaltrials.gov identifier NCT00667940
Implementing the undergraduate mini-CEX: a tailored approach at Southampton University.
Hill, Faith; Kendall, Kathleen; Galbraith, Kevin; Crossley, Jim
2009-04-01
The mini-clinical evaluation exercise (mini-CEX) is widely used in the UK to assess clinical competence, but there is little evidence regarding its implementation in the undergraduate setting. This study aimed to estimate the validity and reliability of the undergraduate mini-CEX and discuss the challenges involved in its implementation. A total of 3499 mini-CEX forms were completed. Validity was assessed by estimating associations between mini-CEX score and a number of external variables, examining the internal structure of the instrument, checking competency domain response rates and profiles against expectations, and by qualitative evaluation of stakeholder interviews. Reliability was evaluated by overall reliability coefficient (R), estimation of the standard error of measurement (SEM), and from stakeholders' perceptions. Variance component analysis examined the contribution of relevant factors to students' scores. Validity was threatened by various confounding variables, including: examiner status; case complexity; attachment specialty; patient gender, and case focus. Factor analysis suggested that competency domains reflect a single latent variable. Maximum reliability can be achieved by aggregating scores over 15 encounters (R = 0.73; 95% confidence interval [CI] +/- 0.28 based on a 6-point assessment scale). Examiner stringency contributed 29% of score variation and student attachment aptitude 13%. Stakeholder interviews revealed staff development needs but the majority perceived the mini-CEX as more reliable and valid than the previous long case. The mini-CEX has good overall utility for assessing aspects of the clinical encounter in an undergraduate setting. Strengths include fidelity, wide sampling, perceived validity, and formative observation and feedback. Reliability is limited by variable examiner stringency, and validity by confounding variables, but these should be viewed within the context of overall assessment strategies.
Astorino, Todd A; Thum, Jacob S
2018-01-01
High intensity interval training (HIIT) is a robust and time-efficient approach to improve multiple health indices including maximal oxygen uptake (VO 2 max). Despite the intense nature of HIIT, data in untrained adults report greater enjoyment of HIIT versus continuous exercise (CEX). However, this has yet to be investigated in persons with spinal cord injury (SCI). To examine differences in enjoyment in response to CEX and HIIT in persons with SCI. Repeated measures, within-subjects design. University laboratory in San Diego, CA. Nine habitually active men and women (age = 33.3 ± 10.5 years) with chronic SCI. Participants performed progressive arm ergometry to volitional exhaustion to determine VO 2 peak. During subsequent sessions, they completed CEX, sprint interval training (SIT), or HIIT in randomized order. Physical activity enjoyment (PACES), affect, rating of perceived exertion (RPE), VO 2 , and blood lactate concentration (BLa) were measured. Despite a higher VO 2 , RPE, and BLa consequent with HIIT and SIT (P < 0.05), PACES was significantly higher (P = 0.03) in response to HIIT (107.4 ± 13.4) and SIT (103.7 ± 12.5) compared to CEX (81.6 ± 25.4). Fifty-five percent of participants preferred HIIT and 45% preferred SIT, with none identifying CEX as their preferred exercise mode. Compared to CEX, brief sessions of submaximal or supramaximal interval training elicit higher enjoyment despite higher metabolic strain. The long-term efficacy and feasibility of HIIT in this population should be explored considering that it is not viewed as more aversive than CEX.
Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability
NASA Astrophysics Data System (ADS)
Prentice, I. C.; Stocker, B. D.
2015-12-01
The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.
Observation of dx2
NASA Astrophysics Data System (ADS)
Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.
2001-02-01
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2
NASA Astrophysics Data System (ADS)
Tulina, N. A.; Rossolenko, A. N.; Ivanov, A. A.; Sirotkin, V. V.; Shmytko, I. M.; Borisenko, I. Yu.; Ionov, A. M.
2016-08-01
Reverse and stable bipolar resistive switching effect (BRSE) was observed in planar Nd2-xCex CuO4-y/Nd2-xCexOx/Ag heterostructure. It was shown that the СVС of the BRSE observed has a diode character. Simulations were used to consider the influence of the nonuniform distribution of an electric field at the interface of a heterojunction on the effect of bipolar resistive switching in investigated structures. The inhomogeneous distribution of the electric field near the contact edge creates regions of higher electric field strength which, in turn, stimulates motion and redistribution of defects, changes of the resistive properties of the whole structure and formation of a percolation channel.
Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex.
McGuire, Andrew T; Mangroo, Dev
2012-02-01
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC. © 2011 John Wiley & Sons A/S.
How does feedback in mini-CEX affect students' learning response?
Sudarso, Sulistiawati; Rahayu, Gandes Retno; Suhoyo, Yoyo
2016-12-19
This study was aimed to explore students' learning response toward feedback during mini-CEX encounter. This study used a phenomenological approach to identify the students' experiences toward feedback during mini-CEX encounter. Data was collected using Focus Group Discussion (FGD) for all students who were in their final week of clerkship in the internal medicine rotation. There were 4 FGD groups (6 students for each group). All FGD were audio-taped and transcribed verbatim. The FGD transcripts were analyzed thematically and managed using Atlas-ti (version 7.0). Feedback content and the way of providing feedback on mini-CEX stimulated students' internal process, including self-reflection, emotional response, and motivation. These internal processes encouraged the students to take action or do a follow-up on the feedback to improve their learning process. In addition, there was also an external factor, namely consequences, which also influenced the students' reaction to the follow-up on feedback. In the end, this action caused several learning effects that resulted in the students' increased self-efficacy, attitude, knowledge and clinical skill. Feedback content and the way of providing feedback on mini-CEX stimulates the students' internal processes to do a follow-up on feedback. However, another external factor also affects the students' decision on the follow-up actions. The follow-ups result in various learning effects on the students. Feedback given along with summative assessment enhances learning effects on students, as well. It is suggested that supervisors of clinical education are prepared to comprehend every factor influencing feedback on mini CEX to improve the students' learning response.
Saito, Takami; Naiola, B Paul; Terashima, Ichiro
2007-12-01
This study aimed at clarifying how the water potential gradient (deltapsi) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (psi(tlp)) are generally high. The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. (1) In Osaka, the midday leaf water potential (psi(midday)) was slightly higher in OLD (-0.5 MPa) than in CEX leaves (-0.6 MPa), whereas psi(tlp) was significantly lower in OLD (-2.9 MPa) than in CEX leaves (-1.0 MPa). In Bogor, psi(midday) was also higher in OLD leaves (-1.0 MPa) despite the low psi(tlp) (-1.9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high psi(midday) in OLD leaves after 1 month. Psi(midday) in OLD leaves thus appears to be independent of that in CEX leaves. The moderate decrease in psi(midday) in OLD leaves would contribute to maintenance of deltapsi in the shoots during leaf expansion.
Saito, Takami; Naiola, B. Paul; Terashima, Ichiro
2007-01-01
Background and Aims This study aimed at clarifying how the water potential gradient (ΔΨ) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (Ψtlp) are generally high. Materials The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. Key Results (1) In Osaka, the midday leaf water potential (Ψmidday) was slightly higher in OLD (−0·5 MPa) than in CEX leaves (−0·6 MPa), whereas Ψtlp was significantly lower in OLD (−2·9 MPa) than in CEX leaves (−1·0 MPa). In Bogor, Ψmidday was also higher in OLD leaves (−1·0 MPa) despite the low Ψtlp (−1·9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high Ψmidday in OLD leaves after 1 month. Ψmidday in OLD leaves thus appears to be independent of that in CEX leaves. Conclusions The moderate decrease in Ψmidday in OLD leaves would contribute to maintenance of ΔΨ in the shoots during leaf expansion. PMID:17855379
NASA Astrophysics Data System (ADS)
Hanke, Ulrich M.; McIntyre, Cameron P.; Schmidt, Michael W. I.; Wacker, Lukas; Eglinton, Timothy I.
2016-04-01
Measurements of the natural abundance of radiocarbon (14C) concentrations in inorganic and organic carbon-containing materials can be used to investigate their date of origin. Particularly, the biogeochemical cycling of specific compounds in the environment may be investigated applying molecular marker analyses. However, the isolation of specific molecules from environmental matrices requires a complex processing procedure resulting in small sample sizes that often contain less than 30 μg C. Such small samples are sensitive to extraneous carbon (Cex) that is introduced during the purification of the compounds (Shah and Pearson, 2007). We present a thorough radiocarbon blank assessment for benzene polycarboxylic acids (BPCA), a proxy for combustion products that are formed during the oxidative degradation of condensed polyaromatic structures (Wiedemeier et al, in press). The extraneous carbon assessment includes reference material for (1) chemical extraction, (2) preparative liquid chromatography (3) wet chemical oxidation which are subsequently measured with gas ion source AMS (Accelerator Mass Spectrometer, 5-100 μg C). We always use pairs of reference materials, radiocarbon depleted (14Cfossil) and modern (14Cmodern) to determine the fraction modern (F14C) of Cex.Our results include detailed information about the quantification of Cex in radiocarbon molecular marker analysis using BPCA. Error propagation calculations indicate that ultra-microscale samples (20-30 μg) are feasible with uncertainties of less than 10 %. Calculations of the constant contamination reveal important information about the source (F14C) and mass (μg) of Cex (Wacker and Christl, 2011) for each sub procedure. An external correction of compound specific radiocarbon data is essential for robust results that allow for a high degree of confidence in the 14C results. References Shah and Pearson, 2007. Ultra-microscale (5-25μg C) analysis of individual lipids by 14C AMS: Assessment and correction for sample processing blanks. Radiocarbon 49(1), 69-82. Wacker, L. and M. Christl. 2011. Data reduction for small radiocarbon samples - error propagation using the model of constant contamination. Ion Beam Physics, ETH Zurich, Annual report 2011. Wiedemeier, D.B., S.Q. Lang, M. Gierga, S. Abiven, S.M. Bernasconi, G.L. Bernasconi-Green, I. Hajdas, U.M. Hanke, M.D. Hilf, C.P. McIntyre, M.P.W. Schneider, R.H. Smittenberg, L. Wacker, G.L.B. Wiesenberg, M.W.I. Schmidt. Characterization, quantification and compound-specific isotopic analysis of pyrogenic carbon using benzene polycarboxylic acids (BPCA). Journal of Visualized Experiments. In press.
NASA Astrophysics Data System (ADS)
Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin
2018-03-01
In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.
A Laboratory Study on the Reliability Estimations of the Mini-CEX
ERIC Educational Resources Information Center
de Lima, Alberto Alves; Conde, Diego; Costabel, Juan; Corso, Juan; Van der Vleuten, Cees
2013-01-01
Reliability estimations of workplace-based assessments with the mini-CEX are typically based on real-life data. Estimations are based on the assumption of local independence: the object of the measurement should not be influenced by the measurement itself and samples should be completely independent. This is difficult to achieve. Furthermore, the…
Coledam, Douglas A C; Pupo, Marília M S; Silva, Bianca F; Silva, Adilson J; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Aquino, José M
2017-02-01
The contamination of surface and ground water by antibiotics is of significant importance due to their potential chronic toxic effects to the aquatic and human lives. Thus, in this work, the electrochemical oxidation of cephalexin (CEX) was carried out in a one compartment filter-press flow cell using a boron-doped diamond (BDD) electrode as anode. During the electrolysis, the investigated variables were: supporting electrolyte (Na 2 SO 4 , NaCl, NaNO 3 , and Na 2 CO 3 ) at constant ionic strength (0.1 M), pH (3, 7, 10, and without control), and current density (5, 10 and 20 mA cm -2 ). The oxidation and mineralization of CEX were assessed by high performance liquid chromatography, coupled to mass spectrometry and total organic carbon. The oxidation process of CEX was dependent on the type of electrolyte and on pH of the solution due to the distinct oxidant species electrogenerated; however, the conversion of CEX and its hydroxylated intermediates to CO 2 depends only on their diffusion to the surface of the BDD. In the final stages of electrolysis, an accumulation of recalcitrant oxamic and oxalic carboxylic acids, was detected. Finally, the growth inhibition assay with Escherichia coli cells showed that the toxicity of CEX solution decreased along the electrochemical treatment due to the rupture of the β-lactam ring of the antibiotic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using cloud-based mobile technology for assessment of competencies among medical students.
Ferenchick, Gary S; Solomon, David
2013-01-01
Valid, direct observation of medical student competency in clinical settings remains challenging and limits the opportunity to promote performance-based student advancement. The rationale for direct observation is to ascertain that students have acquired the core clinical competencies needed to care for patients. Too often student observation results in highly variable evaluations which are skewed by factors other than the student's actual performance. Among the barriers to effective direct observation and assessment include the lack of effective tools and strategies for assuring that transparent standards are used for judging clinical competency in authentic clinical settings. We developed a web-based content management system under the name, Just in Time Medicine (JIT), to address many of these issues. The goals of JIT were fourfold: First, to create a self-service interface allowing faculty with average computing skills to author customizable content and criterion-based assessment tools displayable on internet enabled devices, including mobile devices; second, to create an assessment and feedback tool capable of capturing learner progress related to hundreds of clinical skills; third, to enable easy access and utilization of these tools by faculty for learner assessment in authentic clinical settings as a means of just in time faculty development; fourth, to create a permanent record of the trainees' observed skills useful for both learner and program evaluation. From July 2010 through October 2012, we implemented a JIT enabled clinical evaluation exercise (CEX) among 367 third year internal medicine students. Observers (attending physicians and residents) performed CEX assessments using JIT to guide and document their observations, record their time observing and providing feedback to the students, and their overall satisfaction. Inter-rater reliability and validity were assessed with 17 observers who viewed six videotaped student-patient encounters and by measuring the correlation between student CEX scores and their scores on subsequent standardized-patient OSCE exams. A total of 3567 CEXs were completed by 516 observers. The average number of evaluations per student was 9.7 (±1.8 SD) and the average number of CEXs completed per observer was 6.9 (±15.8 SD). Observers spent less than 10 min on 43-50% of the CEXs and 68.6% on feedback sessions. A majority of observers (92%) reported satisfaction with the CEX. Inter-rater reliability was measured at 0.69 among all observers viewing the videotapes and these ratings adequately discriminated competent from non-competent performance. The measured CEX grades correlated with subsequent student performance on an end-of-year OSCE. We conclude that the use of JIT is feasible in capturing discrete clinical performance data with a high degree of user satisfaction. Our embedded checklists had adequate inter-rater reliability and concurrent and predictive validity.
NASA Astrophysics Data System (ADS)
Storr, Kevin; Purcell, Kenneth; Rasco, Torrance; Schwartz, Sarah; Petrovic, Cedomir
2014-03-01
The Nd1-xCexCoIn5 alloys evolve from local moment magnetism x = 0 to heavy fermion superconductivity x = 1, as the Nd substitution alters the level of 4f-conduction electron coupling. Superconductivity has been shown to exist in Nd concentrations between x = 0 and x = 0.22. We report the temperature and angular dependence of the critical field of the superconducting state of the x = 0.98, 0.95, and 0.90 doping levels at temperatures ranging from 20 - 500 mK, investigating the evolution of the phase diagram for different concentrations of Nd at these previously unexplored low temperatures. No evidence of a low temperature mixed superconducting and magnetic mixed state was observed such that as that seen in CeCoIn5. The suppression of the critical field is more dramatic than the application of pressure and was observed to be rather anisotropic in line with the higher temperature measurements. Department of Defense ARO W911NF1110155.
NASA Astrophysics Data System (ADS)
Shimizu, Yasunobu; Matsumoto, Yuji; Aoki, Kosuke; Kimura, Noriaki; Aoki, Haruyoshi
2012-04-01
We have performed an extensive study on the electronic transport properties of CexLa1-xRu2Si2. At zero field or under the fields parallel to the hard axis of magnetization, the residual resistivity, magnetoresistivity and Hall resistivity are found to be most enhanced around x = 0.85 in the antiferromagnetic state. On the other hand, the high magnetic field along the easy axis is effective to suppress the enhancement. The coherence temperature derived from the temperature variation of Hall coefficient becomes equal to the antiferromagnetic transition temperature at x = 0.85, indicating that the competition between the coherence of the Kondo singlet and the long range magnetic order is responsible for the enhancement. The competition is likely to affect also the magnetic properties in the antiferromagnetic state. The comparison with the de Haas--van Alphen effect measurements suggests that the enhancement is likely to be due to the increase in scattering. The present results are compared with the theory by Hattori and Miyake.
Magnetic properties of CexY1-xPt compared to CexLa1-xPt ones
NASA Astrophysics Data System (ADS)
Očko, M.; Zadro, K.; Drobac, Đ.; Aviani, I.; Salamon, K.; Mixon, D.; Bauer, E. D.; Sarrao, J. L.
2018-04-01
We have investigated the magnetic properties of the CexY1-xPt Kondo ferromagnetic alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie-Weiss law at higher temperatures down to about 100 K, but also at low temperatures above the ferromagnetic phase transition. At higher temperatures, the extracted Curie-Weiss parameter, θp, is negative and at low temperature θC is positive. The extracted effective magnetic moment above 100 K increases with the Ce content up to almost the theoretical value of the isolated Ce3+ ion, μ = 2.54 μB, for CePt. This suggests an increase of the hybridization with decreasing Ce content, or said equivalently, it means that the increase of the Kondo interaction diminishes effective magnetic moment. These observations confirm the main conclusions inferred from an earlier transport properties investigation of this alloy system. The corresponding θC differs within 1 K from the Curie temperature, TC, which is determined by the resistivity measurements. The most intriguing result of the investigation of CexY1-xPt is the linear concentration dependence of TC vs. x and, moreover, it is the same as in CexLa1-xPt although in the former system the hybridization diminishes considerably the effective magnetic moment per Ce ion, while in the latter system, hybridization is minor and independent of x. We offer the explanations of these intriguing experimental results.
Signature of Griffith phase in (Tb1-xCex)MnO3
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Dwivedi, G. D.; Singh, A.; Singh, R.; Shukla, K. K.; Yang, H. D.; Ghosh, A. K.; Chatterjee, Sandip
2016-05-01
Griffith phase phenomena is attributed to existence of FM (ferromagnetic) cluster in AFM (antiferromagnetic) ordering which usually occurs in ferromagnetic and antiferromagnetic bilayers or multilayers. In (Tb1-xCex)MnO3 evolution of Griffith phase have been observed. The observed Griffith phase might be due to the exchange interaction between Mn3+/Mn2+ states.
Chen, Shuang; Lau, Hollis; Brodsky, Yan; Kleemann, Gerd R; Latypov, Ramil F
2010-01-01
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation-exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size-exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co-incubating Fab and Fc fragments with their respective full-length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX-based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb-based therapeutics. PMID:20512972
Electronic Structure of Small Lanthanide Containing Molecules
NASA Astrophysics Data System (ADS)
Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline
2016-06-01
Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.
Feedback-giving behaviour in performance evaluations during clinical clerkships.
Bok, Harold G J; Jaarsma, Debbie A D C; Spruijt, Annemarie; Van Beukelen, Peter; Van Der Vleuten, Cees P M; Teunissen, Pim W
2016-01-01
Narrative feedback documented in performance evaluations by the teacher, i.e. the clinical supervisor, is generally accepted to be essential for workplace learning. Many studies have examined factors of influence on the usage of mini-clinical evaluation exercise (mini-CEX) instruments and provision of feedback, but little is known about how these factors influence teachers' feedback-giving behaviour. In this study, we investigated teachers' use of mini-CEX in performance evaluations to provide narrative feedback in undergraduate clinical training. We designed an exploratory qualitative study using an interpretive approach. Focusing on the usage of mini-CEX instruments in clinical training, we conducted semi-structured interviews to explore teachers' perceptions. Between February and June 2013, we conducted interviews with 14 clinicians participated as teachers during undergraduate clinical clerkships. Informed by concepts from the literature, we coded interview transcripts and iteratively reduced and displayed data using template analysis. We identified three main themes of interrelated factors that influenced teachers' practice with regard to mini-CEX instruments: teacher-related factors; teacher-student interaction-related factors, and teacher-context interaction-related factors. Four issues (direct observation, relationship between teacher and student, verbal versus written feedback, formative versus summative purposes) that are pertinent to workplace-based performance evaluations were presented to clarify how different factors interact with each other and influence teachers' feedback-giving behaviour. Embedding performance observation in clinical practice and establishing trustworthy teacher-student relationships in more longitudinal clinical clerkships were considered important in creating a learning environment that supports and facilitates the feedback exchange. Teachers' feedback-giving behaviour within the clinical context results from the interaction between personal, interpersonal and contextual factors. Increasing insight into how teachers use mini-CEX instruments in daily practice may offer strategies for creating a professional learning culture in which feedback giving and seeking would be enhanced.
Brown, Mary Beth; Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J; Presson, Robert G; Petrache, Irina; Kline, Jeffrey; Lahm, Tim
2017-02-01
Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.
Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J.; Presson, Robert G.; Petrache, Irina; Kline, Jeffrey; Lahm, Tim
2017-01-01
Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT’s superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus. PMID:27784688
Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K; Fukumoto, T
1985-10-01
The in vitro susceptibilities of various causative organisms recently isolated from patients with primary respiratory tract infections to BRL 25000 (a formulation of amoxicillin, 2 parts, and potassium clavulanate, 1 part), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase producing strains were detected by nitrocefin chromogenic method and PCG acidometric method. The frequency of isolation of beta-lactamase production in strains of S. aureus, H. influenzae, B. catarrhalis and K. pneumoniae was 92%, 18%, 36% and 98%, respectively. Against S. aureus strains with MIC values to AMPC of less than or equal to 100 micrograms/ml and CEX of less than or equal to 25 micrograms/ml BRL 25000 showed MIC values in the range 0.39-6.25 micrograms/ml with inocula of 10(6) CFU/ml, while BRL 25000 required 12.5-100 micrograms/ml of concentrations for inhibition of the strains with MIC values to AMPC of greater than 100 micrograms/ml and CEX of greater than or equal to 25 micrograms/ml. Against S. pyogenes and S. pneumoniae BRL 25000 showed MIC values in the range less than 0.024-0.10 micrograms/ml with inocula of 10(6) CFU/ml, which is much more active than CCL, CEX, CDX and CXD and slight less active than AMPC. Against H. influenzae and B. catarrhalis BRL 25000 showed MIC values in the range 0.20-6.25 micrograms/ml with inocula of 10(6) CFU/ml, which showed most potent activity among the agents tested. The activity of BRL 25000 against K. pneumoniae was approximately equal to that of CCL and superior to that of AMPC, CEX, CDX and CXD.
1990-12-01
Symmetric C-C Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6. MCQ Intensities and Oscillator Strengths...chemical approach, but only at the SCF level , to predict an absorption oscillator strength of 0.072 for the (vertical) CE-X transition. An early...fact that the lower v’ levels agree better with experiment than the higher v’ levels suggests increasing inaccuracies in the Franck-Condon overlap with
NASA Astrophysics Data System (ADS)
Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.
2009-02-01
We have fabricated epitaxial thin films of electron-doped manganite Ca1-xCexMnO3 (CCMO) with 0≤x≤0.08. The transport properties of CCMO films are very sensitive to substrate-controlled epitaxial strain. For the CCMO(x =0.05) film, the metallic transport characteristic is observed only on a nearly lattice-matched NdAlO3 (NAO) substrate, while tensilely and compressively stressed films are insulating. The CCMO(x =0.06) film on the NAO substrate shows a large magnetoresistance characteristic of a magnetorelaxor. This behavior can be explained in terms of the phase separation and the irreversible growth of the metallic domain in antiferromagnetic insulating matrix.
NASA Astrophysics Data System (ADS)
Stocker, Benjamin; Prentice, I. Colin
2016-04-01
The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant C allocation implies a sustained growth enhancement but a decreased ratio of biomass productivity to GPP. Flexible allocation, C cost of N uptake, and flexible N retention imply plant control on N availability. Thereby, plant control on BNF is essential to determine the ultimate growth enhancement under elevated CO2 and whether this implies higher N losses and N2O emissions.
Momentum Dependence of Charge Excitations in YBa2Cu3O7-δ and Nd2-xCexCuO4
NASA Astrophysics Data System (ADS)
Ishii, Kenji
2006-03-01
Resonant inelastic x-ray scattering (RIXS) studies at Cu K-edge on high-Tc superconducting cuprates, YBa2Cu3O7-δ and Nd2-xCexCuO4 are presented. The superconductivity occurs in the vicinity of the Mott insulating state and it is important to clarify the nature of the Mott gap and its doping dependence. Because RIXS has an advantage that we can measure charge excitation in a wide energy-momentum space, it gives a unique opportunity to study the electronic structure of materials. We apply this technique to high-Tc superconducting cuprates. In particular the electronic structure of strongly correlated metals is in the focus of our RIXS study. The experiments were performed at BL11XU of SPring-8, Japan, where a specially designed spectrometer for inelastic x-ray scattering is installed. In optimally doped YBa2Cu3O7-δ, anisotropic spectra are observed in the ab plane of a twin-free crystal. The Mott gap excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the chain direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of momentum. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed features in the RIXS spectra when smaller values of the on-site Coulomb energy of the chain than that of the plane are assumed. This means that the charge transfer gap of the chain is smaller than that of the plane. On the other hand, both interband excitation across the Mott gap and intraband excitation in the upper Hubbard band are observed in the electron-doped Nd2-xCexCuO4. The intensity of the interband excitation is concentrated at ˜ 2 eV near the zone boundary while a dispersion relation with a momentum-dependent width emerges in the intraband excitation. The author would like to acknowledge to his collaborators, K. Tsutsui, Y. Endoh, T. Tohyama, K. Kuzushita, T. Inami, K. Ohwada, M. Hoesch, M. Tsubota, Y. Murakami, J. Mizuki, S. Maekawa, T. Masui, S. Tajima, and K. Yamada. The crystal growth of YBa2Cu3O7-δ was supported by the New Energy and Industrial Technology Development Organization (NEDO) as the Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications.
Non-Fermi liquid and heavy fermion behavior in CexLa1-xB6 with quadrupolar moments
NASA Astrophysics Data System (ADS)
Nakamura, Shintaro; Yamamoto, Harufumi; Endo, Motoki; Aoki, Haruyoshi; Kimura, Noriaki; Nojima, Tsutomu; Kunii, Satoru
2006-05-01
The electrical resistivity of the cubic Kondo system CexLa1-xB6 ( x=0.1-0.65) has been measured. Non-Fermi liquid behavior is found in paramagnetic phase I over the wide Ce concentration range. Heavy fermion behavior is found in ordered phases of Ce0.65La0.35B6. The mass enhancement of quasiparticles in this compound is strongly dependent of the magnetic field.
Xu, Zhihao; Li, Jason; Zhou, Joe X
2012-01-01
Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.
A tool for assessing the quality of nursing handovers: a validation study.
Ferrara, Paolo; Terzoni, Stefano; Davì, Salvatore; Bisesti, Alberto; Destrebecq, Anne
2017-08-10
Handover, in particular between two shifts, is a crucial aspect of nursing for patient safety, aimed at ensuring continuity of care. During this process, several factors can affect quality of care and cause errors. This study aimed to assess quality of handovers, by validating the Handoff CEX-Italian scale. The scale was translated from English into Italian and the content validity index was calculated and internal consistency assessed. The scale was used in several units of the San Paolo Teaching Hospital in Milan, Italy. A total of 48 reports were assessed (192 evaluations). The median score was 6, interquartile range (IQR) [5;7] and was not influenced by specific (p=0.21) or overall working experience (p=0.13). The domains showing the lowest median values (median=6, IQR [4;8]) were context, communication, and organisation. Night to morning handovers obtained the lowest scores. CVI-S was 0.96, Cronbach's alpha was 0.79. The Handoff CEX-Italian scale is valid and reliable and it can be used to assess the quality of nurse handovers.
NASA Astrophysics Data System (ADS)
Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.
2010-03-01
We report on the transport properties of electron-doped manganite Ca1-xCexMnO3 (CCMO, 0≤x≤0.08) films and superlattices composed of insulating layers CaMnO3 (CMO) and Ca0.92Ce0.08MnO3 (CCMO8), deposited on nearly lattice-matched NdAlO3 substrates. The CCMO (x =0.06 and 0.07) films show colossal magnetoresistance (CMR) accompanied with magnetorelaxor behavior, which can be ascribed to the phase separation of canted G-type antiferromagnetic metal and C-type antiferromagnetic insulator. The (CMO)m/(CCMO8)n superlattices with 4≤m, n ≤8 (unit cells) resemble the solid-solution CCMO (x =0.06 and 0.07) films in CMR and magnetorelaxor behavior, suggesting that the phase separation takes place in the superlattices. The CMR and magnetorelaxor behavior of the (CMO)m/(CCMO8)n superlattices strongly depend on the thicknesses of constituent CMO and CCMO8 layers. The origin of the phase separation in the superlattices is discussed in terms of the charge transfer and the phase competition at the interfaces.
Rathod, Surekha Ramrao; Kolte, Abhay; Shori, Tony; Kher, Vishal
2017-01-01
Introduction: Mini-clinical examination (mini-CEX) is a new assessment tool that observes the student using a standard rating form. The aim of this study was to evaluate the feasibility and usefulness of the mini-CEX as an assessment and feedback tool in the postgraduate setting in periodontology. Materials and Methods: Eight postgraduate students and two evaluators were included in this study carried out for 4 months during which the students were made to appear for four encounters evaluated on a standardized nine-point Likert scale. Feedback was obtained from the students about this assessment after the fourth encounter. Results: Sixty-three percent of the students felt that mini-CEX is better than the conventional assessment tools. Seventy-five percent of the students felt that this type of mini-CEX assessment helped improve the student–teacher relationship and student–patient relationship. Sixty-three percent of the students were satisfied with this assessment pattern and were willing to face more encounters as it helped them improve their competencies. Seventy-five percent of the students agreed that they felt anxious on being observed while taking cases. Conclusion: The training and assessment of a wide range of procedures make dentistry unique. Good communication skills and counseling can allay patient's fear and anxiety. This structured way of assessment of clinical skills and feedback provides good clinical care and helps improve the quality of the resulting information which would induce confidence, improve clinical competencies, and alleviate the fear of examination among the students. PMID:29491581
Momentum density and Fermi surface of Nd2-xCexCuO4-δ
NASA Astrophysics Data System (ADS)
Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Sadowski, W.; Walker, E.; Peter, M.
1996-02-01
High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa2Cu3O7-δ. Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd2-xCexCuO4-δ. Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments.
Electrical transport properties of sputtered Nd2-xCexCuO4±δ thin films
NASA Astrophysics Data System (ADS)
Guarino, Anita; Leo, Antonio; Avella, Adolfo; Avitabile, Francesco; Martucciello, Nadia; Grimaldi, Gaia; Romano, Alfonso; Pace, Sandro; Romano, Paola; Nigro, Angela
2018-05-01
Thin films of the electron-doped high-temperature superconductor Nd2-xCexCuO4±δ have been deposited by dc sputtering technique on (100) SrTiO3 substrates. A tuning of the oxygen content in the as-grown non-superconducting samples has been achieved by changing the oxygen partial pressure during the growth in the Argon sputtering atmosphere. All samples show the superconducting transition after a suitable two-step thermal treatment in an oxygen-reducing environment. Structural and electrical transport properties on the as-grown as well as on the superconducting samples have been investigated. We find that the structural properties are consistent with a deficiency of the oxygen content with respect to optimally annealed samples, and that the transition to the superconducting phase is always accompanied by an increase of the c-axis lattice parameter. Measurements of the Hall coefficient RH as a function of temperature and in the normal state of our epitaxial films are presented and discussed. RH results negative for all the films regardless of the oxygen content and it decreases with the temperature. In particular, the Hall coefficient is only about 10% lower than the value measured in the as-grown oxygen-deficient phase, in contrast to the results reported in literature. The removal of the excess oxygen in as-grown samples seems not to be the only requirement for triggering the superconducting transition in electron-doped compounds. The microstructural change associated with the increase of the c-axis parameter in our deoxygenated samples could help in understanding the microscopic mechanism underlying the reduction process of n-type superconductors, which is still under debate.
Specific heat and Nernst effect of electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Balci, Hamza
This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.
NASA Astrophysics Data System (ADS)
Srinivasamurthy, K. M.; Angadi, V. Jagadeesha; Kumar, P. Mohan; Nagaraj, B. S.; Deepthy, P. R.; Pasha, U. Mahaboob; Rudraswamy, B.
2018-05-01
Nano crystalline spinel ferrites of Co0.5Ni0.5CexFe2-xO4 (x=0.01, 0.015, 0.02, 0.025 and 0.03) was prepared by modified solution combustion method using a mixture of fuels for the first time. The influence of rare earth Ce3+ substitution at the Fe3+ site on the structural, microstructural and dielectric properties of Co0.5Ni0.5CexFe2-xO4 was investigated. The X-ray diffraction (XRD) studies confirmed the formation of monophasic nano crystalline samples without any secondary phases. The crystallite size decreases and density increases with the increases of Ce3+ contents. Surface morphology was studied through Scanning Electron Microscopy (SEM). Dielectric properties of these ferrites have been studied at room temperature using impedance analyzer in the frequency range up to 20 MHz. The effect of frequency and composition on dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivity (σac) have been discussed in terms of hopping of charge carriers (Fe2+↔Fe3+). The decrease in dielectric loss with frequency follows Debye's relaxation phenomena. Both the variation in tan loss and dielectric loss with frequency shows a similar. AC conductivity increases with the increases of frequency which directly proportional to concentration of Ce3+ ions follows Jonscher law. These Cerium doped Cobalt-nickel ferrites are very helpful for automotive applications.
NASA Astrophysics Data System (ADS)
Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.
2016-05-01
The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.
Stabilization of Phase IV in CexLa1-xB6 (x=0.4, 0.5) by Pr and Nd Ion Dopings
NASA Astrophysics Data System (ADS)
Kondo, Akihiro; Taniguchi, Toshihiro; Tanida, Hiroshi; Matsumura, Takeshi; Sera, Masafumi; Iga, Fumitoshi; Tou, Hideki; Sakakibara, Toshiro; Kunii, Satoru
2009-09-01
We have studied the effect of magnetic rare-earth ion (Pr, Nd) doping on phase IV in CexLa1-xB6 (x=0.4, 0.5) systems. An unexpected large increase in the IV-I transition temperature TIV--I by Pr and Nd dopings was observed, while no such increase was observed for x≥ 0.6. Although we do not know the reason why the doping effect markedly differs between x≤ 0.5 and x≥ 0.6 at present, the order parameter in phase IV for x≤ 0.5 is coupled with the magnetic dipole moment of Pr and Nd ions and phase IV is stabilized.
Duedu, Kwabena O; French, Christopher E
2016-11-01
Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Balamurugan, S.
2012-11-01
The magnetic and transport properties of lightly Ce doped, Y1-xCexSr2Ru0.9Cu2.1 O7.9(x = 0.05 and 0.1) samples have been studied and their results are compared with the pristine rutheno-cuprate, YSr2Ru0.9Cu2.1O7.9. The electron doping due to Ce4+ for Y3+ ion impacts on the physical properties of the present system. The tetragonal stabilized samples exhibit magneto superconducting properties under zero field cooled condition (H = 10 Oe) and the diamagnetic onset transition, Td shift slightly towards higher temperature with the increase of "x". Weak antiferromagnetic like hysteresis curves are seen for these samples at 2 K in the magnetic field strength up to ±10 kOe and the magnetization moment, M(μB/Ru) decreases with increase of "x". While the magnetic property of the present system is due to canted Ru moments, the superconducting signal originates from CuO2 plane. Through electrical resistivity measurements we observe that none of the samples exhibit bulk superconductivity down to 2 K. However the x = 0.05 sample reveals lowest resistivity in the entire temperature range than x = 0 and 0.1 samples. The isothermal magnetoresistance, MR(H) measured at different temperatures vary with tuning of "x". While x = 0.1 doped sample shows lower -MR( 8%), the pristine sample exhibits maximum -MR(45%) at 2 K under ±90 kOe field condition.
Effects of Continuous and Accumulated Exercise on Endothelial Function in Rat Aorta.
Martinez, Juliana Edwiges; Taipeiro, Elane de Fátima; Chies, Agnaldo Bruno
2017-04-01
The practice of exercise in short bouts repeated throughout the day may be an alternative strategy to lift people out of physical inactivity. to evaluate if accumulated exercise, as occurs in continuous exercise training, improve endothelial function in rat aorta. Wistar male rats were divided into three groups: continuous exercise (CEx, 1 hour on the treadmill) or accumulated exercise (AEx, 4 bouts of 15 minutes / day) for 5 days/week for 8 weeks, or sedentary (SED). During the training period, body weight gain and increase in exercise performance were recorded. On sacrifice day, aorta was dissected into rings (3-5 mm) and mounted on the organ bath. Fitness was significantly greater in CEx and AEx rats as compared with SED animals. In addition, compared with the SED group, CEx animals had a lower body mass gain, and the aorta obtained from these animals had reduced contractile response to norepinephrine and greater acetylcholine-induced relaxation. These results were not observed in ACEx animals. Both CEx and AEx improved fitness, but only CEx led to reduced body weight gain and improved endothelial function. A prática de exercícios em sessões curtas que se repetem ao longo do dia pode ser uma alternativa para tirar as pessoas da inatividade física. Verificar se o exercício acumulado, tal como ocorre com o treinamento com exercício contínuo, melhora a função endotelial na aorta de ratos. Ratos Wistar machos foram divididos em 3 grupos: treinamento com exercício contínuo (ExC; 1 hora em esteira) ou com exercício acumulado (ExA; 4 sessões de 15 minutos ao longo do dia) por 5 dias/semana, durante 8 semanas, ou grupo sedentário (SED). Durante o treinamento, foram registrados o ganho de peso corporal e desempenho na esteira. No dia do sacrifício, anéis (3-5 mm) da aorta foram obtidos e montados em banho de órgãos. Animais ExC e ExA mostraram aptidão física significativamente maior em comparação com os SED. Paralelamente, em comparação com SED, animais ExC tiveram menor ganho de massa corporal, e aortas retiradas desses animais mostraram respostas contrácteis à noradrenalina reduzidas e maior relaxamento induzido pela acetilcolina. Esses resultados não foram observados no grupo ExA. Tanto o ExC quanto o ExA melhoraram a aptidão física, mas somente o ExC foi capaz de reduzir o ganho de peso corporal dos animais e melhorar a função endotelial.
Magnetic phase diagrams of CexLa1-xB6 in high magnetic fields
NASA Astrophysics Data System (ADS)
Akatsu, Mitsuhiro; Kazama, Nanako; Goto, Terutaka; Nemoto, Yuichi; Suzuki, Osamu; Kido, Giyuu; Kunii, Satoru
We have performed ultrasonic measurements under high magnetic fields up to 30 T by using the hybrid magnet at the National Institute for Materials Science to investigate the magnetic phase diagram for antiferroquadrupole (AFQ) phase II in CexLa1-xB6. With increasing Ce concentration x from x=0.50, the AFQ phase transition temperatures TQ indicate an almost linear increase in various fields. The large magnetic anisotropy of AFQ phase II, in which TQH∥[0 0 1] is much smaller than TQH∥[1 1 0] and TQH∥[1 1 1] in high magnetic fields, is revealed in x=0.75,0.60 as well as in x=0.50. These experimental results support the theoretical calculation based on the Γ5-type AFQ ordering and the magnetic field induced octupole Txyz.
Oxygen Annealing in the Synthesis of the Electron-Doped Cuprates
NASA Astrophysics Data System (ADS)
Higgins, J. S.; Bach, P. L.; Yu, W.; Weaver, B. D.; Greene, R. L.
2015-03-01
Post-synthesis oxygen reduction (annealing) in the electron-doped, high-temperature superconducting cuprates is necessary for the establishment of superconductivity. It is not established what effect this reduction has microscopically on the lattice structure. Several mechanisms have been put forth as explanations; they range from disorder minimization1, antiferromagnetic suppression2, and copper migration3. Here we present an electronic transport study on electron-doped cuprate Pr2-xCexCuO4+/-δ (PCCO) thin films in an attempt to better understand the need for this post-synthesis process. Several different cerium doping concentrations of PCCO were grown. Within each doping, a series of films were grown with varying levels of oxygen concentration. As a measure of disorder on the properties of PCCO, several films were irradiated with various doses of 2 MeV protons. Analysis within each series, and among the different dopings, favors disorder minimization through the removal of apical oxygen as the explanation for the necessary post-synthesis annealing process. 1P. K. Mang, et al., Physical Review Letters, 93(2):027002, 2004. 2P. Richard, et al., Physical Review B, 70 (6), 064513, 2004. 3Hye Jung Kang, et al., Nature Materials, 2007. Supported by NSF DMR 1104256.
Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias
2013-04-12
An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo
2016-11-01
We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.
Haghani, Fariba; Hatef Khorami, Mohammad; Fakhari, Mohammad
2016-07-01
Feedback cards are recommended as a feasible tool for structured written feedback delivery in clinical education while effectiveness of this tool on the medical students' performance is still questionable. The purpose of this study was to compare the effects of structured written feedback by cards as well as verbal feedback versus verbal feedback alone on the clinical performance of medical students at the Mini Clinical Evaluation Exercise (Mini-CEX) test in an outpatient clinic. This is a quasi-experimental study with pre- and post-test comprising four groups in two terms of medical students' externship. The students' performance was assessed through the Mini-Clinical Evaluation Exercise (Mini-CEX) as a clinical performance evaluation tool. Structured written feedbacks were given to two experimental groups by designed feedback cards as well as verbal feedback, while in the two control groups feedback was delivered verbally as a routine approach in clinical education. By consecutive sampling method, 62 externship students were enrolled in this study and seven students were excluded from the final analysis due to their absence for three days. According to the ANOVA analysis and Post Hoc Tukey test, no statistically significant difference was observed among the four groups at the pre-test, whereas a statistically significant difference was observed between the experimental and control groups at the post-test (F = 4.023, p =0.012). The effect size of the structured written feedbacks on clinical performance was 0.19. Structured written feedback by cards could improve the performance of medical students in a statistical sense. Further studies must be conducted in other clinical courses with longer durations.
Camerino, Saulo Rodrigo Alves e Silva; Lima, Rafaela Carvalho Pereira; França, Thássia Casado Lima; Herculano, Edla de Azevedo; Rodrigues, Daniela Souza Araújo; Gouveia, Marcos Guilherme de Sousa; Cameron, L C; Prado, Eduardo Seixas
2016-02-01
Alterations of cerebral function, fatigue and disturbance in cognitive-motor performance can be caused by hyperammonemia and/or hot environmental conditions during exercise. Exercise-induced hyperammonemia can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA) to improve exercise tolerance. In the present study, we evaluated KAAA supplementation on ammonia metabolism and cognitive-motor performance after high-intensity exercise under a low heat stress environment. Sixteen male cyclists received a ketogenic diet for 2 d and were divided into two groups, KAAA (KEx) or placebo (CEx) supplementation. The athletes performed a 2 h cycling session followed by a maximum test (MAX), and blood samples were obtained at rest and during exercise. Cognitive-motor tasks were performed before and after the protocol, and the exhaustion time was used to evaluate physical performance. The hydration status was also evaluated. The CEx group showed a significant increase (∼ 70%) in ammonia concentration at MAX, which did not change in the KEx group. The non-supplemented group showed a significant increase in uremia. Both the groups had a significant increase in blood urate concentrations at 120 min, and an early significant increase from 120 min was observed in the CEx group. There was no change in the glucose concentrations of the two groups. A significant increase in lactate was observed at the MAX moment in both groups. There was no significant difference in the exhaustion times between the groups. No changes were observed in the cognitive-motor tasks after the protocol. We suggest that KAAA supplementation decreases ammonia concentration during high-intensity exercise but does not affect physical or cognitive-motor performances under a low heat stress environment.
NASA Astrophysics Data System (ADS)
Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.
2014-09-01
We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.
Chen, Zhiqiang; Huang, Chao; Chennamsetty, Naresh; Xu, Xuankuo; Li, Zheng Jian
2016-08-19
Cation-exchange chromatography (CEX) of a structurally unstable Fc-fusion protein exhibited multi-peak elution profile upon a salt-step elution due to protein aggregation during intra-column buffer transition where low pH and high salt coexisted. The protein exhibited a single-peak elution behavior during a pH-step elution; nevertheless, the levels of soluble aggregates (i.e. high molecular weight species, HMW) in the CEX eluate were still found up to 12-fold higher than that for the load material. The amount of the aggregates formed upon the pH-step elution was dependent on column loading with maximum HMW achieved at intermediate loading levels, supporting the hypothesis that the aggregation was the result of both the conformational changes of the bound protein and the solution concentration of the aggregation-susceptible proteins during elution. Factors such as high load pH, short protein/resin contact time, hydrophilic resin surface, and weak ionizable ligand were effective, to some extent, to reduce aggregate formation by improving the structural integrity of the bound protein. An orthogonal technique, differential scanning fluorimetry (DSF) using Sypro Orange dye confirmed that the bound protein exposed more hydrophobic area than the native molecule in free solution, especially in the pH 4-5 range. The Sypro Orange dye study of resin surface property also demonstrated that the poly[styrene-divinylbenzene]-based Poros XS with polyhydroxyl surface coating is more hydrophobic compared to the agarose-based CM Sepharose FF and SP Sepharose FF. The hydrophobic property of Poros XS contributed to stronger interactions with the partially unfolded bound protein and consequently to the higher aggregate levels seen in Poros XS eluate. This work also investigates the aggregation reversibility in CEX eluate where up to 66% of the aggregates were observed to dissociate into native monomers over a period of 120h, and links the aggregate stability to such conditions as resin surface properties and charged ligand type. Experimental data was correlated semi-quantitatively with theoretical protein charge and hydrophobicity calculations using homology modeling within the BIOVIA Discovery Studio software. Finally, an arginine-sulphopropyl (Arg-SP) agarose resin immobilized with multi-functional ligands was prepared to verify the proposed hypothesis and to eliminate the aggregate formation. The findings of this work provide general insights in understanding aggregate formation and dissociation for structurally unstable proteins in the CEX step. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of low-temperature active rare-earth oxide catalysts for automotive exhaust clean-up.
DOT National Transportation Integrated Search
2014-02-01
We report a facile onepot synthesis of CexZr1-xO2 (0x1) solid solution nanocrystals using hydrothermal reactions. A direct formation of oxide solid solutions in aqueous solution under pressure at low temperatures was clearly revealed by X-ra...
In-Training Assessment Using Direct Observation of Single-Patient Encounters: A Literature Review
ERIC Educational Resources Information Center
Pelgrim, E. A. M.; Kramer, A. W. M.; Mokkink, H. G. A.; van den Elsen, L.; Grol, R. P. T. M.; van der Vleuten, C. P. M.
2011-01-01
We reviewed the literature on instruments for work-based assessment in single clinical encounters, such as the mini-clinical evaluation exercise (mini-CEX), and examined differences between these instruments in characteristics and feasibility, reliability, validity and educational effect. A PubMed search of the literature published before 8…
Y 3-xMg 2AlSi 2O 12: Cex3+ phosphors - prospective for warm-white light emitting diodes
NASA Astrophysics Data System (ADS)
Katelnikovas, Arturas; Bareika, Tomas; Vitta, Pranciškus; Jüstel, Thomas; Winkler, Holger; Kareiva, Aivaras; Žukauskas, Artūras; Tamulaitis, Gintautas
2010-07-01
Y 3-xMg 2AlSi 2O 12: Cex3+ (YMASG:Ce) phosphors were synthesized by sol-gel combustion technique at different temperatures from 1400 to 1550 °C. Samples with x = 0.015, 0.03, 0.045, and 0.06 were fabricated and characterized using powder X-ray diffraction (XRD), photoluminescence spectroscopy, and fluorescence lifetime measurements in frequency domain. XRD patterns confirmed single-phase garnet crystal structure for all the samples independently of their substitutional level and annealing temperature. In respect to Y 3Al 5O 12:Ce 3+ (YAG:Ce) phosphor, which was synthesized for comparison by a different sol-gel procedure, the photoluminescence band of these garnets is red shifted, indicating a prospective for application of this novel phosphor in warm-white light emitting diodes (LEDs). The luminescence decays bi-exponentially. The main component has a characteristic decay time decreasing from 72 to of 50 ns with increasing sintering temperature and cerium content, while ˜2% of the excitation decays with a characteristic decay time of ˜8 ns.
Rattler behavior in As skutterudites and oxy-skutterudites
NASA Astrophysics Data System (ADS)
Bridges, Frank; Car, Brad; Hoffman-Stapleton, Mikaela; Keiber, Trevor; Sutton, Logan; Maple, M. Brian
2014-03-01
We report EXAFS measurements for the series CeX4As12 (X = Fe, Ru, Os) and NdCu3Ru4O12 as a function of temperature for most elements in the structure. In each case the rare earth atom is a ``rattler'' atom, with a low Einstein temperature while the skutterudite cage structure is relatively stiff. From temperature dependencies of the correlated Debye model for the cage atoms, one can estimate the effective spring constant for various atom pairs. We also find for the oxy-skutterudites that the planar CuO4 sub-structure is very stiff, and likely vibrates as a rigid unit. We compare the behavior of the As-skutterudites with other skutterudites and with the oxy-skutterudites, and discuss in terms of the rigid cage model. The second neighbor pair Ce-X for the As-skutterudites is softer than expected while for the oxy-skutterudites the second neighbor Nd-Ru pair is stiffer than the nearest neighbor Nd-O pair. Models are need to explore this behavior. Support: NSF DMR1005568.
Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Yoshihara, H; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K
1986-03-01
The in vitro susceptibilities of various causative organisms recently isolated from patients with genital infections to BRL 25000 (a formulation with 2 parts of amoxicillin and 1 part of potassium clavulanate), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase-producing strains were detected by the nitrocefin disc method. Frequencies of isolation of beta-lactamase producing strains of E. coli, K. pneumoniae and B. fragilis were 36%, 96% and 100%, respectively. The activity of BRL 25000 against S. agalactiae and anaerobic GPC (anaerobic Streptococci, Peptostreptococcus spp.) was slightly less than that of AMPC but was 2- to 4-fold higher than CCL and 8- to 16-fold higher than CEX, CDX and CXD. Against E. coli and K. pneumoniae, the activity of BRL 25000 was superior to that of AMPC and approximately equal to CEX, CDX and CXD but 2-fold less than CCL. Against the B. fragilis group, BRL 25000 was much more active than AMPC or any of the cephalosporins tested, clearly demonstrating the beta-lactamase inhibitory properties of the clavulanic acid in BRL 25000. At inocula of 10(6) CFU/ml, MIC values of BRL 25000 were 12.5-50 micrograms/ml against some strains of E. coli, K. pneumoniae and B. fragilis. A mechanism of resistance other than beta-lactamase production is obviously prevalent in these strains. It is speculated that the resistance may be due to a low affinity of the drug to target proteins. Mixed infections of B. fragilis and E. coli or K. pneumoniae are commonly found in the obstetric and gynecological patients. BRL 25000 shows activity against these strains and also against both aerobic and anaerobic GPC. Therefore, BRL 25000 is considered useful for the treatment of genital infections.
Armored Family of Vehicles (AFV). Phase 1 Report. Book 3. Volumes 5 thru 8
1987-08-31
tactical mobility /agility, tactical and strategic deployability, rapid repair/replacement of damaged or destroyed equipment, lethality, reduced...Mover (CEM). (15) Combat Mobility Vehicle (CMV). (16) Combat Gap Crosser (CGC). (17) Combat Excavator (CEX). (18) Mine Dispensing Vehicle (MDV). (19...economic decision analysis (IAW AR 700-XX, AR 700-127 and AR 700-17) and consideration of mobilization requirements. 7. Transportability
Fu, Z B; Ng, K L; Lam, C C; Leung, K C; Yip, W H; Wong, W K R
2006-08-01
Hyper-expression of a secretory exoglucanase, Exg, encoded by the cex gene of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of recombinant Escherichia coli (Z.B. Fu, K.L. Ng, T.L. Lam, W.K.R. Wong, Cell death caused by hyper-expression of a secretory exoglucanase in Esherichia coli, Protein Expr. Purif. 42 (2005) 67-77). We propose here that the cell lysate ratio (Pre/Mat RQ) of the unprocessed precursor Exg protein (Pre-Exg) and its processed mature product (Mat-Exg) reflects the capacity of E. coli to secrete Exg. A Pre/Mat RQ of 20/80, designated the "Critical Value," was an important threshold measurement. A rise in the Pre/Mat RQ triggered a mass killing effect. The use of various secretion signal peptides did not improve the viability of cells expressing high levels of Pre-Exg under strong tac promoter control. However, use of the weaker vegG promoter in conjunction with a change in start codon of the spa leader sequence from ATG to TTG in a pM1vegGcexL plasmid construct resulted in a high level (0.9 U ml(-1)) of excreted Exg in shake-flask cultures. This was 50% higher than the best result obtained from plasmid construct lacUV5par8cex, using the lacUV5 promoter and the ompA leader sequence. Variations in the excreted Exg activities were attributable to differences in the Pre/Mat RQ values of the induced cultures harboring pM1vegGcexL and lacUV5par8cex. These values were 18/82 and 10/90, respectively. Employing fed-batch cultivation in two-liter fermentors, an induced JM101(pM1vegGcexL) culture yielded 4.5 U ml(-1) of excreted Exg, which was over six fold greater that previously reported. Our results illustrate the successful application of the Pre/Mat RQ ratio as a guide to the attainment of a maximum level of secreted/excreted Exg.
Radio- and photoluminescence properties of Ce/Tb co-doped glasses with huntite-like composition
NASA Astrophysics Data System (ADS)
Lorenzi, Roberto; Golubev, Nikita V.; Ziaytdinova, Mariyam Z.; Jarý, Vítězslav; Babin, Vladimir; Malashkevich, Georgii E.; Paleari, Alberto; Sigaev, Vladimir N.; Fasoli, Mauro; Nikl, Martin
2018-04-01
Optical properties of yttria-aluminoborate (YAB) glasses with general composition 10(CexTbyY(1-x-y))-30Al2O3-60B2O3 are investigated and compared with data available on YAB crystals with huntite-like structure. Ce doped samples show optical features ascribable to preferential location of rare earth ions in sites with specific geometry similar to that observed in crystalline structures. Samples prepared with Tb ions as emission activator and Ce ions as sensitizer have been studied within the framework of non-radiative energy transfer. The resulting Förster radius is of 4.6 ± 0.5 Å comparable with that observed in Ce/Tb co-doped YAl3(BO3)4 crystals. The investigated materials possess radio- and photoluminescence emission efficiencies and performances comparable to that of crystalline counterparts with the advantage of having easiness of preparation and workability typical of glassy systems.
SALT Spectroscopic classification of ASASSN-18lp as a dwarf nova
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Gromadzki, M.; Dong, Subo; Stanek, K. Z.
2018-06-01
ASASSN-18lp (AT 2018cex) was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) on UT 2018-06-05.24 at g 16 mag. It was observed with the Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph on UT 2018-06-05.75 UT (HJD 2458275.2561) employing the PG300 lines/mm grating.
Structure, morphology and reducibility of ceria-doped zirconia
NASA Astrophysics Data System (ADS)
Aribi, Koubra; Soltani, Zohra; Ghelamallah, Madani; Granger, Pascal
2018-03-01
Zr1-xCexOx has been prepared by hydrolysis, in neutral medium, starting from rough ZrO2 and CeO2 materials as simple and cheaper synthesis method compared to sol-gel routes. The oxy-hydroxide precursors thus obtained were calcined under air at 450 °C, 900 °C and 1200 °C. The impact of those thermal treatments on the structure, texture and related redox properties has been investigated. Higher specific surface area than those observed on ceria were observed after calcination at low temperature, i.e., 450 °C. Above that temperature thermal sintering occurs having a detrimental effect on the specific surface area related to crystal growth more accentuated on CeO2. The formation of several Zrsbnd Ce mixed oxide phases formed by incorporation and substitution of Zr in the structure of ceria was characterized. A complete loss of specific surface area is noticeable after calcination at 1200 °C. XRD and SEM analysis revealed the formation of two mixed oxides structure, i.e. Ce2Zr2O7.04 and Ce2Zr2O7 corresponding to different redox behavior evidenced from H2-TPR experiments.
NASA Astrophysics Data System (ADS)
Manjunatha, S.; Dharmaprakash, M. S.
2018-03-01
Nanocrystalline ZrO2 based material is an impressive candidate for the various functional applications owing to their ease of preparation and high thermal stability. This paper reports the synthesis, structural and optical characterization of thermally stable monodispersed CexZr1‑xO2 (x = 0.05) nanoparticles. This method is based on the fact that, microwave irradiation allows the formation of size controlled and single phase cubic ZrO2 nanoparticles containing Ce+4 as a dopant. The XRD and Rietveld analysis revealed the formation of the crystalline cubic fluorite phase. The formation of nanoparticles was confirmed by FTIR. The morphology of the nanophosphors was characterised by FESEM and TEM. The optical band gap was calculated from the UV–visible absorption spectra and was found to vary from 3.93 to 4.25 eV with calcination temperature. It shows the decrease in the optical band gap from the pristine ZrO2. The particle size was measured by using HRTEM, and the average particle size was found to be 22 nm. Under the 268 nm Ultra Violet irradiation excitation a blue emission at 443 nm was observed at room temperature. The possible luminescence mechanism of CexZr1‑xO2 nanophosphor under UV excitation is discussed.
ERIC Educational Resources Information Center
Purves, Alan C.
1996-01-01
Outlines three forms of electronic portfolio based on a student's work, a class project about a specific topic, and a class seminar on a broad topic. Discusses logistical problems of management, access, and cross-referencing; technical problems of input, access, and copying; and theoretical issues of the lack of realia, of ownership and copyright,…
Positron studies of defected metals, metallic surfaces
NASA Astrophysics Data System (ADS)
Bansil, A.
Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-(Tc) superconductors, in particular, (1) momentum density and positron experiments, (2) angle-resolved photoemission intensities, and (3) effects of disorder and substitutions in the high-(Tc)'s. The specific progress made in each of these problems is summarized.
Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G.
2016-01-01
In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3−xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4–8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to −5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits. PMID:27320039
Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G
2016-06-20
In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3-xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4-8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to -5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits.
Harvey, Pam; Radomski, Natalie; O'Connor, Dennis
2013-12-01
The provision of effective feedback on clinical performance for medical students is important for their continued learning. Written feedback is an underutilised medium for linking clinical performances over time. The aim of this study is to investigate how clinical supervisors construct performance orientated written feedback and learning goals for medical students in a geographically distributed medical education (GDME) programme. This qualitative study uses textual analysis to examine the structure and content of written feedback statements in 1000 mini-CEX records from 33 Australian undergraduate medical students during their 36 week GDME programme. The students were in their second clinical year. Forty percent of mini-CEX records contained written feedback statements. Within these statements, 80% included comments relating to student clinical performance. The way in which written feedback statements were recorded varied in structure and content. Only 16% of the statements contained student learning goals focused on improving a student's clinical performance over time. Very few of the written feedback statements identified forward-focused learning goals. Training clinical supervisors in understanding how their feedback contributes to a student's continuity of learning across their GDME clinical placements will enable more focused learning experiences based on student need. To enhance student learning over time and place, effective written feedback should contain focused, coherent phrases that help reflection on current and future clinical performance. It also needs to provide enough detail for other GDME clinical supervisors to understand current student performance and plan future directions for their teaching.
Yeates, Peter; O'Neill, Paul; Mann, Karen; Eva, Kevin W
2012-12-05
Competency-based models of education require assessments to be based on individuals' capacity to perform, yet the nature of human judgment may fundamentally limit the extent to which such assessment is accurately possible. To determine whether recent observations of the Mini Clinical Evaluation Exercise (Mini-CEX) performance of postgraduate year 1 physicians influence raters' scores of subsequent performances, consistent with either anchoring bias (scores biased similar to previous experience) or contrast bias (scores biased away from previous experience). Internet-based randomized, blinded experiment using videos of Mini-CEX assessments of postgraduate year 1 trainees interviewing new internal medicine patients. Participants were 41 attending physicians from England and Wales experienced with the Mini-CEX, with 20 watching and scoring 3 good trainee performances and 21 watching and scoring 3 poor performances. All then watched and scored the same 3 borderline video performances. The study was completed between July and November 2011. The primary outcome was scores assigned to the borderline videos, using a 6-point Likert scale (anchors included: 1, well below expectations; 3, borderline; 6, well above expectations). Associations were tested in a multivariable analysis that included participants' sex, years of practice, and the stringency index (within-group z score of initial 3 ratings). The mean rating scores assigned by physicians who viewed borderline video performances following exposure to good performances was 2.7 (95% CI, 2.4-3.0) vs 3.4 (95% CI, 3.1-3.7) following exposure to poor performances (difference of 0.67 [95% CI, 0.28-1.07]; P = .001). Borderline videos were categorized as consistent with failing scores in 33 of 60 assessments (55%) in those exposed to good performances and in 15 of 63 assessments (24%) in those exposed to poor performances (P < .001). They were categorized as consistent with passing scores in 5 of 60 assessments (8.3%) in those exposed to good performances compared with 25 of 63 assessments (39.5%) in those exposed to poor performances (P < .001). Sex and years of attending practice were not associated with scores. The priming condition (good vs poor performances) and the stringency index jointly accounted for 45% of the observed variation in raters' scores for the borderline videos (P < .001). In an experimental setting, attending physicians exposed to videos of good medical trainee performances rated subsequent borderline performances lower than those who had been exposed to poor performances, consistent with a contrast bias.
Local Free Space Mapping and Path Guidance,
1987-03-01
Free Space Mapping and Path Guidance 12. PERSONIAL UTI4OFS) William T. Cex and Nancy L. Campbell 1s. TYPE OF REPORT 13b. iME COVERED 14. DATE OF REPORT...84 JAN 52 A" 1OMON MAYBOfUSED NMlLEMIAUSTEO UNCLASSIFIED ALL OTHE EDTIN A’.SL Y2.7cesson For 7 *5~ IT D, TA ........... iCL ... . LOCAL FREE SPACE ... MAPPING AND PATH GUIDANCE By Distribuition/ Availabiliuy C0e William T. Gex and Nancy L. Campbell I Avail and/or Naval Ocean Systems Center ist speci1 l
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1981-08-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1980-09-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1979-09-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
electronically excited specied are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Problems related to the integration of fault tolerant aircraft electronic systems
NASA Technical Reports Server (NTRS)
Bannister, J. A.; Adlakha, V.; Triyedi, K.; Alspaugh, T. A., Jr.
1982-01-01
Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included.
Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.
Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong
2015-02-07
Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.
High catalytic activity and stability of Ni/CexZr1-xO2/MSU-H for CH4/CO2 reforming reaction
NASA Astrophysics Data System (ADS)
Chang, Xiaoqian; Liu, Bingsi; Xia, Hong; Amin, Roohul
2018-06-01
How to reduce emission of CO2 as greenhouse gases, which resulted in global warming, is of very important significance. A series of Ni/CexZr1-xO2/MSU-H catalysts was prepared by means of hexagonally ordered mesoporous MSU-H with thermal and hydrothermal stabilities, which is cheap and can be synthesized in the large scale. The 10%Ni/Ce0.75Zr0.25O2/MSU-H catalyst presents high catalytic activity, stability and the ability of coke-resistance for CH4/CO2 reforming reaction due to high SBET (428 m2/g) and smaller Nio nanoparticle size (3.14 nm). The high dispersed Nio nanoparticles over MSU-H promoted the decomposition of CH4 and the carbon species accumulated on active Nio sites reacting with crystal lattice oxygen in Ce0.75Zr0.25O2 to form CO molecules. In the meantime, the remained oxygen vacancies on the interface between Nio and Ce0.75Zr0.25O2 could be supplemented via CO2. HRTEM images and XRD results of Ni/Ce0.75Zr0.25O2/MSU-H verified that high dispersion of Ni nanoparticles over Ni/Ce0.75Zr0.25O2/MSU-H correlated closely with the synergistic action between Ce0.75Zr0.25O2 and MSU-H as well as hexagonally ordered structure of MSU-H, which can provide effectively the oxygen storage capacity and inhibit the formation of coke.
Linking guidelines to Electronic Health Record design for improved chronic disease management.
Barretto, Sistine A; Warren, Jim; Goodchild, Andrew; Bird, Linda; Heard, Sam; Stumptner, Markus
2003-01-01
The promise of electronic decision support to promote evidence based practice remains elusive in the context of chronic disease management. We examine the problem of achieving a close relationship of Electronic Health Record (EHR) content to other components of a clinical information system (guidelines, decision support and workflow), particularly linking the decisions made by providers back to the guidelines. We use the openEHR architecture, which allows extension of a core Reference Model via Archetypes to refine the detailed information recording options for specific classes of encounter. We illustrate the use of openEHR for tracking the relationship of a series of clinical encounters to a guideline via a case study of guideline-compliant treatment of hypertension in diabetes. This case study shows the contribution guideline content can have on problem-specific EHR structure and demonstrates the potential for a constructive interaction of electronic decision support and the EHR.
Linking Guidelines to Electronic Health Record Design for Improved Chronic Disease Management
Barretto, Sistine A.; Warren, Jim; Goodchild, Andrew; Bird, Linda; Heard, Sam; Stumptner, Markus
2003-01-01
The promise of electronic decision support to promote evidence based practice remains elusive in the context of chronic disease management. We examine the problem of achieving a close relationship of Electronic Health Record (EHR) content to other components of a clinical information system (guidelines, decision support and work-flow), particularly linking the decisions made by providers back to the guidelines. We use the openEHR architecture, which allows extension of a core Reference Model via Archetypes to refine the detailed information recording options for specific classes of encounter. We illustrate the use of openEHR for tracking the relationship of a series of clinical encounters to a guideline via a case study of guideline-compliant treatment of hypertension in diabetes. This case study shows the contribution guideline content can have on problem-specific EHR structure and demonstrates the potential for a constructive interaction of electronic decision support and the EHR. PMID:14728135
Ambulatory EHR functionality: a comparison of functionality lists.
Drury, Barbara M
2006-01-01
There is a proliferation of lists intended to define and clarify the functionality of an ambulatory electronic health record system. These lists come from both private and public entities and vary in terminology, granularity, usability, and comprehensiveness. For example, functionality regarding a problem list includes the following possible definitions: * "Create and maintain patient-specific problem lists," from the HL7 Electronic Health Record Draft Standard for Trial Use. * "Provide a flexible mechanism for retrieval of encounter information that can be organized by diagnosis, problem, problem type," from the Bureau of Primary Health Care. * "The system shall associate encounters, orders, medications and notes with one or more problems," from the Certification Commission on Health Information Technology. * "Displays dates of problems on problem list," from COPIC Insurance Co. * "Shall automatically close acute problems using an automated algorithm," from the Physicians Foundations HIT Subcommittee. This article will compare the attributes of these five electronic health record functionality lists and their usefulness to different audiences-clinicians, application developers and payers.
Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6
NASA Astrophysics Data System (ADS)
Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.
2002-06-01
Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.
Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster
2006-01-01
Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating
Cost and Operational Effectiveness Analysis (COEA) for the Lightweight Water Purifier (LWP).
1996-03-11
HIL- ENEME , CA 93043-4328 HQ USAF/XORD, 1480 AIRFORCE PENTAGON, WASH[NGTON, DC 20330-1480 HQ ACC/CEX (ATTN-: MR. FISHER), 129 ANDREWS ST, STE 102...2014 50 2015 50 2016 50 2017 50 2018 50 2019 50 2020 50 2021 50 2022 0 S50 50 1000ROWPU-yrs 4. Initial Deployment of the 600 GPH ROWPU for Special...OPERATIONS FORCES (SOF) 07/11/95 2014 2015 2016 2017 2018 2019 2020 1.0 RDT&E-FUNDED ELEMENTS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 DEVELOPMENT
Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Khan, Mahmud; McCallum, R. W.
2013-01-28
Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)2Fe14B [R=La,Nd] using density functional theory (DFT) methods—including a DFT+U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data—almost unaffected by Hubbard U, and weakly affected by spin-orbit coupling.more » In La2Fe14B, Ce alloys for 0 ≤ x ≤ 1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x ≤ 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd,Ce) were predicted for a typical sample processing and verified experimentally.« less
Social Dynamics within Electronic Networks of Practice
ERIC Educational Resources Information Center
Mattson, Thomas A., Jr.
2013-01-01
Electronic networks of practice (eNoP) are special types of electronic social structures focused on discussing domain-specific problems related to a skill-based craft or profession in question and answer style forums. eNoP have implemented peer-to-peer feedback systems in order to motivate future contributions and to distinguish contribution…
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1975-01-01
The specific electrical discharge problems that can directly affect the shuttle vehicle and its payloads are addressed. General design guidelines are provided to assist flight hardware managers in minimizing these kinds of problems. Specific data are included on workmanship practices and system testing while in low pressure environments. Certain electrical discharge problems that may be unique to the design of the shuttle vehicle itself and to its various mission operational models are discussed.
Packaging of electronic modules
NASA Technical Reports Server (NTRS)
Katzin, L.
1966-01-01
Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.
Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J. J.; White, R. L.
The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.
Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism
Ramos, J. J.; White, R. L.
2018-03-01
The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.
NASA Astrophysics Data System (ADS)
Mammo, Tulu Wegayehu; Murali, N.; Sileshi, Yonatan Mulushoa; Arunamani, T.
2018-02-01
Partially substituted spinel structured CoFe2-xCexO4 (x = 0, 0.03, 0.06, and 0.09) samples have been synthesized using the sol-gel autocombustion route. Stoichiometric amounts of metal nitrates and citric acid were mixed in double distilled water to get homogeneously mixed solutions which were then heated to burn and result in samples for the next two-step annealing procedures. Structural and phase characterization using powder X-ray diffraction (XRD) has been carried out; and a pure spinel structured samples with lattice parameters increasing with the increase of Ce concentration levels have been obtained. The lattice parameters were calculated to be in the range of 8.42774-8.4744 Å. Field emission scanning electron microscopy (FESEM) microstructure characterizations revealed clear grain structures of the so synthesized samples with grain sizes decreasing with Ce. Fourier transform Infrared (FT-IR) characterization measured in the wave number ranges of 400-4000 cm-1 showed the cation vibrations and stretching at characteristic frequency of 668-418 cm-1. The DC resistivity measurements confirmed a decrease in the resistivity of the samples with the increase of Ce concentration and with the increase of temperature in all of the samples synthesized. Room temperature vibrating sample magnetometer measurement revealed the magnetic properties of the samples with decreasing magnetic parameters as Ce concentration increases.
Site-preference and valency for rare-earth sites in (R-Ce)(2)Fe14B magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, A; Khan, M; McCallum, RW
2013-01-28
Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)(2)Fe14B [R = La, Nd] using density functional theory (DFT) methods-including a DFT+U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data-almost unaffected by Hubbard U, and weakly affectedmore » by spin-orbit coupling. In La2Fe14B, Ce alloys for 0 <= x <= 1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x <= 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd, Ce) were predicted for a typical sample processing and verified experimentally. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789527]« less
Barriers to Securing Data on Bluetooth®-Enabled Mobile Devices: A Phenomenological Study
ERIC Educational Resources Information Center
Hines, Natasha
2015-01-01
Company data on mobile devices is vulnerable and subject to unauthorized access. The general problem is that information security incidents compromise the integrity and authenticity of electronic data. The specific problem is that organizational security policies, procedures, and training do not adequately address the vulnerabilities associated…
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
Unusual pressure dependence of the multipolar interactions in CexLa1-xB6
NASA Astrophysics Data System (ADS)
Ikeda, S.; Umeo, K.; Tou, H.; Sera, M.; Iga, F.; Kunii, S.
We performed the mean field calculation of the magnetization under pressure for the four sublattice model to understand the unusual pressure effect of CeB6. The calculated results are in good agreement with the experimental results and the canted ferromagnetic ground state is predicted to appear at higher pressure. We studied the electrical resistivity of Ce0.75La0.25B6 under pressure. We found that the phase III is rapidly suppressed by pressure and T increases with pressure. At P=0.6 GPa, the direct phase transition from IV to II is found, which will be the clue to understanding the phase IV.
ERIC Educational Resources Information Center
Shipe, Ron; And Others
A study examined the development and implementation of an interactive video instruction system for teaching electronics and industrial maintenance at the University of Tennessee. The specific purposes of the study were to document unusual problems that may be encountered when this new technology is implemented, suggest corrective actions, and…
Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.
2017-01-01
We evaluated the effectiveness of four antibiotics in enhancing the hatch rate, larval survival, and adult survival of hybrid Devils Hole Pupfish Cyprinodon diabolis (hybridized with Ash Meadows Amargosa Pupfish C. nevadensis mionectes). Cephalexin (CEX; concentration = 6.6 mg/L of water), chloramphenicol (CAM; 50 mg/L), erythromycin (ERY; 12.5 mg/L), and trimethoprim sulfamethoxazole (TMP-SMX; 25 mg/L) were applied as a constant bath either to incubating eggs or to larvae that hatched from untreated eggs. Hatch rate was roughly doubled by incubation in the presence of CAM (68% hatch) and TMP-SMX (66%) relative to the control (28%). Cephalexin and ERY conferred no benefit upon the hatch rate. Among fry that hatched from treated eggs, there was no increase in 15-d larval survival. However, fish that hatched from eggs treated with CAM, ERY, and TMP-SMX demonstrated enhanced survival at 360 d (51.2, 38.4, and 43.6%, respectively) and at 540 d (22.6, 6.8, and 20.2%, respectively); the untreated control had no survivors to those time points. All groups of eggs treated with antibiotics showed reductions in bacterial colony-forming units (CFUs) at 24 h posttreatment. At 120 h posttreatment, CEX-treated eggs had CFU counts similar to those of the control, whereas the TMP-SMX-treated eggs had the lowest CFU counts. Eggs treated with CAM and ERY had similar CFU counts, which were significantly reduced from the control counts. Larvae that were treated with CAM and TMP-SMX within 12 h posthatch showed enhanced 15-d survival (74% and 72%, respectively) in comparison with the control (56%). For pupfish rearing efforts in which antibiotic use is appropriate, CAM and TMP-SMX appear to provide the greatest benefit, particularly when applied to incubating eggs rather than to hatched larvae.
Complementary methods of study for Zr1-xCexO2 compounds for applications in medical prosthesis
NASA Astrophysics Data System (ADS)
Savin, Adriana; Craus, Mihail-Liviu; Turchenko, Vitalii; Bruma, Alina; Dubos, Pierre-Antoine; Malo, Sylvie; Konstantinova, Tatiana E.; Burkhovetsky, Valerii V.
2017-08-01
Zirconia (ZrO2)-based ceramics are preferred due to their advanced mechanical properties such as high-fracture toughness and bulk modulus, corrosion resistance, high dielectric constant, chemical inertness, low chemical conductivity and biocompatibility. The medical prosthesis components made from ZrO2 oxides present a very good biocompatibility as well as especially mechanical properties. In order to ensure implant safety of these prostheses, wide ranges of examinations based on nondestructive testing are imperative for these medical implants. In this study, we aim to emphasize the improvement of Zr-based ceramics properties as a function of addition of Ce ions in the structure of the original ceramics. The substitution of the Zr with Ce in the Zr1-xCexO2 compounds, where x = 0.0-0.17, leads to a change of the phase composition, a gradual transition from the monoclinic to tetragonal structure, at room temperature. The structural investigations proposed in this paper are based on X-ray and neutron diffraction in order to establish a first indication of the variation of the phase composition and the structural parameters, as well as micro-hardness measurements and nondestructive evaluations in order to establish a correlation between the structural parameters and mechanical properties of the samples. These ranges of tests are imperative in order to ensure the safety and reliability of these composite materials, which are widely used as hip-implants or dental implants/coatings. In combination of Resonant Ultrasound Spectroscopy, which makes use of the resonance frequencies corresponding to the normal vibrational modes of a solid in order to evaluate the elastic constants of the materials, we emphasize a unique approach on evaluating the physical properties of these ceramics, which could help in advancing the understanding of properties and applications in medical fields.
Lombardi, Lidia; Mendecka, Barbara; Carnevale, Ennio
2018-06-15
The separate collection of Used Cooking Oil (UCO) is gaining popularity through several countries in Europe. An appropriate management of UCO waste stream leads to substantial benefits. In this study, we analyse two different possibilities of UCO energy reuse: the direct feed to a reciprocating internal combustion engine (ICE) for cogeneration purpose, and the processing to generate biodiesel. Concerning biodiesel production, we analyse four among conventional and innovative technologies, characterised by different type and amount of used chemicals, heat and electricity consumptions and yields. We perform a systematic evaluation of environmental benefits and drawbacks by applying life cycle assessment (LCA) analysis to compare the alternatives. For the impact assessment, two methods are selected: the Global Warming Potential (GWP) and Cumulative Exergy Consumption (CExC). Results related only to the processing phases (i.e. not including yet the avoided effects) show that the recovery of UCO in cogeneration plant has in general lower values in terms of environmental impacts than its employment in biodiesel production. When products and co-products substitution are included, the savings obtained by the substitution of conventional diesel production, in the biodiesel cases, are significantly higher than the avoided effects for electricity and heat in the cogeneration case. In particular, by using the UCO in the biodiesel production processes, the savings vary from 41.6 to 54.6 GJ ex per tUCO, and from 2270 to 2860 kg CO 2eq per tUCO for CExC and GWP, respectively. A particular focus is put on sensitivity and uncertainty analyses. Overall, high uncertainty of final results for process impacts is observed, especially for the supercritical methanol process. Low uncertainty values are evaluated for the avoided effects. Including the uncertain character of the impacts, cogeneration scenario and NaOH catalysed process of biodiesel production result to be the most suitable solutions from the process impacts and avoided effects perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Theoretical Model of EGM Problem Gambling: More than a Cognitive Escape
ERIC Educational Resources Information Center
Thomas, Anna Christina; Sullivan, Gavin Brent; Allen, Felicity Catherine Louise
2009-01-01
Although electronic gaming machine (EGM) gambling is established as a particularly risky form of gambling (Dowling, Smith and Thomas, "Addiction" 100:33-45, 2005), models of problem gambling continue to be generalist so factors and processes specific to EGM gambling can be overlooked. This study conducted semi-structured interviews with 13 EGM…
Correlation of Electronic Health Records Use and Reduced Prevalence of Diabetes Co-Morbidities
ERIC Educational Resources Information Center
Eller, James D.
2013-01-01
The general problem is Native American tribes have high prevalence rates of diabetes. The specific problem is the failure of IHS sites to adopt EHR may cause health care providers to miss critical opportunities to improve screening and triage processes that result in quality improvement. The purpose of the quantitative correlational study was to…
The Association Between Electronic Media and Emotional and Behavioral Problems in Late Childhood.
Mundy, Lisa K; Canterford, Louise; Olds, Timothy; Allen, Nicholas B; Patton, George C
2017-08-01
There is growing concern that rising rates of electronic media use might be harmful. However, the extent to which different types of electronic media use might be associated with emotional and behavioral problems is unclear. In this study we examined associations between emotional and behavioral problems and electronic media use during late childhood, in a large community sample. Participants were 876 8- to 9-year-old children taking part in the Childhood to Adolescence Transition Study in Australia. Parents reported on their child's emotional and behavioral problems using the Strengths and Difficulties Questionnaire and on their child's duration of electronic media use (in hours: television, video games, general computer use). Logistic regression analyses were conducted with adjustments for age, socioeconomic status, and body mass index z score, separately for male and female participants. Boys who played more video games had significantly greater odds of scoring borderline/abnormal on conduct (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.02-1.12) and emotional problems (OR, 1.07; 95% CI, 1.04-1.11) for each additional hour of weekly use. This equates to 2.58-fold greater odds for a boy who plays on average 2 hours per day per week. Television viewing was associated with greater odds of hyperactivity/inattention in boys (OR, 1.04; 95% CI, 1.00-1.07). There were no significant relationships for girls. Because of the increasing rates of electronic media use in children, these results might have important implications for child mental health. Future interventions might be more effective if they are targeted at specific types of electronic media use. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Lu1-xI3:Cex--A Scintillator for gamma ray spectroscopy and time-of-flight PET
Shah, Kanai S [Newton, MA
2009-03-17
The present invention concerns very fast scintillator materials comprising lutetium iodide doped with Cerium Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration. The timing resolution of the scintillators of the present invention provide compositions capable of resolving the position of an annihilation event within a portion of a human body cross-section.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
CexTi1-xO 2 nanomaterials applied as photocatalyst and disinfectants
NASA Astrophysics Data System (ADS)
Ancha, Bhumika
The thesis extensively studied the synthesis, characterization and photocatalyticity of Ce-dopedTiO2 (CTO-NPs). An environmental-friendly and cost-effective Sol-Gel approach was used to prepare different formulations of CTO-NPs.The starting materials of Ce(NO3)3 and Ti(nOBu) 4 were used and water iso-proponol mixture was used as a solvent to ensure the solubility of the above starting materials. The fabrication variables of CTO-NPs were optimized according to the photocatalytical reactivity and antibacterial activities. The powders of CTO-NPs were prepared after calculation at 200-400 °C with an increment of 50 °C for 2 hours. These so-prepared CTO-NPs were characterized using X-ray powder diffraction, scanning & transmission electron microscopy, ultra-violet and Raman spectroscopy, to evaluate their crystalline structure, morphology, and vibrational modes. It was found that the TiO2 tetragonal anatase structure (PDF 01-086-1157, 3.7852 x 9.5139 A and 90x90 °) was obtained. The cerium cation substituted the lattice Ti, leading to one phase formation. These CTO-NPs were found to be effective at decomposing methylene blue under visible light. Both Gram-negative (S. marcescens, ATCC 49732) and Gram-positive (M. luteus, ATCC 13880) bacteria were also tested using CTO-NPs as disinfectants. The maximum bactericidal concentrations (MBCs) were found to be 0.6 ppm to inactivate both bacteria within 1 hr.
Dezhurov works with electronic equipment in Zvezda during Expedition Three
2001-08-01
ISS003-E-5486 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, works on electronic equipment behind a panel in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.
Dezhurov works with electronic equipment in Zvezda during Expedition Three
2001-08-01
ISS003-E-5489 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, works on electronic equipment behind a panel in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.
2011-01-01
Background Various countries are currently implementing a national electronic patient record (n-EPR). Despite the assumed positive effects of n-EPRs, their overall adoption remains low and meets resistance from health care providers. This study aims to increase our understanding of health care providers' attitude towards the n-EPR, by investigating their perceptions of the benefits and problems of electronic information exchange in health care and the n-EPR in particular. Methods The study was conducted in three Dutch health care settings: acute care, diabetes care, and ambulatory mental health care. Two health care organisations were included per setting. Between January and June 2010, interviews were conducted with 17 stakeholders working in these organisations. Relevant themes were deduced by means of thematic qualitative analysis. Results Health care providers perceived electronic information exchange to promote the efficiency and quality of care. The problems they perceived in electronic information exchange mainly concerned the confidentiality and safety of information exchange and the reliability and quality of patient data. Many problems perceived by health care providers did not specifically apply to the n-EPR, but to electronic information exchange in general. Conclusions The implementation of the Dutch n-EPR has mainly followed a top-down approach, thereby neglecting the fact that the perceptions and preferences of its users (health care providers) need to be addressed in order to achieve successful implementation. The results of this study provide valuable suggestions about how to promote health care providers' willingness to adopt electronic information exchange, which can be useful for other countries currently implementing an n-EPR. Apart from providing information about the benefits and usefulness of electronic information exchange, efforts should be focused on minimising the problems as perceived by health care providers. The safety and confidentiality of electronic information exchange can be improved by developing tools to evaluate the legitimacy of access to electronic records, by increasing health care providers' awareness of the need to be careful when using patient data, and by measures to limit access to sensitive patient data. Improving health care providers' recording behaviour is important to improve the reliability and quality of electronically exchanged patient data. PMID:21982395
Zwaanswijk, Marieke; Verheij, Robert A; Wiesman, Floris J; Friele, Roland D
2011-10-07
Various countries are currently implementing a national electronic patient record (n-EPR). Despite the assumed positive effects of n-EPRs, their overall adoption remains low and meets resistance from health care providers. This study aims to increase our understanding of health care providers' attitude towards the n-EPR, by investigating their perceptions of the benefits and problems of electronic information exchange in health care and the n-EPR in particular. The study was conducted in three Dutch health care settings: acute care, diabetes care, and ambulatory mental health care. Two health care organisations were included per setting. Between January and June 2010, interviews were conducted with 17 stakeholders working in these organisations. Relevant themes were deduced by means of thematic qualitative analysis. Health care providers perceived electronic information exchange to promote the efficiency and quality of care. The problems they perceived in electronic information exchange mainly concerned the confidentiality and safety of information exchange and the reliability and quality of patient data. Many problems perceived by health care providers did not specifically apply to the n-EPR, but to electronic information exchange in general. The implementation of the Dutch n-EPR has mainly followed a top-down approach, thereby neglecting the fact that the perceptions and preferences of its users (health care providers) need to be addressed in order to achieve successful implementation. The results of this study provide valuable suggestions about how to promote health care providers' willingness to adopt electronic information exchange, which can be useful for other countries currently implementing an n-EPR. Apart from providing information about the benefits and usefulness of electronic information exchange, efforts should be focused on minimising the problems as perceived by health care providers. The safety and confidentiality of electronic information exchange can be improved by developing tools to evaluate the legitimacy of access to electronic records, by increasing health care providers' awareness of the need to be careful when using patient data, and by measures to limit access to sensitive patient data. Improving health care providers' recording behaviour is important to improve the reliability and quality of electronically exchanged patient data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems
NASA Astrophysics Data System (ADS)
Tsaliovich, Anatoly
Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.
Electronic health record meets digital library: a new environment for achieving an old goal.
Humphreys, B L
2000-01-01
Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government encouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics.
Electronic Health Record Meets Digital Library
Humphreys, Betsy L.
2000-01-01
Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government envouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics. PMID:10984463
Dezhurov holds a GTS electronics unit in Zvezda during Expedition Three
2001-08-01
ISS003-E-5477 (August 2001) --- Cosmonaut Vladimir Dezhurov of Rosaviakosmos, Expedition Three flight engineer, holds a Global Time System (GTS) electronics unit in the Zvezda Service Module. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...
2017-09-15
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
ELSI: A unified software interface for Kohn-Sham electronic structure solvers
NASA Astrophysics Data System (ADS)
Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker
2018-01-01
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
Huang, Yunyu; Voorham, Jaco; Haaijer-Ruskamp, Flora M
2016-07-01
Details of data quality and how quality issues were solved have not been reported in published comparative effectiveness studies using electronic health record data. We developed a conceptual framework of data quality assessment and preprocessing and apply it to a study comparing angiotensin-converting enzyme inhibitors with angiotensin receptor blockerss on renal function decline in diabetes patients. The framework establishes a line of thought to identify and act on data issues. The core concept is to evaluate whether data are fit-for-use for research tasks. Possible quality problems are listed through specific signal detections, and verified whether they are true problems. Optimal solutions are selected for the identified problems. This framework can be used in observational studies to improve validity of results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, Jonathan E.
2013-05-13
This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.
Materials and Process Specifications and Standards
1977-11-01
Integrity Requirements; Fracture Control 65 5.9.3 Some Special Problems in Electronic 66 Materials Specifications 5.9.3.1 Thermal Stresses 66...fatigue and fracture and by defining human engineering concepts. Conform to OSHA regulations such as toxicity, noise levels etc. Develop...Standardization Society of the Valves and Fittings Industry. 41 4.6.2.4 OTHER ORGANIZATIONS There are a number of standards-making organizations that cannot
ERIC Educational Resources Information Center
Ensign, Chet
1993-01-01
Describes how the change to Standard Generalized Markup Language at Information Builders began with the use of SGML-like markup in text because it solved a specific problem. Notes that many additional unexpected benefits led to an investigation of converting to formal SGML-based electronic publishing. (SR)
1984-07-01
primarily a stand-alone, equipment-specific trainer which uses both structured and free - play lessonware. Structured lessons provide instruction on various...topics in a typical interactive tutorial format. Free - play lessons present troubleshooting problems and students are allowed to observe and manipulate...the simulated equipment until a solution is reached. Free - play lessons closely parallel laboratory training problems. S3 4. O. .4 o• , e o . . o - o o
Advances in Electronic-Nose Technologies Developed for Biomedical Applications
Wilson, Alphus D.; Baietto, Manuela
2011-01-01
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620
A New Electron Source for Laboratory Simulation of the Space Environment
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian
2012-01-01
We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses
Students' motivation toward feedback-seeking in the clinical workplace.
de Jong, Lubberta H; Favier, Robert P; van der Vleuten, Cees P M; Bok, Harold G J
2017-09-01
In medical education, students are increasingly regarded as active seekers of feedback rather than passive recipients. Previous research showed that in the intentions of students to seek feedback, a learning and performance goal can be distinguished. In this study, we investigated the intentions (defined as level and orientation of motivation) of different performing students (low, average, and high performing students) to seek feedback in the clinical workplace using Self-Determination Theory. We conducted a quantitative study with students in their clinical clerkships and grouped them based on their performance. The level of motivation was measured by the number of Mini-CEXs each student collected. The orientation of motivation was measured by conducting the Academic Self-Regulation Questionnaire. We found that high performing students were more motivated and demonstrated higher self-determination compared to low performing students.
Status of research into lightning effects on aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1976-01-01
Developments in aircraft lightning protection since 1938 are reviewed. Potential lightning problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available lightning test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on lightning severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by lightning strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.
Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.
Urban, Pawel L
2018-05-15
Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronics reliability and measurement technology
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Editor)
1987-01-01
A summary is presented of the Electronics Reliability and Measurement Technology Workshop. The meeting examined the U.S. electronics industry with particular focus on reliability and state-of-the-art technology. A general consensus of the approximately 75 attendees was that "the U.S. electronics industries are facing a crisis that may threaten their existence". The workshop had specific objectives to discuss mechanisms to improve areas such as reliability, yield, and performance while reducing failure rates, delivery times, and cost. The findings of the workshop addressed various aspects of the industry from wafers to parts to assemblies. Key problem areas that were singled out for attention are identified, and action items necessary to accomplish their resolution are recommended.
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.
Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo
2013-01-11
Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
Electronic Health Record in Italy and Personal Data Protection.
Bologna, Silvio; Bellavista, Alessandro; Corso, Pietro Paolo; Zangara, Gianluca
2016-06-01
The present article deals with the Italian Electronic Health Record (hereinafter EHR), recently introduced by Act 221/2012, with a specific focus on personal data protection. Privacy issues--e.g., informed consent, data processing, patients' rights and minors' will--are discussed within the framework of recent e-Health legislation, national Data Protection Code, the related Data Protection Authority pronouncements and EU law. The paper is aimed at discussing the problems arising from a complex, fragmentary and sometimes uncertain legal framework on e-Health.
Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter
2010-01-01
Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836
Wright, A; McCoy, A; Henkin, S; Flaherty, M; Sittig, D
2013-01-01
In a prior study, we developed methods for automatically identifying associations between medications and problems using association rule mining on a large clinical data warehouse and validated these methods at a single site which used a self-developed electronic health record. To demonstrate the generalizability of these methods by validating them at an external site. We received data on medications and problems for 263,597 patients from the University of Texas Health Science Center at Houston Faculty Practice, an ambulatory practice that uses the Allscripts Enterprise commercial electronic health record product. We then conducted association rule mining to identify associated pairs of medications and problems and characterized these associations with five measures of interestingness: support, confidence, chi-square, interest and conviction and compared the top-ranked pairs to a gold standard. 25,088 medication-problem pairs were identified that exceeded our confidence and support thresholds. An analysis of the top 500 pairs according to each measure of interestingness showed a high degree of accuracy for highly-ranked pairs. The same technique was successfully employed at the University of Texas and accuracy was comparable to our previous results. Top associations included many medications that are highly specific for a particular problem as well as a large number of common, accurate medication-problem pairs that reflect practice patterns.
Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692
Deschamps, Ann E; De Geest, Sabina; Vandamme, Anne-Mieke; Bobbaers, Herman; Peetermans, Willy E; Van Wijngaerden, Eric
2008-09-01
Nonadherence to antiretroviral therapy is a substantial problem in HIV and jeopardizes the success of treatment. Accurate measurement of nonadherence is therefore imperative for good clinical management but no gold standard has been agreed on yet. In a single-center prospective study nonadherence was assessed by electronic monitoring: percentage of doses missed and drug holidays and by three self reports: (1) a visual analogue scale (VAS): percentage of overall doses taken; (2) the Swiss HIV Cohort Study Adherence Questionnaire (SHCS-AQ): percentage of overall doses missed and drug holidays and (3) the European HIV Treatment Questionnaire (EHTQ): percentage of doses missed and drug holidays for each antiretroviral drug separately. Virologic failure prospectively assessed during 1 year, and electronic monitoring were used as reference standards. Using virologic failure as reference standard, the best results were for (1) the SHCS-AQ after electronic monitoring (sensitivity, 87.5%; specificity, 78.6%); (2) electronic monitoring (sensitivity, 75%; specificity, 85.6%), and (3) the VAS combined with the SHCS-AQ before electronic monitoring (sensitivity, 87.5%; specificity, 58.6%). The sensitivity of the complex EHTQ was less than 50%. Asking simple questions about doses taken or missed is more sensitive than complex questioning about each drug separately. Combining the VAS with the SHCS-AQ seems a feasible nonadherence measure for daily clinical practice. Self-reports perform better after electronic monitoring: their diagnostic value could be lower when given independently.
Image Restoration in Cryo-electron Microscopy
Penczek, Pawel A.
2011-01-01
Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957
Observations in the Computer Room: L2 Output and Learner Behaviour
ERIC Educational Resources Information Center
Leahy, Christine
2004-01-01
This article draws on second language theory, particularly output theory as defined by Swain (1995), in order to conceptualise observations made in a computer-assisted language learning setting. It investigates second language output and learner behaviour within an electronic role-play setting, based on a subject-specific problem solving task and…
Predicting the melting temperature of ice-Ih with only electronic structure information as input.
Pinnick, Eric R; Erramilli, Shyamsunder; Wang, Feng
2012-07-07
The melting temperature of ice-Ih was calculated with only electronic structure information as input by creating a problem-specific force field. The force field, Water model by AFM for Ice and Liquid (WAIL), was developed with the adaptive force matching (AFM) method by fitting to post-Hartree-Fock quality forces obtained in quantum mechanics∕molecular mechanics calculations. WAIL predicts the ice-Ih melting temperature to be 270 K. The model also predicts the densities of ice and water, the temperature of maximum density of water, the heat of vaporizations, and the radial distribution functions for both ice and water in good agreement with experimental measurements. The non-dissociative WAIL model is very similar to a flexible version of the popular TIP4P potential and has comparable computational cost. By customizing to problem-specific configurations with the AFM approach, the resulting model is remarkably more accurate than any variants of TIP4P for simulating ice-Ih and water in the temperature range from 253 K and 293 K under ambient pressure.
Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Meena, Sher Singh; Kumar, Shalendra; Ahmed, Ateeq; Bhatt, Pramod
2018-05-01
Ce and Dy doped Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0.00 and 0.04) were synthesized via the chemical route using citrate-gel auto-combustion method. The structural analysis has been carried out with the help of x-ray diffraction (XRD). Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. Mössbauer spectra were recorded for both samples at room temperature. Presence of the well resolved sextet spectra corresponding to A and B sub-lattice clearly shows that both the samples have ferrimagnetic ordering at room temperature. Isomer shift observed from fitting of the Mössbauer spectra infers that Fe3+ ions are in high valence state. The decrease in the hyperfine field due to the doping of Ce and Dy clearly showed that magnetic interactions diluted due to the doping of Ce and Dy ions.
NASA Astrophysics Data System (ADS)
Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan
2016-12-01
This work focused on the catalytic transformation of methane (CH4) and carbon dioxide (CO2) into syngas (mixture of CO and H2). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400-700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.
Quesada-Cabrera, Raul; Weng, Xiaole; Hyett, Geoff; Clark, Robin J H; Wang, Xue Z; Darr, Jawwad A
2013-09-09
High-throughput continuous hydrothermal flow synthesis was used to manufacture 66 unique nanostructured oxide samples in the Ce-Zr-Y-O system. This synthesis approach resulted in a significant increase in throughput compared to that of conventional batch or continuous hydrothermal synthesis methods. The as-prepared library samples were placed into a wellplate for both automated high-throughput powder X-ray diffraction and Raman spectroscopy data collection, which allowed comprehensive structural characterization and phase mapping. The data suggested that a continuous cubic-like phase field connects all three Ce-Zr-O, Ce-Y-O, and Y-Zr-O binary systems together with a smooth and steady transition between the structures of neighboring compositions. The continuous hydrothermal process led to as-prepared crystallite sizes in the range of 2-7 nm (as determined by using the Scherrer equation).
The technical consideration of multi-beam mask writer for production
NASA Astrophysics Data System (ADS)
Lee, Sang Hee; Ahn, Byung-Sup; Choi, Jin; Shin, In Kyun; Tamamushi, Shuichi; Jeon, Chan-Uk
2016-10-01
Multi-beam mask writer is under development to solve the throughput and patterning resolution problems in VSB mask writer. Theoretically, the writing time is appropriate for future design node and the resolution is improved with multi-beam mask writer. Many previous studies show the feasible results of resolution, CD control and registration. Although such technical results of development tool seem to be enough for mass production, there are still many unexpected problems for real mass production. In this report, the technical challenges of multi-beam mask writer are discussed in terms of production and application. The problems and issues are defined based on the performance of current development tool compared with the requirements of mask quality. Using the simulation and experiment, we analyze the specific characteristics of electron beam in multi-beam mask writer scheme. Consequently, we suggest necessary specifications for mass production with multi-beam mask writer in the future.
Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV
NASA Technical Reports Server (NTRS)
Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.
1985-01-01
The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.
Xyce parallel electronic simulator users guide, version 6.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R; Mei, Ting; Russo, Thomas V.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less
Xyce parallel electronic simulator users' guide, Version 6.0.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R; Mei, Ting; Russo, Thomas V.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less
Xyce parallel electronic simulator users guide, version 6.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R; Mei, Ting; Russo, Thomas V.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less
NASA Technical Reports Server (NTRS)
White, Mark; Cooper, Mark; Johnston, Allan
2011-01-01
Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.
Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan
2015-04-06
A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.
A survey of particle contamination in electronic devices
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Kagdis, W. A.; Timmins, A. R.
1976-01-01
The experiences are given of a number of National Aeronautics and Space Administration (NASA) and Space and Missile System Organization (SAMSO) contractors with particle contamination, and the methods used for its prevention and detection, evaluates the bases for the different schemes, assesses their effectiveness, and identifies the problems associated with each. It recommends specific short-range tests or approaches appropriate to individual part-type categories and recommends that specific tasks be initiated to refine techniques and to resolve technical and application facets of promising solutions.
Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?
Musgrove, John L.; Morris, Jason; Estrada, Carlos A.; Kraemer, Ryan R.
2016-01-01
Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms. PMID:27168884
Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?
Musgrove, John L; Morris, Jason; Estrada, Carlos A; Kraemer, Ryan R
2016-05-01
Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms.
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2018-04-01
Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.
Tin whiskers in electronic circuits
NASA Astrophysics Data System (ADS)
Stupian, Gary W.
1992-12-01
Fibrous, conducting 'whiskers' often grow on pure tin plating. These tin whiskers have, for many years, been known to pose a reliability problem in electronic circuitry; therefore, the use of pure tin coatings in any critical electronic application is not recommended. Despite the warnings of the experts, tin plating is still found on electronic and mechanical components and problems with whiskers still arise. This document summarizes what is known about the growth of tin whiskers. A number of factors (e.g., coating thickness, plating conditions) are thought to be important in determining whether whiskers will grow. Although tin whiskers have been investigated from some decades, there is still disagreement on the effects of virtually every coating parameter. There is no disagreement, however, on the essential fact that it is very difficult to predict with certainty whether whiskers will grow on any specific tin-plated component, which of course is the basis of the 'experts' advice not to use pure tin plating. If tin-plated components are found in an electronic system, replacement is the safest policy. Some additional recommendations to minimize risk are presented here that may be of use in situations in which replacement of all suspect components is not the option of choice because of cost or schedule constraints.
Electronic media, violence, and adolescents: an emerging public health problem.
David-Ferdon, Corinne; Hertz, Marci Feldman
2007-12-01
Adolescents' access to and use of new media technology (e.g., cell phone, personal data assistant, computer for Internet access) are on the rise, and this explosion of technology brings with it potential benefits and risks. Attention is growing about the risk of adolescents to become victims of aggression perpetrated by peers with new technology. In September 2006, the Centers for Disease Control and Prevention convened a panel of experts in technology and youth aggression to examine this specific risk. This special issue of the Journal of Adolescent Health presents the data and recommendations for future directions discussed at the meeting. The articles in the Journal support the argument that electronic aggression is an emerging public health problem in need of additional prevalence and etiological research to support the development and evaluation of effective prevention programs.
Prasad, Bhim Bali; Madhuri, Rashmi; Tiwari, Mahavir Prasad; Sharma, Piyush Sindhu
2010-05-15
Molecularly imprinted polymers (MIPs) are often electrically insulating materials. Due to the presence of diffusion barrier(s) in between such MIP coating and electrode surface and the absence of a direct path for the conduction of electrons from the binding sites to the electrode, the development of electrochemical sensor is significantly restricted. The direct use of MIPs those possess intrinsic electron-transport properties, is highly limited. These problems are resolved by the design of an original, substrate-selective MIP-fiber sensor that combines conventional insulating MIP and conducting carbon powder in consolidated phase. A layer of conducting carbon particles, arranged orderly as 'carbon strip', is inducted in the polymer for direct electronic conduction. MIP-carbon composite (monolithic fiber) in this work is prepared via in situ free radical polymerization of a new monomer (2,4,6-trisacrylamido-1,3,5-triazine, TAT) and subsequent cross-linkage with ethylene glycol dimethacrylate, in the presence of carbon powder and template (folic acid), at 55 degrees C in a glass capillary. The detection of folic acid with the MIP-fiber sensor was found to be specific and quantitative (detection limit 0.20 ng mL(-1), RSD=1.3%, S/N=3), in aqueous, blood serum and pharmaceutical samples, without any problem of non-specific false-positive contribution and cross-reactivity. 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Reynolds, Cristin Lee; Platt, R. Eric; Malone Schaffer, Lenore; Foster, Holly
2017-01-01
This case is for use in graduate courses pertaining to student affairs and higher education administration. It presents challenges higher education professionals face concerning anonymous social media, and specifically how threats made through anonymous social media platforms such as Yik Yak affect the entire university community. The anonymity of…
77 FR 19589 - Electronic On-Board Recorders and Hours of Service Supporting Documents
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Grand Ballroom IJK on the 2nd floor. Internet Address for Live Webcast. FMCSA will post specific... number for this notice. Note that DOT posts all comments received without change to www.regulations.gov... study of these problems with EOBRs already in use, and a comparison with carriers that do not use these...
The social act of electronic medication prescribing.
Aarts, Jos
2013-01-01
Prescribing medication is embedded in social norms and cultures. In modern Western health care professionals and policy makers have attempted to rationalize medicine by addressing cost-effectiveness of diagnostic and therapeutic treatments and the development of guidelines and protocols based on the outcomes of clinical studies. These notions of cost-effectiveness and evidence-based medicine have also been embedded in technology such as electronic prescribing systems. Such constraining systems may clash with the reality of clinical practice, where formal boundaries of responsibility and authorization are often blurred. Such systems may therefore even impede patient care. Medication is seen as the essence of medical practice. Prescribing is a social act. In a hospital medications may be aimed at treating a patient for a specific condition, in primary care the professional often meets the patient with her or his social and cultural notions of a health problem. The author argues that the design and implementation of electronic prescribing systems should address the social and cultural context of prescribing. Especially in primary care, where health problems are often ill defined and evidence-based medicine guidelines do not always work as intended, studies need to take into account the sociotechnical character of electronic prescribing systems.
Smith, David; Pols, Rene; Lavis, Tiffany; Battersby, Malcolm; Harvey, Peter
2016-12-01
In South Australia (SA) problem gambling is mainly a result of the widespread availability of electronic gaming machines. A key treatment provider in SA offers free cognitive and behavioural therapy (CBT) to help-seeking problem gamblers. The CBT program focuses on the treatment of clients' urge to gamble using exposure therapy (ET) and cognitive therapy (CT) to restructure erroneous gambling beliefs. The aim of this study was to explore treatment specific and non-specific effects for CT alone and ET alone using qualitative interviews. Interviewees were a sub-sample of participants from a randomised trial that investigated the relative efficacy of CT versus ET. Findings revealed that all interviewees gained benefit from their respective therapies and their comments did not appear to favour one therapy over another. Both treatment specific and treatment non-specific effects were well supported as playing a therapeutic role to recovery. Participants' comments in both therapy groups suggested that symptom reduction was experienced on a gambling related urge-cognition continuum. In addition to symptom improvement from therapy-specific mechanisms, ET participants described a general acquisition of "rational thought" from their program of therapy and CT participants had "taken-over" their gambling urges. The findings also highlighted areas for further improvement including therapy drop-out.
Non-Fermi-liquid magic angle effects in high magnetic fields
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2016-07-01
We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .
NASA Astrophysics Data System (ADS)
Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.
2018-04-01
The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.
Optical Control of a Nuclear Spin in Diamond
NASA Astrophysics Data System (ADS)
Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2017-04-01
The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.
An event-based architecture for solving constraint satisfaction problems
Mostafa, Hesham; Müller, Lorenz K.; Indiveri, Giacomo
2015-01-01
Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed. PMID:26642827
NASA Astrophysics Data System (ADS)
Zhou, Tianji; Lanzillo, Nicholas A.; Bhosale, Prasad; Gall, Daniel; Quon, Roger
2018-05-01
We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions.
Deshpande, Saee; Chahande, Jayashree
2014-01-01
Purpose Successful prosthodontic rehabilitation involves making many interrelated clinical decisions which have an impact on each other. Self-directed computer-based training has been shown to be a very useful tool to develop synthetic and analytical problem-solving skills among students. Thus, a computer-based case study and treatment planning (CSTP) software program was developed which would allow students to work through the process of comprehensive, multidisciplinary treatment planning for patients in a structured and logical manner. The present study was aimed at assessing the effect of this CSTP software on the clinical judgment of dental students while planning prosthodontic rehabilitation and to assess the students’ perceptions about using the program for its intended use. Methods A CSTP software program was developed and validated. The impact of this program on the clinical decision making skills of dental graduates was evaluated by real life patient encounters, using a modified and validated mini-CEX. Students’ perceptions about the program were obtained by a pre-validated feedback questionnaire. Results The faculty assessment scores of clinical judgment improved significantly after the use of this program. The majority of students felt it was an informative, useful, and innovative way of learning and they strongly felt that they had learnt the logical progression of planning, the insight into decision making, and the need for flexibility in treatment planning after using this program. Conclusion CSTP software was well received by the students. There was significant improvement in students’ clinical judgment after using this program. It should thus be envisaged fundamentally as an adjunct to conventional teaching techniques to improve students’ decision making skills and confidence. PMID:25170288
ERIC Educational Resources Information Center
Pirttimaa, Matti; Husu, Jukka; Metsärinne, Mika
2017-01-01
Different knowledge types have their own specific features and tasks in the learning process. Procedural knowledge is used in craft and technology education when students solve problems individually and share their working knowledge with others. This study presents a detailed analysis of a one student's learning process in technology education and…
COSTEP - Comprehensive Suprathermal and Energetic Particle Analyser
NASA Astrophysics Data System (ADS)
Müller-Mellin, R.; Kunow, H.; Fleißner, V.; Pehlke, E.; Rode, E.; Röschmann, N.; Scharmberg, C.; Sierks, H.; Rusznyak, P.; McKenna-Lawlor, S.; Elendt, I.; Sequeiros, J.; Meziat, D.; Sanchez, S.; Medina, J.; Del Peral, L.; Witte, M.; Marsden, R.; Henrion, J.
1995-12-01
The COSTEP experiment on SOHO forms part of the CEPAC complex of instruments that will perform studies of the suprathermal and energetic particle populations of solar, interplanetary, and galactic origin. Specifically, the LION and EPHIN instruments are designed to use particle emissions from the Sun for several species (electrons, protons, and helium nuclei) in the energy range 44 keV/particle to > 53 MeV/n as tools to study critical problems in solar physics as well as fundamental problems in space plasma and astrophysics. Scientific goals are presented and a technical description is provided of the two sensors and the common data processing unit. Calibration results are presented which show the ability of LION to separate electrons from protons and the ability of EPHIN to obtain energy spectra and achieve isotope separation for light nuclei. A brief description of mission operations and data products is given.
NASA Technical Reports Server (NTRS)
Mcglathery, D. M.
1975-01-01
The development of an analysis which addresses the problems of degrading space environmental effects on the performance and missions of a Solar Electric Propulsion Stage (SEPS) is reported. A detailed study concerning the degrading effects of the Van Allen Belt charged-particle radiation on specific spacecraft subsystems is included, along with some of the thermal problems caused by electromagnetic radiation from the sun. The analytical methods used require the integration of two distinct analyses. The first, is a low-thrust trajectory analysis which uses analytical approximations to optimum steering for orbit raising, including three-dimensional plane change cases. The second is the conversion of the Vette time-averaged differential energy spectra for protons and electrons into a 1-MeV electron equivalent environment as a function of spatial position and thickness of various shielding materials and solar-cell cover slides.
[Security specifications for electronic medical records on the Internet].
Mocanu, Mihai; Mocanu, Carmen
2007-01-01
The extension for the Web applications of the Electronic Medical Record seems both interesting and promising. Correlated with the expansion of Internet in our country, it allows the interconnection of physicians of different specialties and their collaboration for better treatment of patients. In this respect, the ophthalmologic medical applications consider the increased possibilities for monitoring chronic ocular diseases and for the identification of some elements for early diagnosis and risk factors supervision. We emphasize in this survey some possible solutions to the problems of interconnecting medical information systems to the Internet: the achievement of interoperability within medical organizations through the use of open standards, the automated input and processing for ocular imaging, the use of data reduction techniques in order to increase the speed of image retrieval in large databases, and, last but not least, the resolution of security and confidentiality problems in medical databases.
Wiederkehr, Karl Heinrich
2010-01-01
The development of an electron-theory of metals is closely connected with early speculation in the period before Maxwell (W Weber and others) regarding electrical conductivity in metals. These Speculations were in contrast with Faraday's view of an all-embracing molecular dielectric polarisation, and a subsequent passage of charges in metallic conductors. In terms of the empirical law of Wiedemann-Franz-Lorenz, the conductivity of electricity and heat had to be treated commonly. The classical electron-theory of metals (Riecke, Drude, H.A. Lorentz) reached a dead end on account of problems concerned with specific heat capacity. Sommerfeld, by means of the Quantum theory and the Fermi-Statistic, could find the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.
2009-12-01
We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less
Xyce Parallel Electronic Simulator Users' Guide Version 6.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less
The SPS interference problem-electronic system effects and mitigation techniques
NASA Technical Reports Server (NTRS)
Juroshek, J. R.
1980-01-01
The potential for interference between solar power satellites (SPS) and other Earth satellite operations was examined along with interference problems involving specific electronic devices. Conclusions indicate that interference is likely in the 2500 MHz to 2690 MHz direct broadcast satellite band adjacent to SPS. Estimates of the adjacent channel noise from SPS in this band are as high as -124 dBc/4 kHz and -100 dBc/MHz, where dBc represents decibels relative to the total power in the fundamental. A second potential problem is the 7350 MHz, 3d harmonic from SPS that falls within the 7300 MHz to 7450 MHz space to Earth, government, satellite assignment. Catastrophic failures can be produced in integrated circuits when the microwave power levels coupled into inputs and power leads reach 1 to 100 watts. The failures are typically due to bonding wire melting, metallization failures, and junction shorting. Nondestructive interaction or interference, however, generally occurs with coupled power levels of the order of 10 milliwatts. This integration is due to the rectification of microwave energy by the numerous pn junctions within these circuits.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
GASPACHO: a generic automatic solver using proximal algorithms for convex huge optimization problems
NASA Astrophysics Data System (ADS)
Goossens, Bart; Luong, Hiêp; Philips, Wilfried
2017-08-01
Many inverse problems (e.g., demosaicking, deblurring, denoising, image fusion, HDR synthesis) share various similarities: degradation operators are often modeled by a specific data fitting function while image prior knowledge (e.g., sparsity) is incorporated by additional regularization terms. In this paper, we investigate automatic algorithmic techniques for evaluating proximal operators. These algorithmic techniques also enable efficient calculation of adjoints from linear operators in a general matrix-free setting. In particular, we study the simultaneous-direction method of multipliers (SDMM) and the parallel proximal algorithm (PPXA) solvers and show that the automatically derived implementations are well suited for both single-GPU and multi-GPU processing. We demonstrate this approach for an Electron Microscopy (EM) deconvolution problem.
NASA Astrophysics Data System (ADS)
Sob, M.; Sormann, H.; Kuriplach, J.
Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is demonstrated for the case of nanocrystalline Ni where realistic atomic configurations are taken from large-scale molecular dynamics simulations.
Protecting software agents from malicious hosts using quantum computing
NASA Astrophysics Data System (ADS)
Reisner, John; Donkor, Eric
2000-07-01
We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.
A systematic approach to numerical dispersion in Maxwell solvers
NASA Astrophysics Data System (ADS)
Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt
2018-03-01
The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng
Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less
Verification of EPA's " Preliminary remediation goals for radionuclides" (PRG) electronic calculator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagich, B. H.
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides information on establishing PRGs for radionuclides at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites with radioactive contamination (Verification Study Charge, Background). These risk-based PRGs set concentration limits using carcinogenic toxicity values under specific exposure conditions (PRG User’s Guide, Section 1). The purpose of this verification study is to ascertain that the computer codes has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly.
Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less
Secure E-Business applications based on the European Citizen Card
NASA Astrophysics Data System (ADS)
Zipfel, Christian; Daum, Henning; Meister, Gisela
The introduction of ID cards enhanced with electronic authentication services opens up the possibility to use these for identification and authentication in e-business applications. To avoid incompatible national solutions, the specification of the European Citizen Card aims at defining interoperable services for such use cases. Especially the given device authentication methods can help to eliminate security problems with current e-business and online banking applications.
Upsets related to spacecraft charging
NASA Astrophysics Data System (ADS)
Frederickson, A. R.
1996-04-01
The charging of spacecraft components by high energy radiation can result in spontaneous pulsed discharges. The pulses can interrupt normal operations of spacecraft electronics. The 20-year history of ground studies and spacecraft studies of this phenomenon are reviewed. The data from space are not sufficient to unambiguously point to a few specific solutions. The ground based data continue to find more problem areas the longer one looks. As spacecraft become more complex and carry less radiation shielding, the charging and discharging of insulators is becoming a more critical problem area. Ground experiments indicate that solutions for spacecraft are multiple and diverse, and many technical details are reviewed or introduced here.
Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations
NASA Astrophysics Data System (ADS)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang
2018-02-01
We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.
Sharing clinical information across care settings: the birth of an integrated assessment system
Gray, Leonard C; Berg, Katherine; Fries, Brant E; Henrard, Jean-Claude; Hirdes, John P; Steel, Knight; Morris, John N
2009-01-01
Background Population ageing, the emergence of chronic illness, and the shift away from institutional care challenge conventional approaches to assessment systems which traditionally are problem and setting specific. Methods From 2002, the interRAI research collaborative undertook development of a suite of assessment tools to support assessment and care planning of persons with chronic illness, frailty, disability, or mental health problems across care settings. The suite constitutes an early example of a "third generation" assessment system. Results The rationale and development strategy for the suite is described, together with a description of potential applications. To date, ten instruments comprise the suite, each comprising "core" items shared among the majority of instruments and "optional" items that are specific to particular care settings or situations. Conclusion This comprehensive suite offers the opportunity for integrated multi-domain assessment, enabling electronic clinical records, data transfer, ease of interpretation and streamlined training. PMID:19402891
Design of agricultural product quality safety retrospective supervision system of Jiangsu province
NASA Astrophysics Data System (ADS)
Wang, Kun
2017-08-01
In store and supermarkets to consumers can trace back agricultural products through the electronic province card to query their origin, planting, processing, packaging, testing and other important information and found that the problems. Quality and safety issues can identify the responsibility of the problem. This paper designs a retroactive supervision system for the quality and safety of agricultural products in Jiangsu Province. Based on the analysis of agricultural production and business process, the goal of Jiangsu agricultural product quality safety traceability system construction is established, and the specific functional requirements and non-functioning requirements of the retroactive system are analyzed, and the target is specified for the specific construction of the retroactive system. The design of the quality and safety traceability system in Jiangsu province contains the design of the overall design, the trace code design and the system function module.
Applying Quantum Monte Carlo to the Electronic Structure Problem
NASA Astrophysics Data System (ADS)
Powell, Andrew D.; Dawes, Richard
2016-06-01
Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).
Specialty Task Force: A Strategic Component to Electronic Health Record (EHR) Optimization.
Romero, Mary Rachel; Staub, Allison
2016-01-01
Post-implementation stage comes after an electronic health record (EHR) deployment. Analyst and end users deal with the reality that some of the concepts and designs initially planned and created may not be complementary to the workflow; creating anxiety, dissatisfaction, and failure with early adoption of system. Problems encountered during deployment are numerous and can vary from simple to complex. Redundant ticket submission creates backlog for Information Technology personnel resulting in delays in resolving concerns with EHR system. The process of optimization allows for evaluation of system and reassessment of users' needs. A solid and well executed optimization infrastructure can help minimize unexpected end-user disruptions and help tailor the system to meet regulatory agency goals and practice standards. A well device plan to resolve problems during post implementation is necessary for cost containment and to streamline communication efforts. Creating a specialty specific collaborative task force is efficacious and expedites resolution of users' concerns through a more structured process.
A Boundary Scan Test Vehicle for Direct Chip Attach Testing
NASA Technical Reports Server (NTRS)
Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji
2000-01-01
To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.
SOME PROBLEMS IN THE CONSTRUCTION OF AN ELECTRON LINEAR ACCELERATOR (in Dutch)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaeghe, J.; Vanhuyse, V.; Van Leuven, P.
1959-01-01
Special problems encountered in the construction of the electron linear accelerator of the Natuurkundig Laboratorium der Rijksuniversiteit of Ghent are discussed. The subjects considered are magnetic focusing, magnetic screening of the electron gun cathode, abnormal attenuation-multipactor effects, and electron energy control. (J.S.R.)
New techniques for imaging and analyzing lung tissue.
Roggli, V L; Ingram, P; Linton, R W; Gutknecht, W F; Mastin, P; Shelburne, J D
1984-01-01
The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D FIGURE 4. FIGURE 5. FIGURE 7. A FIGURE 7. B FIGURE 8. A FIGURE 8. B FIGURE 8. C FIGURE 9. A FIGURE 9. B FIGURE 10. PMID:6090115
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
Research on Long Tail Recommendation Algorithm
NASA Astrophysics Data System (ADS)
Hu, Xuezhi; Zhang, Chuang; Wu, Ming; Zeng, Yang
2017-10-01
Most recommendation systems in the major electronic commerce platforms are influenced by the long tail effect more or less. There are sufficient researches of how to assess recommendation effect while no criteria to evaluate long tail recommendation rate. In this study, we first discussed the existing problems of recommending long tail products through specific experiments. Then we proposed a long tail evaluation criteria and compared the performance in long tail recommendation between different models.
Innovative research on the group teaching mode based on the LabVIEW virtual environment
NASA Astrophysics Data System (ADS)
Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia
2017-08-01
This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.
Vonk-Klaassen, Sylvia M; de Vocht, Hilde M; den Ouden, Marjolein E M; Eddes, Eric Hans; Schuurmans, Marieke J
2016-01-01
Many long-term ostomates are 'out-of-sight' of healthcare, and it is unknown how ostomates deal with ostomy-related problems and how these problems affect their quality of life (QOL). The aim is to examine patient-related studies describing ostomy-related problems and their impact on the perceived QOL of long-term colostomates. The electronic databases PubMed (MEDLINE), CINAHL, Cochrane Library and PsycINFO were systematically searched. All studies were included in which ostomy-specific QOL was measured using validated multidimensional instruments. Of the 6447 citations identified, 14 prevailingly descriptive cross-sectional studies were included. Three different validated multidimensional instruments for measuring QOL in ostomates were used (EORTC C30/CR38, MCOHQOLQO, Stoma QOL Questionnaire). All studies demonstrated that living with a colostomy influences the overall QOL negatively. The ostomy-related problems described included sexual problems, depressive feelings, gas, constipation, dissatisfaction with appearance, change in clothing, travel difficulties, feeling tired and worry about noises. In conclusion, all 14 studies gave an indication of the impact of ostomy-related problems on the perceived QOL and demonstrated that a colostomy influences the QOL negatively. There is a wide range of ostomy-specific QOL scores, and there seem to be higher QOL scores in the studies where the MCOHQOLQO instrument was used. The MCOHQOLQO and the Stoma QOL Questionnaire gave the most detailed information about which ostomy-related problems were experienced. This review adds knowledge about the impact of stoma-related problems on QOL of long-term ostomates, but more research has to be conducted, to detect ostomy-related problems and especially possible care needs.
Electronic gaming machines: are they the 'crack-cocaine' of gambling?
Dowling, Nicki; Smith, David; Thomas, Trang
2005-01-01
There is a general view that electronic gaming is the most 'addictive' form of gambling, in that it contributes more to causing problem gambling than any other gambling activity. As such, electronic gaming machines have been referred to as the 'crack-cocaine' of gambling. While this analogy has popular appeal, it is only recently that the scientific community has begun to investigate its validity. In line with the belief that electronic gambling has a higher 'addictive' potential than other forms of gambling, research has also begun to focus on identifying the characteristics of gaming machines that may be associated with problem gambling behaviour. This paper will review the different types of modern electronic gaming machines, and will use the introduction of gaming machines to Australia to examine the association between electronic gaming and problem gambling, with particular reference to the characteristics of modern electronic gaming machines. Despite overwhelming acceptance that gaming machines are associated with the highest level of problem gambling, the empirical literature provides inconclusive evidence to support the analogy linking electronic gaming to 'crack-cocaine'. Rigorous and systematic evaluation is required to establish definitively the absolute 'addictive' potential of gaming machines and the degree to which machine characteristics influence the development and maintenance of problem gambling behaviour.
Xyce parallel electronic simulator : users' guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.
2011-05-01
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less
Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.
Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D
2017-09-19
Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.
From Tedious to Timely: Screencasting to Troubleshoot Electronic Resource Issues
ERIC Educational Resources Information Center
Hartnett, Eric; Thompson, Carole
2010-01-01
The shift from traditional print materials to electronic resources, in conjunction with the rise in the number of distance education programs, has left many electronic resource librarians scrambling to keep up with the resulting inundation of electronic resource problems. When it comes to diagnosing these problems, words do not always convey all…
NASA Astrophysics Data System (ADS)
Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine
2017-10-01
The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.
Computer-mediated mobile messaging as collaboration support for nurses.
Karpati, Peter; Toussaint, Pieter Jelle; Nytrø, Oystein
2009-01-01
Collaboration in hospitals is coordinated mainly by communication, which currently happens by face-to-face meetings, phone calls, pagers, notes and the electronic patient record. These habits raise problems e.g., delayed notifications and unnecessary interruptions. Dealing with these problems could save time and improve the care. Therefore we designed and prototyped a mobile messaging solution based on two specific scenarios coming from observations at a cardiology department of a Norwegian hospital. The main focus was on supporting the work of nurses. One prototype supported patient management while another one dealt with messages related to medication planning. The evaluation of the prototypes suggested that messaging-based collaboration support is worth to explore and also gave ideas for improvement.
Decker, Sandra L; Jamoom, Eric W; Sisk, Jane E
2012-05-01
By 2011 more than half of all office-based physicians were using electronic health record systems, but only about one-third of those physicians had systems with basic features such as the abilities to record information on patient demographics, view laboratory and imaging results, maintain problem lists, compile clinical notes, or manage computerized prescription ordering. Basic features are considered important to realize the potential of these systems to improve health care. We found that although trends in adoption of electronic health record systems across geographic regions converged from 2002 through 2011, adoption continued to lag for non-primary care specialists, physicians age fifty-five and older, and physicians in small (1-2 providers) and physician-owned practices. Federal policies are specifically aimed at encouraging primary care providers and small practices to achieve widespread use of electronic health records. To achieve their nationwide adoption, federal policies may also have to focus on encouraging adoption among non-primary care specialists, as well as addressing persistent gaps in the use of electronic record systems by practice size, physician age, and ownership status.
A proposal to encourage intuitive learning in a senior-level analogue electronics course
NASA Astrophysics Data System (ADS)
Berjano, E.; Lozano-Nieto, A.
2011-05-01
One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the particular case of analogue electronics, an additional difficulty seems to be that understanding involves both analytic skills and an intuitive grasp of circuit characteristics. This paper presents a proposal to help senior students to think intuitively in order to identify the common issue involved in a group of problems of analogue electronics and build an abstract concept based on, for example, a theory or a mathematical model in order to use it to solve future problems. The preliminary results suggest that this proposal could be useful to promote intuitive reasoning in analogue electronics courses. The experience would later be useful to graduates in analytically solving new types of problems or in designing new electronic circuits.
Generalized pseudopotential approach for electron-atom scattering.
NASA Technical Reports Server (NTRS)
Zarlingo, D. G.; Ishihara, T.; Poe, R. T.
1972-01-01
A generalized many-electron pseudopotential approach is presented for electron-neutral-atom scattering problems. A calculation based on this formulation is carried out for the singlet s-wave and p-wave electron-hydrogen phase shifts with excellent results. We compare the method with other approaches as well as discuss its applications for inelastic and rearrangement collision problems.
Ergonomics in the electronic library.
Thibodeau, P L; Melamut, S J
1995-01-01
New technologies are changing the face of information services and how those services are delivered. Libraries spend a great deal of time planning the hardware and software implementations of electronic information services, but the human factors are often overlooked. Computers and electronic tools have changed the nature of many librarians' daily work, creating new problems, including stress, fatigue, and cumulative trauma disorders. Ergonomic issues need to be considered when designing or redesigning facilities for electronic resources and services. Libraries can prevent some of the common problems that appear in the digital workplace by paying attention to basic ergonomic issues when designing workstations and work areas. Proper monitor placement, lighting, workstation setup, and seating prevent many of the common occupational problems associated with computers. Staff training will further reduce the likelihood of ergonomic problems in the electronic workplace. PMID:7581189
Application Specific Electronic Module Program (ASEM), Final Technical Report.
1994-12-14
relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The
González-Roz, Alba; Fernández-Hermida, José R; Weidberg, Sara; Martínez-Loredo, Victor; Secades-Villa, Roberto
2017-06-01
The high availability and accessibility of online gambling have recently caused public concern regarding the potential increase of gambling-related problems among young people. Nonetheless, few studies among adults and none among adolescents have explored specific characteristics of gamblers as a function of gambling venues to date. This study sought to analyze the prevalence of gambling among a sample of adolescents in the last year, as well as sociodemographic and gambling-related characteristics as possible predictors of at-risk and problem gambling. The sample comprised 1313 adolescents aged 14-18 years. Participants were asked to respond to several questions regarding their gambling behavior. Chi square and ANOVA tests were performed in order to explore differences between groups, and a set of multinomial regressions established significant severity predictors. The prevalence of at-risk and problem gambling was 4 and 1.2 %, respectively. Regression analyses showed that having a relative with gambling problems predicted at-risk gambling. Both living with only one parent or not living with parents at all, and the prevalence of Electronic Gambling Machines in the last year were associated with problem gambling. Mixed-mode gambling was a predictor of both at-risk and problem gambling. Our findings extend previous research on gambling among adolescents by exploring gambling behavior according to different modes of access. Although the prevalence of exclusive online gambling among the total sample was low, these results support the need to consider specific subgroups of gamblers and their concrete related features when conducting both indicated prevention and treatment protocols for adolescents.
Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat
2017-11-10
In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Chernyi, S. G.; Nyrkov, A. P.; Sokolov, S. S.
2017-10-01
Nitrides of group III elements are a very suitable basis for deriving light-emitting devices with the radiating modes lengths of 200-600 nm. The use of such semiconductors allows obtaining full-color RGB light sources, increasing record density of a digital data storage device, getting high-capacity and efficient sources of white light. Electronic properties of such semi-conductors allow using them as a basis for high-power and high-frequency transistors and other electronic devices, the specifications of which are competitive with those of SiC-based devices. Only since 2000, the technology of cultivation of crystals III-N of group has come to the level of wide recognition by both abstract science, and the industry that has led to the creation of the multi-billion dollar market. And this is despite a rather low level of development of the production technology of devices on the basis of III-N of materials. The progress that has happened in the last decade requires the solution of the main problem, constraining further development of this technology today - ensuring cultivation of III-N structures of necessary quality. For this purpose, it is necessary to solve problems of the analysis and optimization of processes in installations of epitaxial growth, and, as a result, optimization of its constructions.
Searching for 'Unknown Unknowns'
NASA Technical Reports Server (NTRS)
Parsons, Vickie S.
2005-01-01
The NASA Engineering and Safety Center (NESC) was established to improve safety through engineering excellence within NASA programs and projects. As part of this goal, methods are being investigated to enable the NESC to become proactive in identifying areas that may be precursors to future problems. The goal is to find unknown indicators of future problems, not to duplicate the program-specific trending efforts. The data that is critical for detecting these indicators exist in a plethora of dissimilar non-conformance and other databases (without a common format or taxonomy). In fact, much of the data is unstructured text. However, one common database is not required if the right standards and electronic tools are employed. Electronic data mining is a particularly promising tool for this effort into unsupervised learning of common factors. This work in progress began with a systematic evaluation of available data mining software packages, based on documented decision techniques using weighted criteria. The four packages, which were perceived to have the most promise for NASA applications, are being benchmarked and evaluated by independent contractors. Preliminary recommendations for "best practices" in data mining and trending are provided. Final results and recommendations should be available in the Fall 2005. This critical first step in identifying "unknown unknowns" before they become problems is applicable to any set of engineering or programmatic data.
Murphy's law-if anything can go wrong, it will: Problems in phage electron microscopy.
Ackermann, Hans-W; Tiekotter, Kenneth L
2012-04-01
The quality of bacteriophage electron microscopy appears to be on a downward course since the 1980s. This coincides with the introduction of digital electron microscopes and a general lowering of standards, possibly due to the disappearance of several world-class electron microscopists The most important problem seems to be poor contrast. Positive staining is frequently not recognized as an undesirable artifact. Phage parts, bacterial debris, and aberrant or damaged phage particles may be misdiagnosed as bacterial viruses. Digital electron microscopes often seem to be operated without magnification control because this is difficult and inconvenient. In summary, most phage electron microscopy problems may be attributed to human failure. Journals are a last-ditch defense and have a heavy responsibility in selecting competent reviewers and rejecting, or not, unsatisfactory articles.
Amra, Sakusic; O'Horo, John C; Singh, Tarun D; Wilson, Gregory A; Kashyap, Rahul; Petersen, Ronald; Roberts, Rosebud O; Fryer, John D; Rabinstein, Alejandro A; Gajic, Ognjen
2017-02-01
Long-term cognitive impairment is a common and important problem in survivors of critical illness. We developed electronic search algorithms to identify cognitive impairment and dementia from the electronic medical records (EMRs) that provide opportunity for big data analysis. Eligible patients met 2 criteria. First, they had a formal cognitive evaluation by The Mayo Clinic Study of Aging. Second, they were hospitalized in intensive care unit at our institution between 2006 and 2014. The "criterion standard" for diagnosis was formal cognitive evaluation supplemented by input from an expert neurologist. Using all available EMR data, we developed and improved our algorithms in the derivation cohort and validated them in the independent validation cohort. Of 993 participants who underwent formal cognitive testing and were hospitalized in intensive care unit, we selected 151 participants at random to form the derivation and validation cohorts. The automated electronic search algorithm for cognitive impairment was 94.3% sensitive and 93.0% specific. The search algorithms for dementia achieved respective sensitivity and specificity of 97% and 99%. EMR search algorithms significantly outperformed International Classification of Diseases codes. Automated EMR data extractions for cognitive impairment and dementia are reliable and accurate and can serve as acceptable and efficient alternatives to time-consuming manual data review. Copyright © 2016 Elsevier Inc. All rights reserved.
On electron bunching and stratification of glow discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubovskii, Yuri B.; Kolobov, Vladimir I.; Nekuchaev, Vladimir O.
2013-10-15
Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glowmore » discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.« less
Solving Identity Management and Interoperability Problems at Pan-European Level
NASA Astrophysics Data System (ADS)
Sánchez García, Sergio; Gómez Oliva, Ana
In a globalized digital world, it is essential for persons and entities to have a recognized and unambiguous electronic identity that allows them to communicate with one another. The management of this identity by public administrations is an important challenge that becomes even more crucial when interoperability among public administrations of different countries becomes necessary, as persons and entities have different credentials depending on their own national legal frameworks. More specifically, different credentials and legal frameworks cause interoperability problems that prevent reliable access to public services in a cross-border scenarios like today's European Union. Work in this doctoral thesis try to analyze the problem in a carefully detailed manner by studying existing proposals (basically in Europe), proposing improvements in defined architectures and performing practical work to test the viability of solutions. Moreover, this thesis will also address the long-standing security problem of identity delegation, which is especially important in complex and heterogeneous service delivery environments like those mentioned above. This is a position paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph
2016-08-07
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less
Xyce Parallel Electronic Simulator : users' guide, version 2.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont
2004-06-01
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less
The Electronic Age and Libraries: Present Problems and Future Prospects.
ERIC Educational Resources Information Center
Igwe, P. O. E.
1986-01-01
Summarizes impact of the electronic age and role of the library focusing on the situation in Nigeria and concern for the new age; problems of Nigerian libraries and librarians (developing economy, responsibility for development, political situation, technological problems, lack of personnel); future prospects; and suggestions for present.…
Problem Solving Interactions on Electronic Networks.
ERIC Educational Resources Information Center
Waugh, Michael; And Others
Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…
Assembling Appliances Standards from a Basket of Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siderious, Hans-Paul; Meier, Alan
2014-08-11
Rapid innovation in product design challenges the current methodology for setting standards and labels, especially for electronics, software and networking. Major problems include defining the product, measuring its energy consumption, and choosing the appropriate metric and level for the standard. Most governments have tried to solve these problems by defining ever more specific product subcategories, along with their corresponding test methods and metrics. An alternative approach would treat each energy-using product as something that delivers a basket of functions. Then separate standards would be constructed for the individual functions that can be defined, tested, and evaluated. Case studies of thermostats,more » displays and network equipment are presented to illustrate the problems with the classical approach for setting standards and indicate the merits and drawbacks of the alternative. The functional approach appears best suited to products whose primary purpose is processing information and that have multiple functions.« less
Intrinsic optimization using stochastic nanomagnets
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-01-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053
Intrinsic optimization using stochastic nanomagnets
NASA Astrophysics Data System (ADS)
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-03-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.
NASA Technical Reports Server (NTRS)
Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.
1976-01-01
The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.
Internal variation of electron temperature in HII regions
NASA Astrophysics Data System (ADS)
Oliveira, V. A.
2017-11-01
It is usual to think that if you calculate the same physical propriety from different methods you must find the same result, or within the margin of error. However, this is not the case if you calculate the abundance of heavy elements in photoionized nebulae. In fact, it is possible to find a value at least two times bigger, according to whether you estimate from recombination lines or from collisionally excited emission lines. This is called AD problem, and since 1967 the astronomers think about it and we do not have any final conclusion yet. This work aims to bring a small light to the path of a solution of AD problem, specifically for HII regions and, perhaps, to all types of photoionized nebulae.
Dornburg, Courtney C; Stevens, Susan M; Hendrickson, Stacey M L; Davidson, George S
2009-08-01
An experiment was conducted to compare the effectiveness of individual versus group electronic brainstorming to address difficult, real-world challenges. Although industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges during the course of 4 days. Employees and contractors at a national laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a real-world problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p < .05) outperformed the group. When quality is used to benchmark success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses rather than by electronically convening a group. This research suggests that industrial reliance on electronic problem-solving groups should be tempered, and large nominal groups may be more appropriate corporate problem-solving vehicles.
ERIC Educational Resources Information Center
Sutirman; Muhyadi; Surjono, Herman Dwi
2017-01-01
This study aims to investigate the learning implementation of electronic filing and problems faced by teachers in learning implementing of electronic filing. This study is a descriptive research with qualitative approach. Collecting data used interview and documentation techniques. The research subjects consisted of 29 teachers who teach Filing…
Smart image sensors: an emerging key technology for advanced optical measurement and microsystems
NASA Astrophysics Data System (ADS)
Seitz, Peter
1996-08-01
Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.
Operating Room Delays: Meaningful Use in Electronic Health Record.
Van Winkle, Rachelle A; Champagne, Mary T; Gilman-Mays, Meri; Aucoin, Julia
2016-06-01
Perioperative areas are the most costly to operate and account for more than 40% of expenses. The high costs prompted one organization to analyze surgical delays through a retrospective review of their new electronic health record. Electronic health records have made it easier to access and aggregate clinical data; 2123 operating room cases were analyzed. Implementing a new electronic health record system is complex; inaccurate data and poor implementation can introduce new problems. Validating the electronic health record development processes determines the ease of use and the user interface, specifically related to user compliance with the intent of the electronic health record development. The revalidation process after implementation determines if the intent of the design was fulfilled and data can be meaningfully used. In this organization, the data fields completed through automation provided quantifiable, meaningful data. However, data fields completed by staff that required subjective decision making resulted in incomplete data nearly 24% of the time. The ease of use was further complicated by 490 permutations (combinations of delay types and reasons) that were built into the electronic health record. Operating room delay themes emerged notwithstanding the significant complexity of the electronic health record build; however, improved accuracy could improve meaningful data collection and a more accurate root cause analysis of operating room delays. Accurate and meaningful use of data affords a more reliable approach in quality, safety, and cost-effective initiatives.
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Böttcher, Markus
2017-10-01
We present particle-in-cell simulation results of relativistic shear boundary layers between electron-ion and electron-positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron-positron spine surrounded by a slow-moving or stationary electron-ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron-ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.
An Exploratory Study of Problem Gambling on Casino versus Non-Casino Electronic Gaming Machines
ERIC Educational Resources Information Center
Clarke, Dave; Pulford, Justin; Bellringer, Maria; Abbott, Max; Hodgins, David C.
2012-01-01
Electronic gaming machines (EGMs) have been frequently associated with problem gambling. Little research has compared the relative contribution of casino EGMs versus non-casino EGMs on current problem gambling, after controlling for demographic factors and gambling behaviour. Our exploratory study obtained data from questionnaires administered to…
Investigation of The Omaha System for dentistry.
Jurkovich, M W; Ophaug, M; Salberg, S; Monsen, K
2014-01-01
Today, dentists and hygienists have inadequate tools to identify contributing factors to dental disease, diagnosis of disease or to document outcomes in a standardized and machine readable format. Increasing demand to find the most effective care methodologies make the development of further terminologies for dentistry more urgent. Preventive care is the focus of early efforts to define best practices. We reviewed one possibility with a history of public health documentation that might assist in these early efforts at identifying best practices. This paper examines, through a survey of dentists, the Omaha System Problem Classification Scheme. The survey requested that dentists rate the usefulness of knowing about specific signs and symptoms for each of the 42 problems within the Problem list of the Omaha System. Using a weighted scoring system, 22 of the 42 problems received over 50% of the possible maximum score and 30 of the 42 problems received at least 25% of the possible points. These findings suggests that further evaluation of The Omaha System, may be useful to dentistry. At a minimum, the survey provides additional information about non-physiological problems, signs, and symptoms that may be appropriate for documentation purposes within an electronic health record (EHR) used in dentistry.
Quantum states and optical responses of low-dimensional electron hole systems
NASA Astrophysics Data System (ADS)
Ogawa, Tetsuo
2004-09-01
Quantum states and their optical responses of low-dimensional electron-hole systems in photoexcited semiconductors and/or metals are reviewed from a theoretical viewpoint, stressing the electron-hole Coulomb interaction, the excitonic effects, the Fermi-surface effects and the dimensionality. Recent progress of theoretical studies is stressed and important problems to be solved are introduced. We cover not only single-exciton problems but also few-exciton and many-exciton problems, including electron-hole plasma situations. Dimensionality of the Wannier exciton is clarified in terms of its linear and nonlinear responses. We also discuss a biexciton system, exciton bosonization technique, high-density degenerate electron-hole systems, gas-liquid phase separation in an excited state and the Fermi-edge singularity due to a Mahan exciton in a low-dimensional metal.
An application protocol for CAD to CAD transfer of electronic information
NASA Technical Reports Server (NTRS)
Azu, Charles C., Jr.
1993-01-01
The exchange of Computer Aided Design (CAD) information between dissimilar CAD systems is a problem. This is especially true for transferring electronics CAD information such as multi-chip module (MCM), hybrid microcircuit assembly (HMA), and printed circuit board (PCB) designs. Currently, there exists several neutral data formats for transferring electronics CAD information. These include IGES, EDIF, and DXF formats. All these formats have limitations for use in exchanging electronic data. In an attempt to overcome these limitations, the Navy's MicroCIM program implemented a project to transfer hybrid microcircuit design information between dissimilar CAD systems. The IGES (Initial Graphics Exchange Specification) format is used since it is well established within the CAD industry. The goal of the project is to have a complete transfer of microelectronic CAD information, using IGES, without any data loss. An Application Protocol (AP) is being developed to specify how hybrid microcircuit CAD information will be represented by IGES entity constructs. The AP defines which IGES data items are appropriate for describing HMA geometry, connectivity, and processing as well as HMA material characteristics.
Scanning tunnelling microscope for boron surface studies
NASA Astrophysics Data System (ADS)
Trenary, Michael
1990-10-01
The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).
Organic Electronics for Point-of-Care Metabolite Monitoring.
Pappa, Anna-Maria; Parlak, Onur; Scheiblin, Gaetan; Mailley, Pascal; Salleo, Alberto; Owens, Roisin M
2018-01-01
In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impulsivity and Gambling Type Among Treatment-Seeking Disordered Gamblers: An Explorative Study.
Lutri, Vittorio; Soldini, Emiliano; Ronzitti, Silvia; Smith, Neil; Clerici, Massimo; Blaszczynski, Alex; Bowden-Jones, Henrietta
2018-03-03
Several studies have found that certain traits of impulsivity are associated with gambling disorder, and influence its severity. Furthermore, it has been suggested that some forms of gambling, particularly electronic gambling machines, are particularly widespread among pathological gamblers. In the present, exploratory study, we aim to clarify the role played by impulsivity in influencing the choice of specific gambling activities, by examining the relation between individual dimensions of impulsivity, and the choice of specific gambling activities in a clinical population. 100 consecutively admitted pathological gamblers at the National Problem Gambling Clinic in London (UK) in 2014 were administered the UPPS-P and BIS-11 impulsivity questionnaires, the Problem Gambling Severity Index, and underwent a structured interview concerning their gambling activities in the month and year prior to assessment. The correlation between individual gambling activities and impulsivity dimensions was analyzed both at a bivariate level, and using logistic regression. We found a significant correlation between Negative Urgency, Motor impulsivity and low-stakes machine gambling on multivariate analysis. Negative urgency (i.e. the tendency to act impulsively in response to negative affect), and Motor impulsivity (a tendency to rash action and restlessness) might be mediating factors in the choice of electronic gambling machines, particularly among patients whose gambling is escape-oriented. Structural and situational characteristics of gambling machines, particularly the widespread availability of low-stakes-rather than high-stakes-gaming machines, might concur to the choice of this form of gambling among individuals who present higher negative urgency and restlessness.
Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation
Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi
2015-01-01
As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532
NASA Astrophysics Data System (ADS)
Liou, Tzong-Horng
2012-07-01
The electronics industry is one of the world's fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317 m2/g, mean pore size of about 3.0 nm, and a high purity of 99.87 wt%. Ordered mesoporous carbon with high surface area (1,715 m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.
Mixing Problem Based Learning and Conventional Teaching Methods in an Analog Electronics Course
ERIC Educational Resources Information Center
Podges, J. M.; Kommers, P. A. M.; Winnips, K.; van Joolingen, W. R.
2014-01-01
This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year 'analog electronics course', when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data between the experimental group and the control group that…
An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen
2012-01-01
This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…
Numerical solution of the electron transport equation
NASA Astrophysics Data System (ADS)
Woods, Mark
The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.
Xyce Parallel Electronic Simulator Users' Guide Version 6.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one tomore » develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright c 2002-2017 Sandia Corporation. All rights reserved. Trademarks Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. All other trademarks are property of their respective owners. Contacts World Wide Web http://xyce.sandia.gov https://info.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only) Bug Reports (Sandia only) http://joseki-vm.sandia.gov/bugzilla http://morannon.sandia.gov/bugzilla« less
Electronic workflow for imaging in clinical research.
Hedges, Rebecca A; Goodman, Danielle; Sachs, Peter B
2014-08-01
In the transition from paper to electronic workflow, the University of Colorado Health System's implementation of a new electronic health record system (EHR) forced all clinical groups to reevaluate their practices including the infrastructure surrounding clinical trials. Radiological imaging is an important piece of many clinical trials and requires a high level of consistency and standardization. With EHR implementation, paper orders were manually transcribed into the EHR, digitizing an inefficient work flow. A team of schedulers, radiologists, technologists, research personnel, and EHR analysts worked together to optimize the EHR to accommodate the needs of research imaging protocols. The transition to electronic workflow posed several problems: (1) there needed to be effective communication throughout the imaging process from scheduling to radiologist interpretation. (2) The exam ordering process needed to be automated to allow scheduling of specific research studies on specific equipment. (3) The billing process needed to be controlled to accommodate radiologists already supported by grants. (4) There needed to be functionality allowing exams to finalize automatically skipping the PACS and interpretation process. (5) There needed to be a way to alert radiologists that a specialized research interpretation was needed on a given exam. These issues were resolved through the optimization of the "visit type," allowing a high-level control of an exam at the time of scheduling. Additionally, we added columns and fields to work queues displaying grant identification numbers. The build solutions we implemented reduced the mistakes made and increased imaging quality and compliance.
Lee, Theresa M; Tu, Karen; Wing, Laura L; Gershon, Andrea S
2017-05-15
Little is known about using electronic medical records to identify patients with chronic obstructive pulmonary disease to improve quality of care. Our objective was to develop electronic medical record algorithms that can accurately identify patients with obstructive pulmonary disease. A retrospective chart abstraction study was conducted on data from the Electronic Medical Record Administrative data Linked Database (EMRALD ® ) housed at the Institute for Clinical Evaluative Sciences. Abstracted charts provided the reference standard based on available physician-diagnoses, chronic obstructive pulmonary disease-specific medications, smoking history and pulmonary function testing. Chronic obstructive pulmonary disease electronic medical record algorithms using combinations of terminology in the cumulative patient profile (CPP; problem list/past medical history), physician billing codes (chronic bronchitis/emphysema/other chronic obstructive pulmonary disease), and prescriptions, were tested against the reference standard. Sensitivity, specificity, and positive/negative predictive values (PPV/NPV) were calculated. There were 364 patients with chronic obstructive pulmonary disease identified in a 5889 randomly sampled cohort aged ≥ 35 years (prevalence = 6.2%). The electronic medical record algorithm consisting of ≥ 3 physician billing codes for chronic obstructive pulmonary disease per year; documentation in the CPP; tiotropium prescription; or ipratropium (or its formulations) prescription and a chronic obstructive pulmonary disease billing code had sensitivity of 76.9% (95% CI:72.2-81.2), specificity of 99.7% (99.5-99.8), PPV of 93.6% (90.3-96.1), and NPV of 98.5% (98.1-98.8). Electronic medical record algorithms can accurately identify patients with chronic obstructive pulmonary disease in primary care records. They can be used to enable further studies in practice patterns and chronic obstructive pulmonary disease management in primary care. NOVEL ALGORITHM SEARCH TECHNIQUE: Researchers develop an algorithm that can accurately search through electronic health records to find patients with chronic lung disease. Mining population-wide data for information on patients diagnosed and treated with chronic obstructive pulmonary disease (COPD) in primary care could help inform future healthcare and spending practices. Theresa Lee at the University of Toronto, Canada, and colleagues used an algorithm to search electronic medical records and identify patients with COPD from doctors' notes, prescriptions and symptom histories. They carefully adjusted the algorithm to improve sensitivity and predictive value by adding details such as specific medications, physician codes related to COPD, and different combinations of terminology in doctors' notes. The team accurately identified 364 patients with COPD in a randomly-selected cohort of 5889 people. Their results suggest opportunities for broader, informative studies of COPD in wider populations.
NASA Technical Reports Server (NTRS)
Hess, R. A.
1976-01-01
Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.
Prosthetic design directives: Low-cost hands within reach.
Jones, G K; Rosendo, A; Stopforth, R
2017-07-01
Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).
Novel High Integrity Bio-Inspired Systems with On-Line Self-Test and Self-Repair Properties
NASA Astrophysics Data System (ADS)
Samie, Mohammad; Dragffy, Gabriel; Pipe, Tony
2011-08-01
Since the beginning of life nature has been developing some remarkable solutions to the problem of creating reliable systems that can operate under difficult environmental and fault conditions. Yet, no matter how sophisticated our systems are, we are still unable to match the high degree of reliability that biological organisms posses. Since the early '90s attempts have been made to adapt biological properties and processes to the design of electronic systems but the results have always been unduly complex.This paper, proposes a novel model using a radically new approach to construct highly reliable electronic systems with online fault repair properties. It uses the characteristics and behaviour of unicellular bacteria and bacterial communities to achieve this. The result is a configurable bio-inspired cellular array architecture that, with built-in self-diagnostic and self-repair properties, can implement any application specific electronic system but is particularly suited for safety critical environments, such as space.
Bayesian inference of radiation belt loss timescales.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Chandorkar, M.
2017-12-01
Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.
Parkes, Alison; Sweeting, Helen; Wight, Daniel; Henderson, Marion
2013-05-01
Screen entertainment for young children has been associated with several aspects of psychosocial adjustment. Most research is from North America and focuses on television. Few longitudinal studies have compared the effects of TV and electronic games, or have investigated gender differences. To explore how time watching TV and playing electronic games at age 5 years each predicts change in psychosocial adjustment in a representative sample of 7 year-olds from the UK. Typical daily hours viewing television and playing electronic games at age 5 years were reported by mothers of 11 014 children from the UK Millennium Cohort Study. Conduct problems, emotional symptoms, peer relationship problems, hyperactivity/inattention and prosocial behaviour were reported by mothers using the Strengths and Difficulties Questionnaire. Change in adjustment from age 5 years to 7 years was regressed on screen exposures; adjusting for family characteristics and functioning, and child characteristics. Watching TV for 3 h or more at 5 years predicted a 0.13 point increase (95% CI 0.03 to 0.24) in conduct problems by 7 years, compared with watching for under an hour, but playing electronic games was not associated with conduct problems. No associations were found between either type of screen time and emotional symptoms, hyperactivity/inattention, peer relationship problems or prosocial behaviour. There was no evidence of gender differences in the effect of screen time. TV but not electronic games predicted a small increase in conduct problems. Screen time did not predict other aspects of psychosocial adjustment. Further work is required to establish causal mechanisms.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must?
Gelderblom, Hans R.; Madeley, Dick
2018-01-01
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen in 1980. Since then, the threat of smallpox re-emerging through laboratory escape, molecular manipulation, synthetic biology or bioterrorism has not totally disappeared and would be a major problem in an unvaccinated population. Other animal poxviruses may also emerge as human pathogens. With its rapid results (only a few minutes after arrival of the specimen), no requirement for specific reagents and its “open view”, DEM remains an important component of virus diagnosis, particularly because it can easily and reliably distinguish smallpox virus or any other member of the orthopoxvirus (OPV) genus from parapoxviruses (PPV) and the far more common and less serious herpesviruses (herpes simplex and varicella zoster). Preparation, enrichment, examination, internal standards and suitable organisations are discussed to make clear its continuing value as a diagnostic technique. PMID:29565285
NASA Technical Reports Server (NTRS)
1990-01-01
This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized.
Sixteen years of ICPC use in Norwegian primary care: looking through the facts
2010-01-01
Background The International Classification for Primary Care (ICPC) standard aims to facilitate simultaneous and longitudinal comparisons of clinical primary care practice within and across country borders; it is also used for administrative purposes. This study evaluates the use of the original ICPC-1 and the more complete ICPC-2 Norwegian versions in electronic patient records. Methods We performed a retrospective study of approximately 1.5 million ICPC codes and diagnoses that were collected over a 16-year period at 12 primary care sites in Norway. In the first phase of this period (transition phase, 1992-1999) physicians were allowed to not use an ICPC code in their practice while in the second phase (regular phase, 2000-2008) the use of an ICPC code was mandatory. The ICPC codes and diagnoses defined a problem event for each patient in the PROblem-oriented electronic MEDical record (PROMED). The main outcome measure of our analysis was the percentage of problem events in PROMEDs with inappropriate (or missing) ICPC codes and of diagnoses that did not map the latest ICPC-2 classification. Specific problem areas (pneumonia, anaemia, tonsillitis and diabetes) were examined in the same context. Results Codes were missing in 6.2% of the problem events; incorrect codes were observed in 4.0% of the problem events and text mismatch between the diagnoses and the expected ICPC-2 diagnoses text in 53.8% of the problem events. Missing codes were observed only during the transition phase while incorrect and inappropriate codes were used all over the 16-year period. The physicians created diagnoses that did not exist in ICPC. These 'new' diagnoses were used with varying frequency; many of them were used only once. Inappropriate ICPC-2 codes were also observed in the selected problem areas and for both phases. Conclusions Our results strongly suggest that physicians did not adhere to the ICPC standard due to its incompleteness, i.e. lack of many clinically important diagnoses. This indicates that ICPC is inappropriate for the classification of problem events and the clinical practice in primary care. PMID:20181271
MANAGING ELECTRONIC DATA TRANSFER IN ENVIRONMENTAL CLEANUPS
The use of computers and electronic information poses a complex problem for potential litigation in space law. The problem currently manifests itself in at least two ways. First, the Environmental Protection Agency (EPA) enforcement of Comprehensive Environmental Response, Compen...
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
Monitoring of D-layer using GPS
NASA Astrophysics Data System (ADS)
Golubkov, Maxim; Bessarab, Fedor; Karpov, Ivan; Golubkov, Gennady; Manzheliy, Mikhail; Borchevkina, Olga; Kuverova, Veronika; Malyshev, Nikolay; Ozerov, Georgy
2016-07-01
Changes in D layer of ionosphere during the periods of high solar activity lead to non-equilibrium two-temperature plasma parameter variations. Accordingly, the population of orbital degenerate states of Rydberg complexes changes in a fraction of a microsecond. In turn, this affects the operation of any of the systems based on the use of GPS radio signals passing through this layer. It is well known that GPS signals undergo the greatest distortion in the altitude range of 60-110 km. Therefore, the analysis of changes in signal intensity can be useful for plasma diagnosis in these altitudes. In particular, it is useful to determine the vertical temperature profiles and electron density. For this purpose, one can use the satellite radio occultation method. This method is widely used in recent years to solve problems of the electron concentration profile recovery in the F-region of the ionosphere, and also for climate problem solutions. This method allows to define the altitude profiles of the GPS signal propagation delays and to obtain from the inverse problem solution qualitatively high-altitude profiles of the quantities using relative measurements. To ensure the authenticity of the found distributions of electron density and temperature in the D region of the ionosphere, the results should be complemented by measurements of the own atmospheric radiation power at frequencies of 1.4 and 5.0 GHz. This ensures control of the reliability of the results obtained using the "Rydberg" code. Monitoring of the state changes in the D layer by repeatedly following at regular intervals GPS satellite measurements are also of great interest and can provide valuable information on the macroscopic dynamics of D layer containing Rydberg complexes and free electrons. For example, one can monitor changes in the thickness of the emitting layer in time. Such changes lead to an additional contribution to the formation of satellite GPS system errors. It should also be noted that the entire emission layer on the propagation path affects the positioning errors during the passage of the satellite signal and forming the microwave and infrared radiation. Therefore, specific details of internal irregularities in layer structure caused by atmospheric processes do not play a significant role. Naturally, they are of interest to specific issues of radio physics and dynamics of the ionosphere, but do not have a noticeable effect on the received at the Earth GPS signals. This work was supported by Russian Foundation for Basic Researches (Grant No. 16-05-00052).
Flanagan, Meghan R; Foster, Carolyn C; Schleyer, Anneliese; Peterson, Gene N; Mandell, Samuel P; Rudd, Kristina E; Joyner, Byron D; Payne, Thomas H
2016-02-01
House staff quality improvement projects are often not aligned with training institution priorities. House staff are the primary users of inpatient problem lists in academic medical centers, and list maintenance has significant patient safety and financial implications. Improvement of the problem list is an important objective for hospitals with electronic health records under the Meaningful Use program. House staff surveys were used to create an electronic problem list manager (PLM) tool enabling efficient problem list updating. Number of new problems added and house staff perceptions of the problem list were compared before and after PLM intervention. The PLM was used by 654 house staff after release. Surveys demonstrated increased problem list updating (P = .002; response rate 47%). Mean new problems added per day increased from 64 pre-PLM to 125 post-PLM (P < .001). This innovative project serves as a model for successful engagement of house staff in institutional quality and safety initiatives with tangible institutional benefits. Copyright © 2016 Elsevier Inc. All rights reserved.
Taino, G; Frigerio, F
2004-01-01
The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.
NASA Astrophysics Data System (ADS)
1992-06-01
A development history is presented for NASA's 1983-1991 Rotary Engine Enablement Program, emphasizing the CFD approaches to various problems that were instituted from 1987 to the end of the program. In phase I, a test rig was built to intensively clarify and characterize the stratified-charge rotary engine concept. In phase II, a high pressure, electronically controlled fuel injection system was tested. In phase III, the testing of improved fuel injectors led to the achievement of the stipulated 5 hp/cu inch specific power goal. CFD-aided design of advanced rotor-pocket shapes led to additional performance improvements.
Tools for Understanding Space Weather Impacts to Satellites
NASA Astrophysics Data System (ADS)
Green, J. C.; Shprits, Y.; Likar, J. J.; Kellerman, A. C.; Quinn, R. A.; Whelan, P.; Reker, N.; Huston, S. L.
2017-12-01
Space weather causes dramatic changes in the near-Earth radiation environment. Intense particle fluxes can damage electronic components on satellites, causing temporary malfunctions, degraded performance, or a complete system/mission loss. Understanding whether space weather is the cause of such problems expedites investigations and guides successful design improvements resulting in a more robust satellite architecture. Here we discuss our progress in developing tools for satellite designers, manufacturers, and decision makers - tools that summarize space weather impacts to specific satellite assets and enable confident identification of the cause and right solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, V. N.; Clemente, R. A.
The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots formore » densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.« less
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
NASA Technical Reports Server (NTRS)
Caruso, S. V.; Perkins, K. L.; Licari, J. J.
1973-01-01
Although it is generally accepted that the use of adhesives in the assembly of hybrid microcircuits offers advantages over other bonding methods, there currently does not exist a set of guidelines for the selection of adhesives which will insure that hybrid microcircuits assembled with them will meet the long use-life, high-reliability requirements of electronic equipment for space applications. This study was directed to the identification of the properties of electrically insulative adhesives that potentially could cause problems in such an application, and to the development of evaluation tests to quantify these properties and thus form the basis for establishing suitable guidelines and, ultimately, specifications. Bond strength, outgassing after cure, and corrosivity were selected for detailed attention since they are considered to be especially critical. Introductory discussion includes enumeration and brief comments on the properties of adhesives considered to be important for the proposed application, a general review of polymeric types of adhesives, and identification of the major types of adhesives commercially available and specifically designed for microelectronic use. The specific tests developed to evaluate bond strength, outgassing after cure, and corrosivity are discussed in detail, and comparative results obtained for selected adhesives representative of the major types are given.
Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui
2016-04-18
The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Privacy protection for patients with substance use problems.
Hu, Lianne Lian; Sparenborg, Steven; Tai, Betty
2011-01-01
Many Americans with substance use problems will have opportunities to receive coordinated health care through the integration of primary care and specialty care for substance use disorders under the Patient Protection and Affordable Care Act of 2010. Sharing of patient health records among care providers is essential to realize the benefits of electronic health records. Health information exchange through meaningful use of electronic health records can improve health care safety, quality, and efficiency. Implementation of electronic health records and health information exchange presents great opportunities for health care integration, but also makes patient privacy potentially vulnerable. Privacy issues are paramount for patients with substance use problems. This paper discusses major differences between two federal privacy laws associated with health care for substance use disorders, identifies health care problems created by privacy policies, and describes potential solutions to these problems through technology innovation and policy improvement.
Privacy protection for patients with substance use problems
Hu, Lianne Lian; Sparenborg, Steven; Tai, Betty
2011-01-01
Many Americans with substance use problems will have opportunities to receive coordinated health care through the integration of primary care and specialty care for substance use disorders under the Patient Protection and Affordable Care Act of 2010. Sharing of patient health records among care providers is essential to realize the benefits of electronic health records. Health information exchange through meaningful use of electronic health records can improve health care safety, quality, and efficiency. Implementation of electronic health records and health information exchange presents great opportunities for health care integration, but also makes patient privacy potentially vulnerable. Privacy issues are paramount for patients with substance use problems. This paper discusses major differences between two federal privacy laws associated with health care for substance use disorders, identifies health care problems created by privacy policies, and describes potential solutions to these problems through technology innovation and policy improvement. PMID:24474860
Parkes, Alison; Sweeting, Helen; Wight, Daniel; Henderson, Marion
2013-01-01
Background Screen entertainment for young children has been associated with several aspects of psychosocial adjustment. Most research is from North America and focuses on television. Few longitudinal studies have compared the effects of TV and electronic games, or have investigated gender differences. Purpose To explore how time watching TV and playing electronic games at age 5 years each predicts change in psychosocial adjustment in a representative sample of 7 year-olds from the UK. Methods Typical daily hours viewing television and playing electronic games at age 5 years were reported by mothers of 11 014 children from the UK Millennium Cohort Study. Conduct problems, emotional symptoms, peer relationship problems, hyperactivity/inattention and prosocial behaviour were reported by mothers using the Strengths and Difficulties Questionnaire. Change in adjustment from age 5 years to 7 years was regressed on screen exposures; adjusting for family characteristics and functioning, and child characteristics. Results Watching TV for 3 h or more at 5 years predicted a 0.13 point increase (95% CI 0.03 to 0.24) in conduct problems by 7 years, compared with watching for under an hour, but playing electronic games was not associated with conduct problems. No associations were found between either type of screen time and emotional symptoms, hyperactivity/inattention, peer relationship problems or prosocial behaviour. There was no evidence of gender differences in the effect of screen time. Conclusions TV but not electronic games predicted a small increase in conduct problems. Screen time did not predict other aspects of psychosocial adjustment. Further work is required to establish causal mechanisms. PMID:23529828
Internet MEMS design tools based on component technology
NASA Astrophysics Data System (ADS)
Brueck, Rainer; Schumer, Christian
1999-03-01
The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.
NASA Technical Reports Server (NTRS)
Verkhoutseva, E. T.; Yaremenko, E. I.
1974-01-01
An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.
A Simulation to Study Speed Distributions in a Solar Plasma
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Alvarellos, Jose Luis
1999-01-01
We have carried out a numerical simulation of a plasma with characteristics similar to those found in the core of the Sun. Particular emphasis is placed on the Coulomb interaction between the ions and electrons, which could result in a relative velocity distribution different from the Maxwell-Boltzmann (MB) distribution generally assumed for a plasma. The fact that the distribution may not exactly follow the MB distribution could have very important consequences for a variety of problems in solar physics, especially the neutrino problem. Very briefly, the neutrino problem is that the observed neutrino detections from the Sun are smaller than what the standard solar theory predicts. In Section I we introduce the problem and in section II we discuss the approach to try to solve the problem: i.e., a molecular dynamics approach. In section III we provide details about the integration method, and any simplifications that can be applied to the problem. In section IV (the core of this report) we state our results. First for the specific case of 1000 particles and then for other cases with different number of particles. In section V we summarize our findings and state our conclusions. Sections VI VII and VIII provide the list of figures, reference material and acknowledgements respectively.
Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns
NASA Astrophysics Data System (ADS)
Ozur, G. E.; Proskurovsky, D. I.
2018-01-01
This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.
Agoro, Oscar O; Kibira, Sarah W; Freeman, Jenny V; Fraser, Hamish S F
2018-06-01
Electronic pharmacovigilance reporting systems are being implemented in many developing countries in an effort to improve reporting rates. This study sought to establish the factors that acted as barriers to the success of an electronic pharmacovigilance reporting system in Kenya 3 years after its implementation. Factors that could act as barriers to using electronic reporting systems were identified in a review of literature and then used to develop a survey questionnaire that was administered to pharmacists working in government hospitals in 6 counties in Kenya. The survey was completed by 103 out of the 115 targeted pharmacists (89.5%) and included free-text comments. The key factors identified as barriers were: unavailable, unreliable, or expensive Internet access; challenges associated with a hybrid system of paper and electronic reporting tools; and system usability issues. Coordination challenges at the national pharmacovigilance center and changes in the structure of health management in the country also had an impact on the success of the electronic reporting system. Different personal, organizational, infrastructural, and reporting system factors affect the success of electronic reporting systems in different ways, depending on the context. Context-specific formative evaluations are useful in establishing the performance of electronic reporting systems to identify problems and ensure that they achieve the desired objectives. While several factors hindered the optimal use of the electronic pharmacovigilance reporting system in Kenya, all were considered modifiable. Effort should be directed toward tackling the identified issues in order to facilitate use and improve pharmacovigilance reporting rates.
Patients' preferences regarding the delivery of health care in a hand surgical practice.
Caggiano, Nicholas M; Fegley, Mark W; Matullo, Kristofer S
2015-12-01
The Patient Protection and Affordable Care Act of 2010 includes patient satisfaction scores in the calculation of reimbursement for services provided. The Medicare and Medicaid Electronic Health Care Record Incentive Program mandate that physicians provide electronic communication with patients. Little data exists regarding patient preferences that might guide the physician adhering to these guidelines. We performed a survey study to examine patients' attitudes regarding the delivery of their health care. We provided an anonymous survey to all outpatient hand surgery patients within a 1-month period at our level I academic center. The survey was structured to ascertain patients' attitudes toward outpatient wait times as well as delivery of patient-specific healthcare-related information. One-hundred and ninety-six surveys were available for review. Of the 196 patients surveyed, 106 (54 %) were between the ages of 45 and 64. Patients aged 25 to 44 were the least willing to wait for an initial outpatient appointment. The majority of patients in all age groups demonstrated unwillingness to wait more than 1 week for evaluation of a new problem. One hundred and forty patients (71 %) were willing to wait longer for an appointment with an upper extremity specialist rather than have an earlier appointment with a non-upper extremity specialist. Wait times of 30 min after arrival in the office were acceptable to 174 patients (89 %) while 40 patients (20 %) were willing to wait an hour or more. Patients preferred a typed handout detailing their specific problem as opposed to referral to a website or an e-mail containing information. The results of our study indicate that patients prefer typed information as opposed to e-mail or websites regarding their health care. Our study also suggests that patients are willing to endure longer wait times if they can be given a sooner appointment, and most prefer a specialist for their problems. These results will provide some guidance to the physician regarding what patients find most appealing.
Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin
2016-08-10
Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.
2011-01-01
The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...
2018-02-05
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
NASA Astrophysics Data System (ADS)
Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.
2012-10-01
Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Wilson
Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less
Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Paul, Souvik; Iuşan, Diana; Thunström, Patrik; Kvashnin, Yaroslav O.; Hellsvik, Johan; Pereiro, Manuel; Delin, Anna; Knut, Ronny; Phuyal, Dibya; Lindblad, Andreas; Karis, Olof; Sanyal, Biplab; Eriksson, Olle
2018-03-01
Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA +U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3 d states, whereas the LDA +U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3 d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3 d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.
Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes
Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.
2016-11-22
Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
Overcoming challenges: life with an ostomy.
Popek, Sarah; Grant, Marcia; Gemmill, Robin; Wendel, Christopher S; Mohler, M Jane; Rawl, Susan M; Baldwin, Carol M; Ko, Clifford Y; Schmidt, C Max; Krouse, Robert S
2010-11-01
Studies have demonstrated decreased health-related quality of life in patients with stomas. Using US Department of Veterans Affairs electronic medical records, veterans with stomas were surveyed using the City of Hope Quality of Life-Ostomy questionnaire. Focus groups were conducted segregated by type of stoma (ileostomy vs colostomy) and quality-of-life score (high vs low). Qualitative analysis was performed on the basis of the City of Hope Quality of Life for Ostomates format of health-related quality of life (physical, psychological, social, and spiritual). The findings of the colostomy focus groups are reported. Two new domains emerged: colostomy specific and health care specific. The most common domains discussed were colostomy specific, psychological, and social. The most frequently discussed colostomy-specific theme was effective and ineffective solutions to colostomy care. Family and spousal relationships were the main theme from the psychological category. The predominant social issue was sexual relationships. Awareness of patients' social, psychological, and medical status allows surgeons to identify those likely to have problems and devote resources to those veterans. Published by Elsevier Inc.
Diffusion with Varying Drag; the Runaway Problem.
NASA Astrophysics Data System (ADS)
Rollins, David Kenneth
We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Gordeeva, N. M.
2017-09-01
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems.
Burton, Hugh G A; Gross, Mark; Thom, Alex J W
2018-02-13
We explore the existence and behavior of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with n basis functions is rigorously identified as 1 / 2 (3 n - 1), proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of complex h-RHF solutions at coalescence points. Using catastrophe theory, the nature of these coalescence points is described, highlighting the influence of molecular symmetry. The h-RHF states of HHeH 2+ and HHeH (STO-3G) are then compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a crossing of the lowest energy singlet and triplet states at the perpendicular geometry.
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
Examining the Relationship between Electronic Health Record Interoperability and Quality Management
ERIC Educational Resources Information Center
Purcell, Bernice M.
2013-01-01
A lack of interoperability impairs data quality among health care providers' electronic health record (EHR) systems. The problem is whether the International Organization for Standardization (ISO) 9000 principles relate to the problem of interoperability in implementation of EHR systems. The purpose of the nonexperimental quantitative research…
A proposal for new keypad design of electronic locks.
Trayner, C
1993-10-01
Electronic locks, for which a password is entered on a computer-style keyboard, are described. Certain security problems associated with them are analysed. It is proposed that different labelling of the keyboard keys can reduce this problem. Theoretical figures are provided to support this claim and to aid design.
Development and Application of STEM for the Biological Sciences
Sousa, Alioscka A.; Leapman, Richard D.
2012-01-01
The design of the scanning transmission electron microscope (STEM), as conceived originally by Crewe and coworkers, enables the highly efficient and flexible collection of different elastic and inelastic signals resulting from the interaction of a focused probe of incident electrons with a specimen. In the present paper we provide a brief review for how the STEM today can be applied towards a range of different problems in the biological sciences, emphasizing four main areas of application. (1) For three decades, the most widely used STEM technique has been the mass determination of proteins and other macromolecular assemblies. Such measurements can be performed at low electron dose by collecting the high-angle dark-field signal using an annular detector. STEM mass mapping has proven valuable for characterizing large protein assemblies such as filamentous proteins with a well-defined mass per length. (2) The annular dark-field signal can also be used to image ultrasmall, functionalized nanoparticles of heavy atoms for labeling specific aminoacid sequences in protein assemblies. (3) By acquiring electron energy loss spectra (EELS) at each pixel in a hyperspectral image, it is possible to map the distributions of specific bound elements like phosphorus, calcium and iron in isolated macromolecular assemblies or in compartments within sectioned cells. Near single atom sensitivity is feasible provided that the specimen can tolerate a very high incident electron dose. (4) Electron tomography is a new application of STEM that enables three-dimensional reconstruction of micrometer-thick sections of cells. In this technique a probe of small convergence angle gives a large depth of field throughout the thickness of the specimen while maintaining a probe diameter of < 2 nm; and the use of an on-axis bright-field detector reduces the effects of beam broadening and thus improves the spatial resolution compared to that attainable by STEM dark-field tomography. PMID:22749213
Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
Barton, Larry L; Fauque, Guy D
2009-01-01
Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The production of biosulfide by SRB has led to immobilization of toxic metals and reduction of textile dyes, although the process remains unresolved, SRB play a role in anaerobic methane oxidation which not only contributes to carbon cycle activities but also depletes an important industrial energy reserve.
Hing, Nerilee; Russell, Alex M.; Browne, Matthew
2017-01-01
Growth of Internet gambling has fuelled concerns about its contribution to gambling problems. However, most online gamblers also gamble on land-based forms, which may be the source of problems for some. Studies therefore need to identify the problematic mode of gambling (online or offline) to identify those with an online gambling problem. Identifying most problematic form of online gambling (e.g., EGMs, race betting, sports betting) would also enable a more accurate examination of gambling problems attributable to a specific online gambling form. This study pursued this approach, aiming to: (1) determine demographic, behavioral and psychological risk factors for gambling problems on online EGMs, online sports betting and online race betting; (2) compare the characteristics of problematic online gamblers on each of these online forms. An online survey of 4,594 Australian gamblers measured gambling behavior, most problematic mode and form of gambling, gambling attitudes, psychological distress, substance use, help-seeking, demographics and problem gambling status. Problem/moderate risk gamblers nominating an online mode of gambling as their most problematic, and identifying EGMs (n = 98), race betting (n = 291) or sports betting (n = 181) as their most problematic gambling form, were compared to non-problem/low risk gamblers who had gambled online on these forms in the previous 12 months (n = 64, 1145 and 1213 respectively), using bivariate analyses and then logistic regressions. Problem/moderate risk gamblers on each of these online forms were then compared. Risk factors for online EGM gambling were: more frequent play on online EGMs, substance use when gambling, and higher psychological distress. Risk factors for online sports betting were being male, younger, lower income, born outside of Australia, speaking a language other than English, more frequent sports betting, higher psychological distress, and more negative attitudes toward gambling. Risk factors for online race betting comprised being male, younger, speaking a language other than English, more frequent race betting, engaging in more gambling forms, self-reporting as semi-professional/professional gambler, illicit drug use whilst gambling, and more negative attitude toward gambling. These findings can inform improved interventions tailored to the specific characteristics of high risk gamblers on each of these online activities. PMID:28555121
Hing, Nerilee; Russell, Alex M; Browne, Matthew
2017-01-01
Growth of Internet gambling has fuelled concerns about its contribution to gambling problems. However, most online gamblers also gamble on land-based forms, which may be the source of problems for some. Studies therefore need to identify the problematic mode of gambling (online or offline) to identify those with an online gambling problem. Identifying most problematic form of online gambling (e.g., EGMs, race betting, sports betting) would also enable a more accurate examination of gambling problems attributable to a specific online gambling form. This study pursued this approach, aiming to: (1) determine demographic, behavioral and psychological risk factors for gambling problems on online EGMs, online sports betting and online race betting; (2) compare the characteristics of problematic online gamblers on each of these online forms. An online survey of 4,594 Australian gamblers measured gambling behavior, most problematic mode and form of gambling, gambling attitudes, psychological distress, substance use, help-seeking, demographics and problem gambling status. Problem/moderate risk gamblers nominating an online mode of gambling as their most problematic, and identifying EGMs ( n = 98), race betting ( n = 291) or sports betting ( n = 181) as their most problematic gambling form, were compared to non-problem/low risk gamblers who had gambled online on these forms in the previous 12 months ( n = 64, 1145 and 1213 respectively), using bivariate analyses and then logistic regressions. Problem/moderate risk gamblers on each of these online forms were then compared. Risk factors for online EGM gambling were: more frequent play on online EGMs, substance use when gambling, and higher psychological distress. Risk factors for online sports betting were being male, younger, lower income, born outside of Australia, speaking a language other than English, more frequent sports betting, higher psychological distress, and more negative attitudes toward gambling. Risk factors for online race betting comprised being male, younger, speaking a language other than English, more frequent race betting, engaging in more gambling forms, self-reporting as semi-professional/professional gambler, illicit drug use whilst gambling, and more negative attitude toward gambling. These findings can inform improved interventions tailored to the specific characteristics of high risk gamblers on each of these online activities.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
NASA Astrophysics Data System (ADS)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactionsmore » among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.« less
Collisionless plasma expansion into vacuum: Two new twists on an old problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arefiev, Alexey V.; Breizman, Boris N.
The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from themore » Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.« less
Accurate quantum chemical calculations
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Improving Short Term Instability for Quantitative Analyses with Portable Electronic Noses
Macías, Miguel Macías; Agudo, J. Enrique; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo
2014-01-01
One of the main problems when working with electronic noses is the lack of reproducibility or repeatability of the sensor response, so that, if this problem is not properly considered, electronic noses can be useless, especially for quantitative analyses. On the other hand, irreproducibility is increased with portable and low cost electronic noses where laboratory equipment like gas zero generators cannot be used. In this work, we study the reproducibility of two portable electronic noses, the PEN3 (commercial) and CAPINose (a proprietary design) by using synthetic wine samples. We show that in both cases short term instability associated to the sensors' response to the same sample and under the same conditions represents a major problem and we propose an internal normalization technique that, in both cases, reduces the variability of the sensors' response. Finally, we show that the normalization proposed seems to be more effective in the CAPINose case, reducing, for example, the variability associated to the TGS2602 sensor from 12.19% to 2.2%. PMID:24932869
Uddin, Golam M; Youngson, Neil A; Sinclair, David A; Morris, Margaret J
2016-01-01
Obesity is well known to be a major cause of several chronic metabolic diseases, which can be partially counteracted by exercise. This is due, in part, to an upregulation of mitochondrial activity through increased nicotinamide adenine dinucleotide (NAD(+)). Recent studies have shown that NAD(+) levels can be increased by using the NAD(+) precursor, nicotinamide mononucleotide (NMN) leading to the suggestion that NMN could be a useful intervention in diet related metabolic disorders. In this study we compared the metabolic, and especially mitochondrial-associated, effects of exercise and NMN in ameliorating the consequences of high-fat diet (HFD) induced obesity in mice. Sixty female 5 week old C57BL6/J mice were allocated across five groups: Chow sedentary: CS; Chow exercise: CEX; HFD sedentary: HS; HFD NMN: HNMN; HFD exercise: HEX (12/group). After 6 weeks of diet, exercise groups underwent treadmill exercise (15 m/min for 45 min), 6 days per week for 6 weeks. NMN or vehicle (500 mg/kg body weight) was injected (i.p.) daily for the last 17 days. No significant alteration in body weight was observed in response to exercise or NMN. The HFD significantly altered adiposity, glucose tolerance, plasma insulin, NADH levels and citrate synthase activity in muscle and liver. HEX and HNMN groups both showed significantly improved glucose tolerance compared to the HS group. NAD(+) levels were increased significantly both in muscle and liver by NMN whereas exercise increased NAD(+) only in muscle. Both NMN and exercise ameliorated the HFD-induced reduction in liver citrate synthase activity. However, exercise, but not NMN, ameliorated citrate synthase activity in muscle. Overall these data suggest that while exercise and NMN-supplementation can induce similar reversal of the glucose intolerance induced by obesity, they are associated with tissue-specific effects and differential alterations to mitochondrial function in muscle and liver.
Garcia-Palacios, A; Herrero, R; Belmonte, M A; Castilla, D; Guixeres, J; Molinari, G; Baños, R M
2014-07-01
Daily diaries are a useful way of measuring fluctuations in pain-related symptoms. However, traditional diaries do not assure the gathering of data in real time, not solving the problem of retrospective assessment. Ecological momentary assessment (EMA) by means of electronic diaries helps to improve repeated assessment. However, it is important to test its feasibility in specific populations in order to reach a wider number of people who could benefit from these procedures. The present study compares the compliance and acceptability of an electronic diary running on a smartphone using a crossover design for a sample with a specific pain condition, fibromyalgia and low familiarity with technology. Forty-seven participants were randomly assigned to one of two conditions: (1) paper diary - smartphone diary and (2) smartphone diary - paper diary, using each assessment method for 1 week. The findings of this study showed that the smartphone diary made it possible to gather more accurate and complete ratings. Besides, this method was well accepted by a sample of patients with fibromyalgia referred by a public hospital, with an important proportion of participants with low level of education and low familiarity with technology. The findings of this study support the use of smartphones for EMA even in specific populations with a specific pain condition, fibromyalgia and with low familiarity with technology. These methods could help clinicians and researchers to gather more accurate ratings of relevant pain-related variables even in populations with low familiarity with technology.
NASA Technical Reports Server (NTRS)
Holladay, A. M.
1978-01-01
Guidelines are given for the selection and application of three types of tantalum electrolytic capacitors in current use in the design of electrical and electronic circuits for space flight missions. In addition, the guidelines supplement requirements of existing military specifications used in the procurement of capacitors. A need exists for these guidelines to assist designers in preventing some of the recurring, serious problems experienced with tantalum electrolytic capacitors in the recent past. The three types of capacitors covered by these guidelines are; solid, wet foil, and tantalum cased wet slug.
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
NASA Astrophysics Data System (ADS)
Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.
2018-03-01
We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.
Electronic Nose To Detect Patients with COPD From Exhaled Breath
NASA Astrophysics Data System (ADS)
Velásquez, Adriana; Durán, Cristhian M.; Gualdron, Oscar; Rodríguez, Juan C.; Manjarres, Leonardo
2009-05-01
To date, there is no effective tool analysis and detection of COPD syndrome, (Chronic Obstructive Pulmonary Disease) which is linked to smoking and, less frequently to toxic substances such as, the wood smoke or other particles produced by noxious gases. According to the World Health Organization (WHO) estimates of this disease show it affects more than 52 million people and kills more than 2.7 million human beings each year. In order to solve the problem, a low-cost Electronic Nose (EN) was developed at the University of Pamplona (N. S) Colombia, for this specific purpose and was applied to a sample group of patients with COPD as well as to others who were healthy. From the exhalation breath samples of these patients, the results were as expected; an appropriate classification of the patients with the disease, as well as from the healthy group was obtained.
The Ettention software package.
Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp
2016-02-01
We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.
Combined high and low-thrust geostationary orbit insertion with radiation constraint
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; Owens, Steven Robert
2018-01-01
The sequential use of an electric propulsion system is considered in combination with a high-thrust propulsion system for application to the propellant-optimal Geostationary Orbit insertion problem, whilst considering both temporal and radiation flux constraints. Such usage is found to offer a combined propellant mass saving when compared with an equivalent high-thrust only transfer. This propellant mass saving is seen to increase as the allowable transfer duration is increased, and as the thrust from the low-thrust system is increased, assuming constant specific impulse. It was found that the required plane change maneuver is most propellant-efficiently performed by the high-thrust system. The propellant optimal trajectory incurs a significantly increased electron flux when compared to an equivalent high-thrust only transfer. However, the electron flux can be reduced to a similar order of magnitude by increasing the high-thrust propellant consumption, whilst still delivering an improved mass fraction.
Phase dilemma in natural orbital functional theory from the N-representability perspective
NASA Astrophysics Data System (ADS)
Mitxelena, Ion; Rodriguez-Mayorga, Mauricio; Piris, Mario
2018-06-01
Any rigorous approach to first-order reduced density matrix ( Γ) functional theory faces the phase dilemma, that is, having to deal with a large number of possible combinations of signs in terms of the electron-electron interaction energy. This problem was discovered by reducing a ground-state energy generated from an approximate N-particle wavefunction into a functional of Γ, known as the top-down method. Here, we show that the phase dilemma also appears in the bottom-up method, in which the functional E[ Γ] is generated by progressive inclusion of N-representability conditions on the reconstructed two-particle reduced density matrix. It is shown that an adequate choice of signs is essential to accurately describe model systems with strong non-dynamic (static) electron correlation, specifically, the one-dimensional Hubbard model with periodic boundary conditions and hydrogen rings. For the latter, the Piris natural orbital functional 7 (PNOF7), with phases equal to -1 for the inter-pair energy terms containing the exchange-time-inversion integrals, agrees with exact diagonalization results.
Graphene oxide windows for in situ environmental cell photoelectron spectroscopy.
Kolmakov, Andrei; Dikin, Dmitriy A; Cote, Laura J; Huang, Jiaxing; Abyaneh, Majid Kazemian; Amati, Matteo; Gregoratti, Luca; Günther, Sebastian; Kiskinova, Maya
2011-08-28
The performance of new materials and devices often depends on processes taking place at the interface between an active solid element and the environment (such as air, water or other fluids). Understanding and controlling such interfacial processes require surface-specific spectroscopic information acquired under real-world operating conditions, which can be challenging because standard approaches such as X-ray photoelectron spectroscopy generally require high-vacuum conditions. The state-of-the-art approach to this problem relies on unique and expensive apparatus including electron analysers coupled with sophisticated differentially pumped lenses. Here, we develop a simple environmental cell with graphene oxide windows that are transparent to low-energy electrons (down to 400 eV), and demonstrate the feasibility of X-ray photoelectron spectroscopy measurements on model samples such as gold nanoparticles and aqueous salt solution placed on the back side of a window. These proof-of-principle results show the potential of using graphene oxide, graphene and other emerging ultrathin membrane windows for the fabrication of low-cost, single-use environmental cells compatible with commercial X-ray and Auger microprobes as well as scanning or transmission electron microscopes.
Sindelka, Milan; Moiseyev, Nimrod
2006-04-27
We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.
New media, old media: The technologies of international development
NASA Astrophysics Data System (ADS)
Ingle, Henry T.
1986-09-01
The research, theory and practice of educational technology over the past 75 years provide convincing evidence that this process offers a comprehensive and integrated approach to solving educational and social problems. The use of media and technology in development has shifted from an emphasis on mass media to personal media. A variety of electronic delivery systems are being used and are usually coordinated by centralized governmental agencies. There are no patterns of use since the problems vary and the medium used is responsive to the problem. Computers are used most frequently and satellite telecommunication networks follow. The effective use of these and other technologies requires a long-term commitment to financial support and training of personnel. The extension model of face-to-face contact still prevails in developing nations whether in agriculture, education or rural development. Low-cost technologies are being used in local projects while major regional and national companies use radio, film and related video technologies. The use of all available and cost-effective media and technologies make possible appropriate communications for specific goals with specific audiences. There appears to be no conflict among proponents of various media formats. Development in education and other sectors has much to gain from old and new communication technologies and has hardly been tapped. Several new educational technology developments are discussed as potential contributors to formal and nonformal education.
Electronic Portfolios in Tenure and Promotion Decisions: Making a Virtual Case.
ERIC Educational Resources Information Center
Blair, Kristine
A current problem at many American universities is that tenure and promotion procedures continue to privilege print-based evidence of teaching and research productivity, or do not acknowledge the impact of technology on teaching, scholarship, and service. Despite these problems, this paper makes the case for electronic teaching portfolios as…
ERIC Educational Resources Information Center
Eyring, LeRoy
1980-01-01
Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)
Integrating Inter-Disciplinary Experts for Supporting Problem-Based Learning
ERIC Educational Resources Information Center
ChanLin, Lih-Juan; Chan, Kung-Chi
2007-01-01
The study reported in this paper has explored the use of an electronic forum facility in order to provide support for problem-based learning (PBL). A Web-based course involving the use of PBL (called "Drug and Nutrient Interactions") was implemented and was augmented with interdisciplinary expert support using electronic forums. As part…
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
NASA Astrophysics Data System (ADS)
Levin, Alan R.; Zhang, Deyin; Polizzi, Eric
2012-11-01
In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.
Use of an electronic problem list by primary care providers and specialists.
Wright, Adam; Feblowitz, Joshua; Maloney, Francine L; Henkin, Stanislav; Bates, David W
2012-08-01
Accurate patient problem lists are valuable tools for improving the quality of care, enabling clinical decision support, and facilitating research and quality measurement. However, problem lists are frequently inaccurate and out-of-date and use varies widely across providers. Our goal was to assess provider use of an electronic problem list and identify differences in usage between medical specialties. Chart review of a random sample of 100,000 patients who had received care in the past two years at a Boston-based academic medical center. Counts were collected of all notes and problems added for each patient from 1/1/2002 to 4/30/2010. For each entry, the recording provider and the clinic in which the entry was recorded was collected. We used the Healthcare Provider Taxonomy Code Set to categorize each clinic by specialty. We analyzed the problem list use across specialties, controlling for note volume as a proxy for visits. A total of 2,264,051 notes and 158,105 problems were recorded in the electronic medical record for this population during the study period. Primary care providers added 82.3% of all problems, despite writing only 40.4% of all notes. Of all patients, 49.1% had an assigned primary care provider (PCP) affiliated with the hospital; patients with a PCP had an average of 4.7 documented problems compared to 1.5 problems for patients without a PCP. Primary care providers were responsible for the majority of problem documentation; surgical and medical specialists and subspecialists recorded a disproportionately small number of problems on the problem list.
V-TECS Guide for Automobile Engine Performance Technician.
ERIC Educational Resources Information Center
Meyer, Calvin F.; Benson, Robert T.
This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…
Matters of taste: bridging molecular physiology and the humanities.
Rangachari, P K; Rangachari, Usha
2015-12-01
Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.
Convergent Close-Coupling Approach to Electron-Atom Collisions
NASA Technical Reports Server (NTRS)
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
A systematic review of health effects of electronic cigarettes.
Pisinger, Charlotta; Døssing, Martin
2014-12-01
To provide a systematic review of the existing literature on health consequences of vaporing of electronic cigarettes (ECs). Search in: PubMed, EMBASE and CINAHL. Original publications describing a health-related topic, published before 14 August 2014. PRISMA recommendations were followed. We identified 1101 studies; 271 relevant after screening; 94 eligible. We included 76 studies investigating content of fluid/vapor of ECs, reports on adverse events and human and animal experimental studies. Serious methodological problems were identified. In 34% of the articles the authors had a conflict of interest. Studies found fine/ultrafine particles, harmful metals, carcinogenic tobacco-specific nitrosamines, volatile organic compounds, carcinogenic carbonyls (some in high but most in low/trace concentrations), cytotoxicity and changed gene expression. Of special concern are compounds not found in conventional cigarettes, e.g. propylene glycol. Experimental studies found increased airway resistance after short-term exposure. Reports on short-term adverse events were often flawed by selection bias. Due to many methodological problems, severe conflicts of interest, the relatively few and often small studies, the inconsistencies and contradictions in results, and the lack of long-term follow-up no firm conclusions can be drawn on the safety of ECs. However, they can hardly be considered harmless. Copyright © 2014. Published by Elsevier Inc.
Quantum Corral Wave-function Engineering
NASA Astrophysics Data System (ADS)
Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos
2005-03-01
We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).
Chao, Jerry; Ward, E. Sally; Ober, Raimund J.
2012-01-01
The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
NASA Astrophysics Data System (ADS)
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
A Theoretical Approach to Electronic Prescription System: Lesson Learned from Literature Review
Samadbeik, Mahnaz; Ahmadi, Maryam; Hosseini Asanjan, Seyed Masoud
2013-01-01
Context The tendency to use advanced technology in healthcare and the governmental policies have put forward electronic prescription. Electronic prescription is considered as the main solution to overcome the major drawbacks of the paper-based medication prescription, such as transcription errors. This study aims to provide practical information concerning electronic prescription system to a variety of stakeholders. Evidence Acquisition In this review study, PubMed, ISI Web of Science, Scopus, EMBASE databases, Iranian National Library Of Medicine (INLM) portal, Google Scholar, Google and Yahoo were searched for relevant English publications concerning the problems of paper-based prescription, and concept, features, levels, benefits, stakeholders and standards of electronic prescription system. Results There are many problems with the paper prescription system which, according to studies have jeopardized patients’ safety and negatively affected the outcomes of medication therapy. All of these problems are remedied through the implementation of e-prescriptions. Conclusions The sophistication of electronic prescription and integration with EHR will become a reality, if all its stakeholders collaborate in developing fast and secure electronic prescription systems. It is plausible that the required infrastructure should be provided for implementation of the national integrated electronic prescription systems in countries without the system. Given the barriers to the implementation and use, policymakers should consider multiple strategies and offer incentives to encourage e-prescription initiatives. This will result in widespread adoption of the system. PMID:24693376
Micellar Polymer Encapsulation of Enzymes.
Besic, Sabina; Minteer, Shelley D
2017-01-01
Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as Nafion ® and chitosan. This strategy has been shown to safely immobilize enzymes at electrode surfaces with storage and continuous operation lifetime of more than 2 years.
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María Del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
Overview of the carbon fiber problem
NASA Technical Reports Server (NTRS)
1979-01-01
Carbon fibers (CF) composite structures are being utilized more as alternatives to metals in both civilian and military applications. They are valued for their light weight and high strength as well as for their ease of designing structures with specific shapes and sizes. However, a problem may exist due to the high conductivity of CF. CF are manufactured from a precursor material which is subjected to great stress and heat treatment causing a change in the physical and electrical properties. The fibers are bound together by a matrix of epoxy. In the event of fire (aircraft accident) the epoxy would burn away releasing these fibers into the atmosphere. When these fibers come in contact with electronic equipment, they might cause damage to by settling on electrical junctions. An overview is given of the objectives for a study, and the approach and methodology developed for determination of risk profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in othermore » OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.« less
Solvent-assisted in situ synthesis of cysteamine-capped silver nanoparticles
NASA Astrophysics Data System (ADS)
Oliva, José M.; Ríos de la Rosa, Julio M.; Sayagués, María J.; Sánchez-Alcázar, José A.; Merkling, Patrick J.; Zaderenko, Ana P.
2018-03-01
Silver nanoparticles offer a huge potential for biomedical applications owing to their exceptional properties and small size. Specifically, cysteamine-capped silver nanoparticles could form the basis for new anticancer therapies combining the cytotoxic effect of the silver core with the inherent antitumor activity of cysteamine, which inhibit cancer cell proliferation and suppress invasion and metastasis. In addition, the capability of the cysteamine coating monolayer to couple a variety of active principles and targeting (bio)molecules of interest proves key to the tailoring of this platform in order to exploit the pathophysiology of specific tumor types. Nevertheless, the chain length and conformational flexibility of cysteamine, together with its ability to attach to the surface of silver nanoparticles via both the thiol and the amine group, have made the in situ synthesis of these particles an especially challenging task. Herein we report a solvent-assisted in situ synthesis method that solves this problem. The obtained nanoparticles have been fully characterized by UV-visible absorption spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, electron diffraction measurement, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive x-ray spectroscopy nanoanalysis, and dynamic light scattering measurement. Our synthesis method achieves extremely high yield and surface coating ratio, and colloidal stability over a wide range of pH values including physiological pH. Additionally, we have demonstrated that cysteamine-capped nanoparticles obtained by this method can be conjugated to an antibody for active targeting of the epidermal growth factor receptor, which plays an important role in the pathogenesis and progression of a wide variety of tumors, and induce cell death in human squamous carcinoma cells. We believe this method can be readily extended to combinations of noble metals and longer chain primary, secondary, ternary or even quaternary aminethiols.
Parallel Density-Based Clustering for Discovery of Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Pankratius, V.; Gowanlock, M.; Blair, D. M.
2015-12-01
Ionospheric total electron content maps derived from global networks of dual-frequency GPS receivers can reveal a plethora of ionospheric features in real-time and are key to space weather studies and natural hazard monitoring. However, growing data volumes from expanding sensor networks are making manual exploratory studies challenging. As the community is heading towards Big Data ionospheric science, automation and Computer-Aided Discovery become indispensable tools for scientists. One problem of machine learning methods is that they require domain-specific adaptations in order to be effective and useful for scientists. Addressing this problem, our Computer-Aided Discovery approach allows scientists to express various physical models as well as perturbation ranges for parameters. The search space is explored through an automated system and parallel processing of batched workloads, which finds corresponding matches and similarities in empirical data. We discuss density-based clustering as a particular method we employ in this process. Specifically, we adapt Density-Based Spatial Clustering of Applications with Noise (DBSCAN). This algorithm groups geospatial data points based on density. Clusters of points can be of arbitrary shape, and the number of clusters is not predetermined by the algorithm; only two input parameters need to be specified: (1) a distance threshold, (2) a minimum number of points within that threshold. We discuss an implementation of DBSCAN for batched workloads that is amenable to parallelization on manycore architectures such as Intel's Xeon Phi accelerator with 60+ general-purpose cores. This manycore parallelization can cluster large volumes of ionospheric total electronic content data quickly. Potential applications for cluster detection include the visualization, tracing, and examination of traveling ionospheric disturbances or other propagating phenomena. Acknowledgments. We acknowledge support from NSF ACI-1442997 (PI V. Pankratius).
Magin, Parker; Morgan, Simon; Wearne, Susan; Tapley, Amanda; Henderson, Kim; Oldmeadow, Chris; Ball, Jean; Scott, John; Spike, Neil; McArthur, Lawrie; van Driel, Mieke
2015-10-01
Answering clinical questions arising from patient care can improve that care and offers an opportunity for adult learning. It is also a vital component in practising evidence-based medicine. GPs' sources of in-consultation information can be human or non-human (either hard copy or electronic). To establish the prevalence and associations of GP trainees' in-consultation information-seeking, and to establish the prevalence of use of different sources of information (human, hard copy and electronic) and the associations of choosing particular sources. A cross-sectional analysis of data (2010-13) from an ongoing cohort study of Australian GP trainees' consultations. Once each 6-month training term, trainees record detailed data of 60 consecutive consultations. The primary outcome was whether the trainee sought in-consultation information for a problem/diagnosis. Secondary outcomes were whether information-seeking was from a human (GP, other specialist or other health professional) or from a non-human source (electronic or hard copy), and whether a non-human source was electronic or hard copy. Six hundred forty-five trainees (response rate 94.3%) contributed data for 84,723 consultations including 131,583 problems/diagnoses. In-consultation information was sought for 15.4% (95% confidence interval=15.3-15.6) of problems/diagnoses. Sources were: GP in 6.9% of problems/diagnoses, other specialists 0.9%, other health professionals 0.6%, electronic sources 6.5% and hard-copy sources 1.5%. Associations of information-seeking included younger patient age, trainee full-time status and earlier training stage, longer consultation duration, referring the patient, organizing follow-up and generating learning goals. Associations of choosing human information sources (over non-human sources) were similar, but also included the trainee's training organization. Associations of electronic rather than hard-copy information-seeking included the trainee being younger, the training organization and information-seeking for management rather than diagnosis. Trainee information-seeking is mainly from GP colleagues and electronic sources. Human information-sources are preferentially sought for more complex problems, even by these early-career GPs who have trained in the 'internet era'. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Management of respiratory problems in people with neurodegenerative conditions: a narrative review.
Jones, U; Enright, S; Busse, M
2012-03-01
Respiratory failure and dysfunction are common problems in many neurodegenerative conditions. Although physiotherapists manage these problems, it is not known which treatments have been studied and their efficacy. To review evidence on the management of respiratory problems in people with neurodegenerative conditions using the PRISMA approach. Comprehensive searches were conducted using the following electronic databases from inception to May 2010: HUGEnet, SIGLE, British Library Direct, CINAHL, Medline, AMED and Web of Knowledge. Bibliographies of all studies and systematic reviews were searched by hand. Studies were selected based on: self-ventilating participants with neurodegenerative conditions; interventions aimed at improving respiratory function; and any valid and reliable measures of respiratory function as outcomes. Studies were appraised by one reviewer using the Critical Appraisal Skills Programme. Data were synthesised using a narrative approach. Thirty-five studies were included in the review. The strongest evidence was for the use of non-invasive ventilation for people with amyotrophic lateral sclerosis, although this was weak. The evidence for the use of respiratory muscle training and methods to increase peak cough flow showed a positive effect, but was also weak. There is weak evidence for the positive effects of physiotherapeutic interventions for respiratory problems in people with neurodegenerative conditions. Further work is necessary in specific neurodegenerative conditions to identify why respiratory problems occur, and larger scale studies should be undertaken to investigate management of these problems. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... 11-153] Basic Service Tier Encryption Compatibility Between Cable Systems and Consumer Electronics... substantially affect compatibility between cable service and consumer electronics equipment for most subscribers... problems between cable service and consumer electronics equipment were limiting and/or precluding the...
Site-specific electronic structure analysis by channeling EELS and first-principles calculations.
Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao
2006-01-01
Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.
The Impact on Space Radiation Requirements and Effects on ASIMS
NASA Technical Reports Server (NTRS)
Barnes, C.; Johnston, A.; Swift, G.
1995-01-01
The evolution of highly miniaturized electronic and mechanical systems will be accompanied by new problems and issues regarding the radiation response of these systems in the space environment. In this paper we discuss some of the more prominent radiation problems brought about by miniaturization. For example, autonomous micro-spacecraft will require large amounts of high density memory, most likely in the form of stacked, multichip modules of DRAM's, that must tolerate the radiation environment. However, advanced DRAM's (16 to 256 Mbit) are quite susceptible to radiation, particularly single event effects, and even exhibit new radiation phenomena that were not a problem for older, less dense memory chips. Another important trend in micro-spacecraft electronics is toward the use of low-voltage microelectronic systems that consume less power. However, the reduction in operating voltage also caries with it an increased susceptibility to radiation. In the case of application specific integrated microcircuits (ASIM's), advanced devices of this type, such as high density field programmable gate arrays (FPGA's) exhibit new single event effects (SEE), such as single particle reprogramming of anti-fuse links. New advanced bipolar circuits have been shown recently to degrade more rapidly in the low dose rate space environment than in the typical laboratory total dose radiation test used to qualify such devices. Thus total dose testing of these parts is no longer an appropriately conservative measure to be used for hardness assurance. We also note that the functionality of micromechanical Si-based devices may be altered due to the radiation-induced deposition of charge in the oxide passivation layers.
Brief screening questionnaires to identify problem drinking during pregnancy: a systematic review.
Burns, Ethel; Gray, Ron; Smith, Lesley A
2010-04-01
Although prenatal screening for problem drinking during pregnancy has been recommended, guidance on screening instruments is lacking. We investigated the sensitivity, specificity and predictive value of brief alcohol screening questionnaires to identify problem drinking in pregnant women. Electronic databases from their inception to June 2008 were searched, as well as reference lists of eligible papers and related review papers. We sought cohort or cross-sectional studies that compared one or more brief alcohol screening questionnaire(s) with reference criteria obtained using structured interviews to detect 'at-risk' drinking, alcohol abuse or dependency in pregnant women receiving prenatal care. Five studies (6724 participants) were included. In total, seven instruments were evaluated: TWEAK (Tolerance, Worried, Eye-opener, Amnesia, Kut down), T-ACE [Take (number of drinks), Annoyed, Cut down, Eye-opener], CAGE (Cut down, Annoyed, Guilt, Eye-opener], NET (Normal drinker, Eye-opener, Tolerance), AUDIT (Alcohol Use Disorder Identification Test), AUDIT-C (AUDIT-consumption) and SMAST (Short Michigan Alcohol Screening Test). Study quality was generally good, but lack of blinding was a common weakness. For risk drinking sensitivity was highest for T-ACE (69-88%), TWEAK (71-91%) and AUDIT-C (95%), with high specificity (71-89%, 73-83% and 85%, respectively). CAGE and SMAST performed poorly. Sensitivity of AUDIT-C at score >or=3 was high for past year alcohol dependence (100%) or alcohol use disorder (96%) with moderate specificity (71% each). For life-time alcohol dependency the AUDIT at score >or=8 performed poorly. T-ACE, TWEAK and AUDIT-C show promise for screening for risk drinking, and AUDIT-C may also be useful for identifying alcohol dependency or abuse. However, their performance as stand-alone tools is uncertain, and further evaluation of questionnaires for prenatal alcohol use is warranted.
Method of Preparation AZP4330 PR Pattern with Edge Slope 40°
NASA Astrophysics Data System (ADS)
Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian
2018-03-01
When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.
Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem
NASA Technical Reports Server (NTRS)
Ceccobello, C.; Farinelli, R.; Titarchuk, L.
2014-01-01
We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the ordinary photons, under the approximation of large angle and large optical depth. These assumptions allow the equation to be treated using a diffusion-like approximation.
NASA Helps Keep the Light Burning for the Saturn Car Company
NASA Technical Reports Server (NTRS)
2003-01-01
The Saturn Electronics & Engineering, Inc. (Saturn) facility in Marks, Miss., that produces lamp assemblies was experiencing itermittent problems with its automotive under the hood lamps. After numerous testing and engineering efforts, technicians could not pin down the root of the problem. So Saturn contacted the NASA Technology Assistance Program (TAP) at Stennis Space Center. The Marks production facility had been experiencing intermittent problems with under the hood lamp assemblies for some time. The failure rate, at 2 percent, was unacceptable. Every effort was made to identify the problem so that corrective action could be put in place. The problem was investigated and researched by Saturn's engineering department. In addition, Saturn brought in several independent testing laboratories. Other measures included examining the switch component suppliers and auditing them for compliance to the design specifications and for surface contaminants. All attempts to identify the factors responsible for the failures were inconclusive. In an effort to get to the root of the problem, and at the recommendation of the Mississippi Department of Economic Development, Saturn contacted the NASA TAP at Stennis. The NASA Materials and Contamination Laboratory, with assistance from the Stennis Prototype Laboratory, conducted a materials evaluation study on the switch components. The laboratory findings showed the failures were caused by a build-up of carbon-based contaminants on the switch components. Saturn Electronics & Engineering, Inc., is a minority-owned provider of contract manufacturing services to a diverse global marketplace. Saturn operates manufacturing facilities globally serving the North American, European, and Asian markets. Saturn's production facility in Marks, Mississippi, produces more than 1,000,000 lamps and switches monthly. "Since the NASA recommendations were implemented, our internal failure rate for intermittency has dropped to less than .02 percent. Most importantly, we restored our high-level of customer satisfaction. Stennis provided an invaluable service to our business," Patrick said. Both NASA and Saturn were pleased with the results form this technical assistance project. The Technology Assistance Program at Stennis makes available to the public NASA technical expertise and access to lab facilities. This project provided both services with a positive outcome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S
2014-06-15
Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less
Can we judge an oxide by its cover? The case of the metal/oxide interface from first principles
NASA Astrophysics Data System (ADS)
Caspary Toroker, Maytal
Metal/metal-oxide interfaces appear in a wide variety of disciplines including electronics, corrosion, electrochemistry, and catalysis. Specifically, covering a metal-oxide with a metal is often thought to enhance solar energy absorption and to improve photocatalytic activity. For example, the platinum/hematite (Pt/ α-Fe2O3) interface has demonstrated improved functionality. In order to advance our understanding of how metal coverage over an oxide helps performance, we characterize the geometry and electronic structure of the Pt/ α-Fe2O3 interface. We investigate the interface using density functional theory +U, and find a stable crystallographic orientation relationship that agrees with experiment. Furthermore, there are significant changes in the electronic structure of α-Fe2O3 as a result of Pt coverage. We therefore suggest the concept of ``judging'' the electronic properties of an oxide only with its cover. Specifically, covering Fe2O3 with Pt reduces carrier effective mass and creates a continuum of states in the band gap. The former could be beneficial for catalytic activity, while the latter may cause surface recombination. In order to circumvent this problem, we suggest putting metal coverage behind the oxide and far from the electrolyte in a photoelectrochemical device in order to quickly collect electron carriers and avoid recombination with vulnerable holes accumulating as a result of catalysis at the surface. Reference: O. Neufeld and M. Caspary Toroker, ``Can we judge an oxide by its cover? The case of platinum over alpha-Fe2O3 from first principles'', Phys. Chem. Chem. Phys. 17, 24129 (2015). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11).
Xyce Parallel Electronic Simulator Users Guide Version 6.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Mei, Ting; Russo, Thomas V.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2014 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)« less
Xyce Parallel Electronic Simulator Users Guide Version 6.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Eric R.; Mei, Ting; Russo, Thomas V.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. Trademarks The information herein is subject to change without notice. Copyright c 2002-2015 Sandia Corporation. All rights reserved. Xyce TM Electronic Simulator and Xyce TM are trademarks of Sandia Corporation. Portions of the Xyce TM code are: Copyright c 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved. Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc. Microsoft, Windows and Windows 7 are registered trademarks of Microsoft Corporation. Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation. Amtec and TecPlot are trademarks of Amtec Engineering, Inc. Xyce 's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California. The EKV3 MOSFET model was developed by the EKV Team of the Electronics Laboratory-TUC of the Technical University of Crete. All other trademarks are property of their respective owners. Contacts Bug Reports (Sandia only) http://joseki.sandia.gov/bugzilla http://charleston.sandia.gov/bugzilla World Wide Web http://xyce.sandia.gov http://charleston.sandia.gov/xyce (Sandia only) Email xyce@sandia.gov (outside Sandia) xyce-sandia@sandia.gov (Sandia only)« less
Taylor, James; Parkes, Tessa; Haw, Sally; Jepson, Ruth
2012-11-06
There is concern that some veterans of armed forces, in particular those with mental health, drug or alcohol problems, experience difficulty returning to a civilian way of life and may subsequently come into contact with criminal justice services and imprisonment. The aim of this review is to examine whether military veterans with mental health problems, including substance use, have an additional risk of contact with criminal justice systems when compared with veterans who do not have such problems. The review will also seek to identify veterans' views and experiences on their contact with criminal justice services, what contributed to or influenced their contact and whether there are any differences, including international and temporal, in incidence, contact type, veteran type, their presenting health needs and reported experiences. In this review we will adopt a methodological model similar to that previously used by other researchers when reviewing intervention studies. The model, which we will use as a framework for conducting a review of observational and qualitative studies, consists of two parallel synthesis stages within the review process; one for quantitative research and the other for qualitative research. The third stage involves a cross study synthesis, enabling a deeper understanding of the results of the quantitative synthesis. A range of electronic databases, including MEDLINE, PsychINFO, CINAHL, will be systematically searched, from 1939 to present day, using a broad range of search terms that cover four key concepts: mental health, military veterans, substance misuse, and criminal justice. Studies will be screened against topic specific inclusion/exclusion criteria and then against a smaller subset of design specific inclusion/exclusion criteria. Data will be extracted for those studies that meet the inclusion criteria, and all eligible studies will be critically appraised. Included studies, both quantitative and qualitative, will then undergo stage-specific analysis and synthesis. The final stage will combine the findings of both syntheses to enable new understandings of why, how, and by how much, military veterans with mental health problems, including problematic drug and alcohol use, come into contact with the criminal justice system.
Wang, Ning; Yu, Ping; Hailey, David
2015-08-01
The nursing care plan plays an essential role in supporting care provision in Australian aged care. The implementation of electronic systems in aged care homes was anticipated to improve documentation quality. Standardized nursing terminologies, developed to improve communication and advance the nursing profession, are not required in aged care practice. The language used by nurses in the nursing care plan and the effect of the electronic system on documentation quality in residential aged care need to be investigated. To describe documentation practice for the nursing care plan in Australian residential aged care homes and to compare the quantity and quality of documentation in paper-based and electronic nursing care plans. A nursing documentation audit was conducted in seven residential aged care homes in Australia. One hundred and eleven paper-based and 194 electronic nursing care plans, conveniently selected, were reviewed. The quantity of documentation in a care plan was determined by the number of phrases describing a resident problem and the number of goals and interventions. The quality of documentation was measured using 16 relevant questions in an instrument developed for the study. There was a tendency to omit 'nursing problem' or 'nursing diagnosis' in the nursing process by changing these terms (used in the paper-based care plan) to 'observation' in the electronic version. The electronic nursing care plan documented more signs and symptoms of resident problems and evaluation of care than the paper-based format (48.30 vs. 47.34 out of 60, P<0.01), but had a lower total mean quality score. The electronic care plan contained fewer problem or diagnosis statements, contributing factors and resident outcomes than the paper-based system (P<0.01). Both types of nursing care plan were weak in documenting measurable and concrete resident outcomes. The overall quality of documentation content for the nursing process was no better in the electronic system than in the paper-based system. Omission of the nursing problem or diagnosis from the nursing process may reflect a range of factors behind the practice that need to be understood. Further work is also needed on qualitative aspects of the nurse care plan, nurses' attitudes towards standardized terminologies and the effect of different documentation practice on care quality and resident outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Reciprocal Associations between Electronic Media Use and Behavioral Difficulties in Preschoolers.
Poulain, Tanja; Vogel, Mandy; Neef, Madlen; Abicht, Franziska; Hilbert, Anja; Genuneit, Jon; Körner, Antje; Kiess, Wieland
2018-04-21
The use of electronic media has increased substantially and is already observable in young children. The present study explored associations of preschoolers’ use of electronic media with age, gender, and socio-economic status, investigated time trends, and examined reciprocal longitudinal relations between children’s use of electronic media and their behavioral difficulties. The study participants included 527 German two- to six-year-old children whose parents had provided information on their use of electronic media and their behavioral difficulties at two time points, with approximately 12 months between baseline and follow-up. The analyses revealed that older vs. younger children, as well as children from families with a lower vs. higher socio-economic status, were more often reported to use electronic media. Furthermore, the usage of mobile phones increased significantly between 2011 and 2016. Most interestingly, baseline usage of computer/Internet predicted more emotional and conduct problems at follow-up, and baseline usage of mobile phones was associated with more conduct problems and hyperactivity or inattention at follow-up. Peer relationship problems at baseline, on the other hand, increased the likelihood of using computer/Internet and mobile phones at follow-up. The findings indicate that preschoolers’ use of electronic media, especially newer media such as computer/Internet and mobile phones, and their behavioral difficulties are mutually related over time.
Reciprocal Associations between Electronic Media Use and Behavioral Difficulties in Preschoolers
Vogel, Mandy; Neef, Madlen; Abicht, Franziska; Hilbert, Anja; Körner, Antje; Kiess, Wieland
2018-01-01
The use of electronic media has increased substantially and is already observable in young children. The present study explored associations of preschoolers’ use of electronic media with age, gender, and socio-economic status, investigated time trends, and examined reciprocal longitudinal relations between children’s use of electronic media and their behavioral difficulties. The study participants included 527 German two- to six-year-old children whose parents had provided information on their use of electronic media and their behavioral difficulties at two time points, with approximately 12 months between baseline and follow-up. The analyses revealed that older vs. younger children, as well as children from families with a lower vs. higher socio-economic status, were more often reported to use electronic media. Furthermore, the usage of mobile phones increased significantly between 2011 and 2016. Most interestingly, baseline usage of computer/Internet predicted more emotional and conduct problems at follow-up, and baseline usage of mobile phones was associated with more conduct problems and hyperactivity or inattention at follow-up. Peer relationship problems at baseline, on the other hand, increased the likelihood of using computer/Internet and mobile phones at follow-up. The findings indicate that preschoolers’ use of electronic media, especially newer media such as computer/Internet and mobile phones, and their behavioral difficulties are mutually related over time. PMID:29690498
McCoy, A B; Wright, A; Krousel-Wood, M; Thomas, E J; McCoy, J A; Sittig, D F
2015-01-01
Clinical knowledge bases of problem-medication pairs are necessary for many informatics solutions that improve patient safety, such as clinical summarization. However, developing these knowledge bases can be challenging. We sought to validate a previously developed crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large, non-university health care system with a widely used, commercially available electronic health record. We first retrieved medications and problems entered in the electronic health record by clinicians during routine care during a six month study period. Following the previously published approach, we calculated the link frequency and link ratio for each pair then identified a threshold cutoff for estimated problem-medication pair appropriateness through clinician review; problem-medication pairs meeting the threshold were included in the resulting knowledge base. We selected 50 medications and their gold standard indications to compare the resulting knowledge base to the pilot knowledge base developed previously and determine its recall and precision. The resulting knowledge base contained 26,912 pairs, had a recall of 62.3% and a precision of 87.5%, and outperformed the pilot knowledge base containing 11,167 pairs from the previous study, which had a recall of 46.9% and a precision of 83.3%. We validated the crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large non-university health care system with a widely used, commercially available electronic health record, indicating that the approach may be generalizable across healthcare settings and clinical systems. Further research is necessary to better evaluate the knowledge, to compare crowdsourcing with other approaches, and to evaluate if incorporating the knowledge into electronic health records improves patient outcomes.
Wright, A.; Krousel-Wood, M.; Thomas, E. J.; McCoy, J. A.; Sittig, D. F.
2015-01-01
Summary Background Clinical knowledge bases of problem-medication pairs are necessary for many informatics solutions that improve patient safety, such as clinical summarization. However, developing these knowledge bases can be challenging. Objective We sought to validate a previously developed crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large, non-university health care system with a widely used, commercially available electronic health record. Methods We first retrieved medications and problems entered in the electronic health record by clinicians during routine care during a six month study period. Following the previously published approach, we calculated the link frequency and link ratio for each pair then identified a threshold cutoff for estimated problem-medication pair appropriateness through clinician review; problem-medication pairs meeting the threshold were included in the resulting knowledge base. We selected 50 medications and their gold standard indications to compare the resulting knowledge base to the pilot knowledge base developed previously and determine its recall and precision. Results The resulting knowledge base contained 26,912 pairs, had a recall of 62.3% and a precision of 87.5%, and outperformed the pilot knowledge base containing 11,167 pairs from the previous study, which had a recall of 46.9% and a precision of 83.3%. Conclusions We validated the crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large non-university health care system with a widely used, commercially available electronic health record, indicating that the approach may be generalizable across healthcare settings and clinical systems. Further research is necessary to better evaluate the knowledge, to compare crowdsourcing with other approaches, and to evaluate if incorporating the knowledge into electronic health records improves patient outcomes. PMID:26171079
An improved design method for EPC middleware
NASA Astrophysics Data System (ADS)
Lou, Guohuan; Xu, Ran; Yang, Chunming
2014-04-01
For currently existed problems and difficulties during the small and medium enterprises use EPC (Electronic Product Code) ALE (Application Level Events) specification to achieved middleware, based on the analysis of principle of EPC Middleware, an improved design method for EPC middleware is presented. This method combines the powerful function of MySQL database, uses database to connect reader-writer with upper application system, instead of development of ALE application program interface to achieve a middleware with general function. This structure is simple and easy to implement and maintain. Under this structure, different types of reader-writers added can be configured conveniently and the expandability of the system is improved.
Solti, Imre; Aaronson, Barry; Fletcher, Grant; Solti, Magdolna; Gennari, John H; Cooper, Melissa; Payne, Tom
2008-11-06
Detailed problem lists that comply with JCAHO requirements are important components of electronic health records. Besides improving continuity of care electronic problem lists could serve as foundation infrastructure for clinical trial recruitment, research, biosurveillance and billing informatics modules. However, physicians rarely maintain problem lists. Our team is building a system using MetaMap and UMLS to automatically populate the problem list. We report our early results evaluating the application. Three physicians generated gold standard problem lists for 100 cardiology ambulatory progress notes. Our application had 88% sensitivity and 66% precision using a non-modified UMLS dataset. The systemâs misses concentrated in the group of ambiguous problem list entries (Chi-square=27.12 p<0.0001). In addition to the explicit entries, the notes included 10% implicit entry candidates. MetaMap and UMLS are readily applicable to automate the problem list. Ambiguity in medical documents has consequences for performance evaluation of automated systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...
ERIC Educational Resources Information Center
Evans, Robert
2006-01-01
Plagiarism by students is seen as an increasing problem. The fear is that students will use the internet to obtain analysis, interpretation or even complete assignments and then submit these as their own work. Electronic plagiarism detection services may help to prevent such unfair practice but, in doing so, they create a new problem: certifying…
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
MedlinePlus Connect: Linking Patient Portals and Electronic Health Records to Health Information
... Patient portals, patient health record (PHR) systems, and electronic health record (EHR) systems can use MedlinePlus Connect ... patient portal, patient health record (PHR) system, or electronic health record (EHR) system sends a problem, medication, ...
Facing the Limitations of Electronic Document Handling.
ERIC Educational Resources Information Center
Moralee, Dennis
1985-01-01
This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)
Nower, Lia; Blaszczynski, Alex
2010-09-01
Studies attempting to identify the specific 'addictive' features of electronic gaming machines (EGMs) have yielded largely inconclusive results, suggesting that it is the interaction between a gambler's cognitions and the machine, rather than the machine itself, which fuels excessive play. Research has reported that machine players with gambling problems adopt a number of erroneous cognitive perceptions regarding the probability of winning and the nature of randomness. What is unknown, however, is whether motivations for gambling and attitudes toward pre-session monetary limit-setting vary across levels of gambling severity, and whether proposed precommitment strategies would be useful in minimizing excessive gambling expenditures. The current study explored these concepts in a sample of 127 adults, ages 18 to 81, attending one of four gambling venues in Queensland, Australia. The study found that problem gamblers were more likely than other gamblers to play machines to earn income or escape their problems rather than for fun and enjoyment. Similarly, they were less likely to endorse any type of monetary limit-setting prior to play. They were also reticent to adopt the use of a 'smart card' or other strategy to limit access to money during a session, though they indicated they lost track of money while gambling and were rarely aware of whether they were winning or losing during play. Implications for precommitment policies and further research are discussed.
Dielectric response in Bloch’s hydrodynamic model of an electron-ion plasma
NASA Astrophysics Data System (ADS)
Ishikawa, K.; Felderhof, B. U.
The linear response of an electron-ion plasma to an applied oscillating electric field is studied within the framework of Bloch’s classical hydrodynamic model. The ions are assumed to be fixed in space and distributed according to a known probability distribution. The linearized equations of motion for electron density and flow velocity are studied with the aid of a multiple scattering analysis and cluster expansion. This allows systematic reduction of the many-ion problem to a composition of few-ion problems, and shows how the longitudinal dielectric response function can in principle be calculated.
Schmidmaier, Ralf; Eiber, Stephan; Ebersbach, Rene; Schiller, Miriam; Hege, Inga; Holzer, Matthias; Fischer, Martin R
2013-02-22
Medical knowledge encompasses both conceptual (facts or "what" information) and procedural knowledge ("how" and "why" information). Conceptual knowledge is known to be an essential prerequisite for clinical problem solving. Primarily, medical students learn from textbooks and often struggle with the process of applying their conceptual knowledge to clinical problems. Recent studies address the question of how to foster the acquisition of procedural knowledge and its application in medical education. However, little is known about the factors which predict performance in procedural knowledge tasks. Which additional factors of the learner predict performance in procedural knowledge? Domain specific conceptual knowledge (facts) in clinical nephrology was provided to 80 medical students (3rd to 5th year) using electronic flashcards in a laboratory setting. Learner characteristics were obtained by questionnaires. Procedural knowledge in clinical nephrology was assessed by key feature problems (KFP) and problem solving tasks (PST) reflecting strategic and conditional knowledge, respectively. Results in procedural knowledge tests (KFP and PST) correlated significantly with each other. In univariate analysis, performance in procedural knowledge (sum of KFP+PST) was significantly correlated with the results in (1) the conceptual knowledge test (CKT), (2) the intended future career as hospital based doctor, (3) the duration of clinical clerkships, and (4) the results in the written German National Medical Examination Part I on preclinical subjects (NME-I). After multiple regression analysis only clinical clerkship experience and NME-I performance remained independent influencing factors. Performance in procedural knowledge tests seems independent from the degree of domain specific conceptual knowledge above a certain level. Procedural knowledge may be fostered by clinical experience. More attention should be paid to the interplay of individual clinical clerkship experiences and structured teaching of procedural knowledge and its assessment in medical education curricula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2015-11-15
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific featuresmore » of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)« less
Escobar-Chaves, Soledad Liliana; Anderson, Craig A
2008-01-01
Liliana Escobar-Chaves and Craig Anderson investigate two important trends among American youth and examine the extent to which the two trends might be related. First, the authors note that U.S. youth are spending increasing amounts of time using electronic media, with the average American youngster now spending one-third of each day with some form of electronic media. Second, the authors demonstrate that American adolescents are engaging in a number of unhealthful behaviors that impose huge societal costs. Escobar-Chaves and Anderson detail the extent of five critical types of adolescent health risk behaviors identified by the Centers for Disease Control and Prevention-obesity, smoking, drinking, sexual risk taking, and violence. Obesity, the authors note, has become an epidemic among America's young people. Cigarette smoking among adolescents is one of the ten leading health indicators of greatest government concern. Alcohol abuse and alcohol dependence are widespread problems among the nation's youth and are the source of the three leading causes of death among youth. More than 20 percent of American high school students have sexual intercourse for the first time before they reach the age of fourteen. And twelve- to twenty-year-olds perpetrated 28 percent of the single-offender and 41 percent of multiple-offender violent crimes in the United States in 2005. Escobar-Chaves and Anderson present and evaluate research findings on the influence of electronic media on these five risk behaviors among adolescents. Researchers, they say, have found modest evidence that media consumption contributes to the problem of obesity, modest to strong evidence that it contributes to drinking and smoking, and strong evidence that it contributes to violence. Research has been insufficient to find links between heavy media exposure and early sexual initiation. The authors note the need for more large-scale longitudinal studies that specifically examine the cumulative effects of electronic media on risky health behavior.
Leland, W.T.
1960-01-01
The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.
Education policy implications from the Expert Panel on Electronic Media and Youth Violence.
Worthen, Maria R
2007-12-01
The research from the Expert Panel on Electronic Media and Youth Violence makes a compelling case for why educators and education policymakers should care about the effects of media on youth behavior, and the growing phenomenon of Internet bullying and harassment. The ability of the U.S. education system to respond is limited not only by competing instructional priorities but also by the governance structure of the education system itself. The federal role is limited to a proportionally small amount of funding for states and schools, to raising public awareness, and to providing research and data. States can set priorities, make requirements, and direct funding. Districts and schools ultimately have the most control over prevention program selection and setting social and behavioral norms. Key implications of the panel's research for educators and education policymakers include: Internet bullying is correlated with school behavior problems; Internet bullying behavior may peak in middle school; Internet bullying shares common predictors with verbal and, to some extent, physical bullying; Media literacy programs may mitigate the negative effects of electronic media on youth. Specific recommendations based on these conclusions are discussed, and research priorities for the prevention and education fields are identified.
NASA Technical Reports Server (NTRS)
Sojka, Jan J.
2003-01-01
The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.
NASA Astrophysics Data System (ADS)
Mantri, Archana
2014-05-01
The intent of the study presented in this paper is to show that the model of problem-based learning (PBL) can be made scalable by designing curriculum around a set of open-ended problems (OEPs). The detailed statistical analysis of the data collected to measure the effects of traditional and PBL instructions for three courses in Electronics and Communication Engineering, namely Analog Electronics, Digital Electronics and Pulse, Digital & Switching Circuits is presented here. It measures the effects of pedagogy, gender and cognitive styles on the knowledge, skill and attitude of the students. The study was conducted two times with content designed around same set of OEPs but with two different trained facilitators for all the three courses. The repeatability of results for effects of the independent parameters on dependent parameters is studied and inferences are drawn.
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Predictors of Problem Gambling Severity in Treatment Seeking Gamblers
ERIC Educational Resources Information Center
Hounslow, Vanessa; Smith, David; Battersby, Malcolm; Morefield, Kate
2011-01-01
Problem gambling has become a widespread problem following the rapid expansion of electronic gaming machines into hotels and clubs over the last 10 years. Recent literature indicates that certain factors can influence problem gambling severity, such as psychiatric co-morbidity and personality traits, gambling related cognitions, substance use and…
Configuration-specific electronic structure of strongly interacting interfaces: TiOPc on Cu(110)
NASA Astrophysics Data System (ADS)
Maughan, Bret; Zahl, Percy; Sutter, Peter; Monti, Oliver L. A.
2017-12-01
We use low-temperature scanning tunneling microscopy in combination with angle-resolved ultraviolet and two-photon photoemission spectroscopy to investigate the interfacial electronic structure of titanyl phthalocyanine (TiOPc) on Cu(110). We show that the presence of two unique molecular adsorption configurations is crucial for a molecular-level analysis of the hybridized interfacial electronic structure. Specifically, thermally induced self-assembly exposes marked adsorbate-configuration-specific contributions to the interfacial electronic structure. The results of this work demonstrate an avenue towards understanding and controlling interfacial electronic structure in chemisorbed films even for the case of complex film structure.
Adapting Nielsen’s Design Heuristics to Dual Processing for Clinical Decision Support
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson’s standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access. PMID:28269915
Space-time wiring specificity supports direction selectivity in the retina.
Kim, Jinseop S; Greene, Matthew J; Zlateski, Aleksandar; Lee, Kisuk; Richardson, Mark; Turaga, Srinivas C; Purcaro, Michael; Balkam, Matthew; Robinson, Amy; Behabadi, Bardia F; Campos, Michael; Denk, Winfried; Seung, H Sebastian
2014-05-15
How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of 'citizen neuroscientists'. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such 'space-time wiring specificity' could endow SAC dendrites with receptive fields that are oriented in space-time and therefore respond selectively to stimuli that move in the outward direction from the soma.
Capturing a failure of an ASIC in-situ, using infrared radiometry and image processing software
NASA Technical Reports Server (NTRS)
Ruiz, Ronald P.
2003-01-01
Failures in electronic devices can sometimes be tricky to locate-especially if they are buried inside radiation-shielded containers designed to work in outer space. Such was the case with a malfunctioning ASIC (Application Specific Integrated Circuit) that was drawing excessive power at a specific temperature during temperature cycle testing. To analyze the failure, infrared radiometry (thermography) was used in combination with image processing software to locate precisely where the power was being dissipated at the moment the failure took place. The IR imaging software was used to make the image of the target and background, appear as unity. As testing proceeded and the failure mode was reached, temperature changes revealed the precise location of the fault. The results gave the design engineers the information they needed to fix the problem. This paper describes the techniques and equipment used to accomplish this failure analysis.
Adapting Nielsen's Design Heuristics to Dual Processing for Clinical Decision Support.
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson's standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access.
A description of the new 3D electron gun and collector modeling tool: MICHELLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petillo, J.; Mondelli, A.; Krueger, W.
1999-07-01
A new 3D finite element gun and collector modeling code is under development at SAIC in collaboration with industrial partners and national laboratories. This development program has been designed specifically to address the shortcomings of current simulation and modeling tools. In particular, although there are 3D gun codes that exist today, their ability to address fine scale features is somewhat limited in 3D due to disparate length scales of certain classes of devices. Additionally, features like advanced emission rules, including thermionic Child's law and comprehensive secondary emission models also need attention. The program specifically targets problems classes including gridded-guns, sheet-beammore » guns, multi-beam devices, and anisotropic collectors. The presentation will provide an overview of the program objectives, the approach to be taken by the development team, and a status of the project.« less
High pressure and synchrotron radiation studies of solid state electronic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Assessing organizational capacity for achieving meaningful use of electronic health records.
Shea, Christopher M; Malone, Robb; Weinberger, Morris; Reiter, Kristin L; Thornhill, Jonathan; Lord, Jennifer; Nguyen, Nicholas G; Weiner, Bryan J
2014-01-01
Health care institutions are scrambling to manage the complex organizational change required for achieving meaningful use (MU) of electronic health records (EHR). Assessing baseline organizational capacity for the change can be a useful step toward effective planning and resource allocation. The aim of this article is to describe an adaptable method and tool for assessing organizational capacity for achieving MU of EHR. Data on organizational capacity (people, processes, and technology resources) and barriers are presented from outpatient clinics within one integrated health care delivery system; thus, the focus is on MU requirements for eligible professionals, not eligible hospitals. We conducted 109 interviews with representatives from 46 outpatient clinics. Most clinics had core elements of the people domain of capacity in place. However, the process domain was problematic for many clinics, specifically, capturing problem lists as structured data and having standard processes for maintaining the problem list in the EHR. Also, nearly half of all clinics did not have methods for tracking compliance with their existing processes. Finally, most clinics maintained clinical information in multiple systems, not just the EHR. The most common perceived barriers to MU for eligible professionals included EHR functionality, changes to workflows, increased workload, and resistance to change. Organizational capacity assessments provide a broad institutional perspective and an in-depth clinic-level perspective useful for making resource decisions and tailoring strategies to support the MU change effort for eligible professionals.
NASA Astrophysics Data System (ADS)
Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.
2002-04-01
Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.
García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M
2010-07-01
In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.
An Engineering Tool for the Prediction of Internal Dielectric Charging
NASA Astrophysics Data System (ADS)
Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.
1998-11-01
A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.
NASA Astrophysics Data System (ADS)
Lapshenkov, E. M.; Volkov, V. Y.; Kulagin, V. P.
2018-05-01
The article is devoted to the problem of pattern creation of the NMR sensor signal for subsequent recognition by the artificial neural network in the intelligent device "the electronic tongue". The specific problem of removing redundant data from the spin-spin relaxation signal pattern that is used as a source of information in analyzing the composition of oil and petroleum products is considered. The method is proposed that makes it possible to remove redundant data of the relaxation decay pattern but without introducing additional distortion. This method is based on combining some relaxation decay curve intervals that increment below the noise level such that the increment of the combined intervals is above the noise level. In this case, the relaxation decay curve samples that are located inside the combined intervals are removed from the pattern. This method was tested on the heavy-oil NMR signal patterns that were created by using the Carr-Purcell-Meibum-Gill (CPMG) sequence for recording the relaxation process. Parameters of CPMG sequence are: 100 μs - time interval between 180° pulses, 0.4s - duration of measurement. As a result, it was revealed that the proposed method allowed one to reduce the number of samples 15 times (from 4000 to 270), and the maximum detected root mean square error (RMS error) equals 0.00239 (equivalent to signal-to-noise ratio 418).
Learning Optimal Individualized Treatment Rules from Electronic Health Record Data
Wang, Yuanjia; Wu, Peng; Liu, Ying; Weng, Chunhua; Zeng, Donglin
2016-01-01
Medical research is experiencing a paradigm shift from “one-size-fits-all” strategy to a precision medicine approach where the right therapy, for the right patient, and at the right time, will be prescribed. We propose a statistical method to estimate the optimal individualized treatment rules (ITRs) that are tailored according to subject-specific features using electronic health records (EHR) data. Our approach merges statistical modeling and medical domain knowledge with machine learning algorithms to assist personalized medical decision making using EHR. We transform the estimation of optimal ITR into a classification problem and account for the non-experimental features of the EHR data and confounding by clinical indication. We create a broad range of feature variables that reflect both patient health status and healthcare data collection process. Using EHR data collected at Columbia University clinical data warehouse, we construct a decision tree for choosing the best second line therapy for treating type 2 diabetes patients. PMID:28503676
Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk
2016-04-20
The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Callens, F; Vanhaelewyn, G; Matthys, P
2002-04-01
Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, Tim; Stagich, Brooke
The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used inmore » the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.« less
NASA Astrophysics Data System (ADS)
Wisniewski, H.; Gourdain, P.-A.
2017-10-01
APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.
Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun
2016-08-30
Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.
Hulse, Nathan C; Long, Jie; Tao, Cui
2013-01-01
Infobuttons have been established to be an effective resource for addressing information needs at the point of care, as evidenced by recent research and their inclusion in government-based electronic health record incentive programs in the United States. Yet their utility has been limited to wide success for only a specific set of domains (lab data, medication orders, and problem lists) and only for discrete, singular concepts that are already documented in the electronic medical record. In this manuscript, we present an effort to broaden their utility by connecting a semantic web-based phenotyping engine with an infobutton framework in order to identify and address broader issues in patient data, derived from multiple data sources. We have tested these patterns by defining and testing semantic definitions of pre-diabetes and metabolic syndrome. We intend to carry forward relevant information to the infobutton framework to present timely, relevant education resources to patients and providers.
Two Quantum Protocols for Oblivious Set-member Decision Problem
NASA Astrophysics Data System (ADS)
Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-10-01
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Two Quantum Protocols for Oblivious Set-member Decision Problem
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-01-01
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology. PMID:26514668
Two Quantum Protocols for Oblivious Set-member Decision Problem.
Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-10-30
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.
Picture archiving and communication in radiology.
Napoli, Marzia; Nanni, Marinella; Cimarra, Stefania; Crisafulli, Letizia; Campioni, Paolo; Marano, Pasquale
2003-01-01
After over 80 years of exclusive archiving of radiologic films, at present, in Radiology, digital archiving is increasingly gaining ground. Digital archiving allows a considerable reduction in costs and space saving, but most importantly, immediate or remote consultation of all examinations and reports in the hospital clinical wards, is feasible. The RIS system, in this case, is the starting point of the process of electronic archiving which however is the task of PACS. The latter can be used as radiologic archive in accordance with the law provided that it is in conformance with some specifications as the use of optical long-term storage media or with electronic track of change. PACS archives, in a hierarchical system, all digital images produced by each diagnostic imaging modality. Images and patient data can be retrieved and used for consultation or remote consultation by the reporting radiologist who requires images and reports of previous radiologic examinations or by the referring physician of the ward. Modern PACS owing to the WEB server allow remote access to extremely simplified images and data however ensuring the due regulations and access protections. Since the PACS enables a simpler data communication within the hospital, security and patient privacy should be protected. A secure and reliable PACS should be able to minimize the risk of accidental data destruction, and should prevent non authorized access to the archive with adequate security measures in relation to the acquired knowledge and based on the technological advances. Archiving of data produced by modern digital imaging is a problem now present also in small Radiology services. The technology is able to readily solve problems which were extremely complex up to some years ago as the connection between equipment and archiving system owing also to the universalization of the DICOM 3.0 standard. The evolution of communication networks and the use of standard protocols as TCP/IP can minimize problems of data and image remote transmission within the healthcare enterprise as well as over the territory. However, new problems are appearing as that of digital data security profiles and of the different systems which should ensure it. Among these, algorithms of electronic signature should be mentioned. In Italy they are validated by law and therefore can be used in digital archives in accordance with the law.
Kinetic energy partition method applied to ground state helium-like atoms.
Chen, Yu-Hsin; Chao, Sheng D
2017-03-28
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
Adebayo, Emmanuel; Oluwagbayela, Babatunde
2016-01-01
Background Electronic aggression is the use of electronic communication technologies to harass others. It is a problem among adolescents and young people worldwide. There is a dearth of information on this problem in developing countries in spite of the increasing use of electronic media technology in these countries. Objective To explore gender differences in the prevalence, effects and reporting of electronic aggression among secondary school students in Oyo state, Nigeria. Methods A cross-sectional study was conducted using mixed methods (a quantitative survey of 653 students and 18 in-depth interviews with victims and/or perpetrators). Survey students were selected using multi-stage sampling and in-depth interviewees were selected purposively. History of electronic aggression (as a perpetrator and/or victim) in the 3 months preceding the study was obtained. Respondents also provided information on the effects of the last incident of bullying on them and whether or not they reported this incident. Results 25.8% of males and 22.1% of females had perpetrated electronic aggression, while 42.7% of females were victims compared to 36.8% of males. More females (58.1%) than males (40.3%) perpetrated electronic aggression via phone calls and more males (33.8%) than females (22.6%) perpetrated electronic aggression via chatrooms. 45.4% of male victims and 39.4% of female victims felt angry following the last cyberbully incident. Findings from the in-depth interviewees corroborated the survey findings and a male victim reported feeling very sad and even tried to stay away from school following repeated episodes of electronic aggression. More female (59.1%) than male (42.7%) victims reported the incident to someone (p=0.035). Conclusions Incidents of electronic aggression were common and the experiences of male and female students were comparable, although more female victims reported the incidents they had experienced. Victims, especially males, should be encouraged to report incidents so that the relevant authorities can institute interventions to address the problem. PMID:28588956
Parameter dependence of the MCNP electron transport in determining dose distributions.
Reynaert, N; Palmans, H; Thierens, H; Jeraj, R
2002-10-01
In this paper, a detailed study of the electron transport in MCNP is performed, separating the effects of the energy binning technique on the energy loss rate, the scattering angles, and the sub-step length as a function of energy. As this problem is already well known, in this paper we focus on the explanation as to why the default mode of MCNP can lead to large deviations. The resolution dependence was investigated as well. An error in the MCNP code in the energy binning technique in the default mode (DBCN 18 card = 0) was revealed, more specific in the updating of cross sections when a sub-step is performed corresponding to a high-energy loss. This updating error is not present in the ITS mode (DBCN 18 card = 1) and leads to a systematically lower dose deposition rate in the default mode. The effect is present for all energies studied (0.5-10 MeV) and depends on the geometrical resolution of the scoring regions and the energy grid resolution. The effect of the energy binning technique is of the same order of that of the updating error for energies below 2 MeV, and becomes less important for higher energies. For a 1 MeV point source surrounded by homogeneous water, the deviation of the default MCNP results at short distances attains 9% and remains approximately the same for all energies. This effect could be corrected by removing the completion of an energy step each time an electron changes from an energy bin during a sub-step. Another solution consists of performing all calculations in the ITS mode. Another problem is the resolution dependence, even in the ITS mode. The higher the resolution is chosen (the smaller the scoring regions) the faster the energy is deposited along the electron track. It is proven that this is caused by starting a new energy step when crossing a surface. The resolution effect should be investigated for every specific case when calculating dose distributions around beta sources. The resolution should not be higher than 0.85*(1-EFAC)*CSDA, where EFAC is the energy loss per energy step and CSDA a continuous slowing down approximation range. This effect could as well be removed by determining the cross sections for energy loss and multiple scattering at the average energy of an energy step and by sampling the cross sections for each sub-step. Overall, we conclude that MCNP cannot be used without a caution due to possible errors in the electron transport. When care is taken, it is possible to obtain correct results that are in agreement with other Monte Carlo codes.
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J. (Principal Investigator); Koehne, Jessica; Gandhiraman, Ram; Navarrete, Jesica; Spangle, Dylan
2017-01-01
Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a limited lifespan. Thus, current mission architectures must compensate for replacement. In space, spent electronics are discarded; on earth, there is some recycling but current processes are toxic and environmentally hazardous. Imagine instead an end-to-end recycling of spent electronics at low mass, low cost, room temperature, and in a non-toxic manner. Here, we propose a solution that will not only enhance mission success by decreasing upmass and providing a fresh supply of electronics, but in addition has immediate applications to a serious environmental issue on the Earth. Spent electronics will be used as feedstock to make fresh electronic components, a process we will accomplish with so-called 'urban biomining' using synthetically enhanced microbes to bind metals with elemental specificity. To create new electronics, the microbes will be used as 'bioink' to print a new IC chip, using plasma jet electronics printing. The plasma jet electronics printing technology will have the potential to use martian atmospheric gas to print and to tailor the electronic and chemical properties of the materials. Our preliminary results have suggested that this process also serves as a purification step to enhance the proportion of metals in the 'bioink'. The presence of electric field and plasma can ensure printing in microgravity environment while also providing material morphology and electronic structure tunabiity and thus optimization. Here we propose to increase the TRL level of the concept by engineering microbes to dissolve the siliceous matrix in the IC, extract copper from a mixture of metals, and use the microbes as feedstock to print interconnects using mars gas simulant. To assess the ability of this concept to influence mission architecture, we will do an analysis of the infrastructure required to execute this concept on Mars, and additional opportunities it could offer mission design from the biological and printing technologies. In addition, we will do an analysis of the impact of this technology for terrestrial applications addressing in particular environmental concerns and availability of metals.
Conway, Anne; Miller, Alison L; Modrek, Anahid
2017-08-01
Sleep problems are associated with problematic adjustment in toddlers, but less is known regarding the direction of association between specific sleep problems and adjustment. To address this gap, we used data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development (N = 1001) to examine reciprocal associations between sleep problems and behavior problems from 24- to 36-months. Results from cross-lagged path models suggested specificity of associations between type of sleep problem and behavior problem. Specifically, there were reciprocal associations between trouble getting to sleep and internalizing problems, and unidirectional links between externalizing problems and bedtime resistance from 24- to 36-months. Internalizing and externalizing problems at 24 months, however, predicted increases in bedtime resistance from 24- to 36-months for boys, but not girls. Findings highlight specific relations between sleep problems and internalizing and externalizing problems during toddlerhood, and the importance of examining sex differences.
The Problems of Diagnosis and Remediation of Dyscalculia.
ERIC Educational Resources Information Center
Price, Nigel; Youe, Simon
2000-01-01
Focuses on the problems of diagnosis and remediation of dyscalculia. Explores whether there is justification for believing that specific difficulty with mathematics arises jointly with a specific language problem, or whether a specific difficulty with mathematics can arise independently of problems with language. Uses a case study to illuminate…
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopar, Víctor A.
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less
Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering
Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...
2016-06-08
The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.
The value of swarm data for practical modeling of plasma devices
NASA Astrophysics Data System (ADS)
Napartovich, A. P.; Kochetov, I. V.
2011-04-01
The non-thermal plasma is a key component in gas lasers, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and other applications. The specific feature of the non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). The reactivity of the plasma is due to the appearance of atoms and chemical radicals. For the efficient production of chemically active species high average electron energy is required, which is controlled by the balance of gain from the electric field and loss in inelastic collisions. In low-ionized plasma the electron energy distribution function is far from Maxwellian and must be found numerically for specified conditions. Numerical modeling of processes in plasma technologies requires vast databases on electron scattering cross sections to be available. The only reliable criterion for evaluations of validity of a set of cross sections for a particular species is a correct prediction of electron transport and kinetic coefficients measured in swarm experiments. This criterion is used traditionally to improve experimentally measured cross sections, as was suggested earlier by Phelps. The set of cross sections subjected to this procedure is called a self-consistent set. Nowadays, such reliable self-consistent sets are known for many species. Problems encountered in implementation of the fitting procedure and examples of its successful applications are described in the paper. .
Medication order communication using fax and document-imaging technologies.
Simonian, Armen I
2008-03-15
The implementation of fax and document-imaging technology to electronically communicate medication orders from nursing stations to the pharmacy is described. The evaluation of a commercially available pharmacy order imaging system to improve order communication and to make document retrieval more efficient led to the selection and customization of a system already licensed and used in seven affiliated hospitals. The system consisted of existing fax machines and document-imaging software that would capture images of written orders and send them from nursing stations to a central database server. Pharmacists would then retrieve the images and enter the orders in an electronic medical record system. The pharmacy representatives from all seven hospitals agreed on the configuration and functionality of the custom application. A 30-day trial of the order imaging system was successfully conducted at one of the larger institutions. The new system was then implemented at the remaining six hospitals over a period of 60 days. The transition from a paper-order system to electronic communication via a standardized pharmacy document management application tailored to the specific needs of this health system was accomplished. A health system with seven affiliated hospitals successfully implemented electronic communication and the management of inpatient paper-chart orders by using faxes and document-imaging technology. This standardized application eliminated the problems associated with the hand delivery of paper orders, the use of the pneumatic tube system, and the printing of traditional faxes.
Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.
Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien
2018-06-04
Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.
Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager
NASA Astrophysics Data System (ADS)
Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.
2013-05-01
Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
Design study for electronic system for Jupiter Orbit Probe (JOP)
NASA Technical Reports Server (NTRS)
Elero, B. P., Jr.; Carignan, G. R.
1978-01-01
The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.
Exciton States in a Gaussian Confining Potential Well
NASA Astrophysics Data System (ADS)
Xie, Wen-Fang; Gu, Juan
2003-11-01
We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014
NASA Technical Reports Server (NTRS)
Schneider, E. T.; Enevoldson, E. K.
1984-01-01
The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based
NASA Astrophysics Data System (ADS)
Arseev, Petr I.; Maslova, N. S.
2011-02-01
It is shown how effective Hamiltonians are constructed in the framework of the adiabatic approach to the electron-vibration interaction in electron tunneling through single molecules. Methods for calculating tunneling characteristics are discussed and possible features resulting from the electron-vibration coupling are described. The intensity of vibrations excited by a tunneling current in various systems is examined.
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer. PMID:28269882
Bullying in schools: the power of bullies and the plight of victims.
Juvonen, Jaana; Graham, Sandra
2014-01-01
Bullying is a pervasive problem affecting school-age children. Reviewing the latest findings on bullying perpetration and victimization, we highlight the social dominance function of bullying, the inflated self-views of bullies, and the effects of their behaviors on victims. Illuminating the plight of the victim, we review evidence on the cyclical processes between the risk factors and consequences of victimization and the mechanisms that can account for elevated emotional distress and health problems. Placing bullying in context, we consider the unique features of electronic communication that give rise to cyberbullying and the specific characteristics of schools that affect the rates and consequences of victimization. We then offer a critique of the main intervention approaches designed to reduce school bullying and its harmful effects. Finally, we discuss future directions that underscore the need to consider victimization a social stigma, conduct longitudinal research on protective factors, identify school context factors that shape the experience of victimization, and take a more nuanced approach to school-based interventions.
Using the World Wide Web for GIDEP Problem Data Processing at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
McPherson, John W.; Haraway, Sandra W.; Whirley, J. Don
1999-01-01
Since April 1997, Marshall Space Flight Center has been using electronic transfer and the web to support our processing of the Government-Industry Data Exchange Program (GIDEP) and NASA ALERT information. Specific aspects include: (1) Extraction of ASCII text information from GIDEP for loading into Word documents for e-mail to ALERT actionees; (2) Downloading of GIDEP form image formats in Adobe Acrobat (.pdf) for internal storage display on the MSFC ALERT web page; (3) Linkage of stored GRDEP problem forms with summary information for access from the MSFC ALERT Distribution Summary Chart or from an html table of released MSFC ALERTs (4) Archival of historic ALERTs for reference by GIDEP ID, MSFC ID, or MSFC release date; (5) On-line tracking of ALERT response status using a Microsoft Access database and the web (6) On-line response to ALERTs from MSFC actionees through interactive web forms. The technique, benefits, effort, coordination, and lessons learned for each aspect are covered herein.
Emotion perception accuracy and bias in face-to-face versus cyberbullying.
Ciucci, Enrica; Baroncelli, Andrea; Nowicki, Stephen
2014-01-01
The authors investigated the association of traditional and cyber forms of bullying and victimization with emotion perception accuracy and emotion perception bias. Four basic emotions were considered (i.e., happiness, sadness, anger, and fear); 526 middle school students (280 females; M age = 12.58 years, SD = 1.16 years) were recruited, and emotionality was controlled. Results indicated no significant findings for girls. Boys with higher levels of traditional bullying did not show any deficit in perception accuracy of emotions, but they were prone to identify happiness and fear in faces when a different emotion was expressed; in addition, male cyberbullying was related to greater accuracy in recognizing fear. In terms of the victims, cyber victims had a global problem in recognizing emotions and a specific problem in processing anger and fear. It was concluded that emotion perception accuracy and bias were associated with bullying and victimization for boys not only in traditional settings but also in the electronic ones. Implications of these findings for possible intervention are discussed.
Predoctoral teaching of temporomandibular disorders: a survey of U.S. and Canadian dental schools.
Klasser, Gary D; Greene, Charles S
2007-02-01
In the United States and Canada, there are no specific curriculum guidelines for predoctoral dental education in the field of temporomandibular disorders (TMDs). This situation has the potential to cause confusion for new graduates. The authors sent an 11-question survey regarding predoctoral teaching of TMDs to the appropriate faculty members in all U.S. and Canadian dental schools either electronically or via the postal service between June and December 2005. Predoctoral teaching of TMD--both didactic and clinical aspects--has progressed. Some schools, however, do not address these topics adequately, while others teach outdated concepts. Both qualitative and quantitative standards are needed to ensure that all predoctoral dental students learn about the diagnosis and treatment of nondental orofacial pain problems. Practice Implications. Owing to the lack of standardized predoctoral teaching of TMD, U.S. or Canadian patients with TMD or facial pain are at risk when seeking appropriate primary care for their problems.
Unresolved Issues With Inner Magnetosphere-Ionosphere Coupling
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Khazanov, G.
2004-01-01
Dipolarization and the release of stored magnetic energy is strongly evident in the energized plasma sheet electrons and ions injected earthward from the magnetotail. While some of these plasma are presumed lost into the dayside magnetosheath, much of the energy is dissipated into the ionosphere through electric currents, through collisions into low energy plasma, and into plasma waves, which then go on to heat and energize plasma of the inner magnetosphere. Many mechanisms for the transfer of energy and the consequences to inner magnetospheric plasma populations have been proposed. The sophistication of theoretical models to represent the interdependencies between plasma populations is rapidly increasing. However without the restraint and reality imposed on theory by relevant measurements, the degree to which specific mechanisms participate in the exchange of energy as a function of location and time cannot be known. ORBITALS offers this capability. Some of the outstanding problems in inner magnetospheric physics and the opportunities presented by the ORBITAL concept to solve problems will be discussed.
A Pilot Evaluation of a Tutorial to Teach Clients and Clinicians About Gambling Game Design.
Turner, Nigel E; Robinson, Janine; Harrigan, Kevin; Ferentzy, Peter; Jindani, Farah
2018-01-01
This paper describes the pilot evaluation of an Internet-based intervention, designed to teach counselors and problem gamblers about how electronic gambling machines (EGMs) work. This study evaluated the tutorial using assessment tools, such as rating scales and test of knowledge about EGMs and random chance. The study results are based on a number of samples, including problem gambling counselors ( n = 25) and problem gamblers ( n = 26). The interactive tutorial was positively rated by both clients and counselors. In addition, we found a significant improvement in scores on a content test about EGM games for both clients and counselors. An analysis of the specific items suggests that the effects of the tutorial were mainly on those items that were most directly related to the content of the tutorial and did not always generalize to other items. This tutorial is available for use with clients and for education counselors. The data also suggest that the tutorial is equally effective in group settings and in individual settings. These results are promising and illustrate that the tool can be used to teach counselors and clients about game design. Furthermore, research is needed to evaluate its impact on gambling behavior.
Trends and Challenges in Smart Healthcare Research: A Journey from Data to Wisdom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanas, Agusti; Fran, Casino; Batista, Edgar
Smart Healthcare is a relatively new context-aware healthcare paradigm influenced by several fields of knowledge, namely medical informatics, communications and electronics, bioengineering, ethics and so on. Thus, many challenging problems are related to smart healthcare but in many cases they are explored individually in their respective fields and, as a result, they are not always known by the smart healthcare research community working in more specific domains. The aim of this article is to identify some of the most relevant trends and research lines that are going to affect the smart healthcare field in the years to come. To domore » so, the article considers a systematic approach that classifies the identified research trends and problems according to their appearance within the data life cycle, this is, from the data gathering in the physical layer (lowest level) until their final use in the application layer (highest level). By identifying and classifying those research trends and challenges, we help to pose questions that the smart healthcare community will need to address. Consequently, we set a common ground to explore important problems in the field, which will have significant impact in the years to come.« less
Quasiparticle Coherence, Collective Modes, and Competing Order in Cuprate Superconductors
NASA Astrophysics Data System (ADS)
Hinton, James Patrick
In recent years, the study of cuprate superconductors has been dominated by the investigation of normal state properties. Of particular interest is the nature of interactions between superconductivity and other incipient orders which emerge above the superconducting transition temperature, Tc. The discovery of charge density wave (CDW) correlations in YBa2Cu3O6+x (YBCO) and HgBa2CuO 4+d (Hg-1201) has established that some form of charge order is ubiquitous in the cuprates. In this work, we explore the non-equilibrium dynamics of systems which sit near the boundary between superconductivity and competing orders. Ultrafast pump-probe spectroscopy is ideally suited to the study of competing order. Exciting the sample with an optical pulse perturbs the system from equilibrium, altering the balance between the co-existing orders. The return to equilibrium is then monitored by a time-delayed probe pulse, revealing multiple decay processes as well as collective excitations. We first apply this technique to Hg-1201, conducting a detailed study of the phase diagram. At temperatures near Tc, the pump pulse induces a non-equilibrium quasiparticle population. At Tc we observe a doping-dependent peak in the relaxation time of these quasiparticles which we associate with a divergence in the coherence time of the fluctuating CDW. Using heterodyne probing in the transient grating geometry, we are able to disentangle the transient reflectivity components associated with superconductivity and the pseudogap, domonstrating competition across the phase diagram. We also discuss the observation of a sharp transition in the nature of the pseudogap signal at ˜ 11% doping. In YBCO, we explore the temperature and doping dependence of coherent oscillations excited by the pump pulse. We associate these oscillations with the excitation of the CDW amplitude mode, and model their temperature dependence within the framework of a Landau model of competing orders. We conclude with an investigation of pseudogap dynamics in the electron doped compound Nd2-xCexCuO4+d as a function of temperature and doping. Near optimal doping, we observe the impulsive excitation of a critically damped mode, with time-temperature scaling consistent with quantum-critical fluctuations. This mode competes with superconductivity in a dynamical fashion, such that the suppression of this mode below T c can be lifted via photo-evaporation of the superconducting condensate.
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
Electronic Mentoring of LIS Research Utilizing BITNET: An ACRL Pilot Project.
ERIC Educational Resources Information Center
Gregory, Vicki L.
1992-01-01
Describes an ACRL (American College and Research Libraries) project that utilized the electronic conferencing facility of BITNET to provide a system of mentoring for academic librarians conducting research. Results of an electronic mail survey of participants that examined experience levels, attitudes, problems, and communication patterns are…
Secure E-Examination Systems Compared: Case Studies from Two Countries
ERIC Educational Resources Information Center
Fluck, Andrew; Adebayo, Olawale S.; Abdulhamid, Shafi'i M.
2017-01-01
Aim/Purpose: Electronic examinations have some inherent problems. Students have expressed negative opinions about electronic examinations (e-examinations) due to a fear of, or unfamiliarity with, the technology of assessment, and a lack of knowledge about the methods of e-examinations. Background: Electronic examinations are now a viable…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pifer, J.H.; Croft, M.C.
This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.
Document Storage and Retrieval in the Electronic Office.
ERIC Educational Resources Information Center
Ashford, John
1985-01-01
Proposals are made for practical approaches to the design of electronic office systems to provide for the effective storage and retrieval of the documents that they generate. Problems of records management and requirements to be met by the designer of an electronic office system are highlighted. Nineteen references are cited. (EJS)
Why Teach the Electron Configuration of the Elements as We Do?
ERIC Educational Resources Information Center
Millikan, Roger C.
1982-01-01
Discusses pros and cons of current methods of teaching electron configurations of elements. Offers alternative instructional strategies, suggesting that although tables of electron configurations are useful and in conjunction with periodic tables may help solve many problems, they should be included as reference material. (Author/JN)
Context and Expertise: The Case of Electronic Troubleshooting.
ERIC Educational Resources Information Center
Flesher, Jeffrey W.
Electronic troubleshooting expertise was explored in the three contexts (design, production, and repair) that reflect distinct problem solving task environments. The purpose of the effort was to provide a more precise definition of the boundaries of expertise in electronics troubleshooting and the relationship of context to the development of…
[Subjetivity and interconsultation in front of the new pathologies and technologies].
Finquelevich, Gabriel; Gabay, Pablo Miguel
2002-01-01
The technological advance in medicine was accompanied paradoxically of a lack of consideration toward the human being subjective dimension. This resulted in the appearance of new and unexpected inconveniences, caused by the patient's attitudes that cannot be understood neither solved by the specialist doctors, hindering the application of important achieved advantages. This development is particularly remarkable in the most spectacular innovations (transplantation and reimplantation of organs, protesis, electronic ortesis, hormonal substitutions, chemotherapy, etc.) that can mean the difference between life and death. There are human and subjective motivations behind all these problems that have not been kept in mind although constitute the specific sphere of work and investigation of the medical-psychological interconsultation.
A JAVA-based multimedia tool for clinical practice guidelines.
Maojo, V; Herrero, C; Valenzuela, F; Crespo, J; Lazaro, P; Pazos, A
1997-01-01
We have developed a specific language for the representation of Clinical Practice Guidelines (CPGs) and Windows C++ and platform independent JAVA applications for multimedia presentation and edition of electronically stored CPGs. This approach facilitates translation of guidelines and protocols from paper to computer-based flowchart representations. Users can navigate through the algorithm with a friendly user interface and access related multimedia information within the context of each clinical problem. CPGs can be stored in a computer server and distributed over the World Wide Web, facilitating dissemination, local adaptation, and use as a reference element in medical care. We have chosen the Agency for Health Care and Policy Research's heart failure guideline to demonstrate the capabilities of our tool.
E-Cigarettes and Potential Implications for Plastic Surgery.
Taub, Peter J; Matarasso, Alan
2016-12-01
The use of tobacco-based products, most notably cigarettes, is related directly to wound healing problems and poorer outcomes in plastic surgery. Current abstracts have highlighted the potential complications from nicotine, specifically following plastic surgery in patients who choose to smoke. Recently, products that use electricity to vaporize liquid nitrogen have been gaining popularity. New rules were recently proposed that would give the federal government authority over electronic cigarettes. However, the health-related issues surrounding e-cigarettes are still largely unknown or misunderstood. These issues also extend to their impact on surgical procedures, notably their effect on plastic surgical procedures that rely heavily on the vascularity of either the host wound bed or the replacement tissue.
Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
NASA Astrophysics Data System (ADS)
Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke
2018-02-01
Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.
The charge-energy-mass spectrometer for 0.3-300 keV/e ions on the AMPTE CCE
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Ipavich, F. M.; Hamilton, D. C.; Lundgren, R. A.; Studemann, W.; Wilken, B.; Kremser, G.; Hovestadt, D.; Gliem, F.; Rieck, W.
1985-01-01
The charge-energy-mass (CHEM) spectrometer on the Charge Composition Explorer (CCE) has the function to measure the energy spectra, pitch-angle distributions, and ionization states of ions in the earth's magnetosphere and magnetosheath in the energy range from 0.3 to 300 keV/charge with a time resolution of less than 1 min. The obtained data will provide essential information on outstanding problems related to ion sources and dynamical processes of space plasmas and of suprathermal ions. A description of the CHEM experiment is given, taking into account the principle of operation, the sensor, the electronics, instrument characteristics, specifications, and requirements. Questions of postlaunch performance are also discussed.
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
Six Sigma Approach to Improve Stripping Quality of Automotive Electronics Component – a case study
NASA Astrophysics Data System (ADS)
Razali, Noraini Mohd; Murni Mohamad Kadri, Siti; Con Ee, Toh
2018-03-01
Lacking of problem solving skill techniques and cooperation between support groups are the two obstacles that always been faced in actual production line. Inadequate detail analysis and inappropriate technique in solving the problem may cause the repeating issues which may give impact to the organization performance. This study utilizes a well-structured six sigma DMAIC with combination of other problem solving tools to solve product quality problem in manufacturing of automotive electronics component. The study is concentrated at the stripping process, a critical process steps with highest rejection rate that contribute to the scrap and rework performance. The detail analysis is conducted in the analysis phase to identify the actual root cause of the problem. Then several improvement activities are implemented and the results show that the rejection rate due to stripping defect decrease tremendously and the process capability index improved from 0.75 to 1.67. This results prove that the six sigma approach used to tackle the quality problem is substantially effective.
McCormick, Jessica; Delfabbro, Paul; Denson, Linley A
2012-12-01
The aim of this study was to conduct an empirical investigation of the validity of Jacobs' (in J Gambl Behav 2:15-31, 1986) general theory of addictions in relation to gambling problems associated with electronic gaming machines (EGM). Regular EGM gamblers (n = 190) completed a series of standardised measures relating to psychological and physiological vulnerability, substance use, dissociative experiences, early childhood trauma and abuse and problem gambling (the Problem Gambling Severity Index). Statistical analysis using structural equation modelling revealed clear relationships between childhood trauma and life stressors and psychological vulnerability, dissociative-like experiences and problem gambling. These findings confirm and extend a previous model validated by Gupta and Derevensky (in J Gambl Stud 14: 17-49, 1998) using an adolescent population. The significance of these findings are discussed for existing pathway models of problem gambling, for Jacobs' theory, and for clinicians engaged in assessment and intervention.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
McCoy, Allison B; Wright, Adam; Rogith, Deevakar; Fathiamini, Safa; Ottenbacher, Allison J; Sittig, Dean F
2014-04-01
Correlation of data within electronic health records is necessary for implementation of various clinical decision support functions, including patient summarization. A key type of correlation is linking medications to clinical problems; while some databases of problem-medication links are available, they are not robust and depend on problems and medications being encoded in particular terminologies. Crowdsourcing represents one approach to generating robust knowledge bases across a variety of terminologies, but more sophisticated approaches are necessary to improve accuracy and reduce manual data review requirements. We sought to develop and evaluate a clinician reputation metric to facilitate the identification of appropriate problem-medication pairs through crowdsourcing without requiring extensive manual review. We retrieved medications from our clinical data warehouse that had been prescribed and manually linked to one or more problems by clinicians during e-prescribing between June 1, 2010 and May 31, 2011. We identified measures likely to be associated with the percentage of accurate problem-medication links made by clinicians. Using logistic regression, we created a metric for identifying clinicians who had made greater than or equal to 95% appropriate links. We evaluated the accuracy of the approach by comparing links made by those physicians identified as having appropriate links to a previously manually validated subset of problem-medication pairs. Of 867 clinicians who asserted a total of 237,748 problem-medication links during the study period, 125 had a reputation metric that predicted the percentage of appropriate links greater than or equal to 95%. These clinicians asserted a total of 2464 linked problem-medication pairs (983 distinct pairs). Compared to a previously validated set of problem-medication pairs, the reputation metric achieved a specificity of 99.5% and marginally improved the sensitivity of previously described knowledge bases. A reputation metric may be a valuable measure for identifying high quality clinician-entered, crowdsourced data. Copyright © 2013 Elsevier Inc. All rights reserved.
McCoy, Allison B.; Wright, Adam; Rogith, Deevakar; Fathiamini, Safa; Ottenbacher, Allison J.; Sittig, Dean F.
2014-01-01
Background Correlation of data within electronic health records is necessary for implementation of various clinical decision support functions, including patient summarization. A key type of correlation is linking medications to clinical problems; while some databases of problem-medication links are available, they are not robust and depend on problems and medications being encoded in particular terminologies. Crowdsourcing represents one approach to generating robust knowledge bases across a variety of terminologies, but more sophisticated approaches are necessary to improve accuracy and reduce manual data review requirements. Objective We sought to develop and evaluate a clinician reputation metric to facilitate the identification of appropriate problem-medication pairs through crowdsourcing without requiring extensive manual review. Approach We retrieved medications from our clinical data warehouse that had been prescribed and manually linked to one or more problems by clinicians during e-prescribing between June 1, 2010 and May 31, 2011. We identified measures likely to be associated with the percentage of accurate problem-medication links made by clinicians. Using logistic regression, we created a metric for identifying clinicians who had made greater than or equal to 95% appropriate links. We evaluated the accuracy of the approach by comparing links made by those physicians identified as having appropriate links to a previously manually validated subset of problem-medication pairs. Results Of 867 clinicians who asserted a total of 237,748 problem-medication links during the study period, 125 had a reputation metric that predicted the percentage of appropriate links greater than or equal to 95%. These clinicians asserted a total of 2464 linked problem-medication pairs (983 distinct pairs). Compared to a previously validated set of problem-medication pairs, the reputation metric achieved a specificity of 99.5% and marginally improved the sensitivity of previously described knowledge bases. Conclusion A reputation metric may be a valuable measure for identifying high quality clinician-entered, crowdsourced data. PMID:24321170
Staeheli, Martha; Aseltine, Robert H; Schilling, Elizabeth; Anderson, Daren; Gould, Bruce
2017-01-01
Behavioral health disorders remain under recognized and under diagnosed among urban primary care patients. Screening patients for such problems is widely recommended, yet is challenging to do in a brief primary care encounter, particularly for this socially and medically complex patient population. In 2013, intervention patients at an urban Connecticut primary clinic were screened for post-traumatic stress disorder, depression, and risky drinking (n = 146) using an electronic tablet-based screening tool. Screening data were compared to electronic health record data from control patients (n = 129) to assess differences in the prevalence of behavioral health problems, rates of follow-up care, and the rate of newly identified cases in the intervention group. Results from logistic regressions indicated that both groups had similar rates of disorder at baseline. Patients in the intervention group were five times more likely to be identified with depression (p < 0.05). Post-traumatic stress disorder was virtually unrecognized among controls but was observed in 23% of the intervention group (p < 0.001). The vast majority of behavioral health problems identified in the intervention group were new cases. Follow-up rates were significantly higher in the intervention group relative to controls, but were low overall. This tablet-based electronic screening tool identified significantly higher rates of behavioral health disorders than have been previously reported for this patient population. Electronic risk screening using patient-reported outcome measures offers an efficient approach to improving the identification of behavioral health problems and improving rates of follow-up care.
Applications of the Analytical Electron Microscope to Materials Science
NASA Technical Reports Server (NTRS)
Goldstein, J. I.
1992-01-01
In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.
Open problems of magnetic island control by electron cyclotron current drive
Grasso, Daniela; Lazzaro, E.; Borgogno, D.; ...
2016-11-17
This study reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.
CALL FOR PAPERS: Special issue on the random search problem: trends and perspectives
NASA Astrophysics Data System (ADS)
da Luz, Marcos G. E.; Grosberg, Alexander Y.; Raposo, Ernesto P.; Viswanathan, Gandhi M.
2008-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of the random search problem. The motivation behind this special issue is to summarize in a single comprehensive publication, the main aspects (past and present), latest developments, different viewpoints and the directions being followed in this multidisciplinary field. We hope that such a special issue could become a particularly valuable reference for the broad scientific community working with the general random search problem. The Editorial Board has invited Marcos G E da Luz, Alexander Y Grosberg, Ernesto P Raposo and Gandhi M Viswanathan to serve as Guest Editors for the special issue. The general question of how to optimize the search for specific target objects in either continuous or discrete environments when the information available is limited is of significant importance in a broad range of fields. Representative examples include ecology (animal foraging, dispersion of populations), geology (oil recovery from mature reservoirs), information theory (automated researchers of registers in high-capacity database), molecular biology (proteins searching for their sites, e.g., on DNA ), etc. One reason underlying the richness of the random search problem relates to the `ignorance' of the locations of the randomly located `targets'. A statistical approach to the search problem can deal adequately with incomplete information and so stochastic strategies become advantageous. The general problem of how to search efficiently for randomly located target sites can thus be quantitatively described using the concepts and methods of statistical physics and stochastic processes. Scope Thus far, to the best of our knowledge, no recent textbook or review article in a physics journal has appeared on this topic. This makes a special issue with review and research articles attractive to those interested in acquiring a general introduction to the field. The subject can be approached from the perspective of different fields: ecology, networks, transport problems, molecular biology, etc. The study of the problem is particularly suited to the concepts and methods of statistical physics and stochastic processes; for example, fractals, random walks, anomalous diffusion. Discrete landscapes can be approached via graph theory, random lattices and complex networks. Such topics are regularly discussed in Journal of Physics A: Mathematical and Theoretical. All such aspects of the problem fall within the scope and focus of this special issue on the random search problem: trends and perspectives. Editorial policy All contributions to the special issue will be refereed in accordance with the refereeing policy of the journal. In particular, all research papers will be expected to be original work reporting substantial new results. The issue will also contain a number of review articles by invitation only. The Guest Editors reserve the right to judge whether a contribution fits the scope of the special issue. Guidelines for preparation of contributions We aim to publish the special issue in August 2009. To realize this, the DEADLINE for contributed papers is 15 January 2009. There is a page limit of 15 printed pages (approximately 9000 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on document preparation can be found at www.iop.org/Journals/jphysa. Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'J. Phys. A Special Issue— Random Search Problem'. Please state whether the paper has been invited or is contributed. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing electronic code on CD if available and quoting 'J. Phys. A Special Issue—Random Search Problem'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue.
Challenges and opportunities of biodegradable plastics: A mini review.
Rujnić-Sokele, Maja; Pilipović, Ana
2017-02-01
The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.
Mammalian Toxicology Testing: Problem Definition Study, Global Army Toxicology Requirements.
1981-03-01
Electronic Warfare Equipment (D251) Tactical ECK System (64750A) Protective Electronic Warfare Equipment (D540) High Energy Electromagnetic Radiation...Fighting Portable Weapon (for IFV) Smoke Grenade Launcher Staff Smart, Target-Activated Fire-and-Forget Tactical ECK System (63755A) Protective Electronic...Warfare Equipment (D251) Tactical ECK System (64750A) Protective Electronic Warfare Equipment (D540) High Energy Electromagnetic Radiation Weapons (e.g
Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan
2007-12-15
Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less
Collisionless plasma expansion into vacuum: Two new twists on an old problema)
NASA Astrophysics Data System (ADS)
Arefiev, Alexey V.; Breizman, Boris N.
2009-05-01
The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from the Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.
Wright, Adam; Laxmisan, Archana; Ottosen, Madelene J; McCoy, Jacob A; Butten, David; Sittig, Dean F
2012-01-01
Objective We describe a novel, crowdsourcing method for generating a knowledge base of problem–medication pairs that takes advantage of manually asserted links between medications and problems. Methods Through iterative review, we developed metrics to estimate the appropriateness of manually entered problem–medication links for inclusion in a knowledge base that can be used to infer previously unasserted links between problems and medications. Results Clinicians manually linked 231 223 medications (55.30% of prescribed medications) to problems within the electronic health record, generating 41 203 distinct problem–medication pairs, although not all were accurate. We developed methods to evaluate the accuracy of the pairs, and after limiting the pairs to those meeting an estimated 95% appropriateness threshold, 11 166 pairs remained. The pairs in the knowledge base accounted for 183 127 total links asserted (76.47% of all links). Retrospective application of the knowledge base linked 68 316 medications not previously linked by a clinician to an indicated problem (36.53% of unlinked medications). Expert review of the combined knowledge base, including inferred and manually linked problem–medication pairs, found a sensitivity of 65.8% and a specificity of 97.9%. Conclusion Crowdsourcing is an effective, inexpensive method for generating a knowledge base of problem–medication pairs that is automatically mapped to local terminologies, up-to-date, and reflective of local prescribing practices and trends. PMID:22582202
Kubiszewski, V; Fontaine, R; Huré, K; Rusch, E
2013-04-01
The aim of this study was to determine the prevalence of adolescents engaged in cyber-bullying and then to identify whether students involved in cyber- and school bullying present the same characteristics of internalizing problems (insomnia, perceived social disintegration, psychological distress) and externalizing problems (general aggressiveness, antisocial behavior). Semi-structured interviews were conducted with 738 adolescents from a high-school and a middle-school (mean age=14.8 ± 2.7). The Electronic Bullying Questionnaire and the Olweus Bully/Victim Questionnaire were used to identify profiles of cyber-bullying (cyber-victim, cyber-bully, cyber-bully/victim and cyber-neutral) and school bullying (victim, bully, bully/victim and neutral). Internalizing problems were investigated using the Athens Insomnia Scale, a Perceived Social Disintegration Scale and a Psychological Distress Scale. Externalizing problems were assessed using a General Aggressiveness Scale and an Antisocial Behavior Scale. Almost one student in four was involved in cyber-bullying (16.4% as cyber-victim, 4.9% as cyber-bully and 5.6% as cyber-bully/victim); 14% of our sample was engaged in school bullying as a victim, 7.2% as a bully and 2.8% as a bully/victim. The majority of adolescents involved in cyber-bullying were not involved in school bullying. With regard to the problems associated with school bullying, internalizing problems were more prevalent in victims and bully/victims, whereas externalizing problems were more common in bullies and bully/victims. A similar pattern was found in cyber-bullying where internalizing problems were characteristic of cyber-victims and cyber-bully/victims. Insomnia was elevated in the cyber-bully group which is specific to cyberbullying. General aggressiveness and antisocial behavior were more prevalent in cyber-bullies and cyber-bully/victims. Looking at the differences between types of bullying, victims of "school only" and "school and cyber" bullying had higher scores for insomnia and perceived social disintegration than victims of "cyber only" bullying or students "non-involved". Higher general aggressiveness scores were observed for "school only" bullies and "school and cyber" bullies than for bullies in "cyber only" bullying or students "non-involved". Regarding antisocial behavior, "school only" bullies, "cyber only" bullies, "school and cyber" bullies had higher scores than students "non-involved". This study highlights the importance of investigating both school and cyber-bullying as many psychosocial problems are linked to these two specific and highly prevalent forms of bullying. Copyright © 2012 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Specification of electron radiation environment at GEO and MEO for surface charging estimates
NASA Astrophysics Data System (ADS)
Ganushkina, N.; Dubyagin, S.; Mateo Velez, J. C.; Liemohn, M. W.
2017-12-01
A series of anomalies at GEO have been attributed to electrons of energy below 100 keV, responsible for surface charging. The process at play is charge deposition on covering insulating surfaces and is directly linked to the space environment at a time scale of a few tens of seconds. Even though modern satellites benefited from the analysis of past flight anomalies and losses, it appears that surface charging remains a source of problems. Accurate specification of the space environment at different orbits is of a key importance. We present the operational model for low energy (< 200 keV) electrons in the inner magnetosphere, Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM). This model has been operating online since March 2013 (http://fp7-spacecast.eu and imptam.fmi.fi) and it is driven by the real time solar wind and IMF parameters and by the real time Dst index. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. IMPTAM is used to simulate the fluxes of low energy electrons inside the Earth's magnetosphere at the time of severe events measured on LANL satellites at GEO. There is no easy way to say what will be the flux of keV electrons at MEO when surface charging events are detected at GEO than to use a model. The maximal electron fluxes obtained at MEO (L = 4.6) within a few tens of minutes hours following the LANL events at GEO have been extracted to feed a database of theoretical/numerical worst-case environments for surface charging at MEO. All IMPTAM results are instantaneous, data have not been average. In order to validate the IMPTAM output at MEO, we conduct the statistical analysis of measured electron fluxes onboard Van Allen Probes (ECT HOPE (20 eV-45 keV) and ECT MagEIS (30 - 300 keV) at distances of 4.6 Re. IMPTAM e- flux at MEO is used as input to SPIS, the Spacecraft Plasma Interaction System Software toolkit for spacecraft-plasma interactions and spacecraft charging modelling (http://dev.spis.org/projects/spine/home/spis). The research leading to these results was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No 606716 SPACESTORM and by the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302 PROGRESS.
Abductive networks applied to electronic combat
NASA Astrophysics Data System (ADS)
Montgomery, Gerard J.; Hess, Paul; Hwang, Jong S.
1990-08-01
A practical approach to dealing with combinatorial decision problems and uncertainties associated with electronic combat through the use of networks of high-level functional elements called abductive networks is presented. It describes the application of the Abductory Induction Mechanism (AIMTM) a supervised inductive learning tool for synthesizing polynomial abductive networks to the electronic combat problem domain. From databases of historical expert-generated or simulated combat engagements AIM can often induce compact and robust network models for making effective real-time electronic combat decisions despite significant uncertainties or a combinatorial explosion of possible situations. The feasibility of applying abductive networks to realize advanced combat decision aiding capabilities was demonstrated by applying AIM to a set of electronic combat simulations. The networks synthesized by AIM generated accurate assessments of the intent lethality and overall risk associated with a variety of simulated threats and produced reasonable estimates of the expected effectiveness of a group of electronic countermeasures for a large number of simulated combat scenarios. This paper presents the application of abductive networks to electronic combat summarizes the results of experiments performed using AIM discusses the benefits and limitations of applying abductive networks to electronic combat and indicates why abductive networks can often result in capabilities not attainable using alternative approaches. 1. ELECTRONIC COMBAT. UNCERTAINTY. AND MACHINE LEARNING Electronic combat has become an essential part of the ability to make war and has become increasingly complex since
Whitt, Karen J; Eden, Lacey; Merrill, Katreena Collette; Hughes, Mckenna
2017-01-01
Previous research has linked improper electronic health record configuration and use with adverse patient events. In response to this problem, the US Office of the National Coordinator for Health Information Technology developed the Safety and Assurance Factors for EHR Resilience guides to evaluate electronic health records for optimal use and safety features. During the course of their education, nursing students are exposed to a variety of clinical practice settings and electronic health records. This descriptive study evaluated 108 undergraduate and 51 graduate nursing students' ratings of electronic health record features and safe practices, as well as what they learned from utilizing the computerized provider order entry and clinician communication Safety and Assurance Factors for EHR Resilience guide checklists. More than 80% of the undergraduate and 70% of the graduate students reported that they experienced user problems with electronic health records in the past. More than 50% of the students felt that electronic health records contribute to adverse patient outcomes. Students reported that many of the features assessed were not fully implemented in their electronic health record. These findings highlight areas where electronic health records can be improved to optimize patient safety. The majority of students reported that utilizing the Safety and Assurance Factors for EHR Resilience guides increased their understanding of electronic health record features.
Cooper, Daniel R; Kudinov, Konstantin; Tyagi, Pooja; Hill, Colin K; Bradforth, Stephen E; Nadeau, Jay L
2014-06-28
CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthesis methods for water-dispersible Ce0.1La0.9F3/LaF3 and CeF3/LaF3 core/shell nanoparticles and an investigation of energy transfer to photosensitizers. Unbound deuteroporphyrin IX 2,4-disulfonic acid was found to substantially quench the luminescence of large (>10 nm diameter) aminocaproic acid-stabilized nanoparticles at reasonable concentrations and loading amounts: up to 80% quenching at 6% w/w photosensitizer loading. Energy transfer was found to occur primarily through a cascade, with excitation of "regular" site Ce(3+) at 252 nm relayed to photosensitizer molecules at the nanoparticle surface through intermediate "perturbed" Ce(3+) sites. Smaller (<5 nm) citrate-stabilized nanoparticles were coated with the bisphosphonate alendronate, allowing covalent conjugation to chlorin e6 and resulting in static quenching of the nanoparticle luminescence: ∼50% at ∼0.44% w/w. These results provide insight into energy transfer mechanisms that may prove valuable for optimizing similar systems.
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-03-01
Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.
Implementation of a three-qubit refined Deutsch Jozsa algorithm using SFG quantum logic gates
NASA Astrophysics Data System (ADS)
DelDuce, A.; Savory, S.; Bayvel, P.
2006-05-01
In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
Are Electronic Conferences a Solution in Search of an Urban Problem?
ERIC Educational Resources Information Center
Klecka, Cari; Clift, Renee; Cheng, Yu-Ming
2005-01-01
This article briefly reviews initiatives that have attempted to create communities of educators using Web-based, electronic conferencing. The authors critically analyze the advocacy for electronic communication as a medium for bringing educators together across time and distance with an emphasis on what is known about urban schools, access to…
The Use of Electronic Book Theft Detection Systems in Libraries.
ERIC Educational Resources Information Center
Witt, Thomas B.
1996-01-01
Although electronic book theft detection systems can be a deterrent to library material theft, no electronic system is foolproof, and a total security program is necessary to ensure collection security. Describes how book theft detection systems work, their effectiveness, and the problems inherent in technology. A total security program considers…
Law School Experience in Pervasive Electronic Communications.
ERIC Educational Resources Information Center
Shiels, Rosemary
1994-01-01
Installation of a schoolwide local area computer network at Chicago-Kent College of Law (Illinois) is described. Uses of electronic mail within a course on computer law are described. Additional social, administrative, and research uses of electronic mail are noted as are positive effects and emerging problems (e.g., burdens on recipients and…
NASA Astrophysics Data System (ADS)
Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.
2015-07-01
A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.
Terahertz electron cyclotron maser interactions with an axis-encircling electron beam
NASA Astrophysics Data System (ADS)
Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.
2015-04-01
To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.
Wavelets in electronic structure calculations
NASA Astrophysics Data System (ADS)
Modisette, Jason Perry
1997-09-01
Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.
NASA Astrophysics Data System (ADS)
Hysell, D. L.; Varney, R. H.; Vlasov, M. N.; Nossa, E.; Watkins, B.; Pedersen, T.; Huba, J. D.
2012-02-01
The electron energy distribution during an F region ionospheric modification experiment at the HAARP facility near Gakona, Alaska, is inferred from spectrographic airglow emission data. Emission lines at 630.0, 557.7, and 844.6 nm are considered along with the absence of detectable emissions at 427.8 nm. Estimating the electron energy distribution function from the airglow data is a problem in classical linear inverse theory. We describe an augmented version of the method of Backus and Gilbert which we use to invert the data. The method optimizes the model resolution, the precision of the mapping between the actual electron energy distribution and its estimate. Here, the method has also been augmented so as to limit the model prediction error. Model estimates of the suprathermal electron energy distribution versus energy and altitude are incorporated in the inverse problem formulation as representer functions. Our methodology indicates a heater-induced electron energy distribution with a broad peak near 5 eV that decreases approximately exponentially by 30 dB between 5-50 eV.
Ceballos, Diana Maria; Dong, Zhao
2016-10-01
E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Information Seeking When Problem Solving: Perspectives of Public Health Professionals.
Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna
2017-04-01
Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p < .00, N = 58), but not individual information seeking. The results suggested that when public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can influence how they collaborate in seeking information. Educators in public health organizations should tailor training in information searching to promote collaboration through collaborative technology systems. © 2016 Sigma Theta Tau International.
Advances in electron kinetics and theory of gas discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolobov, Vladimir I.; The University of Alabama in Huntsville, Huntsville, Alabama 35899
2013-10-15
“Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples ofmore » the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.« less